CINXE.COM

Distributive property - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Distributive property - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"faf3bb9d-6801-46e7-898d-d22384b97ced","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Distributive_property","wgTitle":"Distributive property","wgCurRevisionId":1247364851,"wgRevisionId":1247364851,"wgArticleId":103118,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Pages that use a deprecated format of the math tags","Properties of binary operations","Elementary algebra","Rules of inference","Theorems in propositional logic"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Distributive_property","wgRelevantArticleId":103118,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q187959","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Distributive property - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Distributive_property"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Distributive_property&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Distributive_property"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Distributive_property rootpage-Distributive_property skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Distributive+property" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Distributive+property" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Distributive+property" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Distributive+property" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Meaning" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Meaning"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Meaning</span> </div> </a> <ul id="toc-Meaning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Real_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Real_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Real numbers</span> </div> </a> <ul id="toc-Real_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Matrices</span> </div> </a> <ul id="toc-Matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Other examples</span> </div> </a> <ul id="toc-Other_examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Propositional_logic" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Propositional_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Propositional logic</span> </div> </a> <button aria-controls="toc-Propositional_logic-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Propositional logic subsection</span> </button> <ul id="toc-Propositional_logic-sublist" class="vector-toc-list"> <li id="toc-Rule_of_replacement" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rule_of_replacement"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Rule of replacement</span> </div> </a> <ul id="toc-Rule_of_replacement-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Truth_functional_connectives" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Truth_functional_connectives"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Truth functional connectives</span> </div> </a> <ul id="toc-Truth_functional_connectives-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Distributivity_and_rounding" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Distributivity_and_rounding"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Distributivity and rounding</span> </div> </a> <ul id="toc-Distributivity_and_rounding-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_rings_and_other_structures" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#In_rings_and_other_structures"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>In rings and other structures</span> </div> </a> <ul id="toc-In_rings_and_other_structures-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-Antidistributivity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Antidistributivity"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Antidistributivity</span> </div> </a> <ul id="toc-Antidistributivity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Distributive property</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 55 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-55" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">55 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9%D9%8A%D8%A9" title="توزيعية – Arabic" lang="ar" hreflang="ar" data-title="توزيعية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Distributivid%C3%A1" title="Distributividá – Asturian" lang="ast" hreflang="ast" data-title="Distributividá" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BB%D1%8B%D2%A1" title="Дистрибутивлыҡ – Bashkir" lang="ba" hreflang="ba" data-title="Дистрибутивлыҡ" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D1%8B%D1%81%D1%82%D1%80%D1%8B%D0%B1%D1%83%D1%82%D1%8B%D1%9E%D0%BD%D0%B0%D1%81%D1%86%D1%8C" title="Дыстрыбутыўнасць – Belarusian" lang="be" hreflang="be" data-title="Дыстрыбутыўнасць" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Propietat_distributiva" title="Propietat distributiva – Catalan" lang="ca" hreflang="ca" data-title="Propietat distributiva" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BB%C4%83%D1%85" title="Дистрибутивлăх – Chuvash" lang="cv" hreflang="cv" data-title="Дистрибутивлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Distributivita" title="Distributivita – Czech" lang="cs" hreflang="cs" data-title="Distributivita" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Distributivitet" title="Distributivitet – Danish" lang="da" hreflang="da" data-title="Distributivitet" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Distributivgesetz" title="Distributivgesetz – German" lang="de" hreflang="de" data-title="Distributivgesetz" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Distributiivsus" title="Distributiivsus – Estonian" lang="et" hreflang="et" data-title="Distributiivsus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CF%80%CE%B9%CE%BC%CE%B5%CF%81%CE%B9%CF%83%CF%84%CE%B9%CE%BA%CE%AE_%CE%B9%CE%B4%CE%B9%CF%8C%CF%84%CE%B7%CF%84%CE%B1" title="Επιμεριστική ιδιότητα – Greek" lang="el" hreflang="el" data-title="Επιμεριστική ιδιότητα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distributividad" title="Distributividad – Spanish" lang="es" hreflang="es" data-title="Distributividad" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Distribueco" title="Distribueco – Esperanto" lang="eo" hreflang="eo" data-title="Distribueco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Banakortasun" title="Banakortasun – Basque" lang="eu" hreflang="eu" data-title="Banakortasun" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AE%D8%A7%D8%B5%DB%8C%D8%AA_%D8%AA%D9%88%D8%B2%DB%8C%D8%B9%E2%80%8C%D9%BE%D8%B0%DB%8C%D8%B1%DB%8C" title="خاصیت توزیع‌پذیری – Persian" lang="fa" hreflang="fa" data-title="خاصیت توزیع‌پذیری" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distributivit%C3%A9" title="Distributivité – French" lang="fr" hreflang="fr" data-title="Distributivité" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Oibr%C3%ADocht_dh%C3%A1ileach" title="Oibríocht dháileach – Irish" lang="ga" hreflang="ga" data-title="Oibríocht dháileach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distributividade" title="Distributividade – Galician" lang="gl" hreflang="gl" data-title="Distributividade" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B6%84%EB%B0%B0%EB%B2%95%EC%B9%99" title="분배법칙 – Korean" lang="ko" hreflang="ko" data-title="분배법칙" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B2%D5%A1%D5%B7%D5%AD%D5%A1%D5%AF%D5%A1%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Բաշխականություն – Armenian" lang="hy" hreflang="hy" data-title="Բաշխականություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Sifat_distributif" title="Sifat distributif – Indonesian" lang="id" hreflang="id" data-title="Sifat distributif" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Dreifiregla" title="Dreifiregla – Icelandic" lang="is" hreflang="is" data-title="Dreifiregla" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distributivit%C3%A0" title="Distributività – Italian" lang="it" hreflang="it" data-title="Distributività" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%95%D7%A7_%D7%94%D7%A4%D7%99%D7%9C%D7%95%D7%92" title="חוק הפילוג – Hebrew" lang="he" hreflang="he" data-title="חוק הפילוג" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%86%D0%B8%D1%8F%D0%BB%D1%83%D1%83%D0%BB%D1%83%D0%BA" title="Дистрибуциялуулук – Kyrgyz" lang="ky" hreflang="ky" data-title="Дистрибуциялуулук" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Distributio_(mathematica)" title="Distributio (mathematica) – Latin" lang="la" hreflang="la" data-title="Distributio (mathematica)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Disztributivit%C3%A1s" title="Disztributivitás – Hungarian" lang="hu" hreflang="hu" data-title="Disztributivitás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Дистрибутивност – Macedonian" lang="mk" hreflang="mk" data-title="Дистрибутивност" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Kalis_agihan" title="Kalis agihan – Malay" lang="ms" hreflang="ms" data-title="Kalis agihan" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Distributiviteit" title="Distributiviteit – Dutch" lang="nl" hreflang="nl" data-title="Distributiviteit" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%88%86%E9%85%8D%E6%B3%95%E5%89%87" title="分配法則 – Japanese" lang="ja" hreflang="ja" data-title="分配法則" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Distributiifgesets" title="Distributiifgesets – Northern Frisian" lang="frr" hreflang="frr" data-title="Distributiifgesets" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Distributiv_lov" title="Distributiv lov – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Distributiv lov" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Distributivitet" title="Distributivitet – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Distributivitet" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Distributivlik" title="Distributivlik – Uzbek" lang="uz" hreflang="uz" data-title="Distributivlik" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozdzielno%C5%9B%C4%87" title="Rozdzielność – Polish" lang="pl" hreflang="pl" data-title="Rozdzielność" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distributividade" title="Distributividade – Portuguese" lang="pt" hreflang="pt" data-title="Distributividade" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Distributivitate" title="Distributivitate – Romanian" lang="ro" hreflang="ro" data-title="Distributivitate" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Дистрибутивность – Russian" lang="ru" hreflang="ru" data-title="Дистрибутивность" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Distributive_property" title="Distributive