CINXE.COM

Search results for: free flow speed

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: free flow speed</title> <meta name="description" content="Search results for: free flow speed"> <meta name="keywords" content="free flow speed"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="free flow speed" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="free flow speed"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10440</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: free flow speed</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10440</span> Finding the Free Stream Velocity Using Flow Generated Sound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini">Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor"> Ali Reza Tahavvor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20flow%20generated%20sound" title="the flow generated sound">the flow generated sound</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20stream" title=" free stream"> free stream</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20power" title=" wave power"> wave power</a> </p> <a href="https://publications.waset.org/abstracts/35611/finding-the-free-stream-velocity-using-flow-generated-sound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10439</span> Capacity Loss at Midblock Sections of Urban Arterials Due to Pedestrian Crossings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya">Ashish Dhamaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pedestrian crossings at grade in India are very common and pedestrian cross the carriageway at undesignated locations where they found the path to access the residential and commercial areas. Present paper aims to determine capacity loss on 4-lane urban arterials due to such crossings. Base capacity which is defined as the capacity without any influencing factor is determined on 4-lane roads by collecting speed-flow data in the field. It is observed that base capacity is varying from 1636 pcu/hr/lane to 2043 pcu/hr/lane which is attributed to the different operating conditions at different sections. The variation in base capacity is related with the operating speed on the road sections. Free flow speed of standard car is measured in the field and 85th percentile of this speed is reported as operating speed. Capacity of the 4-lane road sections with different pedestrian cross-flow is also determined and compared with the capacity of base section. The difference in capacity values is reported as capacity loss due to the average number of pedestrian crossings in one hour. It has been observed that capacity of 4-lane road section reduces from 18 to 30 percent with pedestrian cross-flow of 800 to 1550 peds/hr. A model is proposed between capacity loss and pedestrian cross-flow from the observed data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity" title="capacity">capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed" title=" free flow speed"> free flow speed</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian" title=" pedestrian"> pedestrian</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20arterial" title=" urban arterial"> urban arterial</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a> </p> <a href="https://publications.waset.org/abstracts/35845/capacity-loss-at-midblock-sections-of-urban-arterials-due-to-pedestrian-crossings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10438</span> Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Rashid%20Sarand">Hamed Rashid Sarand</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Sel%C3%A7uk%20%C3%96%C4%9F%C3%BCt"> Kemal Selçuk Öğüt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20speed%20difference" title="maximum speed difference">maximum speed difference</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20traffic%20microwave%20sensor" title=" remote traffic microwave sensor"> remote traffic microwave sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20differentiation" title=" speed differentiation"> speed differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow "> traffic flow </a> </p> <a href="https://publications.waset.org/abstracts/36794/empirical-investigations-on-speed-differentiations-of-traffic-flow-a-case-study-on-a-basic-freeway-segment-of-o-2-in-istanbul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10437</span> Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Moses">Ren Moses</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kidando"> Emmanuel Kidando</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20Ozguven"> Eren Ozguven</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassir%20Abdelrazig"> Yassir Abdelrazig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion" title="traffic congestion">traffic congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=multistate%20speed%20distribution" title=" multistate speed distribution"> multistate speed distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20occupancy" title=" traffic occupancy"> traffic occupancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20process%20mixtures%20of%20generalized%20linear%20model" title=" Dirichlet process mixtures of generalized linear model"> Dirichlet process mixtures of generalized linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20change-point%20detection" title=" Bayesian change-point detection"> Bayesian change-point detection</a> </p> <a href="https://publications.waset.org/abstracts/67198/evaluating-traffic-congestion-using-the-bayesian-dirichlet-process-mixture-of-generalized-linear-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10436</span> On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef">M. Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouzelha-Hammoum"> K. Bouzelha-Hammoum</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Guendouzen-Dabouz"> T. Guendouzen-Dabouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Younsi"> A. Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiments" title="experiments">experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20flow" title=" supercritical flow"> supercritical flow</a> </p> <a href="https://publications.waset.org/abstracts/75299/on-the-free-surface-generated-by-the-flow-over-an-obstacle-in-a-hydraulic-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10435</span> CFD Modeling of Pollutant Dispersion in a Free Surface Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Hamza">Sonia Ben Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Said"> Nejla Mahjoub Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we determine the turbulent dynamic structure of pollutant dispersion in two-phase free surface flow. The numerical simulation was performed using ANSYS Fluent. The flow study is three-dimensional, unsteady and isothermal. The study area has been endowed with a rectangular obstacle to analyze its influence on the hydrodynamic variables and progression of the pollutant. The numerical results show that the hydrodynamic model provides prediction of the dispersion of a pollutant in an open channel flow and reproduces the recirculation and trapping the pollutant downstream near the obstacle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface" title=" free surface"> free surface</a>, <a href="https://publications.waset.org/abstracts/search?q=polluant%20dispersion" title=" polluant dispersion"> polluant dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a> </p> <a href="https://publications.waset.org/abstracts/30237/cfd-modeling-of-pollutant-dispersion-in-a-free-surface-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10434</span> Open Channel Flow Measurement of Water by Using Width Contraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Goel">Arun Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20S.%20Verma"> D. V. S. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sangwan"> Sanjeev Sangwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowrate" title="flowrate">flowrate</a>, <a href="https://publications.waset.org/abstracts/search?q=flowmeter" title=" flowmeter"> flowmeter</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channels" title=" open channels"> open channels</a>, <a href="https://publications.waset.org/abstracts/search?q=submergence" title=" submergence"> submergence</a> </p> <a href="https://publications.waset.org/abstracts/22464/open-channel-flow-measurement-of-water-by-using-width-contraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10433</span> Contribution to Experiments of a Free Surface Supercritical Flow over an Uneven Bottom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bougamouza">M. Bougamouza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to examine, through experimentation in the laboratory, the supercritical flow in the presence of an obstacle in a rectangular channel. The supercritical regime in the whole hydraulic channel is achieved by adding a convergent. We will observe the influence of the obstacle shape and dimension on the characteristics of the supercritical flow, mainly the free-surface elevation and the velocity profile. The velocity measurements have been conducted with the one dimension laser anemometry technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiments" title="experiments">experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=uneven%20bottom" title=" uneven bottom"> uneven bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20anemometry" title=" laser anemometry"> laser anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20regime" title=" supercritical regime"> supercritical regime</a> </p> <a href="https://publications.waset.org/abstracts/42024/contribution-to-experiments-of-a-free-surface-supercritical-flow-over-an-uneven-bottom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10432</span> Characteristics of Speed Dispersion in Urban Expressway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fujian%20Wang">Fujian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubin%20Ruan"> Shubin Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiwei%20Dai"> Meiwei Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headway" title="headway">headway</a>, <a href="https://publications.waset.org/abstracts/search?q=indicating%20parameters" title=" indicating parameters"> indicating parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20dispersion" title=" speed dispersion"> speed dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20expressway" title=" urban expressway"> urban expressway</a> </p> <a href="https://publications.waset.org/abstracts/47095/characteristics-of-speed-dispersion-in-urban-expressway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10431</span> CFD Study of Free Surface Flows Resulting from a Dam-Breaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Hamza">Sonia Ben Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free surface flows caused by dam breaks in channels or rivers is an attention-getting subject to the engineering practice, however, the studies are few to be reported. In this paper, a numerical investigation of unsteady free surface flows resulting from a dam-breaking in a rectangular channel is studied. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of fluid method (VOF). Verification for a typical dam-break problem is analyzed by comparing the present results with others and very good agreement is obtained. The present approach is then used to predict the characteristics of free surface flow due to the dam breaking in channel. The characteristics of complex unsteady free surface flow in these examples are clearly explained. The numerical results show that the flow became more disturbed after impacting the vertical wall, then a recirculation zone, as well as turbulence phenomena, were created. At this instant, a cavity of air was included on the flow. The results agree well with the experimental data found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=dam-break" title=" dam-break"> dam-break</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface" title=" free surface"> free surface</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/42603/cfd-study-of-free-surface-flows-resulting-from-a-dam-breaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10430</span> Experiments of a Free Surface Flow in a Hydraulic Channel over an Uneven Bottom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouinoun">M. Bouinoun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is concerned with the problem of determining the shape of the free surface flow in a hydraulic channel which has an uneven bottom. For the mathematical formulation of the problem, the fluid of the two-dimensional irrotational steady flow in water is assumed inviscid and incompressible. The solutions of the nonlinear problem are obtained by using the usual conformal mapping theory and Hilbert’s technique. An experimental study, for comparing the obtained results, has been conducted in a hydraulic channel (subcritical regime and supercritical regime). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title="free-surface flow">free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=uneven%20bottom" title=" uneven bottom"> uneven bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20regime" title=" supercritical regime"> supercritical regime</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a> </p> <a href="https://publications.waset.org/abstracts/34224/experiments-of-a-free-surface-flow-in-a-hydraulic-channel-over-an-uneven-bottom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10429</span> Flow Visualization around a Rotationally Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control" title="active flow control">active flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization%20rotationally%20oscillating" title=" flow visualization rotationally oscillating"> flow visualization rotationally oscillating</a> </p> <a href="https://publications.waset.org/abstracts/130645/flow-visualization-around-a-rotationally-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10428</span> An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sawitri">P. Sawitri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cdr.%20Sittha"> S. Cdr. Sittha</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kritsana"> T. Kritsana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20forming" title="flow forming">flow forming</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20rollers" title=" four rollers"> four rollers</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle%20speed" title=" spindle speed"> spindle speed</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20work" title=" cold work"> cold work</a> </p> <a href="https://publications.waset.org/abstracts/14068/an-improvement-of-flow-forming-process-for-pressure-vessels-by-four-rollers-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10427</span> CFD Simulation of Surge Wave Generated by Flow-Like Landslides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu-Chao%20Qiu">Liu-Chao Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow-like%20landslide" title="flow-like landslide">flow-like landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20wave" title=" surge wave"> surge wave</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flows" title=" multi-phase flows"> multi-phase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a> </p> <a href="https://publications.waset.org/abstracts/12552/cfd-simulation-of-surge-wave-generated-by-flow-like-landslides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10426</span> Speed Characteristics of Mixed Traffic Flow on Urban Arterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dhamaniya">Ashish Dhamaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85<sup>th</sup> and 50<sup>th</sup> percentile speed to the difference in 50<sup>th</sup> and 15<sup>th</sup> percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20distribution" title="normal distribution">normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=percentile%20speed" title=" percentile speed"> percentile speed</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20spread%20ratio" title=" speed spread ratio"> speed spread ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20volume" title=" traffic volume"> traffic volume</a> </p> <a href="https://publications.waset.org/abstracts/1902/speed-characteristics-of-mixed-traffic-flow-on-urban-arterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10425</span> Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Chakroun">Walid Chakroun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorour%20Alotaibi"> Sorour Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20Ghaddar"> Nesreen Ghaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Ghali"> Kamel Ghali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 &deg;C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 &deg;C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 &deg;C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants&rsquo; thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMV" title="PMV">PMV</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20environment" title=" thermal environment"> thermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensation" title=" thermal sensation"> thermal sensation</a> </p> <a href="https://publications.waset.org/abstracts/82480/improved-thermal-comfort-and-sensation-with-occupant-control-of-ceiling-personalized-ventilation-system-a-lab-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10424</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20compressible%20flow" title="aerodynamics compressible flow">aerodynamics compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/68545/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10423</span> Sustainable