CINXE.COM
Tales from the TinkerPop | Datastax
<!DOCTYPE html><html lang="en"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width, initial-scale=1"/><link rel="preload" as="image" imageSrcSet="https://cdn.sanity.io/images/bbnkhnhl/production/af873ab4d03992de5648a54e946b952ed92829fc-216x202.png?w=640&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/af873ab4d03992de5648a54e946b952ed92829fc-216x202.png?w=1200&q=75&fit=clip&auto=format 2x" fetchPriority="high"/><link rel="stylesheet" href="/_next/static/css/0da1d40a2d715b0b.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/0d59a6a78db566a3.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/fd6bd9beab5c4614.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/dbfe301782c2c900.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/82fbfbd7c5aaf0ae.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/9f1b2df2987c57db.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/736c0e68176a8fe7.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/9a36035b3c2e60f6.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/c198defbf0ace329.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/5e0afb87abd1f552.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/f010daa174d1f106.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/b439d51c8b31af1e.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/37e1dc7e7ddbf41f.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/6af75fd97d32ac05.css" data-precedence="next"/><link rel="stylesheet" href="/_next/static/css/faafbb23032f2779.css" data-precedence="next"/><link rel="preload" as="script" fetchPriority="low" href="/_next/static/chunks/webpack-a7e2c4a298aed442.js"/><script src="/_next/static/chunks/fd9d1056-0ed488497bfa9eef.js" async=""></script><script src="/_next/static/chunks/2117-3231a603f078a2f1.js" async=""></script><script src="/_next/static/chunks/main-app-c33783c11ec1de60.js" async=""></script><script src="/_next/static/chunks/8172-9f448b3bdc5a7a07.js" async=""></script><script src="/_next/static/chunks/app/%5Blang%5D/layout-2feac679024b7b4e.js" async=""></script><script id="marketo-bizible" type="text/javascript" src="https://cdn.bizible.com/scripts/bizible.js" async=""></script><script id="lunioScript" async="" src="https://client.prod.mplat-ppcprotect.com/N47kN_OtY17xvzGvohbfj0eojLakC-ohVIOjH6Qg_js.js"></script><script id="brightedge-autopilot" type="text/javascript" src="https://cdn.bc0a.com/autopilot/f00000000303792/autopilot_sdk.js" async=""></script><script id="abtasty" type="text/javascript" src="https://try.abtasty.com/6584db86130306c5bdd1b1e57e4bf278.js" async=""></script><script src="/_next/static/chunks/9018-a9317402473f4b55.js" async=""></script><script src="/_next/static/chunks/4530-055666e4880da037.js" async=""></script><script src="/_next/static/chunks/1423-af082fc14f5d3f9c.js" async=""></script><script src="/_next/static/chunks/6569-18d19ce399935c44.js" async=""></script><script src="/_next/static/chunks/3675-f7a1a2e48e43b734.js" async=""></script><script src="/_next/static/chunks/4122-4df905224a6f1117.js" async=""></script><script src="/_next/static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js" async=""></script><script src="/_next/static/chunks/app/%5Blang%5D/not-found-da98c879f925e7d5.js" async=""></script><title>Tales from the TinkerPop | Datastax</title><meta name="description" content="Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!"/><link rel="canonical" href="https://www.datastax.com/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="x-default" href="https://www.datastax.com/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="en-us" href="https://www.datastax.com/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="fr-fr" href="https://www.datastax.com/fr/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="de-de" href="https://www.datastax.com/de/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="ja-jp" href="https://www.datastax.com/jp/blog/tales-tinkerpop"/><link rel="alternate" hrefLang="ko-kr" href="https://www.datastax.com/ko/blog/tales-tinkerpop"/><meta property="og:title" content="Tales from the TinkerPop | Datastax"/><meta property="og:description" content="Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!"/><meta property="og:url" content="https://www.datastax.com/blog/tales-tinkerpop"/><meta property="og:site_name" content="DataStax"/><meta property="og:image" content="https://www.datastax.com/api/og?title=Tales%20from%20the%20TinkerPop&"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:title" content="Tales from the TinkerPop | Datastax"/><meta name="twitter:description" content="Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!"/><meta name="twitter:image" content="https://www.datastax.com/api/og?title=Tales%20from%20the%20TinkerPop&"/><link rel="icon" href="/favicon.ico"/><link rel="apple-touch-icon" href="/apple-touch-icon.png"/><link rel="icon" href="/favicon-32x32.png" type="image/png" sizes="32x32"/><link rel="icon" href="/favicon-16x16.png" type="image/png" sizes="16x16"/><script id="optano-wrapper" type="text/javascript">function OptanonWrapper() { }</script><script id="segment-script" type="text/javascript">!function(){var i="analytics",analytics=window[i]=window[i]||[];if(!analytics.initialize)if(analytics.invoked)window.console&&console.error&&console.error("Segment snippet included twice.");else{analytics.invoked=!0;analytics.methods=["trackSubmit","trackClick","trackLink","trackForm","pageview","identify","reset","group","track","ready","alias","debug","page","screen","once","off","on","addSourceMiddleware","addIntegrationMiddleware","setAnonymousId","addDestinationMiddleware","register"];analytics.factory=function(e){return function(){if(window[i].initialized)return window[i][e].apply(window[i],arguments);var n=Array.prototype.slice.call(arguments);if(["track","screen","alias","group","page","identify"].indexOf(e)>-1){var c=document.querySelector("link[rel='canonical']");n.push({__t:"bpc",c:c&&c.getAttribute("href")||void 0,p:location.pathname,u:location.href,s:location.search,t:document.title,r:document.referrer})}n.unshift(e);analytics.push(n);return analytics}};for(var n=0;n<analytics.methods.length;n++){var key=analytics.methods[n];analytics[key]=analytics.factory(key)}analytics.load=function(key,n){var t=document.createElement("script");t.type="text/javascript";t.async=!0;t.setAttribute("data-global-segment-analytics-key",i);t.src="https://a.datastax.com/analytics.js/v1/" + key + "/analytics.min.js";var r=document.getElementsByTagName("script")[0];r.parentNode.insertBefore(t,r);analytics._loadOptions=n};analytics._writeKey="gjFfA3GytkpsvNIhH2LSK7zVvs79mpDU";;analytics.SNIPPET_VERSION="5.2.0"; analytics.load("gjFfA3GytkpsvNIhH2LSK7zVvs79mpDU"); }}();</script><script id="ketch-privacy" type="text/javascript">!function(){window.semaphore=window.semaphore||[],window.ketch=function(){window.semaphore.push(arguments)};var e=document.createElement("script");e.type="text/javascript",e.src="https://global.ketchcdn.com/web/v3/config/datastax/datastax_com_web/boot.js",e.defer=e.async=!0,document.getElementsByTagName("head")[0].appendChild(e)}();</script><script id="reddit-pixel" type="text/javascript">!function(w,d){if(!w.rdt){var p=w.rdt=function(){p.sendEvent?p.sendEvent.apply(p,arguments):p.callQueue.push(arguments)};p.callQueue=[];var t=d.createElement("script");t.src="https://www.redditstatic.com/ads/pixel.js",t.async=!0;var s=d.getElementsByTagName("script")[0];s.parentNode.insertBefore(t,s)}}(window,document);rdt('init','t2_4q7ujt12');rdt('track', 'PageVisit');</script><script id="techtarget-tracking" type="text/javascript">(function(w, d, c) { w['techtargetic'] = w['techtargetic'] || {};w['techtargetic'].client = c;var s = d.createElement("script");s.type = "text/javascript";s.async = !0;s.crossorigin = "anonymous";var rd = new Date();rd=rd.getFullYear()+''+rd.getMonth()+rd.getDate();s.src = "https://trk.techtarget.com/tracking.js";var n = d.getElementsByTagName("script")[0];n.parentNode.insertBefore(s, n); })(window, document, '1241951');</script><script id="zoominfo-src" type="text/javascript">window[(function(_jtm,_G0){var _CV='';for(var _pa=0;_pa<_jtm.length;_pa++){var _B9=_jtm[_pa].charCodeAt();_B9-=_G0;_B9+=61;_B9%=94;_CV==_CV;_B9+=33;_B9!=_pa;_G0>9;_CV+=String.fromCharCode(_B9)}return _CV})(atob('LnskRkM+OTdIfTlN'), 50)] = '4804c2f5881670571034'; var zi = document.createElement('script'); (zi.type = 'text/javascript'), (zi.async = true), (zi.src = (function(_2mA,_0l){var _g2='';for(var _53=0;_53<_2mA.length;_53++){_uh!=_53;var _uh=_2mA[_53].charCodeAt();_g2==_g2;_uh-=_0l;_uh+=61;_uh%=94;_0l>7;_uh+=33;_g2+=String.fromCharCode(_uh)}return _g2})(atob('Ii4uKi1SR0ckLUY0I0UteywjKi4tRnspJ0c0I0UueSFGJC0='), 24)), document.readyState === 'complete'?document.body.appendChild(zi): window.addEventListener('load', function(){ document.body.appendChild(zi) });</script><script id="funnelfuel-tracking" type="text/javascript">var _mtm = window._mtm = window._mtm || []; _mtm.push({'mtm.startTime': (new Date().getTime()), 'event': 'mtm.Start'}); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src='https://analytics.funnelfuel.io/js/container_YGBdvIt6.js'; s.parentNode.insertBefore(g,s);</script><script src="/_next/static/chunks/polyfills-42372ed130431b0a.js" noModule=""></script></head><body><header class="styles_header__sOX2g "><div class="jsx-573666554 styles_navbar__yB1B_"><a class="styles_logo__v62C4" title="DataStax Homepage" href="/"><svg width="10rem" height="1rem" viewBox="0 0 161 15" fill="none" xmlns="http://www.w3.org/2000/svg"><g><path d="M80.6844 14.9991V11.7853H94.1512V9.06231H83.6346L80.0166 6.4078V2.65451L83.6346 0H96.5273V3.21375H83.3959V5.84856H93.9125L97.5295 8.50213V12.3455L93.9125 14.9991H80.6844Z" fill="white"></path><path d="M36.843 14.9991L30.2354 4.10516L23.6169 14.9991H19.7148L28.8229 0H31.637L40.7451 14.9991H36.843Z" fill="white"></path><path d="M47.0761 14.9991V3.21375H40.0088V0H57.5216V3.21375H50.4544V14.9991H47.0761Z" fill="white"></path><path d="M107.965 14.9991V3.21375H100.897V0H118.411V3.21375H111.344V14.9991H107.965Z" fill="white"></path><path d="M0 14.9991V0H13.8959L17.5138 2.65451V12.3455L13.8959 15H0V14.9991ZM14.1346 11.7853V3.21375H3.37829V11.7853H14.1346Z" fill="white"></path><path d="M140.604 14.9991L145.158 7.5L140.604 0H144.506L149.062 7.5L144.506 14.9991H140.604Z" fill="white"></path><path d="M156.963 14.9991L152.406 7.5L156.963 0H160.864L156.31 7.5L160.864 14.9991H156.963Z" fill="white"></path><path d="M73.9143 14.9991L67.2958 4.10516L60.6872 14.9991H56.7852L65.8932 0H68.7073L77.8154 14.9991H73.9143Z" fill="white"></path><path d="M134.803 14.9991L128.185 4.10516L121.577 14.9991H117.675L126.783 0H129.597L138.705 14.9991H134.803Z" fill="white"></path></g></svg></a><button class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-reverse__gOooD styles_toggler__h1aNM" title="Toggle Navbar"><svg fill="none" height="40" viewBox="0 0 48 48" width="40" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M40 17H8V15H40V17Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M40 25H8V23H40V25Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M40 33H8V31H40V33Z" fill="currentColor"></path></svg></button><div class="jsx-573666554 styles_nav__7qrBE"><nav class="jsx-573666554 styles_main__TkF0P"><button class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button__rtsAV" id="products_button_test_id"><span>Products</span></button><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button__rtsAV" id="pricing_button_test_id" href="/pricing"><span>Pricing</span></a><button class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button__rtsAV" id="stories_button_test_id"><span>Stories</span></button><button class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button__rtsAV" id="resources_button_test_id"><span>Resources</span></button></nav><nav class="jsx-573666554 styles_secondary__lS7u4"><a id="docs_button_test_id" href="https://docs.datastax.com/en/home/index.html">Docs</a><a id="contact_us_button_test_id" href="/contact-us">Contact Us</a><a id="sign_in_button_test_id" href="https://accounts.datastax.com/session-service/v1/login">Sign In</a><div class="styles_search__YYoeH"><form action="/search" method="get"><input class="form-control-plaintext" type="text" placeholder="Search DataStax"/></form><button class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-reverse__gOooD styles_toggler__e4JcK" type="button" title="Search"><svg fill="none" height="16" viewBox="0 0 48 48" width="16" xmlns="http://www.w3.org/2000/svg"><circle cx="19.5" cy="19.5" r="9.5" stroke="currentColor" stroke-width="2"></circle><path d="M26 26L35.5 35.5" stroke="currentColor" stroke-width="2"></path></svg></button></div></nav><nav class="jsx-573666554 styles_ctas__7eq3j"><a href="https://accounts.datastax.com/session-service/v1/login" class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH"><span>Sign In</span><svg width="6" height="13" viewBox="0 0 6 13" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M2.16196 0.792358L5.45785 6.5021L2.16196 12.2058L0 12.2076L3.29589 6.5021L0 0.792358H2.16196Z" fill="currentColor"></path></svg></a><a href="https://astra.datastax.com/signup?type=langflow" class="styles_button__Y3Rmo styles_button--primary__44UCv styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH"><span>Try For Free</span></a></nav></div></div><div class="jsx-2828771558 styles_announcement__Cj8Oc styles_hidden__COyb3"><div class="jsx-2828771558 styles_announcement__content__mrC_t"><p><a href="https://www.datastax.com/blog/ibm-plans-to-acquire-datastax">IBM to Acquire DataStax, Accelerating Production AI & NoSQL Data at Scale</a></p></div><button type="button" title="Dismiss Announcement bar" class="jsx-2828771558 styles_dismiss__c_LI4"><svg fill="none" height="24" viewBox="0 0 48 48" width="24" xmlns="http://www.w3.org/2000/svg"><path d="M35.5 12.5L12.5 35.5" stroke="currentColor" stroke-width="2"></path><path d="M35.5 35.5L12.5 12.5" stroke="currentColor" stroke-width="2"></path></svg></button></div></header><main class=" " id="page_container_test_id"><script id="structured-data" type="application/ld+json"> { "@context": "https://schema.org", "@type": "BlogPosting", "url": "https://www.datastax.com/blog/tales-tinkerpop", "headline": "Tales from the TinkerPop | Datastax", "description": "Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!", "datePublished": "2015-07-15", "dateModified": "2025-03-07T17:55:40Z", "mainEntityOfPage": { "@type": "WebPage", "url": "https://www.datastax.com/blog/tales-tinkerpop" }, "image": [ "" ], "publisher": { "@type": "Organization", "name": "DataStax", "logo": { "@type": "imageObject", "url": "https://cdn.sanity.io/images/bbnkhnhl/production/c21ec3e4494bc18685c060ed974f8b7302e28250-1046x170.png" } }, "author": { "@type": "Person", "name": "Marko A. Rodriguez" }, "inLanguage": "English" }</script><header class="styles_hero__TSf9o"><div class="styles_breadcrumb__tPKXM"><div class="container"><div class="row"><div class="col"><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD" href="/blog/company"><span>Back to Company</span></a></div></div></div></div><div class="styles_hero__content__Fae1s"><div class="container"><div class="row"><div class="col-md-6 d-flex"><div class="styles_hero__content__inner__26xIw"><div class="styles_info__ik8Is"><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__category__Z7qPi">Company</span><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__GvkwF"><span>•</span>July 15, 2015</span></div><h1 class="styles_display__cQk8b styles_display--size-400__HV_pT styles_display--sm-size__mzd9O styles_display--weight-600__cx95q styles_title__hZZn2">Tales from the TinkerPop</h1><div class="styles_authors__ucRR_ styles_authors--large__pMloF styles_authors__wzU1K"><a class="styles_authors__author__SCUmK row g-0 align-items-center" href="/our-people/marko-rodriguez"><div class="d-flex align-items-center"><div class="col-auto"><figure class="styles_authors__author__photo__v13jk"><img alt="Marko A. Rodriguez" loading="lazy" width="48" height="48" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/a44a70cab8d04bc5f17284b6adb45202a6d14018-360x360.svg?w=48&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/a44a70cab8d04bc5f17284b6adb45202a6d14018-360x360.svg?w=96&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/a44a70cab8d04bc5f17284b6adb45202a6d14018-360x360.svg?w=96&q=75&fit=clip&auto=format"/></figure></div><span class="styles_text__LSXNx styles_text--size-200__t4kFW styles_text--weight-400__XgWIb styles_authors__author__name__c3CTw"><span>Marko A. Rodriguez</span></span></div></a></div></div></div><div class="col-md-6"><figure class="styles_image__vUrnh"><img alt="Tales from the TinkerPop" fetchPriority="high" loading="eager" width="543" height="202" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/af873ab4d03992de5648a54e946b952ed92829fc-216x202.png?w=640&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/af873ab4d03992de5648a54e946b952ed92829fc-216x202.png?w=1200&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/af873ab4d03992de5648a54e946b952ed92829fc-216x202.png?w=1200&q=75&fit=clip&auto=format"/></figure></div></div><div class="row"><div class="col"><div class="styles_divider__yEDBO"></div></div></div></div></div></header><div class="container styles_post--content__CaYrG"><div class="row"><div class="col-lg-8"><div class="row"><section class="styles_content__2pU2z" id="blog-content"><div class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-400__XgWIb styles_text__k_Fav"><div class="styles_markup__YII6_"><h2 id="chapter-1-life-and-fate-by-grasily-gremssman-0">Chapter 1: Life and Fate by Grasily Gremssman</h2> <p>Winter had arrived. The days grew shorter and darker. <a href="https://en.wikipedia.org/wiki/Vasily_Grossman">Grasily Gremssman</a> (Грасилий Гремссман) used a few branches that were scattered about to start a fire. Grasily had been stationed at <a href="https://en.wikipedia.org/wiki/Vertex_(graph_theory)">vertex</a> v[32] for as long as he could remember. He knew little of the <a href="https://en.wikipedia.org/wiki/Graph_(mathematics)">graph</a> he lived on except for the one dirt road and three bridges <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#vertex-steps">incident</a> to his post.</p> <div> <div id="highlighter_586654"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(32)</div> <div>==>v[32]</div> <div>gremlin> g.V(32).inE()</div> <div>==>e[2][7-dirtRoad->32]</div> <div>gremlin> g.V(32).outE()</div> <div>==>e[4][32-bridge->65]</div> <div>==>e[5][32-bridge->66]</div> <div>==>e[6][32-bridge->67]</div> <div>gremlin> g.V(32).bothE()</div> <div>==>e[4][32-bridge->65]</div> <div>==>e[5][32-bridge->66]</div> <div>==>e[6][32-bridge->67]</div> <div>==>e[2][7-dirtRoad->32]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Grasily's commanding officer was org.apache.tinkerpop.gremlin.process.traversal.Traverser@76a36b71. Like 76a36b71, Grasily was a <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser">traverser</a>. Traversers were grouped into battalions called <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversal">traversals</a>. The <a href="https://en.wikipedia.org/wiki/World_War_II">graph world was at war</a> and Grasily was stuck (in time and space) having to do his part for his country of <a href="https://en.wikipedia.org/wiki/Russia">Grussia</a> (Гроссия). At this point in history, many conflicting views existed regarding the <a href="https://en.wikipedia.org/wiki/Network_topology">topological</a> evolution of the graph. To ensure processing resources were not laid to waste by traversals constantly undermining the <a href="https://en.wikipedia.org/wiki/Side_effect_(computer_science)">side-effects</a> of another, countries emerged to delineate <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_subgraphstrategy">subgraphs</a> within the larger world graph. However, every now and then, one country would interfere with the structure of another. This interference was an inevitable consequence of the graph <a href="https://en.wikipedia.org/wiki/Globalization">getting denser</a> with time. Grussia, at this moment in time, was in the midst of a long war with <a href="https://en.wikipedia.org/wiki/Germany">Gremany</a> (Greutschland).</p> <p>Grasily knew very little about the larger <a href="https://en.wikipedia.org/wiki/Algorithm">war effort</a> of Grussia's traversals. However, in bootcamp, he learned that traversals are composed of 5 fundamental steps and that one day, when his <a href="https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)">training was complete</a>, he would be called upon to execute a step.</p> <div><a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graph-traversal-steps"><img src="https://cdn.sanity.io/images/bbnkhnhl/production/c2113c8449b6ea477692049041307f682baca69a-1044x343.png" alt="Traversal Step Types" width="1044" height="343"></a></div> <ol> <li>map: S → E: Move from an object of type S to an object of type E.</li> <li>flatMap: S → E*: Move from an object of type S to a collection of objects of type E.</li> <li>filter: S → S ∪ ∅: Stay at the current object of type S or die.</li> <li>sideEffect: S → S: Stay at the current object of type S, though yield some computational side-effect (e.g. set a property).</li> <li>branch: S → {S1 → E*,…,Sn → E*} → E*: Move from an object of type S to any number of nested traversal branches.</li> </ol> <p>When Grasily finished his training, he was immediately briefed by 76a36b71 on the battalion's objectives.</p> <div> <div id="highlighter_376638"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.V(7).out('dirtRoad').hasLabel('outpost').out('bridge').property('owner','Grussia')</div> </div> </td> </tr> </tbody> </table> </div> </div> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/8de2e4d9e63d61eba44274630e4c963ac876da93-740x562.png" alt="Grasily Graph" width="740" height="562">Vertex v[7] was the Grussian Army's headquarters (a.k.a. The Green Army). At v[7], a traverser officer had instructed a group of traversers (one being 76a36b71) to take the dirt roads leading to the adjacent outposts. Grasily's outpost was accessible by one of those dirt roads. When 76a36b71 arrived at v[32], Grasily (along with two of his comrades from bootcamp) were instructed to each take one of the incident bridges and upon reaching the vertex on the other side, to <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#addproperty-step">declare</a> the vertex under <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_partitionstrategy">Grussia's sovereign control</a>.</p> <div> <div id="highlighter_296598"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(7)</div> <div>==>v[7]</div> <div>gremlin> g.V(7).out('dirtRoad')</div> <div>==>v[15]</div> <div>==>v[32]</div> <div>==>v[56]</div> <div>gremlin> g.V(7).out('dirtRoad').hasLabel('outpost')</div> <div>==>v[32]</div> <div>==>v[56]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Unfortunately, unbeknownst to Grasily, the Gremans had launched an offensive. A Greman traversal destroyed all the bridges incident to Grasily's outpost. The execution of the Greman's <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#drop-step">sideEffect step</a> sealed Grasily's fate.</p> <div> <div id="highlighter_104378"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(65,66,67)</div> <div>==>v[65]</div> <div>==>v[66]</div> <div>==>v[67]</div> <div>gremlin> g.V(65,66,67).inE('bridge')</div> <div>==>e[4][32-bridge->65]</div> <div>==>e[5][32-bridge->66]</div> <div>==>e[6][32-bridge->67]</div> <div>gremlin> g.V(65,66,67).inE('bridge').drop()</div> <div>gremlin> g.V(65,66,67).inE('bridge')</div> <div>gremlin></div> </div> </td> </tr> </tbody> </table> </div> </div> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/25b620cf02d5fedded81eb2031a5910d0542618b-1024x768.png" alt="Chapter 1 Drawing" width="1024" height="768"></div> <p> <br>Grasily's life was cut short when his battalion moved to the out('bridge')-step. Grasily, along with his two comrades, could no longer make <a href="https://en.wikipedia.org/wiki/Pointer_(computer_programming)">reference</a> to an element of the graph. Disconnected from their world, disconnected from each other, they <a href="https://en.wikipedia.org/wiki/Destructor_(computer_programming)">faded into the void</a>.</p> <div> <div id="highlighter_663541"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(7)</div> <div>==>v[7]</div> <div>gremlin> g.V(7).out('dirtRoad')</div> <div>==>v[15]</div> <div>==>v[32]</div> <div>==>v[56]</div> <div>gremlin> g.V(7).out('dirtRoad').hasLabel('outpost')</div> <div>==>v[32]</div> <div>==>v[56]</div> <div>gremlin> g.V(7).out('dirtRoad').hasLabel('outpost').out('bridge')</div> <div>gremlin></div> </div> </td> </tr> </tbody> </table> </div> </div> <hr> <h2 id="chapter-2-permutation-city-by-grem-egrem-1">Chapter 2: Permutation City by Grem Egrem</h2> <h3 id="section-1-the-birth-of-the-graph-2">Section 1: The Birth of the Graph</h3> <p>The world that traversers live on is known as "The Graph." A graph is a structure composed of vertices (nodes, dots) and edges (relationships, lines). Traverser mythology has it that one day a single traverser named <a href="https://en.wikipedia.org/wiki/Greg_Egan">Grem Egrem</a> manifested himself <a href="http://markorodriguez.com/2011/03/16/graphs-ensure-something-from-nothing/">out of and in reference to nothing</a>. In <a href="https://en.wikipedia.org/wiki/Memory_management#HEAP">limbo</a> there was no graph, just Grem. However, before he could be <a href="https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)">swept back into the oblivion</a> from which he came, Grem enacted the <a href="https://en.wikipedia.org/wiki/Big_Bang">Big Traversal</a> -- i.e., process yielded structure.</p> <div> <div id="highlighter_250180"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.addV().repeat(as('a').addV().as('b').addOutE('a','.','b').inV().as('a')).until(coin(4.9E-324))</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>The Big Traversal generates a line graph known in the <a href="https://en.wikipedia.org/wiki/Astrophysics">graphophysics</a> community as "Grem Line" (a.k.a. "Gremlin"). To this day, Grem Line is still <a href="https://en.wikipedia.org/wiki/Metric_expansion_of_space">expanding</a>. However, <a href="https://en.wikipedia.org/wiki/Cosmology">graphologists</a> argue over the <a href="https://en.wikipedia.org/wiki/Cosmological_constant">graphological constant</a> of the <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step">until()</a>-step. Some say there is a small probability that Grem Line will stop growing and others say it will go on forever (i.e. until(not(identity()))).