property – Simple English" lang="en-simple" hreflang="en-simple" data-title="Distributive property" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Distributivnost" title="Distributivnost – Slovenian" lang="sl" hreflang="sl" data-title="Distributivnost" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AF%D8%A7%D8%A8%DB%95%D8%B4%D8%A8%D9%88%D9%88%D9%86" title="دابەشبوون – Central Kurdish" lang="ckb" hreflang="ckb" data-title="دابەشبوون" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82" title="Дистрибутивност – Serbian" lang="sr" hreflang="sr" data-title="Дистрибутивност" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Distributivnost" title="Distributivnost – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Distributivnost" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Osittelulaki" title="Osittelulaki – Finnish" lang="fi" hreflang="fi" data-title="Osittelulaki" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Distributivitet" title="Distributivitet – Swedish" lang="sv" hreflang="sv" data-title="Distributivitet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%99%E0%AF%8D%E0%AE%95%E0%AF%80%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AF%81%E0%AE%AA%E0%AF%8D_%E0%AE%AA%E0%AE%A3%E0%AF%8D%E0%AE%AA%E0%AF%81" title="பங்கீட்டுப் பண்பு – Tamil" lang="ta" hreflang="ta" data-title="பங்கீட்டுப் பண்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BB%D1%8B%D0%BA" title="Дистрибутивлык – Tatar" lang="tt" hreflang="tt" data-title="Дистрибутивлык" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%9A%E0%B8%B1%E0%B8%95%E0%B8%B4%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%88%E0%B8%81%E0%B9%81%E0%B8%88%E0%B8%87" title="สมบัติการแจกแจง – Thai" lang="th" hreflang="th" data-title="สมบัติการแจกแจง" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Da%C4%9F%C4%B1lma_%C3%B6zelli%C4%9Fi" title="Dağılma özelliği – Turkish" lang="tr" hreflang="tr" data-title="Dağılma özelliği" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D1%80%D0%B8%D0%B1%D1%83%D1%82%D0%B8%D0%B2%D0%BD%D1%96%D1%81%D1%82%D1%8C" title="Дистрибутивність – Ukrainian" lang="uk" hreflang="uk" data-title="Дистрибутивність" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Thu%E1%BB%99c_t%C3%ADnh_ph%C3%A2n_ph%E1%BB%91i" title="Thuộc tính phân phối – Vietnamese" lang="vi" hreflang="vi" data-title="Thuộc tính phân phối" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%93%D7%99%D7%A1%D7%98%D7%A8%D7%99%D7%91%D7%95%D7%98%D7%99%D7%95%D7%95" title="דיסטריבוטיוו – Yiddish" lang="yi" hreflang="yi" data-title="דיסטריבוטיוו" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%88%86%E9%85%8D%E5%BE%8B" title="分配律 – Cantonese" lang="yue" hreflang="yue" data-title="分配律" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%88%86%E9%85%8D%E5%BE%8B" title="分配律 – Chinese" lang="zh" hreflang="zh" data-title="分配律" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q187959#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Distributive_property" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Distributive_property" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Distributive_property"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Distributive_property"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Distributive_property" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Distributive_property" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;oldid=1247364851" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Distributive_property&amp;id=1247364851&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDistributive_property"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDistributive_property"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Distributive_property&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Distributive_property&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q187959" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Property involving two mathematical operations</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Distributivity" redirects here. Not to be confused with <a href="/wiki/Distributivism" class="mw-redirect" title="Distributivism">Distributivism</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox vcard"><caption class="infobox-title fn" style="padding-bottom:0.2em;">Distributive property</caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Illustration_of_distributive_property_with_rectangles.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Illustration_of_distributive_property_with_rectangles.svg/220px-Illustration_of_distributive_property_with_rectangles.svg.png" decoding="async" width="220" height="61" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/Illustration_of_distributive_property_with_rectangles.svg/330px-Illustration_of_distributive_property_with_rectangles.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/74/Illustration_of_distributive_property_with_rectangles.svg/440px-Illustration_of_distributive_property_with_rectangles.svg.png 2x" data-file-width="978" data-file-height="269" /></a></span><div class="infobox-caption">Visualization of distributive law for positive numbers</div></td></tr><tr><th scope="row" class="infobox-label">Type</th><td class="infobox-data"><a href="/wiki/Principle" title="Principle">Law</a>, <a href="/wiki/Rule_of_replacement" title="Rule of replacement">rule of replacement</a></td></tr><tr><th scope="row" class="infobox-label">Field</th><td class="infobox-data"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"> <ul><li><a href="/wiki/Elementary_algebra" title="Elementary algebra">Elementary algebra</a></li> <li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Abstract_algebra" title="Abstract algebra">Abstract algebra</a></li> <li><a href="/wiki/Set_theory" title="Set theory">Set theory</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="infobox-label">Symbolic statement</th><td class="infobox-data"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"> <ol><li>Elementary algebra <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>+</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef04839940b9b2f33028670da2930e139873789" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.102ex; height:2.843ex;" alt="{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}"></span></dd></dl></li> <li>Propositional calculus: <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6e44e66770303cef4cf29e118b8e6966ccd6fbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.014ex; height:2.843ex;" alt="{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b320f1fbd3369ea11f930908122d66148d3073f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.014ex; height:2.843ex;" alt="{\displaystyle (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}"></span></li></ol></li></ol> </div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>distributive property</b> of <a href="/wiki/Binary_operation" title="Binary operation">binary operations</a> is a generalization of the <b>distributive law</b>, which asserts that the equality <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>+</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef04839940b9b2f33028670da2930e139873789" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.102ex; height:2.843ex;" alt="{\displaystyle x\cdot (y+z)=x\cdot y+x\cdot z}"></span> is always true in <a href="/wiki/Elementary_algebra" title="Elementary algebra">elementary algebra</a>. For example, in <a href="/wiki/Elementary_arithmetic" title="Elementary arithmetic">elementary arithmetic</a>, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1388b180ba93dd70ae7ae466a23a409e59c6c35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.028ex; height:2.843ex;" alt="{\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}"></span> Therefore, one would say that <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> <i>distributes</i> over <a href="/wiki/Addition" title="Addition">addition</a>. </p><p>This basic property of numbers is part of the definition of most <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structures</a> that have two operations called addition and multiplication, such as <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a>, and <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a>. It is also encountered in <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a> and <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>, where each of the <a href="/wiki/Logical_and" class="mw-redirect" title="Logical and">logical and</a> (denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\land \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\land \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fa9a1bf2fd8fe99a8f955e4c2b2cce22fc3b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.009ex;" alt="{\displaystyle \,\land \,}"></span>) and the <a href="/wiki/Logical_or" class="mw-redirect" title="Logical or">logical or</a> (denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\lor \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\lor \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11b9e8d57e725d846e685feb42fc447fd094fbf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.009ex;" alt="{\displaystyle \,\lor \,}"></span>) distributes over the other. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> and two <a href="/wiki/Binary_operator" class="mw-redirect" title="Binary operator">binary operators</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span> </p> <ul><li>the operation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> is <em>left-distributive</em> over (or with respect to) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> if, <a href="/wiki/Given_any" class="mw-redirect" title="Given any">given any</a> elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,{\text{ and }}z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,{\text{ and }}z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bd270db6b290e4ed3e2e2dd6452dbee3b210a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.55ex; height:2.509ex;" alt="{\displaystyle x,y,{\text{ and }}z}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x*(y+z)=(x*y)+(x*z);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x*(y+z)=(x*y)+(x*z);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd3aa6d86756c63944dbb1ff985c44b0796fd26" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.914ex; height:2.843ex;" alt="{\displaystyle x*(y+z)=(x*y)+(x*z);}"></span> </p> <ul><li>the operation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> is <em>right-distributive</em> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> if, given any elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,{\text{ and }}z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,{\text{ and }}z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23bd270db6b290e4ed3e2e2dd6452dbee3b210a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.55ex; height:2.509ex;" alt="{\displaystyle x,y,{\text{ and }}z}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span></li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (y+z)*x=(y*x)+(z*x);}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2217;<!