CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;32 of 32 results for author: <span class="mathjax">Barzi, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Barzi%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Barzi, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Barzi%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Barzi, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02966">arXiv:2411.02966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02966">pdf</a>, <a href="https://arxiv.org/format/2411.02966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.13970100">10.5281/zenodo.13970100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuCol Milestone Report No. 5: Preliminary Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">Simon Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">Chiara Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">Avni Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">Gian Luigi Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">Siobhan Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+L">Luca Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Rob Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">Bernhard Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">Anthony Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">Kyu Jung Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">Fabrice Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a> , et al. (369 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02966v1-abstract-short" style="display: inline;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02966v1-abstract-full" style="display: none;"> This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02966v1-abstract-full').style.display = 'none'; document.getElementById('2411.02966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12450">arXiv:2407.12450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12450">pdf</a>, <a href="https://arxiv.org/format/2407.12450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Interim report for the International Muon Collider Collaboration (IMCC) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">C. Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adrian%2C+S">S. Adrian</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A9%2C+C">C. Aim茅</a>, <a href="/search/physics?searchtype=author&amp;query=Aksoy%2C+A">A. Aksoy</a>, <a href="/search/physics?searchtype=author&amp;query=Alberghi%2C+G+L">G. L. Alberghi</a>, <a href="/search/physics?searchtype=author&amp;query=Alden%2C+S">S. Alden</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">N. Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">D. Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">P. Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">F. Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">R. Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">P. Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">M. Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">J. Back</a>, <a href="/search/physics?searchtype=author&amp;query=Badea%2C+A">A. Badea</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+K+J">K. J. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bahng%2C+E+J">E. J. Bahng</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">L. Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Balli%2C+F">F. Balli</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">L. Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Barbagallo%2C+C">C. Barbagallo</a> , et al. (362 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12450v1-abstract-short" style="display: inline;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12450v1-abstract-full" style="display: none;"> The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&amp;D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&amp;D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their &#34;muon shot&#34;. In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12450v1-abstract-full').style.display = 'none'; document.getElementById('2407.12450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&amp;D programme</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15278">arXiv:2406.15278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15278">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> What is Needed for BiSCO to Work in a Dipole Insert for 20 Tesla Hybrid Accelerator Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15278v1-abstract-short" style="display: inline;"> A major focus of the global HEP community is on high field superconducting magnets made of High Temperature Superconductors (HTS) for future Energy Frontier Programs. Within the U.S. Magnet Development Program (US MDP), a key task is that of developing HTS inserts producing fields larger than 5 T within 15 T outserts made of Nb$_3$Sn to generate 20 T+ for future accelerators. Bi$_2$Sr$_2$CaCu$_2$O&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15278v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15278v1-abstract-full" style="display: none;"> A major focus of the global HEP community is on high field superconducting magnets made of High Temperature Superconductors (HTS) for future Energy Frontier Programs. Within the U.S. Magnet Development Program (US MDP), a key task is that of developing HTS inserts producing fields larger than 5 T within 15 T outserts made of Nb$_3$Sn to generate 20 T+ for future accelerators. Bi$_2$Sr$_2$CaCu$_2$O$_8$$_-$$_x$ (BiSCO) is the only high T c superconductor available as an isotropic round multifilamentary wire, which is ideal for producing the flat cables (i.e., Rutherford type cables) that are used in accelerator magnets. Significant progress in the development and industrialization of BiSCO wires has been made over the last decade. However, several challenges remain for this HTS to be used successfully in hybrid magnets. The following is required to improve performance, lower costs and simplify the processing of BiSCO accelerator magnets: (1) The development and design, in collaboration with industry, of BiSCO wires that are adequate for Rutherford cabling; (2) The development of insulation processes and materials that prevent leaks when heat treated in highly corrosive oxygen; (3) Control of stresses and strains; and (4) Integration of high pressure heat treatment with a new approach that will lower costs and simplify processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15278v1-abstract-full').style.display = 'none'; document.getElementById('2406.15278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14th International Particle Accelerator Conference (IPAC&#39;23)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-191-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13591">arXiv:2401.13591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Development and Test of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+M">M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Krave%2C+S">S. Krave</a>, <a href="/search/physics?searchtype=author&amp;query=Orris%2C+D">D. Orris</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">D. Turrioni</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13591v1-abstract-short" style="display: inline;"> The design concept of the Electron Ion Collider (EIC), which is under construction at BNL, considers adding a 2nd Interaction Region (IR) and detector to the machine after completion of the present EIC project. Recent progress with development and fabrication of large-aperture high-field magnets based on the Nb3Sn technology for the HL-LHC makes this technology interesting for the 2nd EIC IR. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13591v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13591v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13591v1-abstract-full" style="display: none;"> The design concept of the Electron Ion Collider (EIC), which is under construction at BNL, considers adding a 2nd Interaction Region (IR) and detector to the machine after completion of the present EIC project. Recent progress with development and fabrication of large-aperture high-field magnets based on the Nb3Sn technology for the HL-LHC makes this technology interesting for the 2nd EIC IR. This paper summarizes the results of feasibility studies of large-aperture high-field Nb3Sn dipoles and quadrupoles for the 2nd EIC IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13591v1-abstract-full').style.display = 'none'; document.getElementById('2401.13591v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IPAC 2023. arXiv admin note: text overlap with arXiv:2304.13155</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-386-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04021">arXiv:2311.04021</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04021">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A New Ductile, Tougher Resin for Impregnation of Superconducting Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">Daniele Turrioni</a>, <a href="/search/physics?searchtype=author&amp;query=Kesgin%2C+I">Ibrahim Kesgin</a>, <a href="/search/physics?searchtype=author&amp;query=Takeuchi%2C+M">Masaki Takeuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Xudong%2C+W">Wang Xudong</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamoto%2C+T">Tatsushi Nakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Kikuchi%2C+A">Akihiro Kikuchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04021v1-abstract-short" style="display: inline;"> A major remaining challenge for $Nb_3Sn$ high field magnets is their training due to random temperature variations in the coils. The main objective of our research is to reduce or eliminate it by finding novel impregnation materials with respect to the epoxies currently used. An organic olefin-based thermosetting dicyclopentadiene (DCP) resin, $C_10H_12$, commercially available in Japan as TELENE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04021v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04021v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04021v1-abstract-full" style="display: none;"> A major remaining challenge for $Nb_3Sn$ high field magnets is their training due to random temperature variations in the coils. The main objective of our research is to reduce or eliminate it by finding novel impregnation materials with respect to the epoxies currently used. An organic olefin-based thermosetting dicyclopentadiene (DCP) resin, $C_10H_12$, commercially available in Japan as TELENE by RIMTEC, was used to impregnate a short $Nb_3Sn$ undulator coil developed by ANL and FNAL. This magnet reached short sample limit after only two quenches, compared with several dozens when $CTD-101K$ was used. Ductility, i.e. the ability to accept large strains, and toughness were identified as key properties to achieve these results. In addition, we have been investigating whether mixing TELENE with high heat capacity ceramic powders, increases the specific heat ($C_p$) of impregnated $Nb_3Sn$ superconducting magnets. The viscosity, heat capacity, thermal conductivity, and other physical properties of TELENE with $high-C_p$ powder fillers were measured in this study as a function of temperature and magnetic field. Mixing TELENE with either $Gd_2O_3$, $Gd_2O_2S$, and $HoCu_2$ increases its $C_p$ tenfold. We have also investigated the effect on the mechanical properties of pure and mixed TELENE under 10 $Gy$ of gamma-ray irradiation at the Takasaki Advanced Radiation Research Institute in Takasaki, Japan. Whereas both $TELENE-82wt\%Gd_2O_3$ and $TELENE-83wt\%HoCu_2$ performed well, the best mechanical properties after irradiation were obtained for $TELENE-87wt\%Gd2O_2S$. Testing a short undulator in the future with the latter impregnation material will verify whether it will further improve the coils thermal stability. Short magnet training will lead to better magnet reliability, lower risk and substantial saving in accelerators commissioning costs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04021v1-abstract-full').style.display = 'none'; document.getElementById('2311.04021v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06776">arXiv:2305.06776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06776">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> 20 T Dipole Magnet Based on Hybrid HTS/LTS Cos-Theta Coils with Stress Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Noviski%2C+I">I. Noviski</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Ferracin%2C+P">P. Ferracin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06776v1-abstract-short" style="display: inline;"> This paper presents the design concept of the dipole magnet with 50 mm aperture, 20 T nominal field and 13% margin based on a six-layer cos-theta (CT) hybrid coil design. Due to the high stresses and strains in the coil at high field, Stress Management (SM) elements are implemented in the CT coil geometry. The results of magnet magnetic analysis are presented and discussed. The key parameters of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06776v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06776v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06776v1-abstract-full" style="display: none;"> This paper presents the design concept of the dipole magnet with 50 mm aperture, 20 T nominal field and 13% margin based on a six-layer cos-theta (CT) hybrid coil design. Due to the high stresses and strains in the coil at high field, Stress Management (SM) elements are implemented in the CT coil geometry. The results of magnet magnetic analysis are presented and discussed. The key parameters of this design are compared with the parameters of similar magnets based on block-type and canted cos-theta coils. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06776v1-abstract-full').style.display = 'none'; document.getElementById('2305.06776v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14th International Particle Accelerator Conference (IPAC&#39;23)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-184-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06775">arXiv:2305.06775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06775">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Large-Aperture High-Field NB3SN Magnets for the 2nd EIC Interaction Region* </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Gamage%2C+B+R">B. R. Gamage</a>, <a href="/search/physics?searchtype=author&amp;query=Seryi%2C+A">A. Seryi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06775v1-abstract-short" style="display: inline;"> The design concept of the Electron Ion Collider (EIC), which is under construction at BNL, considers adding a 2nd Interaction Region (IR) and detector to the machine after completion of the present EIC project. Recent progress with development and fabrication of large-aperture high-field magnets based on the Nb3Sn technology for the HL-LHC makes this technology interesting for the 2nd EIC IR. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06775v1-abstract-full').style.display = 'inline'; document.getElementById('2305.06775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06775v1-abstract-full" style="display: none;"> The design concept of the Electron Ion Collider (EIC), which is under construction at BNL, considers adding a 2nd Interaction Region (IR) and detector to the machine after completion of the present EIC project. Recent progress with development and fabrication of large-aperture high-field magnets based on the Nb3Sn technology for the HL-LHC makes this technology interesting for the 2nd EIC IR. This paper summarizes the results of feasibility studies of large-aperture high-field Nb3Sn dipoles and quadrupoles for the 2nd EIC IR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06775v1-abstract-full').style.display = 'none'; document.getElementById('2305.06775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14th International Particle Accelerator Conference (IPAC&#39;23)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-164-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13155">arXiv:2304.13155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13155">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Design and Assembly of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management in Dipole Mirror Configuration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">D. Turrioni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13155v1-abstract-short" style="display: inline;"> The stress-management cos-theta (SMCT) coil is a new concept which has been proposed and is being developed at Fermilab in the framework of US Magnet Development Program (US-MDP) for high-field and/or large-aperture accelerator magnets based on low-temperature and high-temperature superconductors. The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, thus, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13155v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13155v1-abstract-full" style="display: none;"> The stress-management cos-theta (SMCT) coil is a new concept which has been proposed and is being developed at Fermilab in the framework of US Magnet Development Program (US-MDP) for high-field and/or large-aperture accelerator magnets based on low-temperature and high-temperature superconductors. The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, thus, the excessively large strains and stresses in the coil. A large-aperture Nb3Sn SMCT dipole coil has been developed and fabricated at Fermilab to demonstrate and test the SMCT concept including coil design, fabrication technology and performance. The first SMCT coil has been assembled with 60-mm aperture Nb3Sn coil inside a dipole mirror configuration and will be tested separately and in series with the insert coil. This paper summarizes the large-aperture SMCT coil design and parameters and reports the coil fabrication steps and its assembly in dipole mirror configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13155v1-abstract-full').style.display = 'none'; document.getElementById('2304.13155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-074-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08533">arXiv:2303.08533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08533">pdf</a>, <a href="https://arxiv.org/format/2303.08533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Towards a Muon Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Accettura%2C+C">Carlotta Accettura</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D">Dean Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Rohit Agarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Ahdida%2C+C">Claudia Ahdida</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">Chiara Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Amapane%2C+N">Nicola Amapane</a>, <a href="/search/physics?searchtype=author&amp;query=Amorim%2C+D">David Amorim</a>, <a href="/search/physics?searchtype=author&amp;query=Andreetto%2C+P">Paolo Andreetto</a>, <a href="/search/physics?searchtype=author&amp;query=Anulli%2C+F">Fabio Anulli</a>, <a href="/search/physics?searchtype=author&amp;query=Appleby%2C+R">Robert Appleby</a>, <a href="/search/physics?searchtype=author&amp;query=Apresyan%2C+A">Artur Apresyan</a>, <a href="/search/physics?searchtype=author&amp;query=Apyan%2C+A">Aram Apyan</a>, <a href="/search/physics?searchtype=author&amp;query=Arsenyev%2C+S">Sergey Arsenyev</a>, <a href="/search/physics?searchtype=author&amp;query=Asadi%2C+P">Pouya Asadi</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">Mohammed Attia Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Azatov%2C+A">Aleksandr Azatov</a>, <a href="/search/physics?searchtype=author&amp;query=Back%2C+J">John Back</a>, <a href="/search/physics?searchtype=author&amp;query=Balconi%2C+L">Lorenzo Balconi</a>, <a href="/search/physics?searchtype=author&amp;query=Bandiera%2C+L">Laura Bandiera</a>, <a href="/search/physics?searchtype=author&amp;query=Barlow%2C+R">Roger Barlow</a>, <a href="/search/physics?searchtype=author&amp;query=Bartosik%2C+N">Nazar Bartosik</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Batsch%2C+F">Fabian Batsch</a>, <a href="/search/physics?searchtype=author&amp;query=Bauce%2C+M">Matteo Bauce</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%2C+J+S">J. Scott Berg</a> , et al. (272 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08533v2-abstract-short" style="display: inline;"> A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders desi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08533v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08533v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08533v2-abstract-full" style="display: none;"> A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08533v2-abstract-full').style.display = 'none'; document.getElementById('2303.08533v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">118 pages, 103 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04940">arXiv:2302.04940</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04940">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2023.3250382">10.1109/TASC.2023.3250382 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conceptual design of 20 T hybrid accelerator dipole magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferracin%2C+P">P. Ferracin</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosio%2C+G">G. Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M">M. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Arbelaez%2C+D">D. Arbelaez</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Cooley%2C+L">L. Cooley</a>, <a href="/search/physics?searchtype=author&amp;query=Cozzolino%2C+J">J. Cozzolino</a>, <a href="/search/physics?searchtype=author&amp;query=Fajardo%2C+L+G">L. Garcia Fajardo</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Juchno%2C+M">M. Juchno</a>, <a href="/search/physics?searchtype=author&amp;query=Kashikhin%2C+V+V">V. V. Kashikhin</a>, <a href="/search/physics?searchtype=author&amp;query=Kurian%2C+F">F. Kurian</a>, <a href="/search/physics?searchtype=author&amp;query=Marinozzi%2C+V">V. Marinozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Rochepault%2C+E">E. Rochepault</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+J">J. Stern</a>, <a href="/search/physics?searchtype=author&amp;query=Vallone%2C+G">G. Vallone</a>, <a href="/search/physics?searchtype=author&amp;query=Yahia%2C+B">B. Yahia</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04940v1-abstract-short" style="display: inline;"> Hybrid magnets are currently under consideration as an economically viable option towards 20 T dipole magnets for next generation of particle accelerators. In these magnets, High Temperature Superconducting (HTS) materials are used in the high field part of the coil with so-called insert coils, and Low Temperature Superconductors (LTS) like Nb3Sn and Nb-Ti superconductors are used in the lower fie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04940v1-abstract-full').style.display = 'inline'; document.getElementById('2302.04940v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04940v1-abstract-full" style="display: none;"> Hybrid magnets are currently under consideration as an economically viable option towards 20 T dipole magnets for next generation of particle accelerators. In these magnets, High Temperature Superconducting (HTS) materials are used in the high field part of the coil with so-called insert coils, and Low Temperature Superconductors (LTS) like Nb3Sn and Nb-Ti superconductors are used in the lower field region with so-called outsert coils. The attractiveness of the hybrid option lays on the fact that, on the one hand, the 20 T field level is beyond the Nb3Sn practical limits of 15-16 T for accelerator magnets and can be achieved only via HTS materials; on the other hand, the high cost of HTS superconductors compared to LTS superconductors makes it advantageous exploring a hybrid approach, where the HTS portion of the coil is minimized. We present in this paper an overview of different design options aimed at generating 20 T field in a 50 mm clear aperture. The coil layouts investigated include the Cos-theta design (CT), with its variations to reduce the conductor peak stress, namely the Canted Cos-theta design (CCT) and the Stress Management Cos-theta design (SMCT), and, in addition, the Block-type design (BL) including a form of stress management and the Common-Coil design (CC). Results from a magnetic and mechanical analysis are discussed, with particular focus on the comparison between the different options regarding quantity of superconducting material, field quality, conductor peak stress, and quench protection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04940v1-abstract-full').style.display = 'none'; document.getElementById('2302.04940v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-856-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06755">arXiv:2209.06755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06755">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> How Community Agreements Can Improve Workplace Culture in Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/physics?searchtype=author&amp;query=Nattrass%2C+C">Christine Nattrass</a>, <a href="/search/physics?searchtype=author&amp;query=Springer%2C+R">Roxanne Springer</a>, <a href="/search/physics?searchtype=author&amp;query=Bennett%2C+C+H">Charles H. Bennett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06755v2-abstract-short" style="display: inline;"> Equity, Diversity, and Inclusion (EDI) committees and Codes of Conduct (CoC) have become common in laboratories and physics departments across the country. However, very often these EDI committees and CoC are not equipped to provide practical consequences for violations, and therefore are mostly performative in nature. A considerable effort has been devoted by various groups within APS units and b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06755v2-abstract-full').style.display = 'inline'; document.getElementById('2209.06755v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06755v2-abstract-full" style="display: none;"> Equity, Diversity, and Inclusion (EDI) committees and Codes of Conduct (CoC) have become common in laboratories and physics departments across the country. However, very often these EDI committees and CoC are not equipped to provide practical consequences for violations, and therefore are mostly performative in nature. A considerable effort has been devoted by various groups within APS units and beyond the APS in developing instead what are now called Community Guidelines. Community Guidelines help implement the core principles in CoC, by setting expectations for participation in in-person events and virtual communication. When further accompanied by accountability and enforcement processes, they develop into Community Agreements. This White Paper discusses the elements necessary to create and implement an effective Community Agreement, reviews examples of Community Agreements in physics, and argues that physics collaborations, physics departments, and ultimately as many physics organizations as possible, however large or small, should have a Community Agreement in place. We advocate that Community Agreements should become part of the bylaws of any entity that has bylaws. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06755v2-abstract-full').style.display = 'none'; document.getElementById('2209.06755v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05827">arXiv:2209.05827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.05827">pdf</a>, <a href="https://arxiv.org/format/2209.05827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Accelerators for Electroweak Physics and Higgs Boson Studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Faus-Golfe%2C+A">A. Faus-Golfe</a>, <a href="/search/physics?searchtype=author&amp;query=Hoffstaetter%2C+G+H">G. H. Hoffstaetter</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Q">Q. Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Zimmermann%2C+F">F. Zimmermann</a>, <a href="/search/physics?searchtype=author&amp;query=Barklow%2C+T">T. Barklow</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Belomestnykh%2C+S">S. Belomestnykh</a>, <a href="/search/physics?searchtype=author&amp;query=Biagini%2C+M">M. Biagini</a>, <a href="/search/physics?searchtype=author&amp;query=Llatas%2C+M+C">M. Chamizo Llatas</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+J">J. Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Gianfelice%2C+E">E. Gianfelice</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+B">B. List</a>, <a href="/search/physics?searchtype=author&amp;query=Litvinenko%2C+V">V. Litvinenko</a>, <a href="/search/physics?searchtype=author&amp;query=Nanni%2C+E">E. Nanni</a>, <a href="/search/physics?searchtype=author&amp;query=Raubenheimer%2C+T">T. Raubenheimer</a>, <a href="/search/physics?searchtype=author&amp;query=Roser%2C+T">T. Roser</a>, <a href="/search/physics?searchtype=author&amp;query=Satogata%2C+T">T. Satogata</a>, <a href="/search/physics?searchtype=author&amp;query=Shiltsev%2C+V">V. Shiltsev</a>, <a href="/search/physics?searchtype=author&amp;query=Stapnes%2C+S">S. Stapnes</a>, <a href="/search/physics?searchtype=author&amp;query=Telnov%2C+V">V. Telnov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05827v2-abstract-short" style="display: inline;"> We discuss the goals, the designs, the state of technical readiness, and the critical R&amp;D needs of the accelerators that are currently under discussion as Higgs and electroweak factories. We also address the respective staging options enabling future energy-frontier colliders. The accelerators covered are based on many different techniques and approaches. They include several circular colliders, v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05827v2-abstract-full').style.display = 'inline'; document.getElementById('2209.05827v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05827v2-abstract-full" style="display: none;"> We discuss the goals, the designs, the state of technical readiness, and the critical R&amp;D needs of the accelerators that are currently under discussion as Higgs and electroweak factories. We also address the respective staging options enabling future energy-frontier colliders. The accelerators covered are based on many different techniques and approaches. They include several circular colliders, various linear colliders, colliders based on energy recovery linacs (ERLs), ERL-ring combinations, as well as gamma-gamma colliders. The linear colliders proposed consist of options for the International Linear Collider (ILC), for the Compact Linear Collider (CLIC), for the Cold Copper Collider (C^3), and for the more recent Higgs-Energy Lepton Collider (HELEN). ERLs are key components of the Recycling Linear e+e- Collider (ReLiC), of the Energy Recovery Linear Collider (ERLC), and of the Circular Energy Recovery Collider (CERC). Among the more conventional ring colliders, the following proposals are featured: the Future Circular Collider (FCC-ee), the Circular Electron Positron Collider (CEPC), the Electron Positron Circular Collider at Fermilab (EPCCF), and the Large Electron Positron collider $\#$3 (LEP-3). In addition, we consider the X-ray FEL based gamma-gamma Collider Higgs Factory (XCC) and the High-Energy High-Luminosity gamma-gamma collider (HE&amp;HL gamma-gamma). Finally, a Higgs factory based on a circular muon collider is mentioned for completeness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05827v2-abstract-full').style.display = 'none'; document.getElementById('2209.05827v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14323">arXiv:2208.14323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14323">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2022.3152715">10.1109/TASC.2022.3152715 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards 20 T Hybrid Accelerator Dipole Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferracin%2C+P">P. Ferracin</a>, <a href="/search/physics?searchtype=author&amp;query=Ambrosio%2C+G">G. Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Arbelaez%2C+D">D. Arbelaez</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Cooley%2C+L">L. Cooley</a>, <a href="/search/physics?searchtype=author&amp;query=Fajardo%2C+L+G">L. Garcia Fajardo</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+R">R. Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Juchno%2C+M">M. Juchno</a>, <a href="/search/physics?searchtype=author&amp;query=Kashikhin%2C+V">V. Kashikhin</a>, <a href="/search/physics?searchtype=author&amp;query=Marinozzi%2C+V">V. Marinozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Rochepault%2C+E">E. Rochepault</a>, <a href="/search/physics?searchtype=author&amp;query=Stern%2C+J">J. Stern</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A">A. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Zucchi%2C+N">N. Zucchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14323v1-abstract-short" style="display: inline;"> The most effective way to achieve very high collision energies in a circular particle accelerator is to maximize the field strength of the main bending dipoles. In dipole magnets using Nb-Ti superconductor the practical field limit is considered to be 8-9 T. When Nb3Sn superconductor material is utilized, a field level of 15-16 T can be achieved. To further push the magnetic field beyond the Nb3Sn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14323v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14323v1-abstract-full" style="display: none;"> The most effective way to achieve very high collision energies in a circular particle accelerator is to maximize the field strength of the main bending dipoles. In dipole magnets using Nb-Ti superconductor the practical field limit is considered to be 8-9 T. When Nb3Sn superconductor material is utilized, a field level of 15-16 T can be achieved. To further push the magnetic field beyond the Nb3Sn limits, High Temperature Superconductors (HTS) need to be considered in the magnet design. The most promising HTS materials for particle accelerator magnets are Bi2212 and REBCO. However, their outstanding performance comes with a significantly higher cost. Therefore, an economically viable option towards 20 T dipole magnets could consist in an hybrid solution, where both HTS and Nb3Sn materials are used. We discuss in this paper preliminary conceptual designs of various 20 T hybrid magnet concepts. After the definition of the overall design criteria, the coil dimensions and parameters are investigated with finite element models based on simple sector coils. Preliminary 2D cross-section computation results are then presented and three main layouts compared: cos-theta, block, and common-coil. Both traditional designs and more advanced stress-management options are considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14323v1-abstract-full').style.display = 'none'; document.getElementById('2208.14323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2203.13985</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-221-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05378">arXiv:2204.05378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05378">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2022.3159774">10.1109/TASC.2022.3159774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimum Quench Energy Of Nb$_3$Sn Wires With High Specific Heat Tape </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Novitsky%2C+I">I. Novitsky</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">D. Turrioni</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+X">X. Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Tomsic%2C+M">M. Tomsic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05378v1-abstract-short" style="display: inline;"> A major problem of state-of-the-art Nb$_3$Sn accelerator magnets is their long training due to thermo-mechanical perturbations. Increasing the specific heat, $C_p$, of the Rutherford cable would reduce and/or eliminate training by limiting the coils temperature rise. This paper studies feasibility of increasing the $C_p$ of Rutherford-type cables by using thin composite Cu/$Gd_2$O$_3$ and Cu/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05378v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05378v1-abstract-full" style="display: none;"> A major problem of state-of-the-art Nb$_3$Sn accelerator magnets is their long training due to thermo-mechanical perturbations. Increasing the specific heat, $C_p$, of the Rutherford cable would reduce and/or eliminate training by limiting the coils temperature rise. This paper studies feasibility of increasing the $C_p$ of Rutherford-type cables by using thin composite Cu/$Gd_2$O$_3$ and Cu/$Gd_2$O$_2$S tapes produced by Hyper Tech Research, Inc. The tape can be either wrapped around the cable, placed on the cable wide faces under the insulation, and/or inserted as a core. Wire samples outfitted with these high-$C_p$ ribbons, or tapes, were prepared and tested at FNAL for their Minimum Quench Energy (MQE). At 90%I$_c$ and 15 T, the average gain of MQE of the Nb$_3$Sn wire soldered to the Cu/$Gd_2$O$_2$S 55 micrometer thick ribbon was 2.5, and further increased at larger transport currents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05378v1-abstract-full').style.display = 'none'; document.getElementById('2204.05378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-133-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.05366">arXiv:2204.05366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.05366">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2022.3163062">10.1109/TASC.2022.3163062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a 120-mm Aperture Nb3Sn Dipole Coil with Stress Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Coghill%2C+J">J. Coghill</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">D. Turrioni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.05366v1-abstract-short" style="display: inline;"> This paper describes a 120-mm aperture 2-layer dipole coil with stress management (SM) developed at Fermilab based on cos-theta coil geometry. A model of the coil support structure made of plastic was printed using additive manufacturing technology and used for practice coil winding. The real coil support structure was printed using the 316 stainless steel. The results of the SM structure size con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05366v1-abstract-full').style.display = 'inline'; document.getElementById('2204.05366v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.05366v1-abstract-full" style="display: none;"> This paper describes a 120-mm aperture 2-layer dipole coil with stress management (SM) developed at Fermilab based on cos-theta coil geometry. A model of the coil support structure made of plastic was printed using additive manufacturing technology and used for practice coil winding. The real coil support structure was printed using the 316 stainless steel. The results of the SM structure size control and the key coil fabrication steps are reported in the paper. The design of coil SM structure and the coil FEA in the dipole mirror test configurations are presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.05366v1-abstract-full').style.display = 'none'; document.getElementById('2204.05366v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-237-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.01072">arXiv:2204.01072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.01072">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Conductor Properties and Coil Technology for a Bi2212 Dipole Insert for 20 Tesla Hybrid Accelerator Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.01072v3-abstract-short" style="display: inline;"> Developing HTS dipole inserts producing fields larger than 5 T within 15 T Nb3Sn outserts is necessary to generate 20 T or higher fields for future high energy colliders. Dipole inserts based on the cos-theta coil geometry with various stress management concepts and Bi2212 superconducting strand and cable are being developed at Fermilab both within and beyond the U.S.-MDP effort. The ultimate goal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01072v3-abstract-full').style.display = 'inline'; document.getElementById('2204.01072v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.01072v3-abstract-full" style="display: none;"> Developing HTS dipole inserts producing fields larger than 5 T within 15 T Nb3Sn outserts is necessary to generate 20 T or higher fields for future high energy colliders. Dipole inserts based on the cos-theta coil geometry with various stress management concepts and Bi2212 superconducting strand and cable are being developed at Fermilab both within and beyond the U.S.-MDP effort. The ultimate goal is to develop coil technology and an approach to manage azimuthal and radial strains of high temperature superconductor inserts when integrated within Nb3Sn outserts as a hybrid magnet system. This white paper reviews Bi2212 conductor properties and coil technologies, and proposes new ideas to face the challenges that Bi2212 still presents as an accelerator magnet conductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.01072v3-abstract-full').style.display = 'none'; document.getElementById('2204.01072v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:2008.07403</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13985">arXiv:2203.13985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13985">pdf</a>, <a href="https://arxiv.org/format/2203.13985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Strategic Approach to Advance Magnet Technology for Next Generation Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ambrosio%2C+G">G. Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Amm%2C+K">K. Amm</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M">M. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Apollinari%2C+G">G. Apollinari</a>, <a href="/search/physics?searchtype=author&amp;query=Arbelaez%2C+D">D. Arbelaez</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Balachandran%2C+S">S. Balachandran</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+M">M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Ballarino%2C+A">A. Ballarino</a>, <a href="/search/physics?searchtype=author&amp;query=Barua%2C+S">S. Barua</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Baskys%2C+A">A. Baskys</a>, <a href="/search/physics?searchtype=author&amp;query=Bird%2C+C">C. Bird</a>, <a href="/search/physics?searchtype=author&amp;query=Boerme%2C+J">J. Boerme</a>, <a href="/search/physics?searchtype=author&amp;query=Bosque%2C+E">E. Bosque</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Caspi%2C+S">S. Caspi</a>, <a href="/search/physics?searchtype=author&amp;query=Cheggour%2C+N">N. Cheggour</a>, <a href="/search/physics?searchtype=author&amp;query=Chlachidze%2C+G">G. Chlachidze</a>, <a href="/search/physics?searchtype=author&amp;query=Cooley%2C+L">L. Cooley</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+D">D. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Dietderich%2C+D">D. Dietderich</a>, <a href="/search/physics?searchtype=author&amp;query=DiMarco%2C+J">J. DiMarco</a>, <a href="/search/physics?searchtype=author&amp;query=English%2C+L">L. English</a>, <a href="/search/physics?searchtype=author&amp;query=Fajardo%2C+L+G">L. Garcia Fajardo</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13985v1-abstract-short" style="display: inline;"> Colliders are built on a foundation of superconducting magnet technology that provides strong dipole magnets to maintain the beam orbit and strong focusing magnets to enable the extraordinary luminosity required to probe physics at the energy frontier. The dipole magnet strength plays a critical role in dictating the energy reach of a collider, and the superconducting magnets are arguably the domi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13985v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13985v1-abstract-full" style="display: none;"> Colliders are built on a foundation of superconducting magnet technology that provides strong dipole magnets to maintain the beam orbit and strong focusing magnets to enable the extraordinary luminosity required to probe physics at the energy frontier. The dipole magnet strength plays a critical role in dictating the energy reach of a collider, and the superconducting magnets are arguably the dominant cost driver for future collider facilities. As the community considers opportunities to explore new energy frontiers, the importance of advanced magnet technology - both in terms of magnet performance and in the magnet technology&#39;s potential for cost reduction - is evident, as the technology status is essential for informed decisions on targets for physics reach and facility feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13985v1-abstract-full').style.display = 'none'; document.getElementById('2203.13985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10431">arXiv:2203.10431</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10431">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Critical problems of energy frontier Muon Colliders: optics, magnets and radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alexahin%2C+Y+I">Yu. I. Alexahin</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Gianfelice-Wendt%2C+E">E. Gianfelice-Wendt</a>, <a href="/search/physics?searchtype=author&amp;query=Kapin%2C+V">V. Kapin</a>, <a href="/search/physics?searchtype=author&amp;query=Kashikhin%2C+V+V">V. V. Kashikhin</a>, <a href="/search/physics?searchtype=author&amp;query=Mokhov%2C+N+V">N. V. Mokhov</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">I. Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Shiltsev%2C+V">V. Shiltsev</a>, <a href="/search/physics?searchtype=author&amp;query=Striganov%2C+S">S. Striganov</a>, <a href="/search/physics?searchtype=author&amp;query=Tropin%2C+I">I. Tropin</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10431v1-abstract-short" style="display: inline;"> This White Paper brings together our previous studies on a Muon Collider (MC) and presents a design concept of the 6 TeV MC optics, the superconducting (SC) magnets, and a preliminary analysis of the protection system to reduce magnet radiation loads as well as particle backgrounds in the detector. The SC magnets and detector protection considerations impose strict limitations on the lattice choic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10431v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10431v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10431v1-abstract-full" style="display: none;"> This White Paper brings together our previous studies on a Muon Collider (MC) and presents a design concept of the 6 TeV MC optics, the superconducting (SC) magnets, and a preliminary analysis of the protection system to reduce magnet radiation loads as well as particle backgrounds in the detector. The SC magnets and detector protection considerations impose strict limitations on the lattice choice, hence the design of the collider optics, magnets and Machine Detector Interface (MDI) are closely intertwined. As a first approximation we use the Interaction Region (IR) design with beta-star=3 mm, whereas for the arcs we re-scale the arc cell design of the 3 TeV MC. Traditional cos-theta coil geometry and Nb3Sn superconductor were used to provide field maps for the analysis and optimization of the arc lattice and IR design, as well as for studies of beam dynamics and magnet protection against radiation. The stress management in the coil will be needed to avoid large degradation or even damage of the brittle SC coils. In the assumed IR designs, the dipoles close to the Interaction Point (IP) and tungsten masks in each IR (to protect magnets) help reducing background particle fluxes in the detector by a substantial factor. The tungsten nozzles in the 6 to 600 cm region from the IP, assisted by the detector solenoid field, trap most of the decay electrons created close to the IP as well as most of the incoherent electron-positron pairs generated in the IP. With sophisticated tungsten, iron, concrete and borated polyethylene shielding in the MDI region, the total reduction of background loads by more than three orders of magnitude can be achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10431v1-abstract-full').style.display = 'none'; document.getElementById('2203.10431v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021. arXiv admin note: text overlap with arXiv:1204.6721</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10393">arXiv:2203.10393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10393">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> In Search of Excellence and Equity in Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Gates%2C%2C+S+J">S. James Gates, Jr.</a>, <a href="/search/physics?searchtype=author&amp;query=Springer%2C+R">Roxanne Springer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10393v2-abstract-short" style="display: inline;"> Equal opportunity is central to the concept of meritocracy. Opportunity and leadership should go to the people most qualified by performance, and not on the basis of arbitrary or irrelevant attributes. This principle is arguably most important for high-level leadership due to their outsized impact on the field. At the moment, many in the community perceive that the choice of leaders is infused wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10393v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10393v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10393v2-abstract-full" style="display: none;"> Equal opportunity is central to the concept of meritocracy. Opportunity and leadership should go to the people most qualified by performance, and not on the basis of arbitrary or irrelevant attributes. This principle is arguably most important for high-level leadership due to their outsized impact on the field. At the moment, many in the community perceive that the choice of leaders is infused with a lack of meritocracy and too often driven by cronyism. This is possibly a reason why far worse underrepresentation persists than could be expected from a functioning meritocracy. If we want to change this, we need to change our behavior, i.e., practices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10393v2-abstract-full').style.display = 'none'; document.getElementById('2203.10393v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-135-TD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> https://www.aps.org/programs/women/reports/gazette/upload/Spring22.pdf, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09718">arXiv:2203.09718</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09718">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> An Impartial Perspective for Superconducting Nb3Sn coated Copper RF Cavities for Future Accelerators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Barish%2C+B+C">B. C. Barish</a>, <a href="/search/physics?searchtype=author&amp;query=Rimmer%2C+R+A">R. A. Rimmer</a>, <a href="/search/physics?searchtype=author&amp;query=Valente-Feliciano%2C+A">A. Valente-Feliciano</a>, <a href="/search/physics?searchtype=author&amp;query=Rey%2C+C+M">C. M. Rey</a>, <a href="/search/physics?searchtype=author&amp;query=Barletta%2C+W+A">W. A. Barletta</a>, <a href="/search/physics?searchtype=author&amp;query=Nanni%2C+E">E. Nanni</a>, <a href="/search/physics?searchtype=author&amp;query=Nasr%2C+M">M. Nasr</a>, <a href="/search/physics?searchtype=author&amp;query=Ross%2C+M">M. Ross</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+M">M. Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Tantawi%2C+S">S. Tantawi</a>, <a href="/search/physics?searchtype=author&amp;query=Welander%2C+P+B">P. B. Welander</a>, <a href="/search/physics?searchtype=author&amp;query=Simakov%2C+E+I">E. I. Simakov</a>, <a href="/search/physics?searchtype=author&amp;query=Usov%2C+I+O">I. O. Usov</a>, <a href="/search/physics?searchtype=author&amp;query=Alff%2C+L">L. Alff</a>, <a href="/search/physics?searchtype=author&amp;query=Karabas%2C+N">N. Karabas</a>, <a href="/search/physics?searchtype=author&amp;query=Major%2C+M">M. Major</a>, <a href="/search/physics?searchtype=author&amp;query=Palakkal%2C+J+P">J. P. Palakkal</a>, <a href="/search/physics?searchtype=author&amp;query=Petzold%2C+S">S. Petzold</a>, <a href="/search/physics?searchtype=author&amp;query=Pietralla%2C+N">N. Pietralla</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4fer%2C+N">N. Sch盲fer</a>, <a href="/search/physics?searchtype=author&amp;query=Kikuchi%2C+A">A. Kikuchi</a>, <a href="/search/physics?searchtype=author&amp;query=Hayano%2C+H">H. Hayano</a>, <a href="/search/physics?searchtype=author&amp;query=Ito%2C+H">H. Ito</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwaji%2C+S">S. Kashiwaji</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09718v4-abstract-short" style="display: inline;"> This Snowmass21 Contributed Paper encourages the Particle Physics community in fostering R&amp;D in Superconducting Nb3Sn coated Copper RF Cavities instead of costly bulk Niobium. It describes the pressing need to devote effort in this direction, which would deliver higher gradient and higher temperature of operation and reduce the overall capital and operational costs of any future collider. It is un&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09718v4-abstract-full').style.display = 'inline'; document.getElementById('2203.09718v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09718v4-abstract-full" style="display: none;"> This Snowmass21 Contributed Paper encourages the Particle Physics community in fostering R&amp;D in Superconducting Nb3Sn coated Copper RF Cavities instead of costly bulk Niobium. It describes the pressing need to devote effort in this direction, which would deliver higher gradient and higher temperature of operation and reduce the overall capital and operational costs of any future collider. It is unlikely that an ILC will be built in the next ten years with Nb as one of the main cost drivers of SRFs. This paper provides strong arguments on the benefits of using this time for R&amp;D on producing Nb3Sn on inexpensive and thermally efficient metals such as Cu or bronze, while pursuing in parallel the novel U.S. concept of parallel-feed RF accelerator structures. A technology that synergistically uses both of these advanced tools would make an ILC or equivalent machines more affordable and more likely to be built. Such a successful enterprise would readily apply to other HEP accelerators, for instance a Muon Collider, and to accelerators beyond HEP. We present and assess current efforts in the U.S. on the novel concept of parallel-feed RF accelerator structures, and in the U.S. and abroad in producing Nb3Sn films on either Cu or bronze despite minimal funding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09718v4-abstract-full').style.display = 'none'; document.getElementById('2203.09718v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-134-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09336">arXiv:2203.09336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09336">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Necessity of International Particle Physics Opportunities for American Education </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Arce-Larreta%2C+E">Enrique Arce-Larreta</a>, <a href="/search/physics?searchtype=author&amp;query=Assamagan%2C+K">Ketevi