Traffic Flow: The Case Study of Un-Signalized Pedestrian Crossing at Stationary Bottleneck and Its Impact on Traffic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Badshah">Imran Badshah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the impact of Un-signalized pedestrian on traffic flow at Stationary Bottleneck. The Highway Capacity Manual (HCM) analyze the methodology of level of service for Urban street segment but it does not include the impact of un-signalized pedestrian crossing at stationary bottleneck. The un-signalized pedestrian crossing in urban road segment causes conflict between vehicles and pedestrians. As a result, the average time taken by vehicle to travel along a road segment increased. The speed of vehicle and the level of service decreases as the running time of a segment increased. To analyze the delay, we need to determine the pedestrian speed while crossing the road at a stationary bottleneck. The objective of this research is to determine the speed of pedestrian and its impact on traffic flow at stationary bottleneck. In addition, the result of this study should be incorporated in the Urban Street Analysis Chapter of HCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stationary%20bottleneck" title="stationary bottleneck">stationary bottleneck</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20speed" title=" pedestrian speed"> pedestrian speed</a>, <a href="https://publications.waset.org/abstracts/search?q=HCM" title=" HCM"> HCM</a> </p> <a href="https://publications.waset.org/abstracts/159043/sustainable-traffic-flow-the-case-study-of-un-signalized-pedestrian-crossing-at-stationary-bottleneck-and-its-impact-on-traffic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10422</span> Aerodynamic Study of an Open Window Moving Bus with Passengers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Pant">Pawan Kumar Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Gupta"> Bhanu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Kale"> S. R. Kale</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Veeravalli"> S. V. Veeravalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many countries, buses are the principal means of transport, of which a majority are naturally ventilated with open windows. The design of this ventilation has little scientific basis and to address this problem a study has been undertaken involving both experiments and numerical simulations. The flow pattern inside and around of an open window bus with passengers has been investigated in detail. A full scale three-dimensional numerical simulation has been used for a) a bus with closed windows and b) with open windows. In either simulation, the bus had 58 seated passengers. The bus dimensions used were 2500 mm wide × 2500 mm high (exterior) × 10500 mm long and its speed was set at 40 km/h. In both cases, the flow separates at the top front edge forming a vortex and reattaches close to the mid-length. This attached flow separates once more as it leaves the bus. However, the strength and shape of the vortices at the top front and wake region is different for both cases. The streamline pattern around the bus is also different for the two cases. For the bus with open windows, the dominant airflow inside the bus is from the rear to the front of the bus and air velocity at the face level of the passengers was found to be 1/10th of the free stream velocity. These findings are in good agreement with flow visualization experiments performed in a water channel at 10 m/s, and with smoke/tuft visualizations in a wind tunnel with a free-stream velocity of approximately 40 km/h on a 1:25 scaled Perspex model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20flow" title="air flow">air flow</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bus" title=" moving bus"> moving bus</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20windows" title=" open windows"> open windows</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/83110/aerodynamic-study-of-an-open-window-moving-bus-with-passengers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10421</span> Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Kamboj">Karan Kamboj</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikramjeet%20Singh"> Vikramjeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometry%20of%20artery" title="geometry of artery">geometry of artery</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20blood%20flow" title=" pulsatile blood flow"> pulsatile blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerous%20stenosis" title=" numerous stenosis"> numerous stenosis</a> </p> <a href="https://publications.waset.org/abstracts/154359/geometrical-fluid-model-for-blood-rheology-and-pulsatile-flow-in-stenosed-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10420</span> Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Omokhuale">Emmanuel Omokhuale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection%20flow" title="free convection flow">free convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20cylinder" title=" vertical cylinder"> vertical cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20finite%20difference%20method" title=" implicit finite difference method"> implicit finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink%20and%20porous%20medium" title=" heat sink and porous medium"> heat sink and porous medium</a> </p> <a href="https://publications.waset.org/abstracts/102468/free-convective-flow-in-a-vertical-cylinder-with-heat-sink-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10419</span> Readiness Analysis of Indonesian Accountants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Listiana">Lisa Listiana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ASEAN leader agreed to accelerate ASEAN Economic Community (AEC) implementation by 2015. The AEC Blueprint has set up obligations for its members to