-- ∗ --></mo> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>&#x2217;<!-- ∗ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (y+z)*x=(y*x)+(z*x);}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b617ff867855ab1a6206c291c8aedde1dc189f2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.914ex; height:2.843ex;" alt="{\displaystyle (y+z)*x=(y*x)+(z*x);}"></span> </p> <ul><li>and the operation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> is <em>distributive</em> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> if it is left- and right-distributive.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> is <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a>, the three conditions above are <a href="/wiki/Logical_equivalence" title="Logical equivalence">logically equivalent</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Meaning">Meaning</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=2" title="Edit section: Meaning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The operators used for examples in this section are those of the usual <a href="/wiki/Addition" title="Addition">addition</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\cdot .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\cdot .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95b537ae7218b42b3af6d07796fbaac8658029a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.068ex; height:1.343ex;" alt="{\displaystyle \,\cdot .\,}"></span> </p><p>If the operation denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> is not commutative, there is a distinction between left-distributivity and right-distributivity: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot \left(b\pm c\right)=a\cdot b\pm a\cdot c\qquad {\text{ (left-distributive) }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(left-distributive)&#xA0;</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot \left(b\pm c\right)=a\cdot b\pm a\cdot c\qquad {\text{ (left-distributive) }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3acb6984d8330d4d317f71472b38a757c9d5f69e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.725ex; height:2.843ex;" alt="{\displaystyle a\cdot \left(b\pm c\right)=a\cdot b\pm a\cdot c\qquad {\text{ (left-distributive) }}}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\pm b)\cdot c=a\cdot c\pm b\cdot c\qquad {\text{ (right-distributive) }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;(right-distributive)&#xA0;</mtext> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\pm b)\cdot c=a\cdot c\pm b\cdot c\qquad {\text{ (right-distributive) }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e9ea836c715616c5c0466f3928edec3e45faf0f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.772ex; height:2.843ex;" alt="{\displaystyle (a\pm b)\cdot c=a\cdot c\pm b\cdot c\qquad {\text{ (right-distributive) }}.}"></span> </p><p>In either case, the distributive property can be described in words as: </p><p>To multiply a <a href="/wiki/Summation" title="Summation">sum</a> (or <a href="/wiki/Difference_(mathematics)" class="mw-redirect" title="Difference (mathematics)">difference</a>) by a factor, each summand (or <a href="/wiki/Minuend" class="mw-redirect" title="Minuend">minuend</a> and <a href="/wiki/Subtrahend" class="mw-redirect" title="Subtrahend">subtrahend</a>) is multiplied by this factor and the resulting products are added (or subtracted). </p><p>If the operation outside the parentheses (in this case, the multiplication) is commutative, then left-distributivity implies right-distributivity and vice versa, and one talks simply of <em>distributivity</em>. </p><p>One example of an operation that is "only" right-distributive is division, which is not commutative: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\pm b)\div c=a\div c\pm b\div c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x00F7;<!-- ÷ --></mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>&#x00F7;<!-- ÷ --></mo> <mi>c</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>b</mi> <mo>&#x00F7;<!-- ÷ --></mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\pm b)\div c=a\div c\pm b\div c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64046e8dd3c61421f1098c4eb702a34057fb5ee3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.232ex; height:2.843ex;" alt="{\displaystyle (a\pm b)\div c=a\div c\pm b\div c.}"></span> In this case, left-distributivity does not apply: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\div (b\pm c)\neq a\div b\pm a\div c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00F7;<!-- ÷ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mi>a</mi> <mo>&#x00F7;<!-- ÷ --></mo> <mi>b</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>a</mi> <mo>&#x00F7;<!-- ÷ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\div (b\pm c)\neq a\div b\pm a\div c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606e2064d9942d721249a4c4df3104191d44bea5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.808ex; height:2.843ex;" alt="{\displaystyle a\div (b\pm c)\neq a\div b\pm a\div c}"></span> </p><p>The distributive laws are among the axioms for <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a> (like the ring of <a href="/wiki/Integer" title="Integer">integers</a>) and <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> (like the field of <a href="/wiki/Rational_number" title="Rational number">rational numbers</a>). Here multiplication is distributive over addition, but addition is not distributive over multiplication. Examples of structures with two operations that are each distributive over the other are <a href="/wiki/Boolean_algebras" class="mw-redirect" title="Boolean algebras">Boolean algebras</a> such as the <a href="/wiki/Algebra_of_sets" title="Algebra of sets">algebra of sets</a> or the <a href="/wiki/Switching_algebra" class="mw-redirect" title="Switching algebra">switching algebra</a>. </p><p>Multiplying sums can be put into words as follows: When a sum is multiplied by a sum, multiply each summand of a sum with each summand of the other sum (keeping track of signs) then add up all of the resulting products. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Real_numbers">Real numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=4" title="Edit section: Real numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the following examples, the use of the distributive law on the set of real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is illustrated. When multiplication is mentioned in elementary mathematics, it usually refers to this kind of multiplication. From the point of view of algebra, the real numbers form a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, which ensures the validity of the distributive law. </p> <style data-mw-deduplicate="TemplateStyles:r1228772891">.mw-parser-output .glossary dt{margin-top:0.4em}.mw-parser-output .glossary dt+dt{margin-top:-0.2em}.mw-parser-output .glossary .templatequote{margin-top:0;margin-bottom:-0.5em}</style> <dl class="glossary"> <dt id="first_example_(mental_and_written_multiplication)"><dfn>First example (mental and written multiplication)</dfn></dt><dd>During mental arithmetic, distributivity is often used unconsciously: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\cdot 16=6\cdot (10+6)=6\cdot 10+6\cdot 6=60+36=96}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>16</mn> <mo>=</mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>10</mn> <mo>+</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> <mo>+</mo> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> <mo>=</mo> <mn>60</mn> <mo>+</mo> <mn>36</mn> <mo>=</mo> <mn>96</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\cdot 16=6\cdot (10+6)=6\cdot 10+6\cdot 6=60+36=96}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a64a52496e31d9a6bc88428497aa97419e7a326" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.365ex; height:2.843ex;" alt="{\displaystyle 6\cdot 16=6\cdot (10+6)=6\cdot 10+6\cdot 6=60+36=96}"></span> Thus, to calculate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\cdot 16}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>16</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\cdot 16}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd89adb8d6132a95129b7783671be1d3e482457a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.166ex; height:2.176ex;" alt="{\displaystyle 6\cdot 16}"></span> in one's head, one first multiplies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\cdot 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\cdot 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ff59738536cf087e57bf7f2db9abd6230ef70a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.166ex; height:2.176ex;" alt="{\displaystyle 6\cdot 10}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6\cdot 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6\cdot 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f42e2271e617e7a3efef658b37bcf12188c5bf16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.004ex; height:2.176ex;" alt="{\displaystyle 6\cdot 6}"></span> and add the intermediate results. Written multiplication is also based on the distributive law. </dd> <dt id="second_example_(with_variables)"><dfn>Second example (with variables)</dfn></dt><dd> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3a^{2}b\cdot (4a-5b)=3a^{2}b\cdot 4a-3a^{2}b\cdot 5b=12a^{3}b-15a^{2}b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>5</mn> <mi>b</mi> <mo>=</mo> <mn>12</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mn>15</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3a^{2}b\cdot (4a-5b)=3a^{2}b\cdot 4a-3a^{2}b\cdot 5b=12a^{3}b-15a^{2}b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ad20f4b06f15ed1bba49d6d54ca5485154ed31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.269ex; height:3.176ex;" alt="{\displaystyle 3a^{2}b\cdot (4a-5b)=3a^{2}b\cdot 4a-3a^{2}b\cdot 5b=12a^{3}b-15a^{2}b^{2}}"></span> </dd> <dt id="third_example_(with_two_sums)"><dfn>Third example (with two sums)</dfn></dt><dd> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(a+b)\cdot (a-b)&amp;=a\cdot (a-b)+b\cdot (a-b)=a^{2}-ab+ba-b^{2}=a^{2}-b^{2}\\&amp;=(a+b)\cdot a-(a+b)\cdot b=a^{2}+ba-ab-b^{2}=a^{2}-b^{2}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>b</mi> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(a+b)\cdot (a-b)&amp;=a\cdot (a-b)+b\cdot (a-b)=a^{2}-ab+ba-b^{2}=a^{2}-b^{2}\\&amp;=(a+b)\cdot a-(a+b)\cdot b=a^{2}+ba-ab-b^{2}=a^{2}-b^{2}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3884dc15b5d06ce3a2ed8c47c3933f41f7df5b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:72.148ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}(a+b)\cdot (a-b)&amp;=a\cdot (a-b)+b\cdot (a-b)=a^{2}-ab+ba-b^{2}=a^{2}-b^{2}\\&amp;=(a+b)\cdot a-(a+b)\cdot b=a^{2}+ba-ab-b^{2}=a^{2}-b^{2}\\\end{aligned}}}"></span> Here the distributive law was applied twice, and it does not matter which bracket is first multiplied out. </dd> <dt id="fourth_example"><dfn>Fourth example</dfn></dt><dd>Here the distributive law is applied the other way around compared to the previous examples. Consider <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>30</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mn>18</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aec43aeedf4c8979d4a8d07ab415602bf39522e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:28.711ex; height:2.843ex;" alt="{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}\,.