Assamagan</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bilow%2C+U">Uta Bilow</a>, <a href="/search/physics?searchtype=author&amp;query=Cecire%2C+K">Kenneth Cecire</a>, <a href="/search/physics?searchtype=author&amp;query=de+Jong%2C+S">Sijbrand de Jong</a>, <a href="/search/physics?searchtype=author&amp;query=Donati%2C+S">Simone Donati</a>, <a href="/search/physics?searchtype=author&amp;query=Goldfarb%2C+S">Steven Goldfarb</a>, <a href="/search/physics?searchtype=author&amp;query=Klammer%2C+J">Joel Klammer</a>, <a href="/search/physics?searchtype=author&amp;query=Muronga%2C+A">Azwinndini Muronga</a>, <a href="/search/physics?searchtype=author&amp;query=Niland%2C+M">Maria Niland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09336v3-abstract-short" style="display: inline;"> This Snowmass2021 Contributed Paper addresses the role of the Particle Physics community in creating and fostering international connections in American education. It describes the pressing need to introduce students and faculty to the challenges and rewards of international collaboration, not only to develop the next generation of scientists and engineers for particle physics, but to maintain and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09336v3-abstract-full').style.display = 'inline'; document.getElementById('2203.09336v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09336v3-abstract-full" style="display: none;"> This Snowmass2021 Contributed Paper addresses the role of the Particle Physics community in creating and fostering international connections in American education. It describes the pressing need to introduce students and faculty to the challenges and rewards of international collaboration, not only to develop the next generation of scientists and engineers for particle physics, but to maintain and build U.S. leadership on an increasingly competitive world stage. We present and assess current efforts in education and public engagement with an eye toward identifying those activities in need of change or increased resources to improve audience reach and program efficacy. We also consider possible new activities that might improve upon or complement existing programs, with the common goal of providing all U.S. students with the opportunity to benefit from a quality international scientific experience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09336v3-abstract-full').style.display = 'none'; document.getElementById('2203.09336v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08869">arXiv:2203.08869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08869">pdf</a>, <a href="https://arxiv.org/format/2203.08869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Advancing Superconducting Magnet Diagnostics for Future Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marchevsky%2C+M">M. Marchevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Teyber%2C+R">R. Teyber</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+G+S">G. S. Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Turqueti%2C+M">M. Turqueti</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+M">M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=DiMarco%2C+J">J. DiMarco</a>, <a href="/search/physics?searchtype=author&amp;query=Krave%2C+S">S. Krave</a>, <a href="/search/physics?searchtype=author&amp;query=Marinozzi%2C+V">V. Marinozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Stoynev%2C+S">S. Stoynev</a>, <a href="/search/physics?searchtype=author&amp;query=Joshi%2C+P">P. Joshi</a>, <a href="/search/physics?searchtype=author&amp;query=Muratore%2C+J">J. Muratore</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+D">D. Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08869v1-abstract-short" style="display: inline;"> Future colliders will operate at increasingly high magnetic fields pushing limits of electromagnetic and mechanical stress on the conductor [1]. Understanding factors affecting superconducting (SC) magnet performance in challenging conditions of high mechanical stress and cryogenic temperatures is only possible with the use of advanced magnet diagnostics. Diagnostics provide a unique observation w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08869v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08869v1-abstract-full" style="display: none;"> Future colliders will operate at increasingly high magnetic fields pushing limits of electromagnetic and mechanical stress on the conductor [1]. Understanding factors affecting superconducting (SC) magnet performance in challenging conditions of high mechanical stress and cryogenic temperatures is only possible with the use of advanced magnet diagnostics. Diagnostics provide a unique observation window into mechanical and electromagnetic processes associated with magnet operation, and give essential feedback to magnet design, simulations and material research activities. Development of novel diagnostic capabilities is therefore an integral part of next-generation magnet development. In this paper, we summarize diagnostics development needs from a prospective of the US Magnet Development Program (MDP), and define main research directions that could shape this field in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08869v1-abstract-full').style.display = 'none'; document.getElementById('2203.08869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08353">arXiv:2203.08353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08353">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> High Energy &amp; High Luminosity $纬纬$ Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Barish%2C+B+C">Barry C. Barish</a>, <a href="/search/physics?searchtype=author&amp;query=Barletta%2C+W+A">William A. Barletta</a>, <a href="/search/physics?searchtype=author&amp;query=Ginzburg%2C+I+F">Ilya F. Ginzburg</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Mitri%2C+S">Simone Di Mitri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08353v3-abstract-short" style="display: inline;"> With the best of modern standard lasers, high-energy $纬纬$ colliders from electron beams of E larger than 250 GeV are only possible at the expense of photon luminosity, i.e. 10 times lower than for photon colliders at c.m. energies below 0.5 TeV. For existing state-of-the art lasers, an optimistic upper energy limit for x=4.8 is an electron beam of less than 250 GeV. This Snowmass21 Contributed Pap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08353v3-abstract-full').style.display = 'inline'; document.getElementById('2203.08353v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08353v3-abstract-full" style="display: none;"> With the best of modern standard lasers, high-energy $纬纬$ colliders from electron beams of E larger than 250 GeV are only possible at the expense of photon luminosity, i.e. 10 times lower than for photon colliders at c.m. energies below 0.5 TeV. For existing state-of-the art lasers, an optimistic upper energy limit for x=4.8 is an electron beam of less than 250 GeV. This Snowmass21 Contributed Paper shows how Free Electron Lasers (FEL) pave the way for High Energy &amp; High Luminosity $纬纬$ colliders. We present and assess a conceptual design study of a FEL with wavelength of 2.4 $渭$m and an x-factor in the range of 2 to 40, to maximize the luminosity of a $纬纬$ collider as second interaction region of 0.5 TeV to 10 TeV c.m. $e^+e^-$ colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08353v3-abstract-full').style.display = 'none'; document.getElementById('2203.08353v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-245-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08033">arXiv:2203.08033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08033">pdf</a>, <a href="https://arxiv.org/format/2203.08033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Muon Collider Facility for Physics Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stratakis%2C+D">D. Stratakis</a>, <a href="/search/physics?searchtype=author&amp;query=Mokhov%2C+N">N. Mokhov</a>, <a href="/search/physics?searchtype=author&amp;query=Palmer%2C+M">M. Palmer</a>, <a href="/search/physics?searchtype=author&amp;query=Pastrone%2C+N">N. Pastrone</a>, <a href="/search/physics?searchtype=author&amp;query=Raubenheimer%2C+T">T. Raubenheimer</a>, <a href="/search/physics?searchtype=author&amp;query=Rogers%2C+C">C. Rogers</a>, <a href="/search/physics?searchtype=author&amp;query=Schulte%2C+D">D. Schulte</a>, <a href="/search/physics?searchtype=author&amp;query=Shiltsev%2C+V">V. Shiltsev</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">J. Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">A. Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">C. Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Mahmoud%2C+M+A">M. A. Mahmoud</a>, <a href="/search/physics?searchtype=author&amp;query=Bartosik%2C+N">N. Bartosik</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolin%2C+A">A. Bertolin</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Caiffi%2C+B">B. Caiffi</a>, <a href="/search/physics?searchtype=author&amp;query=Casarsa%2C+M">M. Casarsa</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cerri%2C+A">A. Cerri</a>, <a href="/search/physics?searchtype=author&amp;query=Curatolo%2C+C">C. Curatolo</a>, <a href="/search/physics?searchtype=author&amp;query=Dam%2C+M">M. Dam</a>, <a href="/search/physics?searchtype=author&amp;query=Damerau%2C+H">H. Damerau</a>, <a href="/search/physics?searchtype=author&amp;query=De+Matteis%2C+E">E. De Matteis</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08033v1-abstract-short" style="display: inline;"> Muon colliders provide a unique route to deliver high energy collisions that enable discovery searches and precision measurements to extend our understanding of the fundamental laws of physics. The muon collider design aims to deliver physics reach at the highest energies with costs, power consumption and on a time scale that may prove favorable relative to other proposed facilities. In this conte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08033v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08033v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08033v1-abstract-full" style="display: none;"> Muon colliders provide a unique route to deliver high energy collisions that enable discovery searches and precision measurements to extend our understanding of the fundamental laws of physics. The muon collider design aims to deliver physics reach at the highest energies with costs, power consumption and on a time scale that may prove favorable relative to other proposed facilities. In this context, a new international collaboration has formed to further extend the design concepts and performance studies of such a machine. This effort is focused on delivering the elements of a $\sim$10 TeV center of mass (CM) energy design to explore the physics energy frontier. The path to such a machine may pass through lower energy options. Currently a 3 TeV CM stage is considered. Other energy stages could also be explored, e.g. an s-channel Higgs Factory operating at 125 GeV CM. We describe the status of the R&amp;D and design effort towards such a machine and lay out a plan to bring these concepts to maturity as a tool for the high energy physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08033v1-abstract-full').style.display = 'none'; document.getElementById('2203.08033v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 3 figures. arXiv admin note: text overlap with arXiv:2201.07895</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07622">arXiv:2203.