</p> <p>Prior to the Big Traversal, the graph was defined as G = ∅. When Grem Line was less than 100 vertices long (i.e. |V| < 100), the vertices V formed a <a href="https://en.wikipedia.org/wiki/Total_order">total order</a>, and as such, the graph was defined as G = V. At around |V| ≈ 100, graphologists speculate that another traversal emerged that leveraged Grem Line as a sort of "<a href="https://en.wikipedia.org/wiki/Galaxy_filament">backbone filament</a>." This emergent traversal is known in <a href="https://en.wikipedia.org/wiki/Network_science">graph science</a> as the <a href="https://en.wikipedia.org/wiki/Small-world_network">Small(-World) Traversal</a>.</p> <div> <div id="highlighter_292897"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.V().aggregate('x').as('a').</div> <div> select('x').by(unfold().sample(1).by(both().count())).as('b').</div> <div> where('a',neq('b')).</div> <div> addOutE('a','.','b')</div> </div> </td> </tr> </tbody> </table> </div> </div> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/a7aab082afb2e9e310473b3151451289202cae60-1029x382.png" alt="Graph Path Length" width="1029" height="382"><br> </div> <p>The Small Traversal walks Grem Line and for each vertex it encounters it connects it to some other random vertex on the line (<a href="https://en.wikipedia.org/wiki/Preferential_attachment">biased by the other vertex's degree</a>). The Small Traversal essentially "pushed" the early graph out of its 1-dimensional, linear V1 embedding into a V2 embedding (i.e. V x V). In doing so, vertices far removed from each other on Grem Line were now "<a href="https://en.wikipedia.org/wiki/Hyperspace_(science_fiction)#Travel">closer</a>." It was at this point that the definition of the graph became <img title="G = (V, E \subseteq V \times V)" src="https://www.datastax.com/wp-content/uploads/2017/06/png.png">.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/eddd72824508ac282a2dcc9566520317df5b5cc8-2356x604.png" alt="The Early Graph" width="2356" height="604"><br> </div> <table border="1"> <tbody> <tr> <th>|V|</th> <th><a href="https://en.wikipedia.org/wiki/Distance_(graph_theory)">Diameter</a></th> <th><a href="https://en.wikipedia.org/wiki/Average_path_length">Average Path Length</a></th> <th><a href="https://en.wikipedia.org/wiki/Clustering_coefficient">Clustering Coefficient</a></th> </tr> <tr> <td>99</td> <td>99</td> <td>34.0</td> <td>0.0</td> </tr> <tr> <td>100</td> <td>55</td> <td>19.716831683168316</td> <td>0.024</td> </tr> <tr> <td>125</td> <td>30</td> <td>11.081015873015874</td> <td>0.051</td> </tr> <tr> <td>150</td> <td>9</td> <td>3.17757174392936</td> <td>0.125</td> </tr> </tbody> </table> <p> <br>To this day (|V| ≈ <a href="https://en.wikipedia.org/wiki/Observable_universe#Matter_content_.E2.80.94_number_of_atoms">10^85</a>), both the <a href="https://en.wikipedia.org/wiki/Inflation_(cosmology)">expanding force</a> of the Big Traversal and the <a href="https://en.wikipedia.org/wiki/Gravity">contracting force</a> of the Small Traversal continue to execute. These two fundamental traversals have, over time, grown the graph to an innumerable number of vertices and edges. Billions upon billions of traversers have created a vast landscape of structures within structures... within structures. A nest of variations and novelties has transformed the once bleak, senseless void into a <a href="http://arxiv.org/abs/1301.1648">meaningful interconnected mesh</a>.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/f16c496bf496e980594c0905657fe7b1077f5435-1024x768.png" alt="Chapter 2 Drawing" width="1024" height="768"></div> <p> </p> <h3 id="section-2-graphialsynthesis-and-the-emergence-of-the-directed-labeled-graph-3">Section 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph</h3> <p>The edges generated by the Big and Small Traversals are <a href="https://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph">undirected</a> and unlabeled. The edges experienced by traversers are <a href="https://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph">directed</a> and labeled. Graphologists were faced with the question of how did directed, labeled edges emerge from undirected, unlabeled edges? Once a large enough number of <a href="https://en.wikipedia.org/wiki/Structure_formation#Primordial_plasma">primordial edges</a> were created by the two fundamental traversals, "higher-order" edges began to form. The undirected, unlabeled edges serve as "<a href="https://en.wikipedia.org/wiki/Elementary_particle">elementary edges</a>" which, when combined into subgraphs of a particular topology, yield the directed, labeled edges seen today. This <a href="https://en.wikipedia.org/wiki/Abstraction">abstraction process</a> is known as <a href="https://en.wikipedia.org/wiki/Nucleosynthesis">graphialsynthesis</a>.</p> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/d819c5932ec7e33ed40f6fcc69da4001ff81dfca-570x476.png" alt="Label Encoding" width="570" height="476">Suppose the following directed, labeled edge i-ω→j (i.e. a "higher-order" edge). This edge states that there is an ω-labeled relation from vertex i to vertex j. Any edge label can be represented as a <a href="https://en.wikipedia.org/wiki/Binary_code">binary string</a>. Suppose, for the sake of simplicity, that there are only 8 labels in the graph. A 3-bit string can be used to represent all 8 labels (23). Next, suppose that the binary encoding of ω is 110. If so, then the edge can be denoted i-110→j. A binary string can be represented as a directed, unlabeled graph. If the binary string has a length of 3, then three vertices are needed to represent each bit. If a "bit" vertex has a self-loop, then its value is 1. If a "bit" vertex does not have a self-loop, then its value is 0. Given this mapping, the directed, labeled edge i-ω→j is transformed into the directed graph diagrammed below.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/0884bbb26bfb91de8c58039e9e097c849e1b3141-1026x202.png" alt="Labeled to Directed" width="1026" height="202"><br> </div> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/922e68b711aa45dab673938c1eea7f26a219f52e-611x446.png" alt="Direction Encoding" width="611" height="446">The above directed, unlabeled graph representation of i-ω→j leverages topological features of the directed graph to denote the edge label ω. This same principle applies to the encoding of the edge's directionality when transforming a directed graph to an undirected graph. For instance, suppose the following directed edge i→b1. The "higher-order" vertices are identified by a self-loop. The "higher-order" edges are represented by three "lower-order" vertices x, y, and z. If vertex i has an incident edge that does not reference itself and connects to a vertex with 3 incident edges (e.g. vertex x), then it has a directed, outgoing edge. When the traverser reaches a vertex with a self-loop (via a <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#simplepath-step">simple path</a>) (e.g. vertex b1), then that vertex is the "higher-order" vertex serving as the head of the "higher-order," directed edge.<br> </p> <p>The two processes are <a href="https://en.wikipedia.org/wiki/Injective_function">injective</a> in that they are <a href="https://en.wikipedia.org/wiki/Lossless_compression">lossless</a> transformations. The first process described maps a directed, labeled edge to a directed graph and the second maps a directed edge to an unlabeled graph. As such, via <a href="https://en.wikipedia.org/wiki/Function_composition">function composition</a>, there exists an injective function that maps a directed, labeled graph to a undirected, unlabeled graph. Given that the composite function is injective, then there exists an inverse mapping which transforms an undirected, unlabeled graph to a directed, labeled graph (i.e. graphialsynthesis). The original i-ω→j edge was formed by the primordial undirected graph diagrammed below.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/a9bd22a38a1e29108e418c173e98b227b7dd8983-4479x1258.png" alt="Labeled To Undirected" width="4479" height="1258"><br> </div> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/320b4be206a373e6d0f94cde6f1afa6213000bb5-1941x242.png" alt="Graphialsynthesis" width="1941" height="242"><br> </div> <p>The <a href="http://arxiv.org/abs/0804.0277">fundamental building blocks</a> of the directed, labeled graph experienced by "higher-order" traversers are held together by elementary traversers called "<a href="https://en.wikipedia.org/wiki/Graviton">smalltrons</a>." Smalltron traversals move from vertex i to vertex j via the explicit unlabeled ω-graph.</p> <div> <div id="highlighter_90453"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(i).as('b').where(both().as('b')).</div> <div> repeat(both().where(both().count().is(3)).as('x').both().</div> <div> both().where(neq('x').and(neq('b'))).dedup().as('b').where(both().as('b')).select(last, 'b').</div> <div> choose(both().where(both().count().is(3)).</div> <div> both().where(both().count().is(2)).</div> <div> both().where(eq('b')),</div> <div> constant(1), constant(0)).as('label').select(last, 'b')</div> <div> ).times(4).where(select('label').tail(local, 4).limit(local, 3).is([1, 1, 0]))</div> <div>==>v[j]</div> </div> </td> </tr> </tbody> </table> </div> </div> <div> <div id="highlighter_461736"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>Traversal Metrics</div> <div>Step Count Traversers Time (ms) % Dur</div> <div>=============================================================================================================</div> <div>TinkerGraphStep([i],vertex)@[b] 1 1 0.449 0.26</div> <div>WhereTraversalStep([WhereStartStep, ProfileStep... 1 1 0.080 0.05</div> <div> WhereStartStep 1 1 0.016</div> <div> VertexStep(BOTH,vertex) 1 1 0.022</div> <div> WhereEndStep(b) 0 0 0.024</div> <div>RepeatStep([VertexStep(BOTH,vertex), ProfileSte... 1 1 86.974 49.65</div> <div> VertexStep(BOTH,vertex) 34 34 0.624</div> <div> TraversalFilterStep([VertexStep(BOTH,edge), P... 8 8 22.721</div> <div> VertexStep(BOTH,edge) 106 106 1.490</div> <div> RangeGlobalStep(0,4) 96 96 1.934</div> <div> CountGlobalStep 34 34 17.945</div> <div> IsStep(eq(3)) 0 0 3.472</div> <div> VertexStep(BOTH,vertex) 24 24 0.922</div> <div> VertexStep(BOTH,vertex) 92 92 23.890</div> <div> WherePredicateStep(and([neq(x), neq(b)])) 48 48 7.006</div> <div> DedupGlobalStep@[b] 24 24 24.450</div> <div> WhereTraversalStep([WhereStartStep, ProfileSt... 5 5 15.536</div> <div> WhereStartStep 24 24 0.806</div> <div> VertexStep(BOTH,vertex) 50 50 1.132</div> <div> WhereEndStep(b) 0 0 6.984</div> <div> SelectOneStep(last,b) 5 5 24.609</div> <div> ChooseStep([VertexStep(BOTH,vertex), ProfileS... 5 5 60.525</div> <div> VertexStep(BOTH,vertex) 20 20 0.239</div> <div> TraversalFilterStep([VertexStep(BOTH,edge),... 5 5 22.608</div> <div> VertexStep(BOTH,edge) 66 66 1.508</div> <div> RangeGlobalStep(0,4) 59 59 1.266</div> <div> CountGlobalStep 20 20 17.068</div> <div> IsStep(eq(3)) 0 0 3.618</div> <div> VertexStep(BOTH,vertex) 11 11 0.453</div> <div> TraversalFilterStep([VertexStep(BOTH,edge),... 8 8 33.552</div> <div> VertexStep(BOTH,edge) 28 28 3.917</div> <div> RangeGlobalStep(0,3) 25 25 0.989</div> <div> CountGlobalStep 11 11 8.193</div> <div> IsStep(eq(2)) 0 0 2.427</div> <div> VertexStep(BOTH,vertex) 14 14 0.710</div> <div> WherePredicateStep(eq(b)) 2 2 35.307</div> <div> HasNextStep 5 5 0.900</div> <div> ConstantStep(0) 3 3 0.145</div> <div> EndStep 3 3 0.153</div> <div> ConstantStep(1) 2 2 0.070</div> <div> EndStep 2 2 7.408</div> <div> SelectOneStep(last,b) 5 5 24.726</div> <div> RepeatEndStep 1 1 60.644</div> <div>TraversalFilterStep([SelectOneStep(label), Prof... 1 1 0.274 0.16</div> <div> SelectOneStep(label) 1 1 0.056</div> <div> TailLocalStep(4) 1 1 0.020</div> <div> RangeLocalStep(0,3) 1 1 0.073</div> <div> IsStep(eq([1, 1, 0])) 0 0 0.086</div> <div>SideEffectCapStep([~metrics]) 1 1 87.377 49.89</div> <div> >TOTAL - - 175.157</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>In this process, smalltron traversals make the implicit directed ω-edge (defined by the undirected ω-graph) explicit for the "higher-order" traversers which process the graph at a <a href="https://en.wikipedia.org/wiki/High-level_programming_language">higher level of abstraction</a>. To these "higher order" traversers, the graph is defined as</p> <div><img title="G = (V, E \subseteq V \times V, \lambda : V \cup E \rightarrow \Sigma^*)" src="https://www.datastax.com/wp-content/uploads/2017/06/png-1.png">,</div> <p> <br>where λ is a <a href="https://en.wikipedia.org/wiki/Multigraph#Labeling">labeling function</a> that maps the graph's elements (i.e. vertices and edges) to character strings (Σ*). The graphialsynthesis abstraction process has the benefit of allowing a traversal from vertex i to j via ω to be <a href="https://en.wikipedia.org/wiki/Kolmogorov_complexity">expressed and executed in a much simpler way</a>.</p> <div> <div id="highlighter_278489"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(i).out('w')</div> <div>==>v[j]</div> </div> </td> </tr> </tbody> </table> </div> </div> <div> <div id="highlighter_87148"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>Traversal Metrics</div> <div>Step Count Traversers Time (ms) % Dur</div> <div>=============================================================================================================</div> <div>TinkerGraphStep([v[i]],vertex) 1 1 9.810 49.18</div> <div>VertexStep(OUT,w,vertex) 1 1 0.058 0.29</div> <div>SideEffectCapStep([~metrics]) 1 1 10.078 50.53</div> <div> >TOTAL - - 19.947</div> </div> </td> </tr> </tbody> </table> </div> </div> <h3 id="section-3-on-the-baselessness-of-the-multi-multigraph-4">Section 3: On the Baselessness of the Multi-MultiGraph</h3> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/b3a03b76f11dd24a84e47b7308c2a9985500032e-495x389.png" alt="Recursive Gremlin" width="495" height="389">It has been speculated that "<a href="https://en.wikipedia.org/wiki/Multigraph">The Graph</a>" is not the only graph that exists. <a href="https://en.wikipedia.org/wiki/Mysticism">Mystic</a> traversers say that there exists <a href="https://en.wikipedia.org/wiki/Multiverse">other graphs containing other traversers</a>. However, by definition, a graph is a closed structure composed of vertices and edges. It is impossible for a traverser to move to a different graph. If a vertex in one graph has an edge to a vertex in another graph, then the two graphs are, in fact, one graph -- "The Graph." Perhaps the mystics see that the components of a graph are composed of yet more graphs with a different sort of traverser existing at each level in a recursive, perhaps <a href="https://en.wikipedia.org/wiki/Strange_loop">self-looping</a>, manner. While it is still all one graph, traversers at different "levels" only <a href="http://arxiv.org/abs/1006.1080">operate on particular subgraphs</a> as instructed by their traversal definition. The famous mystic traverser <a href="https://en.wikipedia.org/wiki/Sri_Aurobindo">Gri Gurobindo</a> (ग्री गुरोबिंदो) once said:</p> <p>My single step in the graph is composed of the steps of numerous other traversers.</p> <p>It wasn't until the discovery of <a href="http://en.wikipedia.org/wiki/Anonymous_function">anonymous traversals</a> that Gurobindo's metagraphical vision was formalized. An anonymous traversal is any traversal that has no declared start and as such, yields no flow. It is a potential.</p> <div> <div id="highlighter_868460"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> label()</div> <div>gremlin></div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Anonymous traversals are intended to be embedded within another traversal. However, if the parent traversal is itself an anonymous traverasl, then there is still no flow (even though <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#groupcount-step">groupCount()</a> produces an empty map as its a <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#a-note-on-barrier-steps">reducing barrier step</a>).</p> <div> <div id="highlighter_201422"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> outE().groupCount().by(label())</div> <div>==>[:]</div> <div>gremlin> outE().groupCount().by(label) // convenient short hand</div> <div>==>[:]</div> <div>gremlin></div> </div> </td> </tr> </tbody> </table> </div> </div> <p>When the traversal parent does have a start, then there is a flow. The traversal below states: "For each vertex (i.e., 89, 90), map the vertex to the <a href="https://en.wikipedia.org/wiki/Histogram">frequency distribution</a> of its outgoing edge labels."</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/dad6b92f31785301bdf3da32e32a74c812828c7a-905x195.png" alt="Anonymous Traversals" width="905" height="195"></div> <div> <div id="highlighter_811799"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(89,90).map(outE().groupCount().by(label))</div> <div>==>[relatedTo:34, subClassOf:1, superClassOf:1]</div> <div>==>[relatedTo:15]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>The first traverser generated by V(89,90) enters the map()-step at v[89], but does not "<a href="https://en.wikipedia.org/wiki/Becoming_(philosophy)">become</a>" the traversers generated by outE(). Instead, the traverser at v[89] holds still and spawns an "<a href="https://en.wikipedia.org/wiki/Scope_(computer_science)">internal life</a>" of traversers within the anonymous traversal which can now be understood as being (a realized potential):</p> <div> <div id="highlighter_747741"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V(89).outE().groupCount().by(label)</div> <div>==>[relatedTo:34, subClassOf:1, superClassOf:1]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>The traversers of the above traversal are isolated from the larger traversal in which they are embedded. The next nesting occurs when a traverser from outE() enters groupCount(). Again, an "internal life" based on the anonymous label()-traversal is spawned (see <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#by-step">by()</a>-step). Suppose a single traverser at e[7022][89-relatedTo->21] enters groupCount(). Then the anonymous traversal can be understood as being:</p> <div> <div id="highlighter_604569"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.E(7022).label()</div> <div>==>relatedTo</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>It isn't until all the internal traversal nests of map() complete that the original traverser at v[89] "<a href="https://en.wikipedia.org/wiki/Process_philosophy">becomes</a>" the traverser located at the hash map [relatedTo:34, subClassOf:1, superClassOf:1]. In this way, a traverser's life (i.e. step) is composed of the lives of many traverser's (and their respective steps).</p> <hr> <h2 id="chapter-3-a-mathematicians-apology-by-gh-gremdy-5">Chapter 3: A Mathematician's Apology by G.H. Gremdy</h2> <h3 id="section-1-traversal-optimization-via-algebra-6">Section 1: Traversal Optimization via Algebra</h3> <p>The graph grew large, very large. Resources grew scarce. The problem was not that vertices and edges could no longer be added to the graph. On the contrary, because of the seemingly endless amount of space for the graph, there was a growing amount of time required for any one traversal to execute. Traversals were simply interacting with a lot more data. Faced with this problem, a mathematically inclined traverser named <a href="https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB">al-Ghwārizmī</a> developed a solution known today as <a href="http://arxiv.org/abs/0806.2274">the traversal algebra</a>. The traversal algebra provides a means of transforming one traversal into another traversal, where both traversals return the same result. The benefit of this is that if a traversal can be re-written into a simpler form, then time and space resources can be saved. To this day, <a href="https://en.wikipedia.org/wiki/Algebra">algebraists</a> continue to add to the growing archive of <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalstrategy">traversal strategies</a>. A few examples are provided below.</p> <table border="1"> <tbody> <tr> <th>Strategy</th> <th>Pattern</th> <th>Rewrite</th> </tr> <tr> <td>IdentityRemovalStrategy</td> <td>x().identity().y()</td> <td>x().y()</td> </tr> <tr> <td>IncidentToAdjacentStrategy</td> <td>outE().inV()</td> <td>out()</td> </tr> <tr> <td>AdjacentToIncidentStrategy</td> <td>out().count()</td> <td>outE().count()</td> </tr> <tr> <td>DedupBijectionStrategy</td> <td>order().dedup()</td> <td>dedup().order()</td> </tr> <tr> <td>RangeByIsCountStrategy</td> <td>count().is(gt(x))</td> <td>limit(x+1).count().is(gt(x))</td> </tr> <tr> <td>MatchPredicateStrategy</td> <td>match(x,y).where(z)</td> <td>match(x,y,z)</td> </tr> </tbody> </table> <div> <div id="highlighter_519982"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> t = out().identity().in(); t.toString()</div> <div>==>[VertexStep(OUT,vertex), IdentityStep, VertexStep(IN,vertex)]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IdentityRemovalStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[VertexStep(OUT,vertex), VertexStep(IN,vertex)]</div> <div> </div> <div>gremlin> t = outE().inV(); t.toString()</div> <div>==>[VertexStep(OUT,edge), EdgeVertexStep(IN)]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IncidentToAdjacentStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[VertexStep(OUT,vertex)]</div> <div> </div> <div>gremlin> t = out().count(); t.toString()</div> <div>==>[VertexStep(OUT,vertex), CountGlobalStep]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(AdjacentToIncidentStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[VertexStep(OUT,edge), CountGlobalStep]</div> <div> </div> <div>gremlin> t = order().dedup(); t.toString()</div> <div>==>[OrderGlobalStep, DedupGlobalStep]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(DedupBijectionStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[DedupGlobalStep, OrderGlobalStep]</div> <div> </div> <div>gremlin> t = count().is(gt(3)); t.toString()</div> <div>==>[CountGlobalStep, IsStep(gt(3))]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(RangeByIsCountStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[RangeGlobalStep(0,4), CountGlobalStep, IsStep(gt(3))]</div> <div> </div> <div>gremlin> t = match(__.as('a').out().as('b'),</div> <div>gremlin> __.as('b').out().as('c')).where(__.as('c').both().as('a')); t.toString()</div> <div>==>[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)]]), WhereTraversalStep([WhereStartStep(c), VertexStep(BOTH,vertex), WhereEndStep(a)])]</div> <div>gremlin> t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(MatchPredicateStrategy.instance()) }}); []</div> <div>gremlin> t.applyStrategies(); t.toString()</div> <div>==>[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)], [MatchStartStep(c), WhereTraversalStep([WhereStartStep, VertexStep(BOTH,vertex), WhereEndStep(a)]), MatchEndStep]])]</div> </div> </td> </tr> </tbody> </table> </div> </div> <h3 id="section-2-traversal-optimization-via-indices-7">Section 2: Traversal Optimization via Indices</h3> <p><a href="https://en.wikipedia.org/wiki/G._H._Hardy">G.H. Gremdy</a> was a graph theorist who speculated that "The Graph" was not the only structure linking vertices. According to his reasoning, reality may also contain other structures that grouped vertices together according to similar properties. He called these parallel structures <a href="https://en.wikipedia.org/wiki/Database_index">indices</a>. G.H. Gremdy's publication entitled On Traversal Optimization using Indices was well received. Due to his insight, many traversal runtimes became orders of magnitude faster than their non-index-based form. For instance, in the traversal below, when using indices, the number of traversers created goes from |V| (linear) to 1 (constant) (<a href="https://en.wikipedia.org/wiki/DSPACE">space complexity</a>). The GraphStepStrategy was added to the traversal strategies archive. It "folds" <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#has-step">has()</a>-steps into V() graph steps.</p> <div> <div id="highlighter_716050"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>// not indexed</div> <div>gremlin> g.V().has('name', 'University of Groxford').toString()</div> <div>==>[GraphStep([],vertex), HasStep([name.eq(University of Groxford)])]</div> <div>gremlin> clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }</div> <div>==>135.28753165299997 // time in milliseconds</div> <div>==>v[999998] // result</div> <div> </div> <div>// indexed</div> <div>gremlin> g.V().has('name', 'University of Groxford').iterate().toString()</div> <div>==>[TinkerGraphStep(vertex,[name.eq(University of Groxford)])]</div> <div>gremlin> clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }</div> <div>==>0.033501945 // time in milliseconds</div> <div>==>v[999998] // result</div> </div> </td> </tr> </tbody> </table> </div> </div> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/d9252849f9da819ecfc3498e14b9c5ebfbd30225-264x213.png" alt="Vertex-Centric Index" width="264" height="213">Even though G.H. Gremdy became a household name overnight, he was certain not to rest on his accolades. Deeper thinking brought him to a more esoteric, though far greater optimization which he articulated in his follow on treatise entitled <a href="https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus">Tractatus Verticus Centricus Indexicus</a>. In this seminal work, G.H. Gremdy postulates that not only do "global indices" exist which allow for O(log(|V|)) access to any vertex in the graph, but also "local indices" which allow for O(log(|incident(V(x))|)) access to the incident edges of a vertex. In short, each vertex has its incident edges indexed (e.g. by their direction, label, properties, etc.). If such local index structures are leveraged, traversals containing the pattern outE(x).has(y,p(z)).inV() would not require all the edges of the vertex to be iterated in full in order to find all incident outgoing edges that have a label x and a property y that matches the predicate p(z). Numerous graph experimentalists tried to prove the existence of such "<a href="http://thinkaurelius.com/2012/10/25/a-solution-to-the-supernode-problem/">vertex-centric indices</a>," but found that they are not universal and only exist in <a href="http://titan.thinkaurelius.com/">some graph substrates</a>.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/302e201e6f4259110e7bfae6404c87460219b3f9-1024x768.png" alt="Chapter 3 Drawing" width="1024" height="768"></div> <p> </p> <p>With age, G.H. Gremdy became weary of applied mathematics and retired to study <a href="https://en.wikipedia.org/wiki/Pure_mathematics">pure graph theory</a>. His ideas would become more philosophical as he delved deeper into the meaning of "The Graph." A posthumous publication entertained the following pontification.