}"></span> Since the factor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6a^{2}b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6a^{2}b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6af50da0fe3d6990bbbc1629994f085ae41f725d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.444ex; height:2.676ex;" alt="{\displaystyle 6a^{2}b}"></span> occurs in all summands, it can be factored out. That is, due to the distributive law one obtains <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}=6a^{2}b\left(2ab-5a^{2}c+3b^{2}c^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>12</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>30</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mn>18</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>6</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>b</mi> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>c</mi> <mo>+</mo> <mn>3</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}=6a^{2}b\left(2ab-5a^{2}c+3b^{2}c^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65369175ea84614bf149d78db167fbc1742b5d2f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:57.569ex; height:3.343ex;" alt="{\displaystyle 12a^{3}b^{2}-30a^{4}bc+18a^{2}b^{3}c^{2}=6a^{2}b\left(2ab-5a^{2}c+3b^{2}c^{2}\right).}"></span> </dd> </dl> <div class="mw-heading mw-heading3"><h3 id="Matrices">Matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=5" title="Edit section: Matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The distributive law is valid for <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>. More precisely, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A+B)\cdot C=A\cdot C+B\cdot C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>=</mo> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>+</mo> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A+B)\cdot C=A\cdot C+B\cdot C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c454c6abf9dfb688ab3d0a7f60b9232c89012a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.939ex; height:2.843ex;" alt="{\displaystyle (A+B)\cdot C=A\cdot C+B\cdot C}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l\times m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo>&#x00D7;<!-- × --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l\times m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ddaae109aa28b89decddf99f3f487c27e3cc42e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.574ex; height:2.176ex;" alt="{\displaystyle l\times m}"></span>-matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c3298ea9aa77c226be56a7d8515baaa517b90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\displaystyle A,B}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>-matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64528f031cdbe1f52bdaf4ba7a8401108c0d2dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C,}"></span> as well as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot (B+C)=A\cdot B+A\cdot C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>B</mi> <mo>+</mo> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot (B+C)=A\cdot B+A\cdot C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e5be67a993ad340a3924e739dd2c93f6941b74" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.916ex; height:2.843ex;" alt="{\displaystyle A\cdot (B+C)=A\cdot B+A\cdot C}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l\times m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo>&#x00D7;<!-- × --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l\times m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ddaae109aa28b89decddf99f3f487c27e3cc42e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.574ex; height:2.176ex;" alt="{\displaystyle l\times m}"></span>-matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></span>-matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B,C.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B,C.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/056927c4c024800fafba1e9b926b428655189e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.211ex; height:2.509ex;" alt="{\displaystyle B,C.}"></span> Because the commutative property does not hold for matrix multiplication, the second law does not follow from the first law. In this case, they are two different laws. </p> <div class="mw-heading mw-heading3"><h3 id="Other_examples">Other examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=6" title="Edit section: Other examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Ordinal_arithmetic#Multiplication" title="Ordinal arithmetic">Multiplication</a> of <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal numbers</a>, in contrast, is only left-distributive, not right-distributive.</li> <li>The <a href="/wiki/Cross_product" title="Cross product">cross product</a> is left- and right-distributive over <a href="/wiki/Vector_addition" class="mw-redirect" title="Vector addition">vector addition</a>, though not commutative.</li> <li>The <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a> of sets is distributive over <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>, and intersection is distributive over union.</li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">Logical disjunction</a> ("or") is distributive over <a href="/wiki/Logical_conjunction" title="Logical conjunction">logical conjunction</a> ("and"), and vice versa.</li> <li>For <a href="/wiki/Real_number" title="Real number">real numbers</a> (and for any <a href="/wiki/Totally_ordered_set" class="mw-redirect" title="Totally ordered set">totally ordered set</a>), the <a href="/wiki/Maximum" class="mw-redirect" title="Maximum">maximum</a> operation is distributive over the <a href="/wiki/Minimum" class="mw-redirect" title="Minimum">minimum</a> operation, and vice versa: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max(a,\min(b,c))=\min(\max(a,b),\max(a,c))\quad {\text{ and }}\quad \min(a,\max(b,c))=\max(\min(a,b),\min(a,c)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max(a,\min(b,c))=\min(\max(a,b),\max(a,c))\quad {\text{ and }}\quad \min(a,\max(b,c))=\max(\min(a,b),\min(a,c)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/338d71397ab68de997e5fb56612683bc26bf38b5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:101.619ex; height:2.843ex;" alt="{\displaystyle \max(a,\min(b,c))=\min(\max(a,b),\max(a,c))\quad {\text{ and }}\quad \min(a,\max(b,c))=\max(\min(a,b),\min(a,c)).}"></span></li> <li>For <a href="/wiki/Integer" title="Integer">integers</a>, the <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">greatest common divisor</a> is distributive over the <a href="/wiki/Least_common_multiple" title="Least common multiple">least common multiple</a>, and vice versa: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gcd(a,\operatorname {lcm} (b,c))=\operatorname {lcm} (\gcd(a,b),\gcd(a,c))\quad {\text{ and }}\quad \operatorname {lcm} (a,\gcd(b,c))=\gcd(\operatorname {lcm} (a,b),\operatorname {lcm} (a,c)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">gcd</mo> <mo stretchy="false">(</mo> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>lcm</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gcd(a,\operatorname {lcm} (b,c))=\operatorname {lcm} (\gcd(a,b),\gcd(a,c))\quad {\text{ and }}\quad \operatorname {lcm} (a,\gcd(b,c))=\gcd(\operatorname {lcm} (a,b),\operatorname {lcm} (a,c)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d547b5194949f9afce3ee68b94fbf25c3b4fbcbf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:96.126ex; height:2.843ex;" alt="{\displaystyle \gcd(a,\operatorname {lcm} (b,c))=\operatorname {lcm} (\gcd(a,b),\gcd(a,c))\quad {\text{ and }}\quad \operatorname {lcm} (a,\gcd(b,c))=\gcd(\operatorname {lcm} (a,b),\operatorname {lcm} (a,c)).}"></span></li> <li>For real numbers, addition distributes over the maximum operation, and also over the minimum operation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+\max(b,c)=\max(a+b,a+c)\quad {\text{ and }}\quad a+\min(b,c)=\min(a+b,a+c).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>a</mi> <mo>+</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+\max(b,c)=\max(a+b,a+c)\quad {\text{ and }}\quad a+\min(b,c)=\min(a+b,a+c).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/031cbef2736b5ed0aee3c271ec27a3bfebc99be9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:76.612ex; height:2.843ex;" alt="{\displaystyle a+\max(b,c)=\max(a+b,a+c)\quad {\text{ and }}\quad a+\min(b,c)=\min(a+b,a+c).}"></span></li> <li>For <a href="/wiki/Binomial_(polynomial)" title="Binomial (polynomial)">binomial</a> multiplication, distribution is sometimes referred to as the <a href="/wiki/FOIL_Method" class="mw-redirect" title="FOIL Method">FOIL Method</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> (First terms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ac,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ac,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bdf6672c06648e01c79e7682e85fe7b7db858a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.883ex; height:2.009ex;" alt="{\displaystyle ac,}"></span> Outer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ad,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>d</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ad,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cda03365da0d88959e9823c213c70b11c91906c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.093ex; height:2.509ex;" alt="{\displaystyle ad,}"></span> Inner <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bc,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bc,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43377610065af24bc7f7c8a8111627e568e91f30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.651ex; height:2.509ex;" alt="{\displaystyle bc,}"></span> and Last <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bd}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bd}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bc109ffc2966e361a2018a1dc7301c2f193a0f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.213ex; height:2.176ex;" alt="{\displaystyle bd}"></span>) such as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)\cdot (c+d)=ac+ad+bc+bd.