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07622">pdf</a>, <a href="https://arxiv.org/format/2203.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The International Linear Collider: Report to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aryshev%2C+A">Alexander Aryshev</a>, <a href="/search/physics?searchtype=author&amp;query=Behnke%2C+T">Ties Behnke</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+M">Mikael Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Brau%2C+J">James Brau</a>, <a href="/search/physics?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/physics?searchtype=author&amp;query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/physics?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/physics?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/physics?searchtype=author&amp;query=Gori%2C+S">Stefania Gori</a>, <a href="/search/physics?searchtype=author&amp;query=Grojean%2C+C">Christophe Grojean</a>, <a href="/search/physics?searchtype=author&amp;query=Heinemeyer%2C+S">Sven Heinemeyer</a>, <a href="/search/physics?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/physics?searchtype=author&amp;query=Kruger%2C+K">Katja Kruger</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+B">Benno List</a>, <a href="/search/physics?searchtype=author&amp;query=List%2C+J">Jenny List</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Michizono%2C+S">Shinichiro Michizono</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Moult%2C+I">Ian Moult</a>, <a href="/search/physics?searchtype=author&amp;query=Murayama%2C+H">Hitoshi Murayama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakada%2C+T">Tatsuya Nakada</a>, <a href="/search/physics?searchtype=author&amp;query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/physics?searchtype=author&amp;query=Nojiri%2C+M">Mihoko Nojiri</a>, <a href="/search/physics?searchtype=author&amp;query=Padamsee%2C+H">Hasan Padamsee</a>, <a href="/search/physics?searchtype=author&amp;query=Perelstein%2C+M">Maxim Perelstein</a> , et al. (487 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07622v3-abstract-short" style="display: inline;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07622v3-abstract-full" style="display: none;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'none'; document.getElementById('2203.07622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">356 pages, Large pdf file (40 MB) submitted to Snowmass 2021; v2 references to Snowmass contributions added, additional authors; v3 references added, some updates, additional authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07224">arXiv:2203.07224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07224">pdf</a>, <a href="https://arxiv.org/format/2203.07224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Promising Technologies and R&amp;D Directions for the Future Muon Collider Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jindariani%2C+S">Sergo Jindariani</a>, <a href="/search/physics?searchtype=author&amp;query=Meloni%2C+F">Federico Meloni</a>, <a href="/search/physics?searchtype=author&amp;query=Pastrone%2C+N">Nadia Pastrone</a>, <a href="/search/physics?searchtype=author&amp;query=Aim%C3%A8%2C+C">Chiara Aim猫</a>, <a href="/search/physics?searchtype=author&amp;query=Bartosik%2C+N">Nazar Bartosik</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bertolin%2C+A">Alessandro Bertolin</a>, <a href="/search/physics?searchtype=author&amp;query=Braghieri%2C+A">Alessandro Braghieri</a>, <a href="/search/physics?searchtype=author&amp;query=Buonincontri%2C+L">Laura Buonincontri</a>, <a href="/search/physics?searchtype=author&amp;query=Calzaferri%2C+S">Simone Calzaferri</a>, <a href="/search/physics?searchtype=author&amp;query=Casarsa%2C+M">Massimo Casarsa</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">Maria Gabriella Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cerri%2C+A">Alessandro Cerri</a>, <a href="/search/physics?searchtype=author&amp;query=Chachamis%2C+G">Grigorios Chachamis</a>, <a href="/search/physics?searchtype=author&amp;query=Colaleo%2C+A">Anna Colaleo</a>, <a href="/search/physics?searchtype=author&amp;query=Curatolo%2C+C">Camilla Curatolo</a>, <a href="/search/physics?searchtype=author&amp;query=Da+Molin%2C+G">Giacomo Da Molin</a>, <a href="/search/physics?searchtype=author&amp;query=Delahaye%2C+J">Jean-Pierre Delahaye</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Micco%2C+B">Biagio Di Micco</a>, <a href="/search/physics?searchtype=author&amp;query=Dorigo%2C+T">Tommaso Dorigo</a>, <a href="/search/physics?searchtype=author&amp;query=Errico%2C+F">Filippo Errico</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorina%2C+D">Davide Fiorina</a>, <a href="/search/physics?searchtype=author&amp;query=Gianelle%2C+A">Alessio Gianelle</a>, <a href="/search/physics?searchtype=author&amp;query=Giraldin%2C+C">Carlo Giraldin</a>, <a href="/search/physics?searchtype=author&amp;query=Hauptman%2C+J">John Hauptman</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07224v1-abstract-short" style="display: inline;"> Among the post-LHC generation of particle accelerators, the muon collider represents a unique machine with capability to provide very high energy leptonic collisions and to open the path to a vast and mostly unexplored physics programme. However, on the experimental side, such great physics potential is accompanied by unprecedented technological challenges, due to the fact that muons are unstable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07224v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07224v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07224v1-abstract-full" style="display: none;"> Among the post-LHC generation of particle accelerators, the muon collider represents a unique machine with capability to provide very high energy leptonic collisions and to open the path to a vast and mostly unexplored physics programme. However, on the experimental side, such great physics potential is accompanied by unprecedented technological challenges, due to the fact that muons are unstable particles. Their decay products interact with the machine elements and produce an intense flux of background particles that eventually reach the detector and may degrade its performance. In this paper, we present technologies that have a potential to match the challenging specifications of a muon collider detector and outline a path forward for the future R&amp;D efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07224v1-abstract-full').style.display = 'none'; document.getElementById('2203.07224v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021, 27 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05681">arXiv:2202.05681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05681">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> MDPCT1 quench data and performance analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stoynev%2C+S+E">Stoyan Emilov Stoynev</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+M">Maria Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E+Z">Emanuela Z. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Chlachidze%2C+G">Gouram Chlachidze</a>, <a href="/search/physics?searchtype=author&amp;query=Kashikhin%2C+V+V">Vadim V. Kashikhin</a>, <a href="/search/physics?searchtype=author&amp;query=Krave%2C+S+T">Steven T. Krave</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">Igor Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">Daniele Turrioni</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">Alexander V. Zlobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05681v1-abstract-short" style="display: inline;"> MDPCT1 is a four-layer cos-theta Nb3Sn dipole demonstrator developed and tested at FNAL in the framework of the U.S. Magnet Development Program. The magnet reached record fields for accelerator magnets of 14.1 T at 4.5 K in the first test and 14.5 T at 1.9 K in the second test and then showed large degradation. While its inner coils performed exceptionally well with only two quenches up to 14.5 T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05681v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05681v1-abstract-full" style="display: none;"> MDPCT1 is a four-layer cos-theta Nb3Sn dipole demonstrator developed and tested at FNAL in the framework of the U.S. Magnet Development Program. The magnet reached record fields for accelerator magnets of 14.1 T at 4.5 K in the first test and 14.5 T at 1.9 K in the second test and then showed large degradation. While its inner coils performed exceptionally well with only two quenches up to 14.5 T and no evidence of degradation, the outer coils degraded over the course of testing. By adopting new measurement and analysis techniques at FNAL we are discussing in detail what happened. Both success and failure in our diagnostics are discussed. The evolution of techniques over the course of two tests (and three thermal cycles) shows the path to address challenges brought by the first four-layer magnet tested at FNAL. This paper presents the analysis of quench data along with diagnostic features and complementary measurements taken in support of the magnet performance analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05681v1-abstract-full').style.display = 'none'; document.getElementById('2202.05681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-21-638-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07403">arXiv:2008.07403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.07403">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of an HTS Dipole Insert Based on Bi2212 Rutherford Cable </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">Alexander V Zlobin</a>, <a href="/search/physics?searchtype=author&amp;query=Novitski%2C+I">Igor Novitski</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07403v1-abstract-short" style="display: inline;"> The U.S. Magnet Development Program (US-MDP) is aimed at developing high field accelerator magnets with magnetic fields beyond the limits of Nb$_3$Sn technology. Recent progress with composite wires and Rutherford cables based on the first generation high temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_8$ (Bi2212) allows considering them for this purpose. However, Bi2212 wires and cables are sen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07403v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07403v1-abstract-full" style="display: none;"> The U.S. Magnet Development Program (US-MDP) is aimed at developing high field accelerator magnets with magnetic fields beyond the limits of Nb$_3$Sn technology. Recent progress with composite wires and Rutherford cables based on the first generation high temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_8$ (Bi2212) allows considering them for this purpose. However, Bi2212 wires and cables are sensitive to transverse stresses and strains, which are large in high-field accelerator magnets. This requires magnet designs with stress management concepts to manage azimuthal and radial strains in the coil windings and prevent degradation of the current carrying capability of Bi2212 conductor or even its permanent damage. This paper describes a novel stress management approach, which was developed at Fermilab for high-field large-aperture Nb$_3$Sn accelerator magnets, and is now being applied to high-field dipole inserts based on Bi2212 Rutherford cable. The insert conceptual design and main parameters, including the superconducting wire and cable, as well as the coil stress management structure, key technological steps and approaches, test configurations and their target parameters are presented and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07403v1-abstract-full').style.display = 'none'; document.getElementById('2008.07403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-425-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.01457">arXiv:2006.01457</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.01457">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/instruments4040028">10.3390/instruments4040028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat Diffusion in high-$C_p$ Nb$_3$Sn Composite Superconducting Wires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Berritta%2C+F">F. Berritta</a>, <a href="/search/physics?searchtype=author&amp;query=Turrioni%2C+D">D. Turrioni</a>, <a href="/search/physics?searchtype=author&amp;query=Zlobin%2C+A+V">A. V. Zlobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.01457v2-abstract-short" style="display: inline;"> A major focus of Nb$_3$Sn accelerator magnets is on significantly reducing or eliminating their training. Demonstration of an approach to increase the $C_p$ of Nb$_3$Sn magnets using new materials and technologies is very important both for particle accelerators and light sources. It would improve thermal stability and lead to much shorter magnet training, with substantial savings in machines&#39; com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01457v2-abstract-full').style.display = 'inline'; document.getElementById('2006.01457v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.01457v2-abstract-full" style="display: none;"> A major focus of Nb$_3$Sn accelerator magnets is on significantly reducing or eliminating their training. Demonstration of an approach to increase the $C_p$ of Nb$_3$Sn magnets using new materials and technologies is very important both for particle accelerators and light sources. It would improve thermal stability and lead to much shorter magnet training, with substantial savings in machines&#39; commissioning costs. Both Hypertech and Bruker-OST have attempted to introduce high-$C_p$ elements in their wire design. This paper includes a description of these advanced wires, the finite element model of their heat diffusion properties as compared with the standard wires, and whenever available, a comparison between the minimum quench energy (MQE) calculated by the model and actual MQE measurements on wires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.01457v2-abstract-full').style.display = 'none'; document.getElementById('2006.01457v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-225-TD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01900">arXiv:1908.01900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01900">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> The Italian Summer Students Program at Fermi National Accelerator Laboratory and other US Laboratories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Luongo%2C+C">Carmela Luongo</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bellettini%2C+G">Giorgio Bellettini</a>, <a href="/search/physics?searchtype=author&amp;query=Donati%2C+S">Simone Donati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01900v1-abstract-short" style="display: inline;"> Since 1984 INFN scientists performing experiments at Fermilab have been running a two month summer training program for Italian students at the lab. In 1984 the program involved only a few physics students from the Pisa group, but it was later extended to other groups and to engineering students. Since 2004 the program has been supported in part by DOE in the frame of an exchange agreement with IN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01900v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01900v1-abstract-full" style="display: none;"> Since 1984 INFN scientists performing experiments at Fermilab have been running a two month summer training program for Italian students at the lab. In 1984 the program involved only a few physics students from the Pisa group, but it was later extended to other groups and to engineering students. Since 2004 the program has been supported in part by DOE in the frame of an exchange agreement with INFN. The Fermilab training programs spanned from data analysis to design and construction of particle detectors and accelerator components, research on superconductive elements, theory of accelerators, and analysis of astrophysical data. At the other US laboratories the offered training was on Space Science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01900v1-abstract-full').style.display = 'none'; document.getElementById('1908.01900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the XXXIX International Conference on High Energy Physics, July 4-11, 2018, Seoul (Korea)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.01899">arXiv:1908.01899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.01899">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> The Science Training Program for Young Italian Physicists and Engineers at Fermilab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">Emanuela Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Bellettini%2C+G">Giorgio Bellettini</a>, <a href="/search/physics?searchtype=author&amp;query=Donati%2C+S">Simone Donati</a>, <a href="/search/physics?searchtype=author&amp;query=Luongo%2C+C">Carmela Luongo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.01899v1-abstract-short" style="display: inline;"> The summer training program for Italian undergraduate and graduate students at the Department of Energy (DOE) laboratory of Fermilab (Batavia, Illinois, USA) started in 1984 as a 2 month training program for Italian undergraduate students in physics of the Istituto Nazionale di Fisica Nucleare (INFN) collaborating in the Collider Detector experiment (CDF) at the Fermilab Tevatron proton - antiprot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01899v1-abstract-full').style.display = 'inline'; document.getElementById('1908.01899v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.01899v1-abstract-full" style="display: none;"> The summer training program for Italian undergraduate and graduate students at the Department of Energy (DOE) laboratory of Fermilab (Batavia, Illinois, USA) started in 1984 as a 2 month training program for Italian undergraduate students in physics of the Istituto Nazionale di Fisica Nucleare (INFN) collaborating in the Collider Detector experiment (CDF) at the Fermilab Tevatron proton - antiproton collider. While in 1984 the program involved only 4 physics students from the University of Pisa, in the following years it rapidly grew in scope and size under the management of the Cultural Association of Italians at Fermilab (CAIF). With an average number of 30 trainees/year reached in the last few years, the total number of Italian students hosted at Fermilab since 1984 has exceeded 500 units. Since 2015 the program has been included in the portfolio of the summer courses of the University of Pisa, which acknowledges 6 ECTS to the interns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.01899v1-abstract-full').style.display = 'none'; document.getElementById('1908.01899v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Presented at the 12th International Conference on Education and Development INTED 2018, March 5-7, 2018, Valencia (Spain)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.06858">arXiv:1501.06858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.06858">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Muon (g-2) Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Grange%2C+J">J. Grange</a>, <a href="/search/physics?searchtype=author&amp;query=Guarino%2C+V">V. Guarino</a>, <a href="/search/physics?searchtype=author&amp;query=Winter%2C+P">P. Winter</a>, <a href="/search/physics?searchtype=author&amp;query=Wood%2C+K">K. Wood</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+H">H. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Carey%2C+R+M">R. M. Carey</a>, <a href="/search/physics?searchtype=author&amp;query=Gastler%2C+D">D. Gastler</a>, <a href="/search/physics?searchtype=author&amp;query=Hazen%2C+E">E. Hazen</a>, <a href="/search/physics?searchtype=author&amp;query=Kinnaird%2C+N">N. Kinnaird</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+J+P">J. P. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Mott%2C+J">J. Mott</a>, <a href="/search/physics?searchtype=author&amp;query=Roberts%2C+B+L">B. L. Roberts</a>, <a href="/search/physics?searchtype=author&amp;query=Benante%2C+J">J. Benante</a>, <a href="/search/physics?searchtype=author&amp;query=Crnkovic%2C+J">J. Crnkovic</a>, <a href="/search/physics?searchtype=author&amp;query=Morse%2C+W+M">W. M. Morse</a>, <a href="/search/physics?searchtype=author&amp;query=Sayed%2C+H">H. Sayed</a>, <a href="/search/physics?searchtype=author&amp;query=Tishchenko%2C+V">V. Tishchenko</a>, <a href="/search/physics?searchtype=author&amp;query=Druzhinin%2C+V+P">V. P. Druzhinin</a>, <a href="/search/physics?searchtype=author&amp;query=Khazin%2C+B+I">B. I. Khazin</a>, <a href="/search/physics?searchtype=author&amp;query=Koop%2C+I+A">I. A. Koop</a>, <a href="/search/physics?searchtype=author&amp;query=Logashenko%2C+I">I. Logashenko</a>, <a href="/search/physics?searchtype=author&amp;query=Shatunov%2C+Y+M">Y. M. Shatunov</a>, <a href="/search/physics?searchtype=author&amp;query=Solodov%2C+E">E. Solodov</a>, <a href="/search/physics?searchtype=author&amp;query=Korostelev%2C+M">M. Korostelev</a>, <a href="/search/physics?searchtype=author&amp;query=Newton%2C+D">D. Newton</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.06858v2-abstract-short" style="display: inline;"> The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06858v2-abstract-full').style.display = 'inline'; document.getElementById('1501.06858v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.06858v2-abstract-full" style="display: none;"> The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.06858v2-abstract-full').style.display = 'none'; document.getElementById('1501.06858v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">666 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-FN-0992-E </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10