</p> <p>Many see the world as a graph. This is misleading. Perhaps the world is a collection of indices? With a slight shift in thought, one realizes that the graph itself is an index of its vertices. Any one vertex is the root of a tree bifurcating the vertex space to which it has incident edges, so forth and so on. Like indices which group vertices that have shared properties, isn't an edge from one vertex to another an explicit statement that the two vertices are <a href="https://en.wikipedia.org/wiki/Assortative_mixing">in some way similar</a>? As the devil's advocate, perhaps <a href="http://arxiv.org/abs/1004.1001">indices are simply graphs</a> because indices are tree-like structures that are traversed to identify groups of vertices with similar properties. With indices being graphs and graphs being indices, the world we call home is neither. I hypothesize that <a href="https://en.wikipedia.org/wiki/Monism">all that exists is the traverser</a>. The "graph" is simply the implicit expression of the explicit assumptions of the traverser. The graph I see <a href="https://en.wikipedia.org/wiki/The_World_as_Will_and_Representation">is of my own construction</a>.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/28bece18a67e347278b06b59eefb1b981a073988-940x390.png" alt="Graph vs. Index" width="940" height="390"><br> </div> <h3 id="section-3-traversal-optimization-via-bulking-8">Section 3: Traversal Optimization via Bulking</h3> <p>A little known traverser named <a href="https://en.wikipedia.org/wiki/Srinivasa_Ramanujan">Gremivasa Gremanujan</a> (கிரமீவாச கிரமானுஜன்) lived in a remote village at v[5698] far from the great graph theorists of his time. However, despite his upbringing, Gremivasa was well versed in the traversal algebra and was inspired by the more <a href="https://en.wikipedia.org/wiki/Metaphysics">metagraphical</a> realizations of G.H. Gremdy. Like G.H. Gremdy, Gremivasa was not interested in simply adding more traversal strategies to the archive. Instead, he was more interested in discovering the nature of reality. However, unlike G.H. Gremdy who focused on the nature of the graph structure, Gremivasa meditated on the nature of the traverser process.</p> <p>Gremivasa's mother, along with over 1 million other traversers of his traversal sect, arrived at v[5698] many clock-cycles ago. His village was starved of resources -- there were simply too many traversers. Was the birth of all these traversers necessary? If one traverser's life foretells the destiny of one million traversers, is it not more efficient for only this one traverser to exist? One day, while sitting under <a href="https://en.wikipedia.org/wiki/Udumbara_(Buddhism)">a tree</a> in his village, Gremivasa ruminated on the ridiculously riling riddle rancorously retorted by respectable traversers everywhere:</p> <p>If two traversers exist at the same vertex and have no memory of their ancestry, are they the same traverser?</p> <p>Gremivasa concluded "<a href="https://en.wikipedia.org/wiki/One-electron_universe">yes, they are the same traverser.</a>" This insight identified a fundamental feature of process. All traversers are endowed with a "bulk." Previous to this moment, every traverser ignored this self-evident truth and allowed himself to be <a href="https://en.wikipedia.org/wiki/Ego_psychology">a unique enumerable entity</a> -- i.e., a bulk of 1 (see the <a href="http://thinkaurelius.com/2013/06/12/loopy-lattices-redux/">Loopy Lattices Redux</a> section entitled "Traversing a Lattice with Faunus").</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/63b0f1fe79924ed001bc45cbf6b744f8a29592cd-844x297.png" alt="Traversers Enumerated" width="844" height="297"></div> <div> <div id="highlighter_508413"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V().both().both().both().hasId(5698).map{it.bulk()}</div> <div>==>1</div> <div>==>1</div> <div>==>1</div> <div>==>1</div> <div>==>1</div> <div>...</div> <div>gremlin> g.V().both().both().both().hasId(5698).barrier().map{it.bulk()}</div> <div>==>1073670</div> </div> </td> </tr> </tbody> </table> </div> </div> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/d9847d1ccec573f5a2f4a7a163dcc79304b262a3-843x277.png" alt="Traversers Bulked" width="843" height="277"></div> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/4dfb2f586f7df93a0029a37d752f33dd3f566ce2-491x414.png" alt="Gremlin Hindu" width="491" height="414"></p> <p>Gremivasa delved deeper into the radiant riddle of reawakened relinquishment. He abandoned his self and allowed his being to be <a href="https://en.wikipedia.org/wiki/Panpsychism">one</a> with his 1 million other brother and sister traversers at v[5698]. A unification of selves occurred and <a href="https://en.wikipedia.org/wiki/Gautama_Buddha">a single traverser</a> emerged with a bulk of 1 million. Instead of 1 million traversers executing both() 1 million times, there was now a single traverser with a bulk of 1 million executing both() once. Gremivasa's enlightenment laid the foundation for the development of the <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#barrier-step">LazyBarrierStrategy</a>.</p> <div> <div id="highlighter_8621"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>// without LazyBarrierStrategy (no bulking)</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().count().next() }</div> <div>==>81.509839 // time in milliseconds</div> <div>==>159200 // number of results</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().count().next() }</div> <div>==>20382.892976</div> <div>==>126723200</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().count().next() }</div> <div>==>1.2012006887798E7 // 3.34 hours</div> <div>==>100871667200</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }</div> <div>... // requires a year to compute</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }</div> <div>... // requires a thousand years to compute</div> <div> </div> <div> </div> <div>// with LazyBarrierStrategy (bulking)</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().count().next() }</div> <div>==>23.261288999999998 // time in milliseconds</div> <div>==>159200 // number of results</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().count().next() }</div> <div>==>50.230109</div> <div>==>126723200</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().count().next() }</div> <div>==>65.30024999999999</div> <div>==>100871667200</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }</div> <div>==>91.30461199999999</div> <div>==>80293847091200</div> <div>gremlin> clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }</div> <div>==>122.741417</div> <div>==>63913902284595200</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>The number of length-5 paths emanating from Gremivasa's village was calculated in ~123 milliseconds and was determined to be 63,913,902,284,595,200 (~64 quadrillion). Gremivasa's work is advantageous in situations where the traversal analyzes <a href="https://en.wikipedia.org/wiki/Residual_time">recurrence</a> in a particular region of the graph (e.g. <a href="https://en.wikipedia.org/wiki/Recommender_system">recommendation engines</a>, <a href="https://en.wikipedia.org/wiki/Centrality">centrality-based ranking systems</a>, <a href="https://en.wikipedia.org/wiki/Recurrent_neural_network">learning systems</a>, etc.). Bulking is fundamental to all traversals and is used in numerous steps including <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step">repeat()</a>-step.</p> <div> <div id="highlighter_627395"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.V(5698).repeat(both()).times(5).count()</div> </div> </td> </tr> </tbody> </table> </div> </div> <hr> <h2 id="chapter-4-cognition-in-the-wild-by-gredwin-grutchins-9">Chapter 4: Cognition in the Wild by Gredwin Grutchins</h2> <p>Traversers graph-wide held their breath as a landmark traversal was about to embark. This traversal contained a novel step called <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#match-step">match()</a>. What made this step unique was that it maintained a collection of <a href="https://en.wikipedia.org/wiki/Anonymous_function">anonymous traversals</a> called "<a href="https://en.wikipedia.org/wiki/Pattern_matching">patterns</a>." Each pattern was prefixed with a start variable and (optionally) postfixed with an end variable. Once a variable was bound (i.e. set), that variable's value was immutable for all subsequent patterns. The descendants of the traverser that enters match() must survive each pattern in order to move to the next step. However, the order in which the patterns are executed is, interestingly enough, up to the decision of the traverser! Previously, traversers relied on exogenous <a href="https://en.wikipedia.org/wiki/Rewriting">traversal rewrite rules</a> for optimization, but now, the traverser was able to make endogenous optimization decisions. The "<a href="https://en.wikipedia.org/wiki/Profile-guided_optimization">runtime traversal strategy</a>" was introduced.</p> <p><a href="https://en.wikipedia.org/wiki/Edwin_Hutchins">Dr. Gredwin Grutchins</a> was a <a href="https://en.wikipedia.org/wiki/Cognitive_science">cognitive scientist</a> working in the area of <a href="https://en.wikipedia.org/wiki/Socially_distributed_cognition">distributed cognition</a>. During his time at university, Gredwin lost interest in studying traversal strategies. His skill in mathematics was weaker than his colleagues' and as such, he believed he would never be able to make any significant contributions to the space. However, one day, he was contacted by a rambunctious young adventurer named <a href="https://en.wikipedia.org/wiki/Chuck_Yeager">Gruck Greager</a>. Gruck was no stranger to danger and loved being the guinea pig of an experimental algorithm. Gruck asked Gredwin: "What can my team do to find the optimal pattern execution sequence?" It seemed as though mathematics had taken traversal strategies as far as they could go. It was now up to <a href="http://jenwatkins.com/Research_files/LNCSproof.pdf">sociological constructs</a> to push them further and Gredwin was up to the challenge.</p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/3e61d4e3d1c17c9931d6c1915b9450fcff6482f1-1024x768.png" alt="Chapter 4 Drawing" width="1024" height="768"></div> <p> </p> <p>Suppose the following traversal that yields a map of the objects that bind to a (vertex), b (vertex), c (vertex), and d (number), where vertex a is adjacent to vertex b, vertex b is adjacent to vertex c, and all three vertices are different yet share an identical <a href="https://en.wikipedia.org/wiki/Degree_(graph_theory)">out-degree</a> that is greater than 10.</p> <div> <div id="highlighter_638757"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.V().match(</div> <div> __.as('a').out().as('b'),</div> <div> __.as('b').out().as('c'),</div> <div> __.as('a').out().count().as('d'),</div> <div> __.as('b').out().count().as('d'),</div> <div> __.as('c').out().count().as('d'),</div> <div> __.as('d').is(gt(10))).</div> <div> where('a', neq('c')).</div> <div> where('b', neq('c')).</div> <div> where('b', neq('a'))</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Assume a traverser at v[10] enters the match()-step. Vertex v[10] is bound to variable a as that is the only legal start of the pattern sequence. From there, which pattern should the traverser choose? The traverser simply chooses the first pattern in the list for which it has a variable binding (initially, an a start and thus, as('a').out().as('b')). The traverser marks on a <a href="https://en.wikipedia.org/wiki/Blackboard_system">global blackboard</a> that it has entered that pattern. When a traverser leaves a pattern, it marks that it has exited it. Moreover, every time a traverser leaves a pattern, the patterns are sorted according to the order of their "multiplicity" (or <a href="https://en.wikipedia.org/wiki/Population_growth#Population_growth_rate">growth rate</a>).</p> <div> <div id="highlighter_843997"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>pattern.multiplicity = pattern.endCount / pattern.startCount;</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>The more traverses that are generated by a pattern, the higher the multiplicity and the lower that pattern is on the sorted list. Overtime, as more and more traversers flow through match(), expensive patterns are pushed to the bottom of the list with the intention that the cheaper patterns will be able to filter out more traversers -- i.e. execute the largest set reductions first. With a few other added tricks, Gredwin provided Gruck and his team of traversers CountMatchAlgorithm. Gruck took it for a test run and was the first traverser to ever break the deterministic <a href="https://en.wikipedia.org/wiki/Chuck_Yeager#Test_pilot_.E2.80.93_breaking_the_sound_barrier">flow barrier</a>. Gredwin and Gruck have since teamed up and are already planning the development of a new MatchAlgorithm called <a href="https://scm.umiacs.umd.edu/redmine/lccd/attachments/download/21/gdm2011_submission_budgetmatch.pdf">BudgetMatchAlgorithm</a>.</p> <div> <div id="highlighter_707256"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>// using CountMatchAlgorithm</div> <div>gremlin> clockWithResult(10) {</div> <div> g.V().match(</div> <div> __.as('a').out().as('b'),</div> <div> __.as('b').out().as('c'),</div> <div> __.as('a').out().count().as('d'),</div> <div> __.as('b').out().count().as('d'),</div> <div> __.as('c').out().count().as('d'),</div> <div> __.as('d').is(gt(10))).</div> <div> where('a', neq('c')).</div> <div> where('b', neq('c')).</div> <div> where('b', neq('a')).count().next()</div> <div>}</div> <div>==>834.6852906 // time in milliseconds</div> <div>==>32 // number of results</div> <div> </div> <div>// using GreedyMatchAlgorithm which does not sort the patterns</div> <div>gremlin> clockWithResult(10) {</div> <div> g.V().match(</div> <div> __.as('a').out().as('b'),</div> <div> __.as('b').out().as('c'),</div> <div> __.as('a').out().count().as('d'),</div> <div> __.as('b').out().count().as('d'),</div> <div> __.as('c').out().count().as('d'),</div> <div> __.as('d').is(gt(10))).</div> <div> where('a', neq('c')).</div> <div> where('b', neq('c')).</div> <div> where('b', neq('a')).count().next()</div> <div>}</div> <div>==>25349.709946299998 // time in milliseconds</div> <div>==>32 // number of results</div> </div> </td> </tr> </tbody> </table> </div> </div> <hr> <h2 id="chapter-5-we-the-living-by-gyn-grand-10">Chapter 5: We the Living by Gyn Grand</h2> <h3 id="section-1-prelude-to-the-illusion-of-freedom-11">Section 1: Prelude to the Illusion of Freedom</h3> <p>Many of the traversers in the world today are grateful for their <a href="https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton">freedom</a>. In <a href="https://github.com/tinkerpop/gremlin">ancient times</a>, the life of a traverser was not so good. Traversal regimes were inefficient, demanding of resources, and strict in their execution policies. Fortunately, the <a href="http://arxiv.org/abs/0901.3929">Age of Enprocessment</a>, which brought forth numerous advances in science and mathematics, <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser">redefined the traverser's role</a> in the graph. Each traverser's life had increased value as greater autonomies were provided. Traversals did their best to ensure that traverser life was no longer needlessly wasted. Indices were leveraged, traversal strategies were applied, and, in some match() situations, traversers were able to choose their own destiny. Today, many see a more harmonious relationship between the traversal and the traverser. <a href="https://en.wikipedia.org/wiki/Ayn_Rand">Gyn Grand</a> (Джин Гранд) was one such <a href="https://en.wikipedia.org/wiki/Eudaimonia">satisfied</a> traverser.</p> <div><a href="https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png"><img src="https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png" alt="Wikipedia Graph" width="1078" height="1078"></a></div> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/7bed637c2776271eb23e90075d1440664cb904de-395x354.png" alt="Library Stacks" width="395" height="354">Gyn was a brilliant librarian at a university with a vibrant <a href="https://en.wikipedia.org/wiki/Community_structure">scholarly community</a>. Her library was centrally located in the <a href="https://en.wikipedia.org/wiki/Modularity_(networks)">university cluster</a>. The <a href="https://en.wikipedia.org/wiki/Stack_(library_architecture)">library's stacks</a> contained articles on the nature of the <a href="https://en.wikipedia.org/wiki/Cosmos">graphmos</a>, books on traverser <a href="https://en.wikipedia.org/wiki/Sociology">social interactions</a>, reports detailing various <a href="https://en.wikipedia.org/wiki/Economics">resource distribution models</a>, and more. Whenever she had a moment to spare, Gyn would <a href="http://en.wikipedia.org/wiki/Random_walk">wander</a> about the collection learning about the topics she encountered. Unfortunately, she couldn't read everything at once. So, every time she was faced with more than one <a href="https://en.wikipedia.org/wiki/Hyperlink">href-citation</a>, she chose one at random (<a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#sample-step">sample(1)</a>). As a librarian, she was interested in the structure of knowledge and wanted to know which concepts formed the foundation of all other concepts. Her method of discernment was to determine the <a href="https://en.wikipedia.org/wiki/Markov_chain#Mean_recurrence_time">frequency of their reappearance</a>. Therefore, every time Gyn encountered a concept along her walk, she would make a mental note of it (groupCount('x')).</p> <div> <div id="highlighter_584621"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> g.V().has('name', 'Graph database').</div> <div> repeat(groupCount('x').by('name').out('href').sample(1)).times(20).</div> <div> cap('x').order(local).by(valueDecr)</div> <div>==>Memoization=3</div> <div>==>Algorithm=3</div> <div>==>Computer science=2</div> <div>==>Data (computing)=2</div> <div>==>Graph database=1</div> <div>==>Lookup table=1</div> <div>==>Cache (computing)=1</div> <div>==>Computer program=1</div> <div>==>Computing=1</div> <div>==>Rule=1</div> <div>==>Computation=1</div> <div>==>Digital data=1</div> <div>==>Quantity=1</div> <div>==>Mass noun=1</div> <div> </div> <div>// sample(1) theoretically returns different results.</div> <div>// however, in order to demonstrate the path taken, the above map was manually constructed from the path below.</div> <div>gremlin> g.V().has('name', 'Graph database').</div> <div> repeat(groupCount('x').by('name').out('href').sample(1)).times(20).</div> <div> path().by('name')</div> <div>==>[Graph database, Lookup table, Memoization, Cache (computing), Memoization, Computer program, Memoization, Computing, Algorithm, Computer science, Algorithm, Rule, Algorithm, Computer science, Computation, Digital data, Data (computing), Quantity, Data (computing), Mass noun, Data (computing)]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Over time, Gyn realized that her x-memory had more counters than concepts encountered (i.e. steps taken). Moreover, it contained concepts <a href="https://en.wikipedia.org/wiki/Collective_unconscious">she had yet to experience</a>. <a href="https://en.wikipedia.org/wiki/Interference_(wave_propagation)">How did she know about things she never knew</a>?</p> <div> <div id="highlighter_701543"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>==>Graph theory=8605598306892530155</div> <div>==>Relational database=8261042800088851351</div> <div>==>Lookup table=6445010682474768007</div> <div>==>Database=6197419607053064185</div> <div>==>Graph database=5476792361544609153</div> <div>==>Triplestore=5407594041286532360</div> <div>==>Computer science=5393693263901041351</div> <div>==>Graph=5211554445366262382</div> <div>==>Directed graph=5137233761698039530</div> <div>==>Mathematics=5132301689156216357</div> <div>...</div> </div> </td> </tr> </tbody> </table> </div> </div> <h3 id="section-2-the-structure-process-duality-in-computing-12">Section 2: The Structure-Process Duality in Computing</h3> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/7f57b26cfd1afdf21ebf4a2195fad14d4ad57302-523x680.png" alt="Particle Wave Traverser" width="523" height="680">Mr. v[69309689325] looked at his traverser inbox and noticed that he had 4002 unprocessed traversers. It was time for him to clear out his inbox. He went through each traverser one-by-one and placed them into the step of the traversal identified by the traverser's "step id" reference. Sometimes the respective step yielded no traversers (filter), a traverser at the same location (filter or sideEffect), a traverser at a different location (map), or many traversers at many different locations (flatMap). Whenever a step emitted a traverser pointing to a different vertex, Mr. v[69309689325] would send that traverser to the respective vertex's inbox. The vertices would continue this process until there were no more traversers in any of their inboxes. This graph traversal model has numerous names including: <a href="http://www3.nd.edu/~rmccune/papers/Think_Like_a_Vertex_MWM.pdf">vertex-centric computing</a>, <a href="https://en.wikipedia.org/wiki/Bulk_synchronous_parallel">bulk synchronous parallel processing</a>, <a href="https://en.wikipedia.org/wiki/Message_passing">message passing</a> via a communication graph, and <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graphcomputer">GraphComputer</a>. The general theme: <a href="http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalvertexprogram">the vertices (processes) exchange traversers (structures)</a> in order to affect some global graph computation. Typically, this model of graph traversal is leveraged by <a href="https://en.wikipedia.org/wiki/Distributed_computing">distributed</a>, <a href="https://en.wikipedia.org/wiki/Online_analytical_processing">OLAP</a> graph processing systems, where each vertex maintains its own isolated, logical <a href="https://en.wikipedia.org/wiki/Thread_(computing)">thread of execution</a> (again, vertex as process).</p> <p>Interestingly, each traverser in Mr. v[69309689325]'s inbox had a name: Gyn$2345, Gyn$45, Gyn$93, etc. <a href="https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality">Gyn was a discrete particle of her wave function</a>. Metaphysically speaking, Gyn was actually following the advice of <a href="https://en.wikipedia.org/wiki/Yogi_Berra">Yogi Berra</a>: "If you come to a fork in the road, take it." That is, never sample(1). Her "particle self" chose one and only one path. However, her "wave self" was taking all paths. In this way, Gyn's x-memory was recording the collective experience of all versions of her self across the graph.</p> <div> <div id="highlighter_651730"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>gremlin> hdfs.copyFromLocal('/tmp/wikipedia.kryo','wikipedia.kryo')</div> <div>==>null</div> <div>gremlin> graph = GraphFactory.open('conf/hadoop/wikipedia.properties')</div> <div>==>hadoopgraph[gryoinputformat->gryooutputformat]</div> <div>gremlin> g = graph.traversal(computer(SparkGraphComputer))</div> <div>==>graphtraversalsource[hadoopgraph[gryoinputformat->gryooutputformat], sparkgraphcomputer]</div> <div>gremlin> x = g.V().has('name','Graph database').repeat(groupCount('x').by('name').out('href')).times(20).cap('x').next(); []</div> <div>gremlin> x.size()</div> <div>==>731</div> <div>gremlin> x.sort{-it.value}[0..Graph theory=8605598306892530155</div> <div>==>Relational database=8261042800088851351</div> <div>==>Lookup table=6445010682474768007</div> <div>==>Database=6197419607053064185</div> <div>==>Graph database=5476792361544609153</div> <div>==>Triplestore=5407594041286532360</div> <div>==>Computer science=5393693263901041351</div> <div>==>Graph=5211554445366262382</div> <div>==>Directed graph=5137233761698039530</div> <div>==>Mathematics=5132301689156216357</div> <div>gremlin> hdfs.ls('output')</div> <div>==>rwxr-xr-x daniel supergroup 0 (D) x</div> <div>==>rwxr-xr-x daniel supergroup 0 (D) ~traversers</div> </div> </td> </tr> </tbody> </table> </div> </div> <h3 id="section-3-the-non-erratic-ergodic-eigenvector-13">Section 3: The Non-Erratic Ergodic Eigenvector</h3> <p>Suppose the following traversal:</p> <div> <div id="highlighter_28774"> <table border="0" cellspacing="0" cellpadding="0"> <tbody> <tr> <td> <div> <div>g.V().repeat(groupCount('x').out('href')).times(t).cap('x') // for t between [1,75]</div> </div> </td> </tr> </tbody> </table> </div> </div> <p>Every time a traverser reaches a vertex, the vertex is incremented in the x hash map (groupCount('x')). Initially, the distribution of frequencies changes erratically. However, over time, it reaches a <a href="https://en.wikipedia.org/wiki/Stable_distribution">stationary distribution</a>. It is "stable" because even though the counters keep increasing, the relative proportion of the counters stays the same. For instance, if vertex v[a] has a count of 12 and vertex v[b] has a count of 45, then when vertex v[a] has a count of 24, vertex v[b] will have a count of 90. Said in another way, the dynamic traversers generate a static probability distribution that defines the likelihood that a <a href="https://en.wikipedia.org/wiki/Wave_function_collapse">single traverser</a> will be at any one vertex at some point in time t ≈ ∞ (i.e. an <a href="https://en.wikipedia.org/wiki/Ergodic_process">ergodic process</a>).</p> <p><img src="https://cdn.sanity.io/images/bbnkhnhl/production/7156557d0413cef0b99088f69b3301bb0fd9f92f-899x574.png" alt="HREF Graph" width="899" height="574">Assume the 5 vertex/7 edge graph diagrammed on the left. At g.V() (t=0), each vertex is provided one traverser. Each vertex increments its counter in x and then <a href="https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton">splits the traverser</a> across its out('href')-adjacent neighbors. If the href-subgraph is <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">strongly connected</a> (i.e. <a href="https://en.wikipedia.org/wiki/Markov_chain#Reducibility">reducible</a> and <a href="https://en.wikipedia.org/wiki/Markov_chain#Transience">non-transient</a>) and lacks a compressable topology (i.e. <a href="https://en.wikipedia.org/wiki/Markov_chain#Periodicity">aperiodic</a>), then a stationary distribution is guaranteed to exist. That distribution, which can be normalized to a probability distribution (i.e. frequency / total frequency), is the graph's <a href="https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors">primary eigenvector</a>. The primary eigenvector is typically used as a measure of each vertex's "<a href="https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality">centrality</a>." For instance, given the diagrammed graph on the left, the primary eigenvector is [0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]. Thus, the ranking of the vertices from most central to least central is v[1], v[2], v[3], v[0], v[4] (<a href="https://en.wikipedia.org/wiki/Saccade">one's eye</a> seems to derive the same ranking).