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)\cdot (c+d)=ac+ad+bc+bd.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3db8ca8a119bf4bea0f76213995c8f9c26c3ba78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.595ex; height:2.843ex;" alt="{\displaystyle (a+b)\cdot (c+d)=ac+ad+bc+bd.}"></span></li> <li>In all <a href="/wiki/Semirings" class="mw-redirect" title="Semirings">semirings</a>, including the <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, the <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>, <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, and <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, multiplication distributes over addition: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(v+w)=uv+uw,(u+v)w=uw+vw.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo>+</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>u</mi> <mi>v</mi> <mo>+</mo> <mi>u</mi> <mi>w</mi> <mo>,</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mi>w</mi> <mo>=</mo> <mi>u</mi> <mi>w</mi> <mo>+</mo> <mi>v</mi> <mi>w</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u(v+w)=uv+uw,(u+v)w=uw+vw.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/381f127e90f17160bceb3caf8e9a7caacf865ba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.337ex; height:2.843ex;" alt="{\displaystyle u(v+w)=uv+uw,(u+v)w=uw+vw.}"></span></li> <li>In all <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebras over a field</a>, including the <a href="/wiki/Octonion" title="Octonion">octonions</a> and other <a href="/wiki/Non-associative_algebra" title="Non-associative algebra">non-associative algebras</a>, multiplication distributes over addition.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Propositional_logic">Propositional logic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=7" title="Edit section: Propositional logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><table class="sidebar nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title"><a href="/wiki/Rule_of_inference" title="Rule of inference">Transformation rules</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;;background:#ddf;font-size:110%; border-bottom:1px #fefefe solid;"> <a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_inference" title="Rule of inference">Rules of inference</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <ul><li><a href="/wiki/Conditional_proof" title="Conditional proof"><span>Implication introduction</span></a>&#160;/&#32;<a href="/wiki/Modus_ponens" title="Modus ponens"><span title="A→B, &#160; A &#160; ⊢ &#160; B">elimination (<i>modus ponens</i>)</span></a></li> <li><a href="/wiki/Biconditional_introduction" title="Biconditional introduction"><span title="A→B, &#160; B→A &#160; ⊢ &#160; A↔B">Biconditional introduction</span></a>&#160;/&#32;<a href="/wiki/Biconditional_elimination" title="Biconditional elimination"><span title="A↔B &#160; ⊢ &#160; A→B">elimination</span></a></li> <li><a href="/wiki/Conjunction_introduction" title="Conjunction introduction"><span title="A, &#160; B &#160; ⊢ &#160; A∧B">Conjunction introduction</span></a>&#160;/&#32;<a href="/wiki/Conjunction_elimination" title="Conjunction elimination"><span title="A∧B &#160; ⊢ &#160; A">elimination</span></a></li> <li><a href="/wiki/Disjunction_introduction" title="Disjunction introduction"><span title="A &#160; ⊢ &#160; A∨B">Disjunction introduction</span></a>&#160;/&#32;<a href="/wiki/Disjunction_elimination" title="Disjunction elimination"><span title="A∨B, &#160; A→C, &#160; B→C &#160; ⊢ &#160; C">elimination</span></a></li> <li><a href="/wiki/Disjunctive_syllogism" title="Disjunctive syllogism"><span title="A∨B, &#160; ¬A &#160; ⊢ &#160; B">Disjunctive</span></a>&#160;/&#32;<a href="/wiki/Hypothetical_syllogism" title="Hypothetical syllogism"><span title="A→B, &#160; B→C &#160; ⊢ &#160; A→C">hypothetical syllogism</span></a></li> <li><a href="/wiki/Constructive_dilemma" title="Constructive dilemma"><span title="A→P, &#160; B→Q, &#160; A∨B &#160; ⊢ &#160; P∨Q">Constructive</span></a>&#160;/&#32;<a href="/wiki/Destructive_dilemma" title="Destructive dilemma"><span title="A→P, &#160; B→Q, &#160; ¬P∨¬Q &#160; ⊢ &#160; ¬A∨¬B">destructive dilemma</span></a></li> <li><a href="/wiki/Absorption_(logic)" title="Absorption (logic)"><span title="A→B &#160; ⊢ &#160; A→A∧B">Absorption</span></a>&#160;/&#32;<a href="/wiki/Modus_tollens" title="Modus tollens"><span title="A→B, &#160; ¬B &#160; ⊢ &#160; ¬A"><i>modus tollens</i></span></a>&#160;/&#32;<a href="/wiki/Modus_ponendo_tollens" title="Modus ponendo tollens"><span title="¬(A∧B), &#160; A &#160; ⊢ &#160; ¬B"><i>modus ponendo tollens</i></span></a></li> <li><a href="/wiki/Negation_introduction" title="Negation introduction">Negation introduction</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_replacement" title="Rule of replacement">Rules of replacement</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <div class="hlist"> <ul><li><a href="/wiki/Associative_property#Propositional_logic" title="Associative property"><span title="A∨(B∨C) &#160; = &#160; (A∨B)∨C">Associativity</span></a></li> <li><a href="/wiki/Commutative_property#Propositional_logic" title="Commutative property"><span title="A∨B &#160; = &#160; B∨A">Commutativity</span></a></li> <li><a class="mw-selflink-fragment" href="#Propositional_logic"><span title="A∧(B∨C) &#160; = &#160; (A∧B)∨(A∧C)">Distributivity</span></a></li> <li><a href="/wiki/Double_negation" title="Double negation"><span title="¬¬A &#160; = &#160; A">Double negation</span></a></li> <li><a href="/wiki/De_Morgan%27s_laws" title="De Morgan&#39;s laws">De Morgan's laws</a></li> <li><a href="/wiki/Transposition_(logic)" class="mw-redirect" title="Transposition (logic)">Transposition</a></li> <li><a href="/wiki/Material_implication_(rule_of_inference)" title="Material implication (rule of inference)"><span title="A→B &#160; ⊢ &#160; ¬A∨B">Material implication</span></a></li> <li><a href="/wiki/Exportation_(logic)" title="Exportation (logic)"><span title="(A∧B)→C &#160; ⊢ &#160; A→(B→C)">Exportation</span></a></li> <li><a href="/wiki/Tautology_(rule_of_inference)" title="Tautology (rule of inference)"><span title="A∨A &#160; = &#160; A">Tautology</span></a></li></ul> </div></td> </tr><tr><th class="sidebar-heading" style="background:#eaeaff;;background:#ddf;font-size:110%;"> <a href="/wiki/First-order_logic" title="First-order logic">Predicate logic</a></th></tr><tr><th class="sidebar-heading" style="background:#eaeaff;"> <a href="/wiki/Rule_of_inference" title="Rule of inference">Rules of inference</a></th></tr><tr><td class="sidebar-content" style="padding-top:0.15em;"> <ul><li><a href="/wiki/Universal_generalization" title="Universal generalization">Universal generalization</a>&#160;/&#32;<a href="/wiki/Universal_instantiation" title="Universal instantiation">instantiation</a></li> <li><a href="/wiki/Existential_generalization" title="Existential generalization">Existential generalization</a>&#160;/&#32;<a href="/wiki/Existential_instantiation" title="Existential instantiation">instantiation</a></li></ul></td> </tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Rule_of_replacement">Rule of replacement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=8" title="Edit section: Rule of replacement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In standard truth-functional propositional logic, <em>distribution</em><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> in logical proofs uses two valid <a href="/wiki/Rule_of_replacement" title="Rule of replacement">rules of replacement</a> to expand individual occurrences of certain <a href="/wiki/Logical_connective" title="Logical connective">logical connectives</a>, within some <a href="/wiki/Logical_formula" class="mw-redirect" title="Logical formula">formula</a>, into separate applications of those connectives across subformulas of the given formula. The rules are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))\qquad {\text{ and }}\qquad (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))\qquad {\text{ and }}\qquad (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6b19020c3bd1a11c01eb318668361ae02146b1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:90.228ex; height:2.843ex;" alt="{\displaystyle (P\land (Q\lor R))\Leftrightarrow ((P\land Q)\lor (P\land R))\qquad {\text{ and }}\qquad (P\lor (Q\land R))\Leftrightarrow ((P\lor Q)\land (P\lor R))}"></span> where "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span>", also written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\equiv ,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2261;<!-- ≡ --></mo> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\equiv ,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b33bda7fbff75407e9373819734938575c1cd1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.229ex; height:2.009ex;" alt="{\displaystyle \,\equiv ,\,}"></span> is a <a href="/wiki/Metalogic" title="Metalogic">metalogical</a> <a href="/wiki/Symbol_(formal)" title="Symbol (formal)">symbol</a> representing "can be replaced in a proof with" or "is <a href="/wiki/Logical_equivalence" title="Logical equivalence">logically equivalent</a> to". </p> <div class="mw-heading mw-heading3"><h3 id="Truth_functional_connectives">Truth functional connectives</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=9" title="Edit section: Truth functional connectives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><em>Distributivity</em> is a property of some logical connectives of truth-functional <a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">propositional logic</a>. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional <a href="/wiki/Tautology_(logic)" title="Tautology (logic)">tautologies</a>. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{13}&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\lor (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\land (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\land (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\lor (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\to R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\to (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ }}&amp;&amp;{\text{ }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\leftrightarrow (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\;\land (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\leftrightarrow (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;conjunction&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;disjunction&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;disjunction&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;conjunction&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;conjunction&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;conjunction&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;disjunction&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;disjunction&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;implication&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;implication&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;equivalence&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;implication&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;conjunction&#xA0;</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>P</mi> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mi>Q</mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;Distribution of&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;disjunction&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;over&#xA0;</mtext> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;equivalence&#xA0;</mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{13}&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\lor (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\land (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\land (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\lor (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\to R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\to (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ }}&amp;&amp;{\text{ }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\leftrightarrow (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\;\land (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\leftrightarrow (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5c17a71fa108d8d95355554abc2be1b898f7e83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.838ex; width:93.72ex; height:24.843ex;" alt="{\displaystyle {\begin{alignedat}{13}&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\lor (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\land (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\land &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\land Q)&amp;&amp;\;\land (P\land R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ conjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\lor R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\;\lor (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ disjunction }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\to R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\to (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ }}&amp;&amp;{\text{ }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\leftrightarrow (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\&amp;(P&amp;&amp;\to &amp;&amp;(Q\land R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\to Q)&amp;&amp;\;\land (P\to R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ implication }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ conjunction }}\\&amp;(P&amp;&amp;\;\lor &amp;&amp;(Q\leftrightarrow R))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;((P\lor Q)&amp;&amp;\leftrightarrow (P\lor R))&amp;&amp;\quad {\text{ Distribution of }}&amp;&amp;{\text{ disjunction }}&amp;&amp;{\text{ over }}&amp;&amp;{\text{ equivalence }}\\\end{alignedat}}}"></span> </p> <dl><dt>Double distribution</dt> <dd></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{13}&amp;((P\land Q)&amp;&amp;\;\lor (R\land S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\lor R)\land (P\lor S))&amp;&amp;\;\land ((Q\lor R)\land (Q\lor S)))&amp;&amp;\\&amp;((P\lor Q)&amp;&amp;\;\land (R\lor S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\land R)\lor (P\land S))&amp;&amp;\;\lor ((Q\land R)\lor (Q\land S)))&amp;&amp;\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left right left right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd /> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mspace width="thickmathspace" /> </mtd> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>P</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd> <mi></mi> <mspace width="thickmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>Q</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd /> <mtd /> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{13}&amp;((P\land Q)&amp;&amp;\;\lor (R\land S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\lor R)\land (P\lor S))&amp;&amp;\;\land ((Q\lor R)\land (Q\lor S)))&amp;&amp;\\&amp;((P\lor Q)&amp;&amp;\;\land (R\lor S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\land R)\lor (P\land S))&amp;&amp;\;\lor ((Q\land R)\lor (Q\land S)))&amp;&amp;\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c67c31f3489496ccdcf817b9431611e3f2e01c97" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:70.761ex; height:6.176ex;" alt="{\displaystyle {\begin{alignedat}{13}&amp;((P\land Q)&amp;&amp;\;\lor (R\land S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\lor R)\land (P\lor S))&amp;&amp;\;\land ((Q\lor R)\land (Q\lor S)))&amp;&amp;\\&amp;((P\lor Q)&amp;&amp;\;\land (R\lor S))&amp;&amp;\;\Leftrightarrow \;&amp;&amp;(((P\land R)\lor (P\land S))&amp;&amp;\;\lor ((Q\land R)\lor (Q\land S)))&amp;&amp;\\\end{alignedat}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Distributivity_and_rounding">Distributivity and rounding</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=10" title="Edit section: Distributivity and rounding"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In approximate arithmetic, such as <a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">floating-point arithmetic</a>, the distributive property of multiplication (and division) over addition may fail because of the limitations of <a href="/wiki/Arithmetic_precision" class="mw-redirect" title="Arithmetic precision">arithmetic precision</a>. For example, the identity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/3+1/3+1/3=(1+1+1)/3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/3+1/3+1/3=(1+1+1)/3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51ccb7fdb28bb849d601f94baee3e760e74a0dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.544ex; height:2.843ex;" alt="{\displaystyle 1/3+1/3+1/3=(1+1+1)/3}"></span> fails in <a href="/wiki/Decimal_arithmetic" class="mw-redirect" title="Decimal arithmetic">decimal arithmetic</a>, regardless of the number of <a href="/wiki/Significant_digit" class="mw-redirect" title="Significant digit">significant digits</a>. Methods such as <a href="/wiki/Banker%27s_rounding" class="mw-redirect" title="Banker&#39;s rounding">banker's rounding</a> may help in some cases, as may increasing the precision used, but ultimately some calculation errors are inevitable. </p> <div class="mw-heading mw-heading2"><h2 id="In_rings_and_other_structures">In rings and other structures</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=11" title="Edit section: In rings and other structures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Distributivity is most commonly found in <a href="/wiki/Semiring" title="Semiring">semirings</a>, notably the particular cases of <a href="/wiki/Ring_(algebra)" class="mw-redirect" title="Ring (algebra)">rings</a> and <a href="/wiki/Distributive_lattice" title="Distributive lattice">distributive lattices</a>. </p><p>A semiring has two binary operations, commonly denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b3c23fb2245f1f8bc8dde4d8c42f582ce4d3e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,+\,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/363b631548acd06a2ef40d5de331217f00c8c8ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.196ex; height:2.009ex;" alt="{\displaystyle \,*,}"></span> and requires that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,*\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2217;<!-- ∗ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,*\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52256498cbe97c2c8db8dfdaacff53b620d9ca2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.937ex; height:1.509ex;" alt="{\displaystyle \,*\,}"></span> must distribute over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,+.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>+</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,+.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da04993bc384d00e6a8dc409652b29e04a4e3218" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.842ex; height:2.176ex;" alt="{\displaystyle \,+.}"></span> </p><p>A ring is a semiring with additive inverses. </p><p>A <a href="/wiki/Lattice_(order)" title="Lattice (order)">lattice</a> is another kind of <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a> with two binary operations, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\land {\text{ and }}\lor .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mo>&#x2228;<!-- ∨ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\land {\text{ and }}\lor .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66e244ab60111ffeac54f723ce13d45061aa4669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.043ex; height:2.176ex;" alt="{\displaystyle \,\land {\text{ and }}\lor .}"></span> If either of these operations distributes over the other (say <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\land \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\land \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fa9a1bf2fd8fe99a8f955e4c2b2cce22fc3b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.009ex;" alt="{\displaystyle \,\land \,}"></span> distributes over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\lor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbe7b3298f2837104b7851f46547fd687b8833c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.937ex; height:2.009ex;" alt="{\displaystyle \,\lor }"></span>), then the reverse also holds (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\lor \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2228;<!