follow which include the establishment of (a) free trade in goods, according to ASEAN Free Trade Area: AFTA, (b) free trade in services, according to ASEAN Framework Agreement on Services: AFAS, (c) free trade in investment, according to ASEAN Comprehensive Investment Agreement: ACIA, (d) free capital flow, and (e) free flow of skilled labors. Consequently, these obligations bring both challenges and opportunities for its members. As accountant is included in the coverage of 8 skilled labors, the readiness of accounting profession to embrace AEC 2015 is pivotal. If Indonesian accountants do not accelerate their learning effort, the knowledge gap between Indonesian accountants and their international colleagues will only be worsened. This paper aims to analyze the current progress of AEC preparation and its challenges and opportunities for Indonesian accountants, and also to propose recommendation as necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AEC" title="AEC">AEC</a>, <a href="https://publications.waset.org/abstracts/search?q=ASEAN" title=" ASEAN"> ASEAN</a>, <a href="https://publications.waset.org/abstracts/search?q=readiness" title=" readiness"> readiness</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesian%20accountants" title=" Indonesian accountants "> Indonesian accountants </a> </p> <a href="https://publications.waset.org/abstracts/19961/readiness-analysis-of-indonesian-accountants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10418</span> Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Gurkan">Ahmet Y. Gurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagatay%20S.%20Koksal"> Cagatay S. Koksal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagri%20Aydin"> Cagri Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Oral%20Unal"> U. Oral Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20design" title=" diffuser design"> diffuser design</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20tunnel" title=" cavitation tunnel"> cavitation tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=rans" title=" rans"> rans</a> </p> <a href="https://publications.waset.org/abstracts/62078/viscous-flow-computations-for-the-diffuser-section-of-a-large-cavitation-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10417</span> Dam Break Model Using Navier-Stokes Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Lohrasbi">Alireza Lohrasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Lavaei"> Alireza Lavaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadali%20M.%20Shahlaei"> Mohammadali M. Shahlaei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20break" title="dam break">dam break</a>, <a href="https://publications.waset.org/abstracts/search?q=Naiver-Stokes%20equations" title=" Naiver-Stokes equations"> Naiver-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flows" title=" free-surface flows"> free-surface flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbitrary%20Lagrangian-Eulerian" title=" Arbitrary Lagrangian-Eulerian"> Arbitrary Lagrangian-Eulerian</a> </p> <a href="https://publications.waset.org/abstracts/53233/dam-break-model-using-navier-stokes-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10416</span> Gaussian Particle Flow Bernoulli Filter for Single Target Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeongbok%20Kim">Hyeongbok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Zhao"> Lingling Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Su"> Xiaohong Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Wang"> Junjie Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernoulli%20filter" title="Bernoulli filter">Bernoulli filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20filter" title=" particle flow filter"> particle flow filter</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20finite%20sets" title=" random finite sets"> random finite sets</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20tracking" title=" target tracking"> target tracking</a> </p> <a href="https://publications.waset.org/abstracts/162210/gaussian-particle-flow-bernoulli-filter-for-single-target-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10415</span> Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20spillway" title="stepped spillway">stepped spillway</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent%20model" title=" fluent model"> fluent model</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20model" title=" VOF model"> VOF model</a>, <a href="https://publications.waset.org/abstracts/search?q=K-%CE%B5%20model" title=" K-ε model"> K-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20distribution" title=" energy distribution"> energy distribution</a> </p> <a href="https://publications.waset.org/abstracts/26972/surveying-energy-dissipation-in-stepped-spillway-using-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10414</span> Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelraheem%20M.%20Aly">Abdelraheem M. Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Tuan%20Nguyen"> Minh Tuan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Lee"> Sang-Wook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incompressible%20smoothed%20particle%20hydrodynamics" title="incompressible smoothed particle hydrodynamics">incompressible smoothed particle hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20plane" title=" inclined plane"> inclined plane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20entry%20impact" title=" water entry impact"> water entry impact</a> </p> <a href="https://publications.waset.org/abstracts/35996/nonlinear-free-surface-flow-simulations-using-smoothed-particle-hydrodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10413</span> The Influence of the Discharge Point Position on the Pollutant Dispersion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Hamza">Sonia Ben Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Said"> Nejla