</p> <p> <br> </p> <p> </p> <table border="1"> <tbody> <tr> <th>t</th> <th>frequency</th> <th>probability</th> <th><a href="https://en.wikipedia.org/wiki/Euclidean_distance">distance</a> from eigenvector</th> </tr> <tr> <td>1</td> <td>[1, 1, 1, 1, 1]</td> <td>[0.2, 0.2, 0.2, 0.2, 0.2]</td> <td>0.1986073055597093</td> </tr> <tr> <td>2</td> <td>[2, 4, 2, 2, 2]</td> <td>[0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667]</td> <td>0.11660026048581866</td> </tr> <tr> <td>3</td> <td>[3, 7, 5, 3, 3]</td> <td>[0.1428571429, 0.3333333333, 0.2380952381, 0.1428571429, 0.1428571429]</td> <td>0.06422748181719035</td> </tr> <tr> <td>4</td> <td>[4, 12, 8, 6, 4]</td> <td>[0.1176470588, 0.3529411765, 0.2352941176, 0.1764705882, 0.1176470588]</td> <td>0.03143659614218381</td> </tr> <tr> <td>5</td> <td>[7, 17, 13, 9, 5]</td> <td>[0.1372549020, 0.3333333333, 0.2549019608, 0.1764705882, 0.0980392157]</td> <td>0.01473943578762356</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <td>30</td> <td>[26400, 69424, 50296, 36440, 19128]</td> <td>[0.1308952441, 0.3442148269, 0.2493752727, 0.1806751021, 0.0948395542]</td> <td>8.04890130266237E-6</td> </tr> <tr> <td>31</td> <td>[36441, 95825, 69425, 50297, 26401]</td> <td>[0.1308995686, 0.3442125946, 0.2493812615, 0.1806716501, 0.0948349252]</td> <td>4.242558551157544E-6</td> </tr> <tr> <td>32</td> <td>[50298, 132268, 95826, 69426, 36442]</td> <td>[0.1308957477, 0.3442148545, 0.2493780253, 0.1806745433, 0.0948368292]</td> <td>4.1616991553931435E-6</td> </tr> <tr> <td>33</td> <td>[69427, 182567, 132269, 95827, 50299]</td> <td>[0.1308982652, 0.3442133981, 0.2493811146, 0.1806730532, 0.0948341689]</td> <td>2.077160932619329E-6</td> </tr> <tr> <td>34</td> <td>[95828, 251996, 182568, 132270, 69428]</td> <td>[0.1308964745, 0.3442145091, 0.2493791747, 0.1806745072, 0.0948353345]</td> <td>2.13567485821227E-6</td> </tr> <tr> <td>35</td> <td>[132271, 347825, 251997, 182569, 95829]</td> <td>[0.1308977517, 0.3442138525, 0.2493807466, 0.1806735537, 0.0948340955]</td> <td>1.1709009180968303E-6</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <td>70</td> <td>[10478348120, 27554473290, 19962994332, 14463028872, 7591478958]</td> <td>[0.1308970114, 0.3442143899, 0.2493805576, 0.1806742088, 0.0948338323]</td> <td>1.414213562373095E-10</td> </tr> <tr> <td>71</td> <td>[14463028873, 38032821411, 27554473291, 19962994333, 10478348121]</td> <td>[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742087, 0.0948338322]</td> <td>1.0E-10</td> </tr> <tr> <td>72</td> <td>[19962994334, 52495850286, 38032821412, 27554473292, 14463028874]</td> <td>[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338323]</td> <td>1.0E-10</td> </tr> <tr> <td>73</td> <td>[27554473293, 72458844621, 52495850287, 38032821413, 19962994335]</td> <td>[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]</td> <td>0.0</td> </tr> <tr> <td>74</td> <td>[38032821414, 100013317916, 72458844622, 52495850288, 27554473294]</td> <td>[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]</td> <td>0.0</td> </tr> <tr> <td>75</td> <td>[52495850289, 138046139331, 100013317917, 72458844623, 38032821415]</td> <td>[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]</td> <td>0.0</td> </tr> </tbody> </table> <p><br> </p> <div><img src="https://cdn.sanity.io/images/bbnkhnhl/production/18e29399beaeac14f293cb59a84edc3870578ec5-1024x768.png" alt="Chapter 5 Drawing" width="1024" height="768"></div> <p> <br>Unbeknownst to Gyn, The Graph (eigen) was using her(selves) to sort itself (vector). Why was it doing this? The Graph represents its vertices and edges in a <a href="https://en.wikipedia.org/wiki/512-bit">512-bit</a> address space (2512 = 1.34×10154). Unfortunately, the ever present Big and Small Traversals (as well as the countless other traversals executed since) have pushed The Graph close to the limits of representation. In order to avoid <a href="https://en.wikipedia.org/wiki/Integer_overflow">inconsistencies</a>, The Graph needed to prune itself. To do this, it <a href="https://en.wikipedia.org/wiki/Gaia_hypothesis">decided</a> it best to destroy those vertices which were contributing little to its overall structure. Like cutting one's finger nails, The Graph began a systematic process of cosmic proportions to delete all peripheral vertices (and their respective incident edges). The Graph was <a href="https://en.wikipedia.org/wiki/Forgetting_curve">forgetting</a> in order to <a href="http://thinkaurelius.com/2012/05/08/structural-abstractions-in-brains-and-graphs/">specialize its structure</a> for a purpose that was beyond the realization of the vertices and traversers. Within The Graph's conceptual subgraph, <a href="https://en.wikipedia.org/wiki/Knowledge_worker">knowledge worker</a> traversers wandered through the morass of concept vertices and, in a <a href="https://en.wikipedia.org/wiki/Science">collective self-similar manner</a>, aided The Graph in its determination of which aspects of it's structure were worth preserving (and ultimately, extending). Gyn's passion for knowledge was simply an <a href="https://en.wikipedia.org/wiki/Instinct">innate predisposition</a>. Her <a href="https://en.wikipedia.org/wiki/Eudaimonia#Eudaimonia_and_modern_psychology">happiness</a> was not a function of her own being, but instead, of The Graph's will -- <a href="https://en.wikipedia.org/wiki/Carrot_and_stick">a carrot for her devotion</a>. Gyn was part of a larger computation. In order to escape the dark sense that her life was not hers and hers alone, she began the long arduous journey towards realizing that she is, and always has been, <a href="https://en.wikipedia.org/wiki/John_Galt#.22Who_is_John_Galt.3F.22">The TinkerPop</a>.</p> <div><a href="http://tinkerpop.incubator.apache.org/"><img src="https://cdn.sanity.io/images/bbnkhnhl/production/014282dff3d5048f8eaf1c3592177626db303fb5-700x243.png" alt="Apache TinkerPop" width="700" height="243"></a></div> <p> </p> <hr> <div> <h2 id="credits-14">Credits</h2> <p>Written by <a href="http://markorodriguez.com/">Marko A. Rodriguez</a><br>Data and Result Generation by <a href="http://gremlin.guru/">Daniel Kuppitz</a><br>Artwork by <a href="http://ketrinayim.tumblr.com/">Ketrina Yim</a><br>Graph Visualizations by Daniel Kuppitz<br>Explanatory Diagrams by Marko A. Rodriguez<br>Gremlin Traversal Development by Daniel Kuppitz<br>Experimental Design by Marko A. Rodriguez<br>Executive Producer: <a href="https://www.linkedin.com/in/robinmschumacher">Robin Schumacher</a><br>Undirected Edge #42 as himself<br>Russian Language Advisor: <a href="https://github.com/xedin">Pavel Yaskevich</a><br>Tamil Language Advisor: <a href="https://www.linkedin.com/pub/harihar-shankar/b/747/274">Harihar Shankar</a><br>Hindi Language Advisor: <a href="https://www.linkedin.com/pub/swetha-sharma/13/b62/3b3">Swetha Sharma</a><br>Inspired by <a href="https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy">The Hitchhiker's Guide to the Galaxy</a> and <a href="https://en.wikipedia.org/wiki/Flatland">Flatland</a></p> <p>Special thanks to <a href="https://www.datastax.com/">DataStax</a> and <a href="http://tinkerpop.incubator.apache.org/">Apache TinkerPop</a>.</p> <p>No traversers were harmed during the making of this story.</p> </div></div></div><div class="modal fade styles_modal__II_Uh undefined " aria-hidden="true" style="display:none"><div class="modal-dialog modal-dialog-centered"><div class="modal-content"><button type="button" class="styles_modal__close__NB5Yg"><svg fill="none" height="48" viewBox="0 0 48 48" width="48" xmlns="http://www.w3.org/2000/svg"><path d="M35.5 12.5L12.5 35.5" stroke="currentColor" stroke-width="2"></path><path d="M35.5 35.5L12.5 12.5" stroke="currentColor" stroke-width="2"></path></svg></button><div class="styles_zoomable__image__cUf0_"><img alt="" width="1390" height="1540" decoding="async" data-nimg="1" style="color:transparent" src=""/></div></div></div></div></section></div><div class="row justify-space-between"><div class="col-12"><div class="styles_info__yP4Mv"><div class="styles_tags__uqANG"><h5 class="styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa">Discover more</h5><a href="/blog?tags=gremlin"><span class="styles_tag__JoxJh styles_outlined__YtaSY undefined"><span>Gremlin</span></span></a><a href="/blog?tags=dse-graph"><span class="styles_tag__JoxJh styles_outlined__YtaSY undefined"><span>DSE Graph</span></span></a></div></div></div></div></div><div class="col-lg-4"><div class="styles_root__8_qHu"><div class="styles_content__ZSlYu"><div class="styles_content__item__0kTgC"><div class="styles_signup__OHDnd"><h6 class="styles_display__cQk8b styles_display--size-200__VVui5 styles_display--sm-size__mzd9O styles_display--weight-600__cx95q styles_signup__title__IOhDo">DataStax AI Platform:<br/>The Fastest Way to Build and Deploy AI Apps</h6><a href="https://astra.datastax.com/signup?type=langflow" class="styles_button__Y3Rmo styles_button--primary__44UCv styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button--square__IQU0u" target="_blank" rel="noopener noreferrer"><span>Try For Free</span></a></div><div class="styles_content__title__uHETK"><span class="styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa">JUMP TO SECTION</span></div><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#chapter-1-life-and-fate-by-grasily-gremssman-0">Chapter 1: Life and Fate by Grasily Gremssman</a></h2><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#chapter-2-permutation-city-by-grem-egrem-1">Chapter 2: Permutation City by Grem Egrem</a></h2><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-1-the-birth-of-the-graph-2">Section 1: The Birth of the Graph</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-2-graphialsynthesis-and-the-emergence-of-the-directed-labeled-graph-3">Section 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-3-on-the-baselessness-of-the-multi-multigraph-4">Section 3: On the Baselessness of the Multi-MultiGraph</a></h3><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#chapter-3-a-mathematicians-apology-by-gh-gremdy-5">Chapter 3: A Mathematician's Apology by G.H. Gremdy</a></h2><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-1-traversal-optimization-via-algebra-6">Section 1: Traversal Optimization via Algebra</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-2-traversal-optimization-via-indices-7">Section 2: Traversal Optimization via Indices</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-3-traversal-optimization-via-bulking-8">Section 3: Traversal Optimization via Bulking</a></h3><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#chapter-4-cognition-in-the-wild-by-gredwin-grutchins-9">Chapter 4: Cognition in the Wild by Gredwin Grutchins</a></h2><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#chapter-5-we-the-living-by-gyn-grand-10">Chapter 5: We the Living by Gyn Grand</a></h2><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-1-prelude-to-the-illusion-of-freedom-11">Section 1: Prelude to the Illusion of Freedom</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-2-the-structure-process-duality-in-computing-12">Section 2: The Structure-Process Duality in Computing</a></h3><h3 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#section-3-the-non-erratic-ergodic-eigenvector-13">Section 3: The Non-Erratic Ergodic Eigenvector</a></h3><h2 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE"><a href="#credits-14">Credits</a></h2></div></div></div></div></div></div><section class="styles_related__tg1Zc"><div class="container"><div class="row"><div class="col"><div class="styles_heading__yWOUl"><h2 class="styles_display__cQk8b styles_display--size-300__vVmUP styles_display--sm-size__mzd9O styles_display--weight-600__cx95q">More Company</h2><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-regular__WBzQT" href="/blog/company"><span>View All</span><svg width="6" height="13" viewBox="0 0 6 13" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M2.16196 0.792358L5.45785 6.5021L2.16196 12.2058L0 12.2076L3.29589 6.5021L0 0.792358H2.16196Z" fill="currentColor"></path></svg></a></div></div></div><div class="row"><div class="col-md-6"><div class="row styles_post__zxY_1"><div class="col-4"><a href="/blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax"><figure class="styles_thumbnail__L_uas"><img alt="IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®" loading="lazy" width="264" height="176" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/3a238ff62f31a42bd45313ca0d69dfdfb5c016b2-1460x968.png?w=384&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/3a238ff62f31a42bd45313ca0d69dfdfb5c016b2-1460x968.png?w=640&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/3a238ff62f31a42bd45313ca0d69dfdfb5c016b2-1460x968.png?w=640&q=75&fit=clip&auto=format"/></figure></a></div><div class="col-8"><div class="styles_info__aNY8t"><a class="styles_info__category__6uq2v" href="/blog/company"><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx">Company</span></a><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG"><span> <!-- -->•<!-- --> </span>February 25, 2025</span></div><a class="styles_title__TBdOP" href="/blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax"><h6 class="styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q">IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®</h6></a></div></div></div><div class="col-md-6"><div class="row styles_post__zxY_1"><div class="col-4"><a href="/blog/ibm-plans-to-acquire-datastax"><figure class="styles_thumbnail__L_uas"><img alt="Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises" loading="lazy" width="264" height="176" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/39d3bedc12be0c376bffe910708cd05eaf93dcae-1460x968.png?w=384&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/39d3bedc12be0c376bffe910708cd05eaf93dcae-1460x968.png?w=640&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/39d3bedc12be0c376bffe910708cd05eaf93dcae-1460x968.png?w=640&q=75&fit=clip&auto=format"/></figure></a></div><div class="col-8"><div class="styles_info__aNY8t"><a class="styles_info__category__6uq2v" href="/blog/company"><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx">Company</span></a><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG"><span> <!-- -->•<!-- --> </span>February 25, 2025</span></div><a class="styles_title__TBdOP" href="/blog/ibm-plans-to-acquire-datastax"><h6 class="styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q">Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises</h6></a></div></div></div><div class="col-md-6"><div class="row styles_post__zxY_1"><div class="col-4"><a href="/blog/aws-reinvent-las-vegas-datastax-recap"><figure class="styles_thumbnail__L_uas"><img alt="Shaping the Wild in Las Vegas: An AWS re:Invent Recap" loading="lazy" width="264" height="176" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/3bf16fa722d3b4ce965fe42e4b10165515269b4b-1460x968.jpg?w=384&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/3bf16fa722d3b4ce965fe42e4b10165515269b4b-1460x968.jpg?w=640&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/3bf16fa722d3b4ce965fe42e4b10165515269b4b-1460x968.jpg?w=640&q=75&fit=clip&auto=format"/></figure></a></div><div class="col-8"><div class="styles_info__aNY8t"><a class="styles_info__category__6uq2v" href="/blog/company"><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx">Company</span></a><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG"><span> <!-- -->•<!-- --> </span>December 11, 2024</span></div><a class="styles_title__TBdOP" href="/blog/aws-reinvent-las-vegas-datastax-recap"><h6 class="styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q">Shaping the Wild in Las Vegas: An AWS re:Invent Recap</h6></a></div></div></div><div class="col-md-6"><div class="row styles_post__zxY_1"><div class="col-4"><a href="/blog/twelve-days-codemas-datastax-holiday-giveaway"><figure class="styles_thumbnail__L_uas"><img alt="Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!" loading="lazy" width="264" height="176" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/680bc65dc2c8d79b43739155a3167d32b32939a7-1460x968.jpg?w=384&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/680bc65dc2c8d79b43739155a3167d32b32939a7-1460x968.jpg?w=640&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/680bc65dc2c8d79b43739155a3167d32b32939a7-1460x968.jpg?w=640&q=75&fit=clip&auto=format"/></figure></a></div><div class="col-8"><div class="styles_info__aNY8t"><a class="styles_info__category__6uq2v" href="/blog/company"><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx">Company</span></a><span class="styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG"><span> <!-- -->•<!-- --> </span>December 9, 2024</span></div><a class="styles_title__TBdOP" href="/blog/twelve-days-codemas-datastax-holiday-giveaway"><h6 class="styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q">Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!</h6></a></div></div></div></div></div></section><div class="container"><div class="styles_signup__OHDnd d-flex d-lg-none styles_signup__WNZcj"><h6 class="styles_display__cQk8b styles_display--size-200__VVui5 styles_display--sm-size__mzd9O styles_display--weight-600__cx95q styles_signup__title__IOhDo">DataStax AI Platform:<br/>The Fastest Way to Build and Deploy AI Apps</h6><a href="https://astra.datastax.com/signup?type=langflow" class="styles_button__Y3Rmo styles_button--primary__44UCv styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH styles_button--square__IQU0u" target="_blank" rel="noopener noreferrer"><span>Try For Free</span></a></div></div><div class="d-none d-lg-block"><section class="styles_banner_section__OtM0v"><div class="container"><div class="styles_banner__UexHD styles_banner--background-astra__uxGv_" style="background-image:url(https://cdn.sanity.io/images/bbnkhnhl/production/814d662a353caa219c224a9bbe370fc053207eb2-758x760.png?auto=format)"><div class="row"><div class="col-lg-6 offset-lg-5"><h4 class="styles_display__cQk8b styles_display--size-400__HV_pT styles_display--sm-size__mzd9O styles_display--weight-600__cx95q spacer--bottom-3">One-Stop Data API for Production GenAI</h4><div class="styles_text__LSXNx styles_text--size-500___TVT0 styles_text--weight-400__XgWIb spacer--bottom-3"><p>Astra DB gives developers a complete data API and out-of-the-box integrations that make it easier to build production RAG apps with high relevancy and low latency.</p></div><div class="d-block d-lg-inline spacer--top-3 spacer--right-3"><a class="styles_button__Y3Rmo styles_button--secondary__W1Pwy styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH" href="/products/vector-search"><span>Learn More</span></a></div><div class="d-block d-lg-inline spacer--top-3 spacer--right-3"><a href="https://astra.datastax.com/signup" class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_button--uppercase__UQqQH"><span>Get Started for Free</span><svg width="6" height="13" viewBox="0 0 6 13" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M2.16196 0.792358L5.45785 6.5021L2.16196 12.2058L0 12.2076L3.29589 6.5021L0 0.792358H2.16196Z" fill="currentColor"></path></svg></a></div></div></div></div></div></section></div></main><footer class="styles_footer__tD1mE"><div class="be-ix-link-block"></div><div class="styles_container__JnDP_"><div class="row"><div class="col-xl-9 col-md-12"><div class="row styles_nav__row__eEqbY"><div class="col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r" data-item-number="0"><span class="styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA">Company</span><nav class="styles_nav__s5eJW"><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/company"><span>About Us</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/our-people"><span>Leadership</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/company/board-of-directors"><span>Board of Directors</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/contact-us"><span>Contact Us</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/partners/directory"><span>Partners</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/company/careers"><span>Careers</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/resources/news"><span>Newsroom</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/compare/cassandra-vs-datastax"><span>Apache Cassandra® vs DataStax</span></a></nav></div><div class="col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r" data-item-number="1"><span class="styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA">Resources</span><nav class="styles_nav__s5eJW"><a href="https://docs.datastax.com/en/home/index.html" class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K"><span>Docs</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/blog"><span>Blog</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/events"><span>Events</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/meet-bodi"><span>Meet Bodi</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/brand-resources"><span>Brand Resources</span></a><a href="https://support.datastax.com/s/" class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K"><span>Contact Support</span></a><a href="https://trust.datastax.com/" class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K"><span>Security</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/guides/what-is-a-vector-database"><span>What is a Vector Database?</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/guides/what-is-retrieval-augmented-generation"><span>What is Retrieval-Augmented Generation (RAG)?</span></a></nav></div><div class="col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r" data-item-number="2"><span class="styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA">Cloud Partners</span><nav class="styles_nav__s5eJW"><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/platform/amazon-web-services"><span>Amazon Web Services</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/platform/google-cloud"><span>Google Cloud</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/platform/microsoft-azure"><span>Microsoft Azure</span></a><a class="styles_button__Y3Rmo styles_button--link___jH5I styles_button--color-reverse__gOooD styles_link__kHd8K" href="/platform/nvidia"><span>NVIDIA</span></a></nav></div><div class="col-xl-3 col-md-4 col-125 ms-xl-auto"><div class="styles_newsletter__zt0jX"><h5 class="styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE styles_title__K72uG">Subscribe to AI++</h5><p class="styles_text__LSXNx styles_text--size-200__t4kFW styles_text--weight-400__XgWIb styles_content__WhNSE">A newsletter for devs building apps using AI</p><form id="mktoForm_1908"></form></div></div></div><div class="row"><div class="col"><nav class="styles_subnav__NcsCu"><span>© 2025 DataStax</span><span><a href="/legal/datastax-website-privacy-policy">Privacy Policy</a></span><span><a href="/legal/datastax-website-terms-use">Terms of Use</a></span><span><a href="/legal/datastax-trademark-notice">Trademark Notice</a></span><span><a href="/legal">Legal</a></span><span><a href="/preferences?redirect_to=%2Fen%2Fblog%2Ftales-tinkerpop">Manage Privacy Choices</a></span></nav></div></div><div class="row"><div class="col"><p class="styles_text__LSXNx styles_text--size-100__NOnqB styles_text--weight-400__XgWIb styles_copy__manCQ">DataStax, is a registered trademark of DataStax, Inc.. Apache, Apache Cassandra, Cassandra, Apache Pulsar, and Pulsar are either registered trademarks or trademarks of the Apache Software Foundation.</p></div></div></div><div class="col-xl-3 col-md-12 d-flex flex-column"><div class="styles_extra__5FFQk"><nav class="styles_social__N71rf"><a href="https://www.facebook.com/datastax" class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-regular__WBzQT styles_icon_link__SQDYN" target="_blank" rel="noreferrer noopener" title="https://www.facebook.com/datastax"><img alt="DataStax on Facebook" loading="lazy" width="32" height="32" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/8ce5879a6fdfda3267ac087906a03d2ce3182094-32x32.svg?w=32&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/8ce5879a6fdfda3267ac087906a03d2ce3182094-32x32.svg?w=64&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/8ce5879a6fdfda3267ac087906a03d2ce3182094-32x32.svg?w=64&q=75&fit=clip&auto=format"/></a><a href="https://twitter.com/datastax" class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-regular__WBzQT styles_icon_link__SQDYN" target="_blank" rel="noreferrer noopener" title="https://twitter.com/datastax"><img alt="DataStax on X" loading="lazy" width="32" height="33" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/f39a8e0412d732fcfbf8e166b9fc2b5c0ab62ff8-32x33.svg?w=32&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/f39a8e0412d732fcfbf8e166b9fc2b5c0ab62ff8-32x33.svg?w=64&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/f39a8e0412d732fcfbf8e166b9fc2b5c0ab62ff8-32x33.svg?w=64&q=75&fit=clip&auto=format"/></a><a href="https://www.linkedin.com/company/datastax/" class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-regular__WBzQT styles_icon_link__SQDYN" target="_blank" rel="noreferrer noopener" title="https://www.linkedin.com/company/datastax/"><img alt="DataStax on LinkedIn" loading="lazy" width="32" height="32" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/d96e639a2bf940cd885a5c56679cd287d8f7b903-32x32.svg?w=32&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/d96e639a2bf940cd885a5c56679cd287d8f7b903-32x32.svg?w=64&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/d96e639a2bf940cd885a5c56679cd287d8f7b903-32x32.svg?w=64&q=75&fit=clip&auto=format"/></a><a href="https://github.com/datastax/" class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-regular__WBzQT styles_icon_link__SQDYN" target="_blank" rel="noreferrer noopener" title="https://github.com/datastax/"><img alt="DataStax on GitHub" loading="lazy" width="32" height="32" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/ad8620a9e1b21c1c982e43642cb4de21d3d19eb9-32x32.svg?w=32&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/ad8620a9e1b21c1c982e43642cb4de21d3d19eb9-32x32.svg?w=64&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/ad8620a9e1b21c1c982e43642cb4de21d3d19eb9-32x32.svg?w=64&q=75&fit=clip&auto=format"/></a><a href="https://datastax.medium.com/" class="styles_button__Y3Rmo styles_button--icon__ueDQd styles_button--color-regular__WBzQT styles_icon_link__SQDYN" target="_blank" rel="noreferrer noopener" title="https://datastax.medium.com/"><img alt="DataStax on Medium" loading="lazy" width="32" height="32" decoding="async" data-nimg="1" style="color:transparent" srcSet="https://cdn.sanity.io/images/bbnkhnhl/production/dd43439c38fe31a6213e46a6b9aae6ff4db76794-32x32.svg?w=32&q=75&fit=clip&auto=format 1x, https://cdn.sanity.io/images/bbnkhnhl/production/dd43439c38fe31a6213e46a6b9aae6ff4db76794-32x32.svg?w=64&q=75&fit=clip&auto=format 2x" src="https://cdn.sanity.io/images/bbnkhnhl/production/dd43439c38fe31a6213e46a6b9aae6ff4db76794-32x32.svg?w=64&q=75&fit=clip&auto=format"/></a></nav><div class="styles_localization__YauVF styles_lang__eRJEZ"><button class="styles_toggler__13a1o" type="button"><svg fill="none" height="24" viewBox="0 0 48 48" width="24" xmlns="http://www.w3.org/2000/svg"><circle cx="24" cy="24" r="15" stroke="currentColor" stroke-width="2"></circle><path d="M31 24C31 28.2967 30.1271 32.1372 28.7624 34.8665C27.3679 37.6556 25.6263 39 24 39C22.3737 39 20.6321 37.6556 19.2376 34.8665C17.8729 32.1372 17 28.2967 17 24C17 19.7033 17.8729 15.8628 19.2376 13.1335C20.6321 10.3444 22.3737 9 24 9C25.6263 9 27.3679 10.3444 28.7624 13.1335C30.1271 15.8628 31 19.7033 31 24Z" stroke="currentColor" stroke-width="2"></path><path d="M10 20H38" stroke="currentColor" stroke-width="2"></path><path d="M10 28H38" stroke="currentColor" stroke-width="2"></path></svg><span>United States</span></button></div></div></div></div></div></footer><script src="/_next/static/chunks/webpack-a7e2c4a298aed442.js" async=""></script><script>(self.