-- ∨ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\lor \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11b9e8d57e725d846e685feb42fc447fd094fbf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.009ex;" alt="{\displaystyle \,\lor \,}"></span> distributes over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\land \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2227;<!-- ∧ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\land \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81fa9a1bf2fd8fe99a8f955e4c2b2cce22fc3b71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.009ex;" alt="{\displaystyle \,\land \,}"></span>), and the lattice is called distributive. See also <em><a href="/wiki/Distributivity_(order_theory)" title="Distributivity (order theory)">Distributivity (order theory)</a></em>. </p><p>A <a href="/wiki/Boolean_algebra_(structure)" title="Boolean algebra (structure)">Boolean algebra</a> can be interpreted either as a special kind of ring (a <a href="/wiki/Boolean_ring" title="Boolean ring">Boolean ring</a>) or a special kind of distributive lattice (a <a href="/wiki/Boolean_lattice" class="mw-redirect" title="Boolean lattice">Boolean lattice</a>). Each interpretation is responsible for different distributive laws in the Boolean algebra. </p><p>Similar structures without distributive laws are <a href="/wiki/Near-ring" title="Near-ring">near-rings</a> and <a href="/wiki/Near-field_(mathematics)" title="Near-field (mathematics)">near-fields</a> instead of rings and <a href="/wiki/Division_ring" title="Division ring">division rings</a>. The operations are usually defined to be distributive on the right but not on the left. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=12" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="generalizations"></span> </p><p>In several mathematical areas, generalized distributivity laws are considered. This may involve the weakening of the above conditions or the extension to infinitary operations. Especially in <a href="/wiki/Order_theory" title="Order theory">order theory</a> one finds numerous important variants of distributivity, some of which include infinitary operations, such as the <a href="/wiki/Infinite_distributive_law" class="mw-redirect" title="Infinite distributive law">infinite distributive law</a>; others being defined in the presence of only <em>one</em> binary operation, such as the according definitions and their relations are given in the article <a href="/wiki/Distributivity_(order_theory)" title="Distributivity (order theory)">distributivity (order theory)</a>. This also includes the notion of a <a href="/wiki/Completely_distributive_lattice" title="Completely distributive lattice">completely distributive lattice</a>. </p><p>In the presence of an ordering relation, one can also weaken the above equalities by replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936ee397fe5ec4b211f75366b8f9c2e9ddf415f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.582ex; height:1.343ex;" alt="{\displaystyle \,=\,}"></span> by either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\leq \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2264;<!-- ≤ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\leq \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24112548985eab096493f73f838580442780b57f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.582ex; height:2.176ex;" alt="{\displaystyle \,\leq \,}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\geq .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mo>&#x2265;<!-- ≥ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\geq .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87ac987e87f7d8f480d0bd692b182836a79c2b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.842ex; height:2.176ex;" alt="{\displaystyle \,\geq .}"></span> Naturally, this will lead to meaningful concepts only in some situations. An application of this principle is the notion of <b>sub-distributivity</b> as explained in the article on <a href="/wiki/Interval_arithmetic" title="Interval arithmetic">interval arithmetic</a>. </p><p>In <a href="/wiki/Category_theory" title="Category theory">category theory</a>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,\mu ,\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,\mu ,\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa5baf0893a29df010cc54664c1699294a0e2cd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.01ex; height:2.843ex;" alt="{\displaystyle (S,\mu ,\nu )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(S^{\prime },\mu ^{\prime },\nu ^{\prime }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(S^{\prime },\mu ^{\prime },\nu ^{\prime }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ecb4074c83dff20c25558fc7c83771f24bb061" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.112ex; height:3.009ex;" alt="{\displaystyle \left(S^{\prime },\mu ^{\prime },\nu ^{\prime }\right)}"></span> are <a href="/wiki/Monad_(category_theory)" title="Monad (category theory)">monads</a> on a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64528f031cdbe1f52bdaf4ba7a8401108c0d2dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.413ex; height:2.509ex;" alt="{\displaystyle C,}"></span> a <b>distributive law</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S.S^{\prime }\to S^{\prime }.S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>.</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>.</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S.S^{\prime }\to S^{\prime }.S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9be50ceef0b234f174ace523f897192a7d0648c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.093ex; height:2.509ex;" alt="{\displaystyle S.S^{\prime }\to S^{\prime }.S}"></span> is a <a href="/wiki/Natural_transformation" title="Natural transformation">natural transformation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda :S.S^{\prime }\to S^{\prime }.S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>:</mo> <mi>S</mi> <mo>.</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>.</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda :S.S^{\prime }\to S^{\prime }.S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a897a135dd5bcd91cd577043b9ab7ed42beaca85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.386ex; height:2.509ex;" alt="{\displaystyle \lambda :S.S^{\prime }\to S^{\prime }.S}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(S^{\prime },\lambda \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(S^{\prime },\lambda \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ecffc23629d9834920516c024403e789813d732" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.405ex; height:3.009ex;" alt="{\displaystyle \left(S^{\prime },\lambda \right)}"></span> is a <a href="/wiki/Lax_map_of_monads" class="mw-redirect" title="Lax map of monads">lax map of monads</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\to S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\to S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf53e44dfa263077b0945848b83632fe18efcb8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.613ex; height:2.176ex;" alt="{\displaystyle S\to S}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (S,\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (S,\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f601909396ba6692513b4f0869f5f722a30a6c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.698ex; height:2.843ex;" alt="{\displaystyle (S,\lambda )}"></span> is a <a href="/wiki/Colax_map_of_monads" class="mw-redirect" title="Colax map of monads">colax map of monads</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{\prime }\to S^{\prime }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{\prime }\to S^{\prime }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cf2d798e2e0fc17544bda5edd1ddff03c597610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.674ex; height:2.509ex;" alt="{\displaystyle S^{\prime }\to S^{\prime }.}"></span> This is exactly the data needed to define a monad structure on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{\prime }.S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>.</mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{\prime }.S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a89983e272be09df59bef76cf4b31ee2d0ee9ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.74ex; height:2.509ex;" alt="{\displaystyle S^{\prime }.S}"></span>: the multiplication map is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{\prime }\mu .\mu ^{\prime }S^{2}.S^{\prime }\lambda S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mi>&#x03BB;<!-- λ --></mi> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{\prime }\mu .\mu ^{\prime }S^{2}.S^{\prime }\lambda S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4beb4bfece742632c36ef7205ce459c5f7313d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.399ex; height:3.176ex;" alt="{\displaystyle S^{\prime }\mu .\mu ^{\prime }S^{2}.S^{\prime }\lambda S}"></span> and the unit map is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ^{\prime }S.\eta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mi>S</mi> <mo>.</mo> <mi>&#x03B7;<!-- η --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ^{\prime }S.\eta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e11f87329493afede1c3b7a7f3b510c54e41ecf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.208ex; height:3.009ex;" alt="{\displaystyle \eta ^{\prime }S.\eta .}"></span> See: <a href="/wiki/Distributive_law_between_monads" title="Distributive law between monads">distributive law between monads</a>. </p><p>A <a href="/wiki/Generalized_distributive_law" title="Generalized distributive law">generalized distributive law</a> has also been proposed in the area of <a href="/wiki/Information_theory" title="Information theory">information theory</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Antidistributivity">Antidistributivity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=13" title="Edit section: Antidistributivity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The ubiquitous <a href="/wiki/Identity_(mathematics)" title="Identity (mathematics)">identity</a> that relates inverses to the binary operation in any <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>, namely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (xy)^{-1}=y^{-1}x^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (xy)^{-1}=y^{-1}x^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dab799aac63d61877a832b3abd7a4f91937526f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.528ex; height:3.176ex;" alt="{\displaystyle (xy)^{-1}=y^{-1}x^{-1},}"></span> which is taken as an axiom in the more general context of a <a href="/wiki/Semigroup_with_involution" title="Semigroup with involution">semigroup with involution</a>, has sometimes been called an <b>antidistributive property</b> (of inversion as a <a href="/wiki/Unary_operation" title="Unary operation">unary operation</a>).