Mahjoub Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Bournot"> Hervé Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution characteristics of pollutants released at different vertical inlet positions of an open channel are investigated with a three-dimensional numerical model. Pollutants are injected from time-dependent sources in a turbulent free surface flow. Numerical computations were carried out using ANSYS Fluent which is based on the finite volume approach. The air/water interface was modeled with the volume of the fluid method (VOF). By focusing on investigating the influences of flow on pollutants, it is found that pollutant released from the bottom position of the channel takes more time to disperse in the longitudinal direction of the flow in comparison with the case of pollutant released near the free surface. On the other hand, the pollutant released from the bottom position generates a vertical dispersion with decreased amplitude. These findings may assist in cost-effective scientific countermeasures to be taken for accident or planned pollutant discharged into a river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20release" title=" pollutant release"> pollutant release</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20free%20surface%20flow" title=" turbulent free surface flow"> turbulent free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF%20model" title=" VOF model"> VOF model</a> </p> <a href="https://publications.waset.org/abstracts/28381/the-influence-of-the-discharge-point-position-on-the-pollutant-dispersion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10412</span> Fuzzy and Fuzzy-PI Controller for Rotor Speed of Gas Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandar%20Ghodekar">Mandar Ghodekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Jadhav"> Sharad Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangram%20Jadhav"> Sangram Jadhav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed control of rotor during startup and under varying load conditions is one of the most difficult tasks of gas turbine operation. In this paper, power plant gas turbine (GE9001E) is considered for this purpose and fuzzy and fuzzy-PI rotor speed controllers are designed. The goal of the presented controllers is to keep the turbine rotor speed within predefined limits during startup condition as well as during operating condition. The fuzzy controller and fuzzy-PI controller are designed using Takagi-Sugeno method and Mamdani method, respectively. In applying the fuzzy-PI control to a gas-turbine plant, the tuning parameters (Kp and Ki) are modified online by fuzzy logic approach. Error and rate of change of error are inputs and change in fuel flow is output for both the controllers. Hence, rotor speed of gas turbine is controlled by modifying the fuel ƒflow. The identified linear ARX model of gas turbine is considered while designing the controllers. For simulations, demand power is taken as disturbance input. It is assumed that inlet guide vane (IGV) position is fixed. In addition, the constraint on the fuel flow is taken into account. The performance of the presented controllers is compared with each other as well as with H∞ robust and MPC controllers for the same operating conditions in simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20controller" title=" fuzzy controller"> fuzzy controller</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20PI%20controller" title=" fuzzy PI controller"> fuzzy PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a> </p> <a href="https://publications.waset.org/abstracts/41546/fuzzy-and-fuzzy-pi-controller-for-rotor-speed-of-gas-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10411</span> Gas-Liquid Flow Regimes in Vertical Venturi Downstream of Horizontal Blind-Tee</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Alif%20Bin%20Razali">Muhammad Alif Bin Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Gang%20Xie"> Cheng-Gang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Lam%20Loh"> Wai Lam Loh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. For an accurate determination of individual phase fraction and flowrate, a gas-liquid flow ideally needs to be well mixed in the venturi measurement section. Partial flow mixing is achieved by installing a venturi vertically downstream of the blind-tee pipework that ‘homogenizes’ the incoming horizontal gas-liquid flow. In order to study in-depth the flow-mixing effect of the blind-tee, gas-liquid flows are captured at blind-tee and venturi sections by using a high-speed video camera and a purpose-built transparent test rig, over a wide range of superficial liquid velocities (0.3 to 2.4m/s) and gas volume fractions (10 to 95%). Electrical capacitance sensors are built to measure the instantaneous holdup (of oil-gas flows) at the venturi inlet and throat. Flow regimes and flow (a)symmetry are investigated based on analyzing the statistical features of capacitance sensors’ holdup time-series data and of the high-speed video time-stacked images. The perceived homogenization effect of the blind-tee on the incoming intermittent horizontal flow regimes is found to be relatively small across the tested flow conditions. A horizontal (blind-tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind-tee" title="blind-tee">blind-tee</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20two-phase%20flow" title=" gas-liquid two-phase flow"> gas-liquid two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=MPFM" title=" MPFM"> MPFM</a> </p> <a href="https://publications.waset.org/abstracts/129335/gas-liquid-flow-regimes-in-vertical-venturi-downstream-of-horizontal-blind-tee" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=347">347</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=348">348</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=free%20flow%20speed&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10