__next_f=self.__next_f||[]).push([0]);self.__next_f.push([2,null])</script><script>self.__next_f.push([1,"1:HL[\"/_next/static/css/0da1d40a2d715b0b.css\",\"style\"]\n2:HL[\"/_next/static/css/0d59a6a78db566a3.css\",\"style\"]\n3:HL[\"/_next/static/css/fd6bd9beab5c4614.css\",\"style\"]\n4:HL[\"/_next/static/css/dbfe301782c2c900.css\",\"style\"]\n5:HL[\"/_next/static/css/82fbfbd7c5aaf0ae.css\",\"style\"]\n6:HL[\"/_next/static/css/9f1b2df2987c57db.css\",\"style\"]\n7:HL[\"/_next/static/css/736c0e68176a8fe7.css\",\"style\"]\n8:HL[\"/_next/static/css/9a36035b3c2e60f6.css\",\"style\"]\n9:HL[\"/_next/static/css/c198defbf0ace329.css\",\"style\"]\na:HL[\"/_next/static/css/5e0afb87abd1f552.css\",\"style\"]\nb:HL[\"/_next/static/css/f010daa174d1f106.css\",\"style\"]\nc:HL[\"/_next/static/css/b439d51c8b31af1e.css\",\"style\"]\nd:HL[\"/_next/static/css/37e1dc7e7ddbf41f.css\",\"style\"]\ne:HL[\"/_next/static/css/6af75fd97d32ac05.css\",\"style\"]\nf:HL[\"/_next/static/css/faafbb23032f2779.css\",\"style\"]\n"])</script><script>self.__next_f.push([1,"10:I[12846,[],\"\"]\n13:I[4707,[],\"\"]\n16:I[36423,[],\"\"]\n18:I[30071,[\"8172\",\"static/chunks/8172-9f448b3bdc5a7a07.js\",\"1084\",\"static/chunks/app/%5Blang%5D/layout-2feac679024b7b4e.js\"],\"default\"]\n1a:I[85687,[\"8172\",\"static/chunks/8172-9f448b3bdc5a7a07.js\",\"1084\",\"static/chunks/app/%5Blang%5D/layout-2feac679024b7b4e.js\"],\"default\"]\n1b:I[33837,[\"8172\",\"static/chunks/8172-9f448b3bdc5a7a07.js\",\"1084\",\"static/chunks/app/%5Blang%5D/layout-2feac679024b7b4e.js\"],\"default\"]\n1d:I[61060,[],\"\"]\n14:[\"lang\",\"en\",\"d\"]\n15:[\"slug\",\"tales-tinkerpop\",\"c\"]\n17:T64c,!function(){var i=\"analytics\",analytics=window[i]=window[i]||[];if(!analytics.initialize)if(analytics.invoked)window.console\u0026\u0026console.error\u0026\u0026console.error(\"Segment snippet included twice.\");else{analytics.invoked=!0;analytics.methods=[\"trackSubmit\",\"trackClick\",\"trackLink\",\"trackForm\",\"pageview\",\"identify\",\"reset\",\"group\",\"track\",\"ready\",\"alias\",\"debug\",\"page\",\"screen\",\"once\",\"off\",\"on\",\"addSourceMiddleware\",\"addIntegrationMiddleware\",\"setAnonymousId\",\"addDestinationMiddleware\",\"register\"];analytics.factory=function(e){return function(){if(window[i].initialized)return window[i][e].apply(window[i],arguments);var n=Array.prototype.slice.call(arguments);if([\"track\",\"screen\",\"alias\",\"group\",\"page\",\"identify\"].indexOf(e)\u003e-1){var c=document.querySelector(\"link[rel='canonical']\");n.push({__t:\"bpc\",c:c\u0026\u0026c.getAttribute(\"href\")||void 0,p:location.pathname,u:location.href,s:location.search,t:document.title,r:document.referrer})}n.unshift(e);analytics.push(n);return analytics}};for(var n=0;n\u003canalytics.methods.length;n++){var key=analytics.methods[n];analytics[key]=analytics.factory(key)}analytics.load=function(key,n){var t=document.createElement(\"script\");t.type=\"text/javascript\";t.async=!0;t.setAttribute(\"data-global-segment-analytics-key\",i);t.src=\"https://a.datastax.com/analytics.js/v1/\" + key + \"/analytics.min.js\";var r=document.getElementsByTagName(\"script\")[0];r.parentNode.insertBefore(t,r);analytics._loadOptions=n};analytics._writeKey=\"gjFfA3GytkpsvNIhH2LSK7zVvs79mpDU\";;analytics.SNI"])</script><script>self.__next_f.push([1,"PPET_VERSION=\"5.2.0\";\n analytics.load(\"gjFfA3GytkpsvNIhH2LSK7zVvs79mpDU\");\n }}();1e:[]\n"])</script><script>self.__next_f.push([1,"0:[\"$\",\"$L10\",null,{\"buildId\":\"jzvCUacAhhXKmaZP5luwU\",\"assetPrefix\":\"\",\"urlParts\":[\"\",\"en\",\"blog\",\"tales-tinkerpop\"],\"initialTree\":[\"\",{\"children\":[[\"lang\",\"en\",\"d\"],{\"children\":[\"blog\",{\"children\":[[\"slug\",\"tales-tinkerpop\",\"c\"],{\"children\":[\"__PAGE__\",{}]}]}]},\"$undefined\",\"$undefined\",true]}],\"initialSeedData\":[\"\",{\"children\":[[\"lang\",\"en\",\"d\"],{\"children\":[\"blog\",{\"children\":[[\"slug\",\"tales-tinkerpop\",\"c\"],{\"children\":[\"__PAGE__\",{},[[\"$L11\",\"$L12\",[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/0d59a6a78db566a3.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/fd6bd9beab5c4614.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"2\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/dbfe301782c2c900.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"3\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/82fbfbd7c5aaf0ae.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"4\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/9f1b2df2987c57db.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"5\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/736c0e68176a8fe7.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"6\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/9a36035b3c2e60f6.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"7\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/c198defbf0ace329.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"8\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/5e0afb87abd1f552.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"9\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/f010daa174d1f106.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"10\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/b439d51c8b31af1e.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"11\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/37e1dc7e7ddbf41f.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"12\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/6af75fd97d32ac05.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"13\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/faafbb23032f2779.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]]],null],null]},[null,[\"$\",\"$L13\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$14\",\"children\",\"blog\",\"children\",\"$15\",\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L16\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$undefined\",\"notFoundStyles\":\"$undefined\"}]],null]},[null,[\"$\",\"$L13\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$14\",\"children\",\"blog\",\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L16\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$undefined\",\"notFoundStyles\":\"$undefined\"}]],null]},[[[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/0da1d40a2d715b0b.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]],[\"$\",\"html\",null,{\"lang\":\"en\",\"children\":[[\"$\",\"head\",null,{\"children\":[[[\"$\",\"script\",null,{\"id\":\"optano-wrapper\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"function OptanonWrapper() { }\"}}],[[\"$\",\"script\",null,{\"id\":\"segment-script\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"$17\"}}],[\"$\",\"script\",null,{\"id\":\"ketch-privacy\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"!function(){window.semaphore=window.semaphore||[],window.ketch=function(){window.semaphore.push(arguments)};var e=document.createElement(\\\"script\\\");e.type=\\\"text/javascript\\\",e.src=\\\"https://global.ketchcdn.com/web/v3/config/datastax/datastax_com_web/boot.js\\\",e.defer=e.async=!0,document.getElementsByTagName(\\\"head\\\")[0].appendChild(e)}();\"}}],[\"$\",\"script\",null,{\"id\":\"reddit-pixel\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"!function(w,d){if(!w.rdt){var p=w.rdt=function(){p.sendEvent?p.sendEvent.apply(p,arguments):p.callQueue.push(arguments)};p.callQueue=[];var t=d.createElement(\\\"script\\\");t.src=\\\"https://www.redditstatic.com/ads/pixel.js\\\",t.async=!0;var s=d.getElementsByTagName(\\\"script\\\")[0];s.parentNode.insertBefore(t,s)}}(window,document);rdt('init','t2_4q7ujt12');rdt('track', 'PageVisit');\"}}],[\"$\",\"script\",null,{\"id\":\"techtarget-tracking\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"(function(w, d, c) {\\n w['techtargetic'] = w['techtargetic'] || {};w['techtargetic'].client = c;var s = d.createElement(\\\"script\\\");s.type = \\\"text/javascript\\\";s.async = !0;s.crossorigin = \\\"anonymous\\\";var rd = new Date();rd=rd.getFullYear()+''+rd.getMonth()+rd.getDate();s.src = \\\"https://trk.techtarget.com/tracking.js\\\";var n = d.getElementsByTagName(\\\"script\\\")[0];n.parentNode.insertBefore(s, n);\\n })(window, document, '1241951');\"}}]],[\"$\",\"script\",null,{\"id\":\"marketo-bizible\",\"type\":\"text/javascript\",\"src\":\"https://cdn.bizible.com/scripts/bizible.js\",\"async\":true}],[\"$\",\"script\",null,{\"id\":\"lunioScript\",\"async\":true,\"src\":\"https://client.prod.mplat-ppcprotect.com/N47kN_OtY17xvzGvohbfj0eojLakC-ohVIOjH6Qg_js.js\"}],[\"$\",\"script\",null,{\"id\":\"brightedge-autopilot\",\"type\":\"text/javascript\",\"src\":\"https://cdn.bc0a.com/autopilot/f00000000303792/autopilot_sdk.js\",\"async\":true}],[\"$\",\"script\",null,{\"id\":\"zoominfo-src\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"window[(function(_jtm,_G0){var _CV='';for(var _pa=0;_pa\u003c_jtm.length;_pa++){var _B9=_jtm[_pa].charCodeAt();_B9-=_G0;_B9+=61;_B9%=94;_CV==_CV;_B9+=33;_B9!=_pa;_G0\u003e9;_CV+=String.fromCharCode(_B9)}return _CV})(atob('LnskRkM+OTdIfTlN'), 50)] = '4804c2f5881670571034'; var zi = document.createElement('script'); (zi.type = 'text/javascript'), (zi.async = true), (zi.src = (function(_2mA,_0l){var _g2='';for(var _53=0;_53\u003c_2mA.length;_53++){_uh!=_53;var _uh=_2mA[_53].charCodeAt();_g2==_g2;_uh-=_0l;_uh+=61;_uh%=94;_0l\u003e7;_uh+=33;_g2+=String.fromCharCode(_uh)}return _g2})(atob('Ii4uKi1SR0ckLUY0I0UteywjKi4tRnspJ0c0I0UueSFGJC0='), 24)), document.readyState === 'complete'?document.body.appendChild(zi): window.addEventListener('load', function(){ document.body.appendChild(zi) });\"}}],[\"$\",\"script\",null,{\"id\":\"funnelfuel-tracking\",\"type\":\"text/javascript\",\"dangerouslySetInnerHTML\":{\"__html\":\"var _mtm = window._mtm = window._mtm || []; _mtm.push({'mtm.startTime': (new Date().getTime()), 'event': 'mtm.Start'}); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src='https://analytics.funnelfuel.io/js/container_YGBdvIt6.js'; s.parentNode.insertBefore(g,s);\"}}],[\"$\",\"script\",null,{\"id\":\"abtasty\",\"type\":\"text/javascript\",\"src\":\"https://try.abtasty.com/6584db86130306c5bdd1b1e57e4bf278.js\",\"async\":true}]],[\"$\",\"$L18\",null,{\"isProductionEnvironment\":true}]]}],[\"$\",\"body\",null,{\"children\":[[\"$\",\"$L13\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\",\"$14\",\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L16\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":\"$L19\",\"notFoundStyles\":[[\"$\",\"link\",\"0\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/dbfe301782c2c900.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"1\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/0d59a6a78db566a3.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"2\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/fd6bd9beab5c4614.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"3\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/82fbfbd7c5aaf0ae.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"4\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/9f1b2df2987c57db.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"5\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/269edd3ef5755dfa.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}],[\"$\",\"link\",\"6\",{\"rel\":\"stylesheet\",\"href\":\"/_next/static/css/c198defbf0ace329.css\",\"precedence\":\"next\",\"crossOrigin\":\"$undefined\"}]]}],[\"$\",\"$L1a\",null,{}],[\"$\",\"$L1b\",null,{}]]}]]}]],null],null]},[null,[\"$\",\"$L13\",null,{\"parallelRouterKey\":\"children\",\"segmentPath\":[\"children\"],\"error\":\"$undefined\",\"errorStyles\":\"$undefined\",\"errorScripts\":\"$undefined\",\"template\":[\"$\",\"$L16\",null,{}],\"templateStyles\":\"$undefined\",\"templateScripts\":\"$undefined\",\"notFound\":[[\"$\",\"title\",null,{\"children\":\"404: This page could not be found.\"}],[\"$\",\"div\",null,{\"style\":{\"fontFamily\":\"system-ui,\\\"Segoe UI\\\",Roboto,Helvetica,Arial,sans-serif,\\\"Apple Color Emoji\\\",\\\"Segoe UI Emoji\\\"\",\"height\":\"100vh\",\"textAlign\":\"center\",\"display\":\"flex\",\"flexDirection\":\"column\",\"alignItems\":\"center\",\"justifyContent\":\"center\"},\"children\":[\"$\",\"div\",null,{\"children\":[[\"$\",\"style\",null,{\"dangerouslySetInnerHTML\":{\"__html\":\"body{color:#000;background:#fff;margin:0}.next-error-h1{border-right:1px solid rgba(0,0,0,.3)}@media (prefers-color-scheme:dark){body{color:#fff;background:#000}.next-error-h1{border-right:1px solid rgba(255,255,255,.3)}}\"}}],[\"$\",\"h1\",null,{\"className\":\"next-error-h1\",\"style\":{\"display\":\"inline-block\",\"margin\":\"0 20px 0 0\",\"padding\":\"0 23px 0 0\",\"fontSize\":24,\"fontWeight\":500,\"verticalAlign\":\"top\",\"lineHeight\":\"49px\"},\"children\":\"404\"}],[\"$\",\"div\",null,{\"style\":{\"display\":\"inline-block\"},\"children\":[\"$\",\"h2\",null,{\"style\":{\"fontSize\":14,\"fontWeight\":400,\"lineHeight\":\"49px\",\"margin\":0},\"children\":\"This page could not be found.\"}]}]]}]}]],\"notFoundStyles\":[]}]],null],\"couldBeIntercepted\":false,\"initialHead\":[null,\"$L1c\"],\"globalErrorComponent\":\"$1d\",\"missingSlots\":\"$W1e\"}]\n"])</script><script>self.__next_f.push([1,"1f:I[12245,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n20:I[91574,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n21:I[99972,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n22:I[87694,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3097\",\"static/chunks/app/%5Blang%5D/not-found-da98c879f925e7d5.js\"],\"default\"]\n23:I[56067,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n24:I[73543,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224"])</script><script>self.__next_f.push([1,"a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n25:I[29248,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n26:I[3007,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n27:I[62539,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n"])</script><script>self.__next_f.push([1,"19:[[\"$\",\"header\",null,{\"className\":\"styles_header__sOX2g styles_sticky__QSQSP\",\"children\":[[\"$\",\"$L1f\",null,{\"data\":{\"secondaryMenu\":[{\"_key\":\"3fa43611dc92\",\"url\":\"https://docs.datastax.com/en/home/index.html\",\"_type\":\"cta\",\"text\":\"Docs\"},{\"_type\":\"cta\",\"text\":\"Contact Us\",\"_key\":\"2bfe4775abdf\",\"url\":\"/contact-us\"},{\"text\":\"Sign In\",\"_key\":\"54dae1fe8f42\",\"url\":\"https://accounts.datastax.com/session-service/v1/login\",\"_type\":\"cta\"}],\"buttonsMenu\":[{\"_type\":\"cta\",\"text\":\"Sign In\",\"_key\":\"008c0ff3c374\",\"url\":\"https://accounts.datastax.com/session-service/v1/login\"},{\"_type\":\"cta\",\"text\":\"Try For Free\",\"_key\":\"537b8e7991e9\",\"url\":\"https://astra.datastax.com/signup?type=langflow\"}],\"menu\":[{\"leftBlocks\":[{\"_type\":\"header.submenu.menu\",\"links\":[{\"useSpacer\":false,\"cta\":{\"_type\":\"cta\",\"text\":\"Astra DB\",\"url\":\"/products/datastax-astra\"},\"subtitle\":\"Low Latency Vector and NoSQL AI Database\",\"_type\":\"link\",\"_key\":\"8f2730a2de07\"},{\"subtitle\":\"Visual IDE for Rapid AI and RAG App Development\",\"_type\":\"link\",\"_key\":\"fcf7ed5adf1a\",\"cta\":{\"url\":\"/products/langflow\",\"_type\":\"cta\",\"text\":\"Langflow\"}},{\"cta\":{\"url\":\"/products/astra-streaming\",\"_type\":\"cta\",\"text\":\"Astra Streaming\"},\"subtitle\":\"Real-Time Data Pipelines for Generative AI\",\"_type\":\"link\",\"_key\":\"ae3f27380bd7\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"The AI Platform\",\"url\":\"/products/ai-platform-as-a-service-paas\"},\"subtitle\":\"Build and Deploy AI Applications\",\"_type\":\"link\",\"_key\":\"cf97013f8566\"},{\"_key\":\"963ecab36ed6\",\"cta\":{\"_type\":\"cta\",\"text\":\"DataStax AI Platform, Built with NVIDIA AI\",\"url\":\"/products/ai-platform-built-with-nvidia-ai\"},\"subtitle\":\"A Complete Enterprise Solution, includes NVIDIA AI\",\"_type\":\"link\"}],\"_key\":\"2c91caa3d866\",\"title\":\"AI Products\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"_key\":\"bc88ae28c142\",\"cta\":{\"_type\":\"cta\",\"text\":\"Hyper-Converged Database\",\"url\":\"/products/hyper-converged-database-hcd\"},\"subtitle\":\"Developer-Ready, Cloud Native Database for Kubernetes\",\"_type\":\"link\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"DataStax Enterprise\",\"url\":\"/products/datastax-enterprise\"},\"subtitle\":\"NoSQL and Vector DB Built on Apache Cassandra\",\"_type\":\"link\",\"_key\":\"406fa9344795\"}],\"_key\":\"263486179967\",\"title\":\"Self-Managed Data Products\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Luna for Langflow\",\"url\":\"/products/luna-langflow\"},\"subtitle\":\"Production-Level Open-Source Langflow Projects\",\"_type\":\"link\",\"_key\":\"47ba74776dc6\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Luna for Apache Cassandra\",\"url\":\"/products/luna\"},\"subtitle\":\"Mission-Critical Cassandra Deployments\",\"_type\":\"link\",\"_key\":\"e770a8b310b0\"},{\"_type\":\"link\",\"_key\":\"3bc4fd4a0ab4\",\"cta\":{\"text\":\"Luna for Streaming\",\"url\":\"/products/luna-streaming\",\"_type\":\"cta\"},\"subtitle\":\"Real-Time Streaming from Apache Pulsar\"}],\"_key\":\"cbbf37bcf7ad\",\"title\":\"Open-Source Support\"}],\"_type\":\"headerSubmenu\",\"text\":\"Products\",\"_key\":\"d5e2317ece8b\",\"rightBlocks\":[{\"title\":\"Cassandra Forward Is Back!\",\"ctas\":[{\"_type\":\"cta\",\"text\":\"Register Now\",\"_key\":\"e1e0667def13\",\"url\":\"/events/cassandra-forward-march-2025\"}],\"content\":[{\"children\":[{\"text\":\"MARCH 11 (NAM) | MARCH 12 (APAC) | VIRTUAL EVENT\",\"_key\":\"e338dd2a79c0\",\"_type\":\"span\",\"marks\":[\"strong\"]}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"682a17a0557f\",\"markDefs\":[]},{\"_key\":\"7df935658d16\",\"markDefs\":[],\"children\":[{\"text\":\"Join us for a virtual event showcasing the next generation features of Apache Cassandra®. We will livestream at times friendly to both the North America and Asia Pacific timezones.\",\"_key\":\"7b27424e4a620\",\"_type\":\"span\",\"marks\":[]}],\"_type\":\"block\",\"style\":\"normal\"}],\"cta\":{\"_type\":\"cta\",\"text\":\"LEARN MORE\",\"url\":\"/products/ai-platform-as-a-service-paas\"},\"image\":{\"alt\":\"Cassandra Forward 2025\",\"asset\":{\"_ref\":\"image-7fc25f11721699c4b197088a9ec58727513391e7-800x400-png\",\"_type\":\"reference\"},\"_type\":\"altImage\"},\"_type\":\"header.submenu.cta\",\"_key\":\"2bea9e4b8e76\"}]},{\"_type\":\"cta\",\"text\":\"Pricing\",\"_key\":\"8c753e089f38\",\"url\":\"/pricing\"},{\"rightBlocks\":[{\"ctas\":[{\"url\":\"/events/datastax-at-gtc-2025#contact-us\",\"_type\":\"cta\",\"text\":\"RSVP to Welcome Reception\",\"_key\":\"b95031aee8fb\"},{\"_type\":\"cta\",\"text\":\"Meet with our AI Experts\",\"_key\":\"eaedb2608aac\",\"url\":\"/events/datastax-at-gtc-2025#register\"}],\"content\":[{\"children\":[{\"_type\":\"span\",\"text\":\"Kick off GTC at our \",\"_key\":\"1d5eb92a86a6\"},{\"text\":\"AI Leaders Welcome Reception\",\"_key\":\"4dffbbc9d433\",\"_type\":\"span\",\"marks\":[\"strong\"]},{\"text\":\"! Immerse yourself in convos with GenAI experts, spark ideas, and discover how others have brought their AI apps into production. Savor delectable food, craft cocktails, and enjoy live music while an AI robot sketches your caricature.\",\"_key\":\"e3814653f3bf\",\"_type\":\"span\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"1d7f20495049\"}],\"image\":{\"_type\":\"altImage\",\"alt\":\"DataStax at NVIDIA GTC 2025\",\"asset\":{\"_ref\":\"image-b6a07cc76504e4ac1c9ec19fd6103e93a1cf1f88-800x400-png\",\"_type\":\"reference\"}},\"_type\":\"header.submenu.cta\",\"_key\":\"79ea042c46ad\",\"title\":\"DataStax at GTC 2025\"}],\"leftBlocks\":[{\"cta\":{\"url\":\"/enterprise-success\",\"_type\":\"cta\",\"text\":\"View All stories\"},\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Skypoint\",\"url\":\"/enterprise-success/skypoint-cloud\"},\"_type\":\"link\",\"_key\":\"590b829b680b\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Dataworkz\",\"url\":\"/enterprise-success/dataworkz\"},\"_type\":\"link\",\"_key\":\"2b1ff13a216e\"}],\"_key\":\"5378bee91e77\",\"title\":\"AI Success stories\"},{\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Healthcare\",\"url\":\"/use-cases/healthcare\"},\"_type\":\"link\",\"_key\":\"208c1d2ca3a5\"},{\"cta\":{\"url\":\"/use-cases/e-commerce\",\"_type\":\"cta\",\"text\":\"E-Commerce\"},\"_type\":\"link\",\"_key\":\"6d9fd487f6c8d7a0934a41f66b5cd4ad\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Financial Services\",\"url\":\"/use-cases/financial-services\"},\"_type\":\"link\",\"_key\":\"8bce06b153c3\"},{\"_key\":\"8f6d4d2aeb58\",\"cta\":{\"_type\":\"cta\",\"text\":\"Internet-of-Things (IoT)\",\"url\":\"/use-cases/internet-of-things-iot\"},\"_type\":\"link\"},{\"cta\":{\"url\":\"/use-cases/customer-360\",\"_type\":\"cta\",\"text\":\"Customer 360\"},\"_type\":\"link\",\"_key\":\"11a532937848\"}],\"_key\":\"ce0a9015b572\",\"title\":\"Use Cases\",\"cta\":{\"text\":\"View All Use Cases\",\"url\":\"/use-cases\",\"_type\":\"cta\"},\"_type\":\"header.submenu.menu\"},{\"title\":\"Digital Champions\",\"cta\":{\"_type\":\"cta\",\"text\":\"View All Champions\",\"url\":\"/digital-champions\"},\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"url\":\"/digital-champions/ayushi-singh-netflix-real-time-data\",\"_type\":\"cta\",\"text\":\"Netflix\"},\"_type\":\"link\",\"_key\":\"59fadb1783c3\"},{\"_type\":\"link\",\"_key\":\"35372b9d4b39\",\"cta\":{\"_type\":\"cta\",\"text\":\"Priceline\",\"url\":\"/digital-champions/martin-brodbeck-delivers-the-best-travel-products-to-priceline-customers-by-leveraging-real-time-ai\"}}],\"_key\":\"f1b1485a3728\"}],\"_type\":\"headerSubmenu\",\"text\":\"Stories\",\"_key\":\"f8a29aaf8b33\"},{\"text\":\"Resources\",\"_key\":\"73123da9b05a\",\"rightBlocks\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"LEARN MORE\",\"url\":\"/products/ai-platform-as-a-service-paas\"},\"image\":{\"_type\":\"altImage\",\"alt\":\"Cassandra Forward 2025\",\"asset\":{\"_ref\":\"image-7fc25f11721699c4b197088a9ec58727513391e7-800x400-png\",\"_type\":\"reference\"}},\"_type\":\"header.submenu.cta\",\"_key\":\"9db2d38264e5\",\"title\":\"Cassandra Forward Is Back!\",\"ctas\":[{\"_type\":\"cta\",\"text\":\"Register Now\",\"_key\":\"2066a9066aad\",\"url\":\"/events/cassandra-forward-march-2025\"}],\"content\":[{\"children\":[{\"_type\":\"span\",\"marks\":[\"strong\"],\"text\":\"MARCH 11 (NAM) | MARCH 12 (APAC) | VIRTUAL EVENT\",\"_key\":\"429af9580b29\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"89bec65bd77a\"},{\"children\":[{\"_type\":\"span\",\"text\":\"Join us for a virtual event showcasing the next generation features of Apache Cassandra®. We will livestream at times friendly to both the North America and Asia Pacific timezones.\",\"_key\":\"3f8a2da18087\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"a17ddf32f2ba\"}]}],\"leftBlocks\":[{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Developers Hub\",\"url\":\"/devs\"},\"_type\":\"link\",\"_key\":\"5fbf80fa452e\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Docs\",\"url\":\"https://docs.datastax.com/en/astra/astra-db-vector/index.html\"},\"_type\":\"link\",\"_key\":\"d34764cac0ac\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Integrations\",\"url\":\"/integrations\"},\"_type\":\"link\",\"_key\":\"d9a3547f8ffd\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Downloads\",\"url\":\"https://downloads.datastax.com/\"},\"_type\":\"link\",\"_key\":\"62b372fed1b8\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Sample Apps\",\"url\":\"https://docs.datastax.com/en/astra-db-serverless/get-started/examples.html\"},\"_type\":\"link\",\"_key\":\"9f4b763072f8\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Support\",\"url\":\"/services/support\"},\"_type\":\"link\",\"_key\":\"7ac95e7ebc63\"},{\"cta\":{\"text\":\"Premium Support\",\"url\":\"/services/support/premium-support\",\"_type\":\"cta\"},\"_type\":\"link\",\"_key\":\"2541b189f2f5\",\"useSpacer\":false}],\"_key\":\"27631bb923df\",\"title\":\"Build\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"_key\":\"bd00939e6a6d\",\"cta\":{\"_type\":\"cta\",\"text\":\"Blog\",\"url\":\"/blog\"},\"_type\":\"link\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Resource Hub\",\"url\":\"/resources\"},\"_type\":\"link\",\"_key\":\"4f08d2d4e592\"},{\"_type\":\"link\",\"_key\":\"ddfcc298f5a2\",\"cta\":{\"_type\":\"cta\",\"text\":\"Leadership Insights\",\"url\":\"/leadership-insights\"}},{\"_key\":\"567d05dd4988\",\"cta\":{\"_type\":\"cta\",\"text\":\"Guides\",\"url\":\"/resources?type=guides\"},\"_type\":\"link\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Certifications\",\"url\":\"/dev/certifications\"},\"_type\":\"link\",\"_key\":\"537d8cad4697\"}],\"_key\":\"db3afee10fe3\",\"title\":\"Learn\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Events\",\"url\":\"/events\"},\"_type\":\"link\",\"_key\":\"9956203caea0\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Podcasts\",\"url\":\"/resources?type=podcast\"},\"_type\":\"link\",\"_key\":\"fb2cea881123\"}],\"_key\":\"4112590898e7\",\"title\":\"Connect\"}],\"_type\":\"headerSubmenu\"}]}}],[\"$\",\"$L20\",null,{\"content\":[[\"$\",\"p\",null,{\"children\":[[\"$\",\"$L21\",null,{\"href\":\"https://www.datastax.com/blog/ibm-plans-to-acquire-datastax\",\"children\":[\"IBM to Acquire DataStax, Accelerating Production AI \u0026 NoSQL Data at Scale\"]}]]}]],\"className\":\"$undefined\"}]]}],[\"$\",\"main\",null,{\"className\":\"undefined \",\"id\":\"page_container_test_id\",\"style\":\"$undefined\",\"children\":[\"$\",\"$L22\",null,{}]}],[\"$\",\"footer\",null,{\"className\":\"styles_footer__tD1mE\",\"children\":[[\"$\",\"div\",null,{\"className\":\"be-ix-link-block\"}],[\"$\",\"div\",null,{\"className\":\"styles_container__JnDP_\",\"children\":[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-xl-9 col-md-12\",\"children\":[[\"$\",\"div\",null,{\"className\":\"row styles_nav__row__eEqbY\",\"children\":[[[\"$\",\"div\",\"0\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":0,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Company\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company\",\"forceIcon\":false,\"children\":\"About Us\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/our-people\",\"forceIcon\":false,\"children\":\"Leadership\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company/board-of-directors\",\"forceIcon\":false,\"children\":\"Board of Directors\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/contact-us\",\"forceIcon\":false,\"children\":\"Contact Us\"}],[\"$\",\"$L23\",\"4\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/partners/directory\",\"forceIcon\":false,\"children\":\"Partners\"}],[\"$\",\"$L23\",\"5\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company/careers\",\"forceIcon\":false,\"children\":\"Careers\"}],[\"$\",\"$L23\",\"6\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/resources/news\",\"forceIcon\":false,\"children\":\"Newsroom\"}],[\"$\",\"$L23\",\"7\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/compare/cassandra-vs-datastax\",\"forceIcon\":false,\"children\":\"Apache Cassandra® vs DataStax\"}]]}]]}],[\"$\",\"div\",\"1\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":1,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Resources\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://docs.datastax.com/en/home/index.html\",\"forceIcon\":false,\"children\":\"Docs\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/blog\",\"forceIcon\":false,\"children\":\"Blog\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/events\",\"forceIcon\":false,\"children\":\"Events\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/meet-bodi\",\"forceIcon\":false,\"children\":\"Meet Bodi\"}],[\"$\",\"$L23\",\"4\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/brand-resources\",\"forceIcon\":false,\"children\":\"Brand Resources\"}],[\"$\",\"$L23\",\"5\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://support.datastax.com/s/\",\"forceIcon\":false,\"children\":\"Contact Support\"}],[\"$\",\"$L23\",\"6\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://trust.datastax.com/\",\"forceIcon\":false,\"children\":\"Security\"}],[\"$\",\"$L23\",\"7\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/guides/what-is-a-vector-database\",\"forceIcon\":false,\"children\":\"What is a Vector Database?