<sup id="cite_ref-BrinkKahl1997_5-0" class="reference"><a href="#cite_note-BrinkKahl1997-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the context of a <a href="/wiki/Near-ring" title="Near-ring">near-ring</a>, which removes the commutativity of the additively written group and assumes only one-sided distributivity, one can speak of (two-sided) <b>distributive elements</b> but also of <b>antidistributive elements</b>. The latter reverse the order of (the non-commutative) addition; assuming a left-nearring (i.e. one which all elements distribute when multiplied on the left), then an antidistributive element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> reverses the order of addition when multiplied to the right: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x+y)a=ya+xa.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mi>a</mi> <mo>=</mo> <mi>y</mi> <mi>a</mi> <mo>+</mo> <mi>x</mi> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x+y)a=ya+xa.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e15bddd84508e144ea2c76078a764bf47136029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.895ex; height:2.843ex;" alt="{\displaystyle (x+y)a=ya+xa.}"></span><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the study of <a href="/wiki/Propositional_logic" class="mw-redirect" title="Propositional logic">propositional logic</a> and <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a>, the term <b>antidistributive law</b> is sometimes used to denote the interchange between conjunction and disjunction when implication factors over them:<sup id="cite_ref-Hehner1993_7-0" class="reference"><a href="#cite_note-Hehner1993-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\lor b)\Rightarrow c\equiv (a\Rightarrow c)\land (b\Rightarrow c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\lor b)\Rightarrow c\equiv (a\Rightarrow c)\land (b\Rightarrow c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c38f93520f9da0abc8042ea66dff0b455c0eeb56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.009ex; height:2.843ex;" alt="{\displaystyle (a\lor b)\Rightarrow c\equiv (a\Rightarrow c)\land (b\Rightarrow c)}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\land b)\Rightarrow c\equiv (a\Rightarrow c)\lor (b\Rightarrow c).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\land b)\Rightarrow c\equiv (a\Rightarrow c)\lor (b\Rightarrow c).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b2bd5f3f9c1bc38c84e8976acdc49177431fc44" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.656ex; height:2.843ex;" alt="{\displaystyle (a\land b)\Rightarrow c\equiv (a\Rightarrow c)\lor (b\Rightarrow c).}"></span> </p><p>These two <a href="/wiki/Tautology_(logic)" title="Tautology (logic)">tautologies</a> are a direct consequence of the duality in <a href="/wiki/De_Morgan%27s_laws" title="De Morgan&#39;s laws">De Morgan's laws</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=14" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://mathonline.wikidot.com/distributivity-of-binary-operations">Distributivity of Binary Operations</a> from Mathonline</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Kim Steward (2011) <a rel="nofollow" class="external text" href="http://www.wtamu.edu/academic/anns/mps/math/mathlab/beg_algebra/beg_alg_tut28_multpoly.htm">Multiplying Polynomials</a> from Virtual Math Lab at <a href="/wiki/West_Texas_A%26M_University" title="West Texas A&amp;M University">West Texas A&amp;M University</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="/wiki/Elliott_Mendelson" title="Elliott Mendelson">Elliott Mendelson</a> (1964) <i>Introduction to Mathematical Logic</i>, page 21, D. Van Nostrand Company</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> (1941) <i>Introduction to Logic</i>, page 52, <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a></span> </li> <li id="cite_note-BrinkKahl1997-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-BrinkKahl1997_5-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFChris_BrinkWolfram_KahlGunther_Schmidt1997" class="citation book cs1">Chris Brink; Wolfram Kahl; Gunther Schmidt (1997). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/relationalmethod00jips"><i>Relational Methods in Computer Science</i></a></span>. Springer. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/relationalmethod00jips/page/n16">4</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-211-82971-4" title="Special:BookSources/978-3-211-82971-4"><bdi>978-3-211-82971-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relational+Methods+in+Computer+Science&amp;rft.pages=4&amp;rft.pub=Springer&amp;rft.date=1997&amp;rft.isbn=978-3-211-82971-4&amp;rft.au=Chris+Brink&amp;rft.au=Wolfram+Kahl&amp;rft.au=Gunther+Schmidt&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Frelationalmethod00jips&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistributive+property" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCelestina_Cotti_FerreroGiovanni_Ferrero2002" class="citation book cs1">Celestina Cotti Ferrero; Giovanni Ferrero (2002). <i>Nearrings: Some Developments Linked to Semigroups and Groups</i>. Kluwer Academic Publishers. pp.&#160;62 and 67. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4613-0267-4" title="Special:BookSources/978-1-4613-0267-4"><bdi>978-1-4613-0267-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nearrings%3A+Some+Developments+Linked+to+Semigroups+and+Groups&amp;rft.pages=62+and+67&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=2002&amp;rft.isbn=978-1-4613-0267-4&amp;rft.au=Celestina+Cotti+Ferrero&amp;rft.au=Giovanni+Ferrero&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistributive+property" class="Z3988"></span></span> </li> <li id="cite_note-Hehner1993-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hehner1993_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEric_C.R._Hehner1993" class="citation book cs1"><a href="/wiki/Eric_Hehner" title="Eric Hehner">Eric C.R. Hehner</a> (1993). <i>A Practical Theory of Programming</i>. Springer Science &amp; Business Media. p.&#160;230. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-8596-5" title="Special:BookSources/978-1-4419-8596-5"><bdi>978-1-4419-8596-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Practical+Theory+of+Programming&amp;rft.pages=230&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1993&amp;rft.isbn=978-1-4419-8596-5&amp;rft.au=Eric+C.R.+Hehner&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADistributive+property" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Distributive_property&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/distributivity" class="extiw" title="wiktionary:distributivity">distributivity</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/Curriculum/Arithmetic/DistributiveLaw.shtml">A demonstration of the Distributive Law</a> for integer arithmetic (from <a href="/wiki/Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a>)</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐jqmcq Cached time: 20241122140919 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.511 seconds Real time usage: 0.741 seconds Preprocessor visited node count: 1894/1000000 Post‐expand include size: 27254/2097152 bytes Template argument size: 3185/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 27901/5000000 bytes Lua time usage: 0.231/10.000 seconds Lua memory usage: 4734264/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 505.436 1 -total 25.15% 127.130 2 Template:Reflist 23.05% 116.516 1 Template:Short_description 19.94% 100.795 3 Template:Cite_book 18.15% 91.743 1 Template:Transformation_rules 17.68% 89.357 1 Template:Sidebar 12.12% 61.268 2 Template:Pagetype 10.04% 50.721 1 Template:Infobox_mathematical_statement 9.17% 46.339 1 Template:Infobox 8.42% 42.572 1 Template:Redirect_distinguish --> <!-- Saved in parser cache with key enwiki:pcache:idhash:103118-0!canonical and timestamp 20241122140919 and revision id 1247364851. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Distributive_property&amp;oldid=1247364851">https://en.wikipedia.org/w/index.php?title=Distributive_property&amp;oldid=1247364851</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Properties_of_binary_operations" title="Category:Properties of binary operations">Properties of binary operations</a></li><li><a href="/wiki/Category:Elementary_algebra" title="Category:Elementary algebra">Elementary algebra</a></li><li><a href="/wiki/Category:Rules_of_inference" title="Category:Rules of inference">Rules of inference</a></li><li><a href="/wiki/Category:Theorems_in_propositional_logic" title="Category:Theorems in propositional logic">Theorems in propositional logic</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 September 2024, at 00:21<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Distributive_property&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qg7t2","wgBackendResponseTime":209,"wgPageParseReport":{"limitreport":{"cputime":"0.511","walltime":"0.741","ppvisitednodes":{"value":1894,"limit":1000000},"postexpandincludesize":{"value":27254,"limit":2097152},"templateargumentsize":{"value":3185,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":27901,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 505.436 1 -total"," 25.15% 127.130 2 Template:Reflist"," 23.05% 116.516 1 Template:Short_description"," 19.94% 100.795 3 Template:Cite_book"," 18.15% 91.743 1 Template:Transformation_rules"," 17.68% 89.357 1 Template:Sidebar"," 12.12% 61.268 2 Template:Pagetype"," 10.04% 50.721 1 Template:Infobox_mathematical_statement"," 9.17% 46.339 1 Template:Infobox"," 8.42% 42.572 1 Template:Redirect_distinguish"]},"scribunto":{"limitreport-timeusage":{"value":"0.231","limit":"10.000"},"limitreport-memusage":{"value":4734264,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-jqmcq","timestamp":"20241122140919","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Distributive property","url":"https:\/\/en.wikipedia.org\/wiki\/Distributive_property","sameAs":"http:\/\/www.wikidata.org\/entity\/Q187959","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q187959","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-13T08:54:57Z","dateModified":"2024-09-24T00:21:28Z","headline":"property involving two mathematical operations"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10