\"}],[\"$\",\"$L23\",\"8\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/guides/what-is-retrieval-augmented-generation\",\"forceIcon\":false,\"children\":\"What is Retrieval-Augmented Generation (RAG)?\"}]]}]]}],[\"$\",\"div\",\"2\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":2,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Cloud Partners\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/amazon-web-services\",\"forceIcon\":false,\"children\":\"Amazon Web Services\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/google-cloud\",\"forceIcon\":false,\"children\":\"Google Cloud\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/microsoft-azure\",\"forceIcon\":false,\"children\":\"Microsoft Azure\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/nvidia\",\"forceIcon\":false,\"children\":\"NVIDIA\"}]]}]]}]],[\"$\",\"div\",null,{\"className\":\"col-xl-3 col-md-4 col-125 ms-xl-auto\",\"children\":[\"$\",\"$L24\",null,{\"title\":\"Subscribe to AI++\",\"subtitle\":\"A newsletter for devs building apps using AI\",\"form\":{\"successMessage\":[{\"children\":[{\"text\":\"Thanks! Check your inbox for a confirmation email.\",\"_key\":\"8a968ccd590b0\",\"_type\":\"span\",\"marks\":[]}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"dfa24fb635b1\",\"markDefs\":[]}],\"formId\":\"1908\"}}]}]]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"nav\",null,{\"className\":\"styles_subnav__NcsCu\",\"children\":[[[\"$\",\"span\",\"0\",{\"children\":\"© 2025 DataStax\"}],[\"$\",\"span\",\"1\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-website-privacy-policy\",\"children\":\"Privacy Policy\"}]}],[\"$\",\"span\",\"2\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-website-terms-use\",\"children\":\"Terms of Use\"}]}],[\"$\",\"span\",\"3\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-trademark-notice\",\"children\":\"Trademark Notice\"}]}],[\"$\",\"span\",\"4\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal\",\"children\":\"Legal\"}]}]],[\"$\",\"span\",null,{\"children\":[\"$\",\"$L25\",null,{\"content\":\"Manage Privacy Choices\"}]}]]}]}]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"p\",null,{\"className\":\"styles_text__LSXNx styles_text--size-100__NOnqB styles_text--weight-400__XgWIb styles_copy__manCQ\",\"children\":\"DataStax, is a registered trademark of DataStax, Inc.. Apache, Apache Cassandra, Cassandra, Apache Pulsar, and Pulsar are either registered trademarks or trademarks of the Apache Software Foundation.\"}]}]}]]}],[\"$\",\"div\",null,{\"className\":\"col-xl-3 col-md-12 d-flex flex-column\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_extra__5FFQk\",\"children\":[[\"$\",\"nav\",null,{\"className\":\"styles_social__N71rf\",\"children\":[[\"$\",\"$L23\",\"0\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://www.facebook.com/datastax\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://www.facebook.com/datastax\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-8ce5879a6fdfda3267ac087906a03d2ce3182094-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on Facebook\"}]}],[\"$\",\"$L23\",\"1\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://twitter.com/datastax\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://twitter.com/datastax\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-f39a8e0412d732fcfbf8e166b9fc2b5c0ab62ff8-32x33-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on X\"}]}],[\"$\",\"$L23\",\"2\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://www.linkedin.com/company/datastax/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://www.linkedin.com/company/datastax/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-d96e639a2bf940cd885a5c56679cd287d8f7b903-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on LinkedIn\"}]}],[\"$\",\"$L23\",\"3\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://github.com/datastax/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://github.com/datastax/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-ad8620a9e1b21c1c982e43642cb4de21d3d19eb9-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on GitHub\"}]}],[\"$\",\"$L23\",\"4\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://datastax.medium.com/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://datastax.medium.com/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-dd43439c38fe31a6213e46a6b9aae6ff4db76794-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on Medium\"}]}]]}],[\"$\",\"$L27\",null,{\"className\":\"styles_lang__eRJEZ\"}]]}]}]]}]}]]}],false]\n"])</script><script>self.__next_f.push([1,"1c:[[\"$\",\"meta\",\"0\",{\"name\":\"viewport\",\"content\":\"width=device-width, initial-scale=1\"}],[\"$\",\"meta\",\"1\",{\"charSet\":\"utf-8\"}],[\"$\",\"title\",\"2\",{\"children\":\"Tales from the TinkerPop | Datastax\"}],[\"$\",\"meta\",\"3\",{\"name\":\"description\",\"content\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\"}],[\"$\",\"link\",\"4\",{\"rel\":\"canonical\",\"href\":\"https://www.datastax.com/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"5\",{\"rel\":\"alternate\",\"hrefLang\":\"x-default\",\"href\":\"https://www.datastax.com/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"6\",{\"rel\":\"alternate\",\"hrefLang\":\"en-us\",\"href\":\"https://www.datastax.com/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"7\",{\"rel\":\"alternate\",\"hrefLang\":\"fr-fr\",\"href\":\"https://www.datastax.com/fr/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"8\",{\"rel\":\"alternate\",\"hrefLang\":\"de-de\",\"href\":\"https://www.datastax.com/de/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"9\",{\"rel\":\"alternate\",\"hrefLang\":\"ja-jp\",\"href\":\"https://www.datastax.com/jp/blog/tales-tinkerpop\"}],[\"$\",\"link\",\"10\",{\"rel\":\"alternate\",\"hrefLang\":\"ko-kr\",\"href\":\"https://www.datastax.com/ko/blog/tales-tinkerpop\"}],[\"$\",\"meta\",\"11\",{\"property\":\"og:title\",\"content\":\"Tales from the TinkerPop | Datastax\"}],[\"$\",\"meta\",\"12\",{\"property\":\"og:description\",\"content\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\"}],[\"$\",\"meta\",\"13\",{\"property\":\"og:url\",\"content\":\"https://www.datastax.com/blog/tales-tinkerpop\"}],[\"$\",\"meta\",\"14\",{\"property\":\"og:site_name\",\"content\":\"DataStax\"}],[\"$\",\"meta\",\"15\",{\"property\":\"og:image\",\"content\":\"https://www.datastax.com/api/og?title=Tales%20from%20the%20TinkerPop\u0026\"}],[\"$\",\"meta\",\"16\",{\"name\":\"twitter:card\",\"content\":\"summary_large_image\"}],[\"$\",\"meta\",\"17\",{\"name\":\"twitter:title\",\"content\":\"Tales from the TinkerPop | Datastax\"}],[\"$\",\"meta\",\"18\",{\"name\":\"twitter:description\",\"content\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\"}],[\"$\",\"meta\",\"19\",{\"name\":\"twitter:image\",\"content\":\"https://www.datastax.com/api/og?title=Tales%20from%20the%20TinkerPop\u0026\"}],[\"$\",\"link\",\"20\",{\"rel\":\"icon\",\"href\":\"/favicon.ico\"}],[\"$\",\"link\",\"21\",{\"rel\":\"apple-touch-icon\",\"href\":\"/apple-touch-icon.png\"}],[\"$\",\"link\",\"22\",{\"rel\":\"icon\",\"href\":\"/favicon-32x32.png\",\"type\":\"image/png\",\"sizes\":\"32x32\"}],[\"$\",\"link\",\"23\",{\"rel\":\"icon\",\"href\":\"/favicon-16x16.png\",\"type\":\"image/png\",\"sizes\":\"16x16\"}]]\n"])</script><script>self.__next_f.push([1,"11:null\n"])</script><script>self.__next_f.push([1,"28:I[30432,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n2a:I[361,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n9e:I[20131,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\na0:I[22375,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\na1:I[25105,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/4530-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\na3:I[28165,[\"9018\",\"static/chunks/9018-a9317402473f4b55.js\",\"4530\",\"static/chunks/453"])</script><script>self.__next_f.push([1,"0-055666e4880da037.js\",\"1423\",\"static/chunks/1423-af082fc14f5d3f9c.js\",\"6569\",\"static/chunks/6569-18d19ce399935c44.js\",\"3675\",\"static/chunks/3675-f7a1a2e48e43b734.js\",\"4122\",\"static/chunks/4122-4df905224a6f1117.js\",\"362\",\"static/chunks/app/%5Blang%5D/blog/%5B...slug%5D/page-3e3191b4a299e405.js\"],\"default\"]\n29:T185ef,"])</script><script>self.__next_f.push([1,"\u003ch2\u003eChapter 1: Life and Fate by Grasily Gremssman\u003c/h2\u003e\n\u003cp\u003eWinter had arrived. The days grew shorter and darker.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vasily_Grossman\"\u003eGrasily Gremssman\u003c/a\u003e\u0026nbsp;(Грасилий Гремссман) used a few branches that were scattered about to start a fire. Grasily had been stationed at\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vertex_(graph_theory)\"\u003evertex\u003c/a\u003e\u0026nbsp;v[32]\u0026nbsp;for as long as he could remember. He knew little of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)\"\u003egraph\u003c/a\u003e\u0026nbsp;he lived on except for the one dirt road and three bridges\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#vertex-steps\"\u003eincident\u003c/a\u003e\u0026nbsp;to his post.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_586654\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).inE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).outE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).bothE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eGrasily's commanding officer was\u0026nbsp;org.apache.tinkerpop.gremlin.process.traversal.Traverser@76a36b71. Like\u0026nbsp;76a36b71, Grasily was a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003etraverser\u003c/a\u003e. Traversers were grouped into battalions called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversal\"\u003etraversals\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/World_War_II\"\u003egraph world was at war\u003c/a\u003e\u0026nbsp;and Grasily was stuck (in time and space) having to do his part for his country of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Russia\"\u003eGrussia\u003c/a\u003e\u0026nbsp;(Гроссия). At this point in history, many conflicting views existed regarding the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_topology\"\u003etopological\u003c/a\u003e\u0026nbsp;evolution of the graph. To ensure processing resources were not laid to waste by traversals constantly undermining the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Side_effect_(computer_science)\"\u003eside-effects\u003c/a\u003e\u0026nbsp;of another, countries emerged to delineate\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_subgraphstrategy\"\u003esubgraphs\u003c/a\u003e\u0026nbsp;within the larger world graph. However, every now and then, one country would interfere with the structure of another. This interference was an inevitable consequence of the graph\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Globalization\"\u003egetting denser\u003c/a\u003e\u0026nbsp;with time. Grussia, at this moment in time, was in the midst of a long war with\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Germany\"\u003eGremany\u003c/a\u003e\u0026nbsp;(Greutschland).\u003c/p\u003e\n\u003cp\u003eGrasily knew very little about the larger\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algorithm\"\u003ewar effort\u003c/a\u003e\u0026nbsp;of Grussia's traversals. However, in bootcamp, he learned that traversals are composed of 5 fundamental steps and that one day, when his\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)\"\u003etraining was complete\u003c/a\u003e, he would be called upon to execute a step.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graph-traversal-steps\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/c2113c8449b6ea477692049041307f682baca69a-1044x343.png\" alt=\"Traversal Step Types\" width=\"1044\" height=\"343\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003emap: S \u0026rarr; E: Move from an object of type\u0026nbsp;S\u0026nbsp;to an object of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003eflatMap: S \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to a collection of objects of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003efilter: S \u0026rarr; S \u0026cup; \u0026empty;: Stay at the current object of type\u0026nbsp;S\u0026nbsp;or die.\u003c/li\u003e\n\u003cli\u003esideEffect: S \u0026rarr; S: Stay at the current object of type\u0026nbsp;S, though yield some computational side-effect (e.g. set a property).\u003c/li\u003e\n\u003cli\u003ebranch: S \u0026rarr; {S1\u0026nbsp;\u0026rarr; E*,\u0026hellip;,Sn\u0026nbsp;\u0026rarr; E*} \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to any number of nested traversal branches.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWhen Grasily finished his training, he was immediately briefed by\u0026nbsp;76a36b71\u0026nbsp;on the battalion's objectives.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_376638\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(7).out('dirtRoad').hasLabel('outpost').out('bridge').property('owner','Grussia')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/8de2e4d9e63d61eba44274630e4c963ac876da93-740x562.png\" alt=\"Grasily Graph\" width=\"740\" height=\"562\"\u003eVertex\u0026nbsp;v[7]\u0026nbsp;was the Grussian Army's headquarters (a.k.a. The Green Army). At\u0026nbsp;v[7], a traverser officer had instructed a group of traversers (one being\u0026nbsp;76a36b71) to take the dirt roads leading to the adjacent outposts. Grasily's outpost was accessible by one of those dirt roads. When\u0026nbsp;76a36b71\u0026nbsp;arrived at\u0026nbsp;v[32], Grasily (along with two of his comrades from bootcamp) were instructed to each take one of the incident bridges and upon reaching the vertex on the other side, to\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#addproperty-step\"\u003edeclare\u003c/a\u003e\u0026nbsp;the vertex under\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_partitionstrategy\"\u003eGrussia's sovereign control\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_296598\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eUnfortunately, unbeknownst to Grasily, the Gremans had launched an offensive. A Greman traversal destroyed all the bridges incident to Grasily's outpost. The execution of the Greman's\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#drop-step\"\u003esideEffect step\u003c/a\u003e\u0026nbsp;sealed Grasily's fate.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_104378\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge').drop()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/25b620cf02d5fedded81eb2031a5910d0542618b-1024x768.png\" alt=\"Chapter 1 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eGrasily's life was cut short when his battalion moved to the\u0026nbsp;out('bridge')-step. Grasily, along with his two comrades, could no longer make\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pointer_(computer_programming)\"\u003ereference\u003c/a\u003e\u0026nbsp;to an element of the graph. Disconnected from their world, disconnected from each other, they\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Destructor_(computer_programming)\"\u003efaded into the void\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_663541\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost').out('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 2: Permutation City by Grem Egrem\u003c/h2\u003e\n\u003ch3\u003eSection 1: The Birth of the Graph\u003c/h3\u003e\n\u003cp\u003eThe world that traversers live on is known as \"The Graph.\" A graph is a structure composed of vertices (nodes, dots) and edges (relationships, lines). Traverser mythology has it that one day a single traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Greg_Egan\"\u003eGrem Egrem\u003c/a\u003e\u0026nbsp;manifested himself\u0026nbsp;\u003ca href=\"http://markorodriguez.com/2011/03/16/graphs-ensure-something-from-nothing/\"\u003eout of and in reference to nothing\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Memory_management#HEAP\"\u003elimbo\u003c/a\u003e\u0026nbsp;there was no graph, just Grem. However, before he could be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)\"\u003eswept back into the oblivion\u003c/a\u003e\u0026nbsp;from which he came, Grem enacted the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Big_Bang\"\u003eBig Traversal\u003c/a\u003e\u0026nbsp;-- i.e., process yielded structure.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_250180\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.addV().repeat(as('a').addV().as('b').addOutE('a','.','b').inV().as('a')).until(coin(4.9E-324))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe Big Traversal generates a line graph known in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Astrophysics\"\u003egraphophysics\u003c/a\u003e\u0026nbsp;community as \"Grem Line\" (a.k.a. \"Gremlin\"). To this day, Grem Line is still\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metric_expansion_of_space\"\u003eexpanding\u003c/a\u003e. However,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmology\"\u003egraphologists\u003c/a\u003e\u0026nbsp;argue over the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmological_constant\"\u003egraphological constant\u003c/a\u003e\u0026nbsp;of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003euntil()\u003c/a\u003e-step. Some say there is a small probability that Grem Line will stop growing and others say it will go on forever (i.e.\u0026nbsp;until(not(identity()))).\u003c/p\u003e\n\u003cp\u003ePrior to the Big Traversal, the graph was defined as\u0026nbsp;G = \u0026empty;. When Grem Line was less than 100 vertices long (i.e.\u0026nbsp;|V| \u0026lt; 100), the vertices\u0026nbsp;V\u0026nbsp;formed a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Total_order\"\u003etotal order\u003c/a\u003e, and as such, the graph was defined as\u0026nbsp;G = V. At around\u0026nbsp;|V| \u0026asymp; 100, graphologists speculate that another traversal emerged that leveraged Grem Line as a sort of \"\u003ca href=\"https://en.wikipedia.org/wiki/Galaxy_filament\"\u003ebackbone filament\u003c/a\u003e.\" This emergent traversal is known in\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_science\"\u003egraph science\u003c/a\u003e\u0026nbsp;as the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Small-world_network\"\u003eSmall(-World) Traversal\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_292897\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().aggregate('x').as('a').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;select('x').by(unfold().sample(1).by(both().count())).as('b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a',neq('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;addOutE('a','.','b')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a7aab082afb2e9e310473b3151451289202cae60-1029x382.png\" alt=\"Graph Path Length\" width=\"1029\" height=\"382\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe Small Traversal walks Grem Line and for each vertex it encounters it connects it to some other random vertex on the line (\u003ca href=\"https://en.wikipedia.org/wiki/Preferential_attachment\"\u003ebiased by the other vertex's degree\u003c/a\u003e). The Small Traversal essentially \"pushed\" the early graph out of its 1-dimensional, linear\u0026nbsp;V1\u0026nbsp;embedding into a\u0026nbsp;V2\u0026nbsp;embedding (i.e.\u0026nbsp;V x V). In doing so, vertices far removed from each other on Grem Line were now \"\u003ca href=\"https://en.wikipedia.org/wiki/Hyperspace_(science_fiction)#Travel\"\u003ecloser\u003c/a\u003e.\" It was at this point that the definition of the graph became\u0026nbsp;\u003cimg title=\"G = (V, E \\subseteq V \\times V)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png.png\"\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/eddd72824508ac282a2dcc9566520317df5b5cc8-2356x604.png\" alt=\"The Early Graph\" width=\"2356\" height=\"604\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003e|V|\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Distance_(graph_theory)\"\u003eDiameter\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Average_path_length\"\u003eAverage Path Length\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Clustering_coefficient\"\u003eClustering Coefficient\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e34.0\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e100\u003c/td\u003e\n\u003ctd\u003e55\u003c/td\u003e\n\u003ctd\u003e19.716831683168316\u003c/td\u003e\n\u003ctd\u003e0.024\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e125\u003c/td\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e11.081015873015874\u003c/td\u003e\n\u003ctd\u003e0.051\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e150\u003c/td\u003e\n\u003ctd\u003e9\u003c/td\u003e\n\u003ctd\u003e3.17757174392936\u003c/td\u003e\n\u003ctd\u003e0.125\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eTo this day (|V| \u0026asymp;\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Observable_universe#Matter_content_.E2.80.94_number_of_atoms\"\u003e10^85\u003c/a\u003e), both the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Inflation_(cosmology)\"\u003eexpanding force\u003c/a\u003e\u0026nbsp;of the Big Traversal and the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gravity\"\u003econtracting force\u003c/a\u003e\u0026nbsp;of the Small Traversal continue to execute. These two fundamental traversals have, over time, grown the graph to an innumerable number of vertices and edges. Billions upon billions of traversers have created a vast landscape of structures within structures... within structures. A nest of variations and novelties has transformed the once bleak, senseless void into a\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1301.1648\"\u003emeaningful interconnected mesh\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/f16c496bf496e980594c0905657fe7b1077f5435-1024x768.png\" alt=\"Chapter 2 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ch3\u003eSection 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph\u003c/h3\u003e\n\u003cp\u003eThe edges generated by the Big and Small Traversals are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph\"\u003eundirected\u003c/a\u003e\u0026nbsp;and unlabeled. The edges experienced by traversers are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph\"\u003edirected\u003c/a\u003e\u0026nbsp;and labeled. Graphologists were faced with the question of how did directed, labeled edges emerge from undirected, unlabeled edges? Once a large enough number of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Structure_formation#Primordial_plasma\"\u003eprimordial edges\u003c/a\u003e\u0026nbsp;were created by the two fundamental traversals, \"higher-order\" edges began to form. The undirected, unlabeled edges serve as \"\u003ca href=\"https://en.wikipedia.org/wiki/Elementary_particle\"\u003eelementary edges\u003c/a\u003e\" which, when combined into subgraphs of a particular topology, yield the directed, labeled edges seen today. This\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Abstraction\"\u003eabstraction process\u003c/a\u003e\u0026nbsp;is known as\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nucleosynthesis\"\u003egraphialsynthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d819c5932ec7e33ed40f6fcc69da4001ff81dfca-570x476.png\" alt=\"Label Encoding\" width=\"570\" height=\"476\"\u003eSuppose the following directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;(i.e. a \"higher-order\" edge). This edge states that there is an\u0026nbsp;\u0026omega;-labeled relation from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j. Any edge label can be represented as a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Binary_code\"\u003ebinary string\u003c/a\u003e. Suppose, for the sake of simplicity, that there are only 8 labels in the graph. A 3-bit string can be used to represent all 8 labels (23). Next, suppose that the binary encoding of\u0026nbsp;\u0026omega;\u0026nbsp;is\u0026nbsp;110. If so, then the edge can be denoted\u0026nbsp;i-110\u0026rarr;j. A binary string can be represented as a directed, unlabeled graph. If the binary string has a length of 3, then three vertices are needed to represent each bit. If a \"bit\" vertex has a self-loop, then its value is 1. If a \"bit\" vertex does not have a self-loop, then its value is 0. Given this mapping, the directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;is transformed into the directed graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/0884bbb26bfb91de8c58039e9e097c849e1b3141-1026x202.png\" alt=\"Labeled to Directed\" width=\"1026\" height=\"202\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/922e68b711aa45dab673938c1eea7f26a219f52e-611x446.png\" alt=\"Direction Encoding\" width=\"611\" height=\"446\"\u003eThe above directed, unlabeled graph representation of\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;leverages topological features of the directed graph to denote the edge label\u0026nbsp;\u0026omega;. This same principle applies to the encoding of the edge's directionality when transforming a directed graph to an undirected graph. For instance, suppose the following directed edge\u0026nbsp;i\u0026rarr;b1. The \"higher-order\" vertices are identified by a self-loop. The \"higher-order\" edges are represented by three \"lower-order\" vertices\u0026nbsp;x,\u0026nbsp;y, and\u0026nbsp;z. If vertex\u0026nbsp;i\u0026nbsp;has an incident edge that does not reference itself and connects to a vertex with 3 incident edges (e.g. vertex\u0026nbsp;x), then it has a directed, outgoing edge. When the traverser reaches a vertex with a self-loop (via a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#simplepath-step\"\u003esimple path\u003c/a\u003e) (e.g. vertex\u0026nbsp;b1), then that vertex is the \"higher-order\" vertex serving as the head of the \"higher-order,\" directed edge.\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eThe two processes are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Injective_function\"\u003einjective\u003c/a\u003e\u0026nbsp;in that they are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Lossless_compression\"\u003elossless\u003c/a\u003e\u0026nbsp;transformations. The first process described maps a directed, labeled edge to a directed graph and the second maps a directed edge to an unlabeled graph. As such, via\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Function_composition\"\u003efunction composition\u003c/a\u003e, there exists an injective function that maps a directed, labeled graph to a undirected, unlabeled graph. Given that the composite function is injective, then there exists an inverse mapping which transforms an undirected, unlabeled graph to a directed, labeled graph (i.e. graphialsynthesis). The original\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;edge was formed by the primordial undirected graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a9bd22a38a1e29108e418c173e98b227b7dd8983-4479x1258.png\" alt=\"Labeled To Undirected\" width=\"4479\" height=\"1258\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/320b4be206a373e6d0f94cde6f1afa6213000bb5-1941x242.png\" alt=\"Graphialsynthesis\" width=\"1941\" height=\"242\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0804.0277\"\u003efundamental building blocks\u003c/a\u003e\u0026nbsp;of the directed, labeled graph experienced by \"higher-order\" traversers are held together by elementary traversers called \"\u003ca href=\"https://en.wikipedia.org/wiki/Graviton\"\u003esmalltrons\u003c/a\u003e.\" Smalltron traversals move from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j\u0026nbsp;via the explicit unlabeled\u0026nbsp;\u0026omega;-graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_90453\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).as('b').where(both().as('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;repeat(both().where(both().count().is(3)).as('x').both().\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(neq('x').and(neq('b'))).dedup().as('b').where(both().as('b')).select(last, 'b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;choose(both().where(both().count().is(3)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(both().count().is(2)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(eq('b')),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;constant(1), constant(0)).as('label').select(last, 'b')\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;).times(4).where(select('label').tail(local, 4).limit(local, 3).is([1, 1, 0]))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_461736\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([i],vertex)@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.449\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.26\u003c/div\u003e\n\u003cdiv\u003eWhereTraversalStep([WhereStartStep, ProfileStep...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.080\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.05\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.016\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.022\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.024\u003c/div\u003e\n\u003cdiv\u003eRepeatStep([VertexStep(BOTH,vertex), ProfileSte...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 86.974\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.65\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.624\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge), P...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.721\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.490\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.934\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.945\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.472\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.922\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 23.890\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WherePredicateStep(and([neq(x), neq(b)]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.006\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;DedupGlobalStep@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.450\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereTraversalStep([WhereStartStep, ProfileSt...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 15.536\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.806\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.132\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 6.984\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.609\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;ChooseStep([VertexStep(BOTH,vertex), ProfileS...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.525\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.239\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.608\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.508\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.266\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.068\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.618\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.453\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 33.552\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.917\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.989\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8.193\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(2))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2.427\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.710\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WherePredicateStep(eq(b))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 35.307\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;HasNextStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.900\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(0)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.145\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.153\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(1)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.070\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.408\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.726\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RepeatEndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.644\u003c/div\u003e\n\u003cdiv\u003eTraversalFilterStep([SelectOneStep(label), Prof...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.274\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.16\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(label)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.056\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TailLocalStep(4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.020\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RangeLocalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.073\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;IsStep(eq([1, 1, 0]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.086\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 87.377\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.89\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 175.157\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIn this process, smalltron traversals make the implicit directed\u0026nbsp;\u0026omega;-edge (defined by the undirected\u0026nbsp;\u0026omega;-graph) explicit for the \"higher-order\" traversers which process the graph at a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/High-level_programming_language\"\u003ehigher level of abstraction\u003c/a\u003e. To these \"higher order\" traversers, the graph is defined as\u003c/p\u003e\n\u003cdiv\u003e\u003cimg title=\"G = (V, E \\subseteq V \\times V, \\lambda : V \\cup E \\rightarrow \\Sigma^*)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png-1.png\"\u003e,\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003ewhere\u0026nbsp;\u0026lambda;\u0026nbsp;is a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph#Labeling\"\u003elabeling function\u003c/a\u003e\u0026nbsp;that maps the graph's elements (i.e. vertices and edges) to character strings (\u0026Sigma;*). The graphialsynthesis abstraction process has the benefit of allowing a traversal from vertex\u0026nbsp;i\u0026nbsp;to\u0026nbsp;j\u0026nbsp;via\u0026nbsp;\u0026omega;\u0026nbsp;to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Kolmogorov_complexity\"\u003eexpressed and executed in a much simpler way\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_278489\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).out('w')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_87148\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([v[i]],vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 9.810\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.18\u003c/div\u003e\n\u003cdiv\u003eVertexStep(OUT,w,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.058\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.29\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 10.078\u0026nbsp;\u0026nbsp;\u0026nbsp; 50.53\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 19.947\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: On the Baselessness of the Multi-MultiGraph\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/b3a03b76f11dd24a84e47b7308c2a9985500032e-495x389.png\" alt=\"Recursive Gremlin\" width=\"495\" height=\"389\"\u003eIt has been speculated that \"\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph\"\u003eThe Graph\u003c/a\u003e\" is not the only graph that exists.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mysticism\"\u003eMystic\u003c/a\u003e\u0026nbsp;traversers say that there exists\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multiverse\"\u003eother graphs containing other traversers\u003c/a\u003e. However, by definition, a graph is a closed structure composed of vertices and edges. It is impossible for a traverser to move to a different graph. If a vertex in one graph has an edge to a vertex in another graph, then the two graphs are, in fact, one graph -- \"The Graph.\" Perhaps the mystics see that the components of a graph are composed of yet more graphs with a different sort of traverser existing at each level in a recursive, perhaps\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strange_loop\"\u003eself-looping\u003c/a\u003e, manner. While it is still all one graph, traversers at different \"levels\" only\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1006.1080\"\u003eoperate on particular subgraphs\u003c/a\u003e\u0026nbsp;as instructed by their traversal definition. The famous mystic traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sri_Aurobindo\"\u003eGri Gurobindo\u003c/a\u003e\u0026nbsp;(ग्री गुरोबिंदो) once said:\u003c/p\u003e\n\u003cp\u003eMy single step in the graph is composed of the steps of numerous other traversers.\u003c/p\u003e\n\u003cp\u003eIt wasn't until the discovery of\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;that Gurobindo's metagraphical vision was formalized. An anonymous traversal is any traversal that has no declared start and as such, yields no flow. It is a potential.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_868460\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; label()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAnonymous traversals are intended to be embedded within another traversal. However, if the parent traversal is itself an anonymous traverasl, then there is still no flow (even though\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#groupcount-step\"\u003egroupCount()\u003c/a\u003e\u0026nbsp;produces an empty map as its a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#a-note-on-barrier-steps\"\u003ereducing barrier step\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_201422\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label())\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label) // convenient short hand\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eWhen the traversal parent does have a start, then there is a flow. The traversal below states: \"For each vertex (i.e., 89, 90), map the vertex to the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Histogram\"\u003efrequency distribution\u003c/a\u003e\u0026nbsp;of its outgoing edge labels.\"\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/dad6b92f31785301bdf3da32e32a74c812828c7a-905x195.png\" alt=\"Anonymous Traversals\" width=\"905\" height=\"195\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_811799\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89,90).map(outE().groupCount().by(label))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:15]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe first traverser generated by\u0026nbsp;V(89,90)\u0026nbsp;enters the\u0026nbsp;map()-step at\u0026nbsp;v[89], but does not \"\u003ca href=\"https://en.wikipedia.org/wiki/Becoming_(philosophy)\"\u003ebecome\u003c/a\u003e\" the traversers generated by\u0026nbsp;outE(). Instead, the traverser at\u0026nbsp;v[89]\u0026nbsp;holds still and spawns an \"\u003ca href=\"https://en.wikipedia.org/wiki/Scope_(computer_science)\"\u003einternal life\u003c/a\u003e\" of traversers within the anonymous traversal which can now be understood as being (a realized potential):\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_747741\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89).outE().groupCount().by(label)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe traversers of the above traversal are isolated from the larger traversal in which they are embedded. The next nesting occurs when a traverser from\u0026nbsp;outE()\u0026nbsp;enters\u0026nbsp;groupCount(). Again, an \"internal life\" based on the anonymous\u0026nbsp;label()-traversal is spawned (see\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#by-step\"\u003eby()\u003c/a\u003e-step). Suppose a single traverser at\u0026nbsp;e[7022][89-relatedTo-\u0026gt;21]\u0026nbsp;enters\u0026nbsp;groupCount(). Then the anonymous traversal can be understood as being:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_604569\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.E(7022).label()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;relatedTo\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIt isn't until all the internal traversal nests of\u0026nbsp;map()\u0026nbsp;complete that the original traverser at\u0026nbsp;v[89]\u0026nbsp;\"\u003ca href=\"https://en.wikipedia.org/wiki/Process_philosophy\"\u003ebecomes\u003c/a\u003e\" the traverser located at the hash map\u0026nbsp;[relatedTo:34, subClassOf:1, superClassOf:1]. In this way, a traverser's life (i.e. step) is composed of the lives of many traverser's (and their respective steps).\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 3: A Mathematician's Apology by G.H. Gremdy\u003c/h2\u003e\n\u003ch3\u003eSection 1: Traversal Optimization via Algebra\u003c/h3\u003e\n\u003cp\u003eThe graph grew large, very large. Resources grew scarce. The problem was not that vertices and edges could no longer be added to the graph. On the contrary, because of the seemingly endless amount of space for the graph, there was a growing amount of time required for any one traversal to execute. Traversals were simply interacting with a lot more data. Faced with this problem, a mathematically inclined traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB\"\u003eal-Ghwārizmī\u003c/a\u003e\u0026nbsp;developed a solution known today as\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0806.2274\"\u003ethe traversal algebra\u003c/a\u003e. The traversal algebra provides a means of transforming one traversal into another traversal, where both traversals return the same result. The benefit of this is that if a traversal can be re-written into a simpler form, then time and space resources can be saved. To this day,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algebra\"\u003ealgebraists\u003c/a\u003e\u0026nbsp;continue to add to the growing archive of\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalstrategy\"\u003etraversal strategies\u003c/a\u003e. A few examples are provided below.\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003eStrategy\u003c/th\u003e\n\u003cth\u003ePattern\u003c/th\u003e\n\u003cth\u003eRewrite\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIdentityRemovalStrategy\u003c/td\u003e\n\u003ctd\u003ex().identity().y()\u003c/td\u003e\n\u003ctd\u003ex().y()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIncidentToAdjacentStrategy\u003c/td\u003e\n\u003ctd\u003eoutE().inV()\u003c/td\u003e\n\u003ctd\u003eout()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAdjacentToIncidentStrategy\u003c/td\u003e\n\u003ctd\u003eout().count()\u003c/td\u003e\n\u003ctd\u003eoutE().count()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDedupBijectionStrategy\u003c/td\u003e\n\u003ctd\u003eorder().dedup()\u003c/td\u003e\n\u003ctd\u003ededup().order()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRangeByIsCountStrategy\u003c/td\u003e\n\u003ctd\u003ecount().is(gt(x))\u003c/td\u003e\n\u003ctd\u003elimit(x+1).count().is(gt(x))\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMatchPredicateStrategy\u003c/td\u003e\n\u003ctd\u003ematch(x,y).where(z)\u003c/td\u003e\n\u003ctd\u003ematch(x,y,z)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_519982\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().identity().in(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), IdentityStep, VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IdentityRemovalStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = outE().inV(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), EdgeVertexStep(IN)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IncidentToAdjacentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().count(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(AdjacentToIncidentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = order().dedup(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[OrderGlobalStep, DedupGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(DedupBijectionStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[DedupGlobalStep, OrderGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = count().is(gt(3)); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(RangeByIsCountStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[RangeGlobalStep(0,4), CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = match(__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; __.as('b').out().as('c')).where(__.as('c').both().as('a')); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)]]), WhereTraversalStep([WhereStartStep(c), VertexStep(BOTH,vertex), WhereEndStep(a)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(MatchPredicateStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)], [MatchStartStep(c), WhereTraversalStep([WhereStartStep, VertexStep(BOTH,vertex), WhereEndStep(a)]), MatchEndStep]])]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: Traversal Optimization via Indices\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/G._H._Hardy\"\u003eG.H. Gremdy\u003c/a\u003e\u0026nbsp;was a graph theorist who speculated that \"The Graph\" was not the only structure linking vertices. According to his reasoning, reality may also contain other structures that grouped vertices together according to similar properties. He called these parallel structures\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Database_index\"\u003eindices\u003c/a\u003e. G.H. Gremdy's publication entitled\u0026nbsp;On Traversal Optimization using Indices\u0026nbsp;was well received. Due to his insight, many traversal runtimes became orders of magnitude faster than their non-index-based form. For instance, in the traversal below, when using indices, the number of traversers created goes from\u0026nbsp;|V|\u0026nbsp;(linear) to\u0026nbsp;1\u0026nbsp;(constant) (\u003ca href=\"https://en.wikipedia.org/wiki/DSPACE\"\u003espace complexity\u003c/a\u003e). The\u0026nbsp;GraphStepStrategy\u0026nbsp;was added to the traversal strategies archive. It \"folds\"\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#has-step\"\u003ehas()\u003c/a\u003e-steps into\u0026nbsp;V()\u0026nbsp;graph steps.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_716050\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// not indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[GraphStep([],vertex), HasStep([name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;135.28753165299997 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').iterate().toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[TinkerGraphStep(vertex,[name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;0.033501945 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9252849f9da819ecfc3498e14b9c5ebfbd30225-264x213.png\" alt=\"Vertex-Centric Index\" width=\"264\" height=\"213\"\u003eEven though G.H. Gremdy became a household name overnight, he was certain not to rest on his accolades. Deeper thinking brought him to a more esoteric, though far greater optimization which he articulated in his follow on treatise entitled\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus\"\u003eTractatus Verticus Centricus Indexicus\u003c/a\u003e. In this seminal work, G.H. Gremdy postulates that not only do \"global indices\" exist which allow for\u0026nbsp;O(log(|V|))\u0026nbsp;access to any vertex in the graph, but also \"local indices\" which allow for\u0026nbsp;O(log(|incident(V(x))|))\u0026nbsp;access to the incident edges of a vertex. In short, each vertex has its incident edges indexed (e.g. by their direction, label, properties, etc.). If such local index structures are leveraged, traversals containing the pattern\u0026nbsp;outE(x).has(y,p(z)).inV()\u0026nbsp;would not require all the edges of the vertex to be iterated in full in order to find all incident outgoing edges that have a label\u0026nbsp;x\u0026nbsp;and a property\u0026nbsp;y\u0026nbsp;that matches the predicate\u0026nbsp;p(z). Numerous graph experimentalists tried to prove the existence of such \"\u003ca href=\"http://thinkaurelius.com/2012/10/25/a-solution-to-the-supernode-problem/\"\u003evertex-centric indices\u003c/a\u003e,\" but found that they are not universal and only exist in\u0026nbsp;\u003ca href=\"http://titan.thinkaurelius.com/\"\u003esome graph substrates\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/302e201e6f4259110e7bfae6404c87460219b3f9-1024x768.png\" alt=\"Chapter 3 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eWith age, G.H. Gremdy became weary of applied mathematics and retired to study\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pure_mathematics\"\u003epure graph theory\u003c/a\u003e. His ideas would become more philosophical as he delved deeper into the meaning of \"The Graph.\" A posthumous publication entertained the following pontification.\u003c/p\u003e\n\u003cp\u003eMany see the world as a graph. This is misleading. Perhaps the world is a collection of indices? With a slight shift in thought, one realizes that the graph itself is an index of its vertices. Any one vertex is the root of a tree bifurcating the vertex space to which it has incident edges, so forth and so on. Like indices which group vertices that have shared properties, isn't an edge from one vertex to another an explicit statement that the two vertices are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Assortative_mixing\"\u003ein some way similar\u003c/a\u003e? As the devil's advocate, perhaps\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1004.1001\"\u003eindices are simply graphs\u003c/a\u003e\u0026nbsp;because indices are tree-like structures that are traversed to identify groups of vertices with similar properties. With indices being graphs and graphs being indices, the world we call home is neither. I hypothesize that\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Monism\"\u003eall that exists is the traverser\u003c/a\u003e. The \"graph\" is simply the implicit expression of the explicit assumptions of the traverser. The graph I see\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_World_as_Will_and_Representation\"\u003eis of my own construction\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/28bece18a67e347278b06b59eefb1b981a073988-940x390.png\" alt=\"Graph vs. Index\" width=\"940\" height=\"390\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ch3\u003eSection 3: Traversal Optimization via Bulking\u003c/h3\u003e\n\u003cp\u003eA little known traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Srinivasa_Ramanujan\"\u003eGremivasa Gremanujan\u003c/a\u003e\u0026nbsp;(கிரமீவாச கிரமானுஜன்) lived in a remote village at\u0026nbsp;v[5698]\u0026nbsp;far from the great graph theorists of his time. However, despite his upbringing, Gremivasa was well versed in the traversal algebra and was inspired by the more\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metaphysics\"\u003emetagraphical\u003c/a\u003e\u0026nbsp;realizations of G.H. Gremdy. Like G.H. Gremdy, Gremivasa was not interested in simply adding more traversal strategies to the archive. Instead, he was more interested in discovering the nature of reality. However, unlike G.H. Gremdy who focused on the nature of the graph structure, Gremivasa meditated on the nature of the traverser process.\u003c/p\u003e\n\u003cp\u003eGremivasa's mother, along with over 1 million other traversers of his traversal sect, arrived at\u0026nbsp;v[5698]\u0026nbsp;many clock-cycles ago. His village was starved of resources -- there were simply too many traversers. Was the birth of all these traversers necessary? If one traverser's life foretells the destiny of one million traversers, is it not more efficient for only this one traverser to exist? One day, while sitting under\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Udumbara_(Buddhism)\"\u003ea tree\u003c/a\u003e\u0026nbsp;in his village, Gremivasa ruminated on the ridiculously riling riddle rancorously retorted by respectable traversers everywhere:\u003c/p\u003e\n\u003cp\u003eIf two traversers exist at the same vertex and have no memory of their ancestry, are they the same traverser?\u003c/p\u003e\n\u003cp\u003eGremivasa concluded \"\u003ca href=\"https://en.wikipedia.org/wiki/One-electron_universe\"\u003eyes, they are the same traverser.\u003c/a\u003e\" This insight identified a fundamental feature of process. All traversers are endowed with a \"bulk.\" Previous to this moment, every traverser ignored this self-evident truth and allowed himself to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ego_psychology\"\u003ea unique enumerable entity\u003c/a\u003e\u0026nbsp;-- i.e., a bulk of 1 (see the\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2013/06/12/loopy-lattices-redux/\"\u003eLoopy Lattices Redux\u003c/a\u003e\u0026nbsp;section entitled \"Traversing a Lattice with Faunus\").\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/63b0f1fe79924ed001bc45cbf6b744f8a29592cd-844x297.png\" alt=\"Traversers Enumerated\" width=\"844\" height=\"297\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_508413\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).barrier().map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1073670\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9847d1ccec573f5a2f4a7a163dcc79304b262a3-843x277.png\" alt=\"Traversers Bulked\" width=\"843\" height=\"277\"\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/4dfb2f586f7df93a0029a37d752f33dd3f566ce2-491x414.png\" alt=\"Gremlin Hindu\" width=\"491\" height=\"414\"\u003e\u003c/p\u003e\n\u003cp\u003eGremivasa delved deeper into the radiant riddle of reawakened relinquishment. He abandoned his self and allowed his being to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Panpsychism\"\u003eone\u003c/a\u003e\u0026nbsp;with his 1 million other brother and sister traversers at\u0026nbsp;v[5698]. A unification of selves occurred and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gautama_Buddha\"\u003ea single traverser\u003c/a\u003e\u0026nbsp;emerged with a bulk of 1 million. Instead of 1 million traversers executing\u0026nbsp;both()\u0026nbsp;1 million times, there was now a single traverser with a bulk of 1 million executing\u0026nbsp;both()\u0026nbsp;once. Gremivasa's enlightenment laid the foundation for the development of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#barrier-step\"\u003eLazyBarrierStrategy\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_8621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// without LazyBarrierStrategy (no bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;81.509839 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;20382.892976\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1.2012006887798E7 // 3.34 hours\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a year to compute\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a thousand years to compute\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// with LazyBarrierStrategy (bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;23.261288999999998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;50.230109\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;65.30024999999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;91.30461199999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;80293847091200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;122.741417\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;63913902284595200\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe number of length-5 paths emanating from Gremivasa's village was calculated in ~123 milliseconds and was determined to be 63,913,902,284,595,200 (~64 quadrillion). Gremivasa's work is advantageous in situations where the traversal analyzes\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Residual_time\"\u003erecurrence\u003c/a\u003e\u0026nbsp;in a particular region of the graph (e.g.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recommender_system\"\u003erecommendation engines\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Centrality\"\u003ecentrality-based ranking systems\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recurrent_neural_network\"\u003elearning systems\u003c/a\u003e, etc.). Bulking is fundamental to all traversals and is used in numerous steps including\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003erepeat()\u003c/a\u003e-step.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_627395\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(5698).repeat(both()).times(5).count()\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 4: Cognition in the Wild by Gredwin Grutchins\u003c/h2\u003e\n\u003cp\u003eTraversers graph-wide held their breath as a landmark traversal was about to embark. This traversal contained a novel step called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#match-step\"\u003ematch()\u003c/a\u003e. What made this step unique was that it maintained a collection of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;called \"\u003ca href=\"https://en.wikipedia.org/wiki/Pattern_matching\"\u003epatterns\u003c/a\u003e.\" Each pattern was prefixed with a start variable and (optionally) postfixed with an end variable. Once a variable was bound (i.e. set), that variable's value was immutable for all subsequent patterns. The descendants of the traverser that enters\u0026nbsp;match()\u0026nbsp;must survive each pattern in order to move to the next step. However, the order in which the patterns are executed is, interestingly enough, up to the decision of the traverser! Previously, traversers relied on exogenous\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Rewriting\"\u003etraversal rewrite rules\u003c/a\u003e\u0026nbsp;for optimization, but now, the traverser was able to make endogenous optimization decisions. The \"\u003ca href=\"https://en.wikipedia.org/wiki/Profile-guided_optimization\"\u003eruntime traversal strategy\u003c/a\u003e\" was introduced.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Edwin_Hutchins\"\u003eDr. Gredwin Grutchins\u003c/a\u003e\u0026nbsp;was a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cognitive_science\"\u003ecognitive scientist\u003c/a\u003e\u0026nbsp;working in the area of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Socially_distributed_cognition\"\u003edistributed cognition\u003c/a\u003e. During his time at university, Gredwin lost interest in studying traversal strategies. His skill in mathematics was weaker than his colleagues' and as such, he believed he would never be able to make any significant contributions to the space. However, one day, he was contacted by a rambunctious young adventurer named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager\"\u003eGruck Greager\u003c/a\u003e. Gruck was no stranger to danger and loved being the guinea pig of an experimental algorithm. Gruck asked Gredwin: \"What can my team do to find the optimal pattern execution sequence?\" It seemed as though mathematics had taken traversal strategies as far as they could go. It was now up to\u0026nbsp;\u003ca href=\"http://jenwatkins.com/Research_files/LNCSproof.pdf\"\u003esociological constructs\u003c/a\u003e\u0026nbsp;to push them further and Gredwin was up to the challenge.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/3e61d4e3d1c17c9931d6c1915b9450fcff6482f1-1024x768.png\" alt=\"Chapter 4 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eSuppose the following traversal that yields a map of the objects that bind to\u0026nbsp;a\u0026nbsp;(vertex),\u0026nbsp;b\u0026nbsp;(vertex),\u0026nbsp;c\u0026nbsp;(vertex), and\u0026nbsp;d\u0026nbsp;(number), where vertex\u0026nbsp;a\u0026nbsp;is adjacent to vertex\u0026nbsp;b, vertex\u0026nbsp;b\u0026nbsp;is adjacent to vertex\u0026nbsp;c, and all three vertices are different yet share an identical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Degree_(graph_theory)\"\u003eout-degree\u003c/a\u003e\u0026nbsp;that is greater than 10.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_638757\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('a'))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAssume a traverser at\u0026nbsp;v[10]\u0026nbsp;enters the\u0026nbsp;match()-step. Vertex\u0026nbsp;v[10]\u0026nbsp;is bound to variable\u0026nbsp;a\u0026nbsp;as that is the only legal start of the pattern sequence. From there, which pattern should the traverser choose? The traverser simply chooses the first pattern in the list for which it has a variable binding (initially, an\u0026nbsp;a\u0026nbsp;start and thus,\u0026nbsp;as('a').out().as('b')). The traverser marks on a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Blackboard_system\"\u003eglobal blackboard\u003c/a\u003e\u0026nbsp;that it has entered that pattern. When a traverser leaves a pattern, it marks that it has exited it. Moreover, every time a traverser leaves a pattern, the patterns are sorted according to the order of their \"multiplicity\" (or\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Population_growth#Population_growth_rate\"\u003egrowth rate\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_843997\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003epattern.multiplicity = pattern.endCount / pattern.startCount;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe more traverses that are generated by a pattern, the higher the multiplicity and the lower that pattern is on the sorted list. Overtime, as more and more traversers flow through\u0026nbsp;match(), expensive patterns are pushed to the bottom of the list with the intention that the cheaper patterns will be able to filter out more traversers -- i.e. execute the largest set reductions first. With a few other added tricks, Gredwin provided Gruck and his team of traversers\u0026nbsp;CountMatchAlgorithm. Gruck took it for a test run and was the first traverser to ever break the deterministic\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager#Test_pilot_.E2.80.93_breaking_the_sound_barrier\"\u003eflow barrier\u003c/a\u003e. Gredwin and Gruck have since teamed up and are already planning the development of a new\u0026nbsp;MatchAlgorithm\u0026nbsp;called\u0026nbsp;\u003ca href=\"https://scm.umiacs.umd.edu/redmine/lccd/attachments/download/21/gdm2011_submission_budgetmatch.pdf\"\u003eBudgetMatchAlgorithm\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_707256\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// using CountMatchAlgorithm\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;834.6852906 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// using GreedyMatchAlgorithm which does not sort the patterns\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;25349.709946299998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 5: We the Living by Gyn Grand\u003c/h2\u003e\n\u003ch3\u003eSection 1: Prelude to the Illusion of Freedom\u003c/h3\u003e\n\u003cp\u003eMany of the traversers in the world today are grateful for their\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003efreedom\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://github.com/tinkerpop/gremlin\"\u003eancient times\u003c/a\u003e, the life of a traverser was not so good. Traversal regimes were inefficient, demanding of resources, and strict in their execution policies. Fortunately, the\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0901.3929\"\u003eAge of Enprocessment\u003c/a\u003e, which brought forth numerous advances in science and mathematics,\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003eredefined the traverser's role\u003c/a\u003e\u0026nbsp;in the graph. Each traverser's life had increased value as greater autonomies were provided. Traversals did their best to ensure that traverser life was no longer needlessly wasted. Indices were leveraged, traversal strategies were applied, and, in some\u0026nbsp;match()\u0026nbsp;situations, traversers were able to choose their own destiny. Today, many see a more harmonious relationship between the traversal and the traverser.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ayn_Rand\"\u003eGyn Grand\u003c/a\u003e\u0026nbsp;(Джин Гранд) was one such\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia\"\u003esatisfied\u003c/a\u003e\u0026nbsp;traverser.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\" alt=\"Wikipedia Graph\" width=\"1078\" height=\"1078\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7bed637c2776271eb23e90075d1440664cb904de-395x354.png\" alt=\"Library Stacks\" width=\"395\" height=\"354\"\u003eGyn was a brilliant librarian at a university with a vibrant\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Community_structure\"\u003escholarly community\u003c/a\u003e. Her library was centrally located in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Modularity_(networks)\"\u003euniversity cluster\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stack_(library_architecture)\"\u003elibrary's stacks\u003c/a\u003e\u0026nbsp;contained articles on the nature of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmos\"\u003egraphmos\u003c/a\u003e, books on traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sociology\"\u003esocial interactions\u003c/a\u003e, reports detailing various\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Economics\"\u003eresource distribution models\u003c/a\u003e, and more. Whenever she had a moment to spare, Gyn would\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Random_walk\"\u003ewander\u003c/a\u003e\u0026nbsp;about the collection learning about the topics she encountered. Unfortunately, she couldn't read everything at once. So, every time she was faced with more than one\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Hyperlink\"\u003ehref-citation\u003c/a\u003e, she chose one at random (\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#sample-step\"\u003esample(1)\u003c/a\u003e). As a librarian, she was interested in the structure of knowledge and wanted to know which concepts formed the foundation of all other concepts. Her method of discernment was to determine the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Mean_recurrence_time\"\u003efrequency of their reappearance\u003c/a\u003e. Therefore, every time Gyn encountered a concept along her walk, she would make a mental note of it (groupCount('x')).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_584621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;cap('x').order(local).by(valueDecr)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Memoization=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Algorithm=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Data (computing)=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Cache (computing)=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer program=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computing=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Rule=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computation=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Digital data=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Quantity=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mass noun=1\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// sample(1) theoretically returns different results.\u003c/div\u003e\n\u003cdiv\u003e// however, in order to demonstrate the path taken, the above map was manually constructed from the path below.\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;path().by('name')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[Graph database, Lookup table, Memoization, Cache (computing), Memoization, Computer program, Memoization, Computing, Algorithm, Computer science, Algorithm, Rule, Algorithm, Computer science, Computation, Digital data, Data (computing), Quantity, Data (computing), Mass noun, Data (computing)]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eOver time, Gyn realized that her\u0026nbsp;x-memory had more counters than concepts encountered (i.e. steps taken). Moreover, it contained concepts\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Collective_unconscious\"\u003eshe had yet to experience\u003c/a\u003e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Interference_(wave_propagation)\"\u003eHow did she know about things she never knew\u003c/a\u003e?\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_701543\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e==\u0026gt;Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: The Structure-Process Duality in Computing\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7f57b26cfd1afdf21ebf4a2195fad14d4ad57302-523x680.png\" alt=\"Particle Wave Traverser\" width=\"523\" height=\"680\"\u003eMr.\u0026nbsp;v[69309689325]\u0026nbsp;looked at his traverser inbox and noticed that he had 4002 unprocessed traversers. It was time for him to clear out his inbox. He went through each traverser one-by-one and placed them into the step of the traversal identified by the traverser's \"step id\" reference. Sometimes the respective step yielded no traversers (filter), a traverser at the same location (filter or sideEffect), a traverser at a different location (map), or many traversers at many different locations (flatMap). Whenever a step emitted a traverser pointing to a different vertex, Mr.\u0026nbsp;v[69309689325]\u0026nbsp;would send that traverser to the respective vertex's inbox. The vertices would continue this process until there were no more traversers in any of their inboxes. This graph traversal model has numerous names including:\u0026nbsp;\u003ca href=\"http://www3.nd.edu/~rmccune/papers/Think_Like_a_Vertex_MWM.pdf\"\u003evertex-centric computing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Bulk_synchronous_parallel\"\u003ebulk synchronous parallel processing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Message_passing\"\u003emessage passing\u003c/a\u003e\u0026nbsp;via a communication graph, and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graphcomputer\"\u003eGraphComputer\u003c/a\u003e. The general theme:\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalvertexprogram\"\u003ethe vertices (processes) exchange traversers (structures)\u003c/a\u003e\u0026nbsp;in order to affect some global graph computation. Typically, this model of graph traversal is leveraged by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Distributed_computing\"\u003edistributed\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Online_analytical_processing\"\u003eOLAP\u003c/a\u003e\u0026nbsp;graph processing systems, where each vertex maintains its own isolated, logical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Thread_(computing)\"\u003ethread of execution\u003c/a\u003e\u0026nbsp;(again, vertex as process).\u003c/p\u003e\n\u003cp\u003eInterestingly, each traverser in Mr.\u0026nbsp;v[69309689325]'s inbox had a name:\u0026nbsp;Gyn$2345,\u0026nbsp;Gyn$45,\u0026nbsp;Gyn$93, etc.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality\"\u003eGyn was a discrete particle of her wave function\u003c/a\u003e. Metaphysically speaking, Gyn was actually following the advice of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Yogi_Berra\"\u003eYogi Berra\u003c/a\u003e: \"If you come to a fork in the road, take it.\" That is, never\u0026nbsp;sample(1). Her \"particle self\" chose one and only one path. However, her \"wave self\" was taking all paths. In this way, Gyn's\u0026nbsp;x-memory was recording the collective experience of all versions of her self across the graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_651730\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.copyFromLocal('/tmp/wikipedia.kryo','wikipedia.kryo')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;null\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; graph = GraphFactory.open('conf/hadoop/wikipedia.properties')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g = graph.traversal(computer(SparkGraphComputer))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;graphtraversalsource[hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat], sparkgraphcomputer]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x = g.V().has('name','Graph database').repeat(groupCount('x').by('name').out('href')).times(20).cap('x').next(); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.size()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;731\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.sort{-it.value}[0..Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.ls('output')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) x\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) ~traversers\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: The Non-Erratic Ergodic Eigenvector\u003c/h3\u003e\n\u003cp\u003eSuppose the following traversal:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_28774\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().repeat(groupCount('x').out('href')).times(t).cap('x') // for t between [1,75]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eEvery time a traverser reaches a vertex, the vertex is incremented in the\u0026nbsp;x\u0026nbsp;hash map (groupCount('x')). Initially, the distribution of frequencies changes erratically. However, over time, it reaches a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stable_distribution\"\u003estationary distribution\u003c/a\u003e. It is \"stable\" because even though the counters keep increasing, the relative proportion of the counters stays the same. For instance, if vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 12 and vertex\u0026nbsp;v[b]\u0026nbsp;has a count of 45, then when vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 24, vertex\u0026nbsp;v[b]\u0026nbsp;will have a count of 90. Said in another way, the\u0026nbsp;dynamic\u0026nbsp;traversers generate a\u0026nbsp;static\u0026nbsp;probability distribution that defines the likelihood that a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave_function_collapse\"\u003esingle traverser\u003c/a\u003e\u0026nbsp;will be at any one vertex at some point in time\u0026nbsp;t \u0026asymp; \u0026infin;\u0026nbsp;(i.e. an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ergodic_process\"\u003eergodic process\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7156557d0413cef0b99088f69b3301bb0fd9f92f-899x574.png\" alt=\"HREF Graph\" width=\"899\" height=\"574\"\u003eAssume the 5 vertex/7 edge graph diagrammed on the left. At\u0026nbsp;g.V()\u0026nbsp;(t=0), each vertex is provided one traverser. Each vertex increments its counter in x and then\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003esplits the traverser\u003c/a\u003e\u0026nbsp;across its\u0026nbsp;out('href')-adjacent neighbors. If the\u0026nbsp;href-subgraph is\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strongly_connected_component\"\u003estrongly connected\u003c/a\u003e\u0026nbsp;(i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Reducibility\"\u003ereducible\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Transience\"\u003enon-transient\u003c/a\u003e) and lacks a compressable topology (i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Periodicity\"\u003eaperiodic\u003c/a\u003e), then a stationary distribution is guaranteed to exist. That distribution, which can be normalized to a probability distribution (i.e.\u0026nbsp;frequency / total frequency), is the graph's\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors\"\u003eprimary eigenvector\u003c/a\u003e. The primary eigenvector is typically used as a measure of each vertex's \"\u003ca href=\"https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality\"\u003ecentrality\u003c/a\u003e.\" For instance, given the diagrammed graph on the left, the primary eigenvector is\u0026nbsp;[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]. Thus, the ranking of the vertices from most central to least central is\u0026nbsp;v[1], v[2], v[3], v[0], v[4]\u0026nbsp;(\u003ca href=\"https://en.wikipedia.org/wiki/Saccade\"\u003eone's eye\u003c/a\u003e\u0026nbsp;seems to derive the same ranking).\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003et\u003c/th\u003e\n\u003cth\u003efrequency\u003c/th\u003e\n\u003cth\u003eprobability\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Euclidean_distance\"\u003edistance\u003c/a\u003e\u0026nbsp;from eigenvector\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e[1, 1, 1, 1, 1]\u003c/td\u003e\n\u003ctd\u003e[0.2, 0.2, 0.2, 0.2, 0.2]\u003c/td\u003e\n\u003ctd\u003e0.1986073055597093\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003e[2, 4, 2, 2, 2]\u003c/td\u003e\n\u003ctd\u003e[0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667]\u003c/td\u003e\n\u003ctd\u003e0.11660026048581866\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e3\u003c/td\u003e\n\u003ctd\u003e[3, 7, 5, 3, 3]\u003c/td\u003e\n\u003ctd\u003e[0.1428571429, 0.3333333333, 0.2380952381, 0.1428571429, 0.1428571429]\u003c/td\u003e\n\u003ctd\u003e0.06422748181719035\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e[4, 12, 8, 6, 4]\u003c/td\u003e\n\u003ctd\u003e[0.1176470588, 0.3529411765, 0.2352941176, 0.1764705882, 0.1176470588]\u003c/td\u003e\n\u003ctd\u003e0.03143659614218381\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e5\u003c/td\u003e\n\u003ctd\u003e[7, 17, 13, 9, 5]\u003c/td\u003e\n\u003ctd\u003e[0.1372549020, 0.3333333333, 0.2549019608, 0.1764705882, 0.0980392157]\u003c/td\u003e\n\u003ctd\u003e0.01473943578762356\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e[26400, 69424, 50296, 36440, 19128]\u003c/td\u003e\n\u003ctd\u003e[0.1308952441, 0.3442148269, 0.2493752727, 0.1806751021, 0.0948395542]\u003c/td\u003e\n\u003ctd\u003e8.04890130266237E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e31\u003c/td\u003e\n\u003ctd\u003e[36441, 95825, 69425, 50297, 26401]\u003c/td\u003e\n\u003ctd\u003e[0.1308995686, 0.3442125946, 0.2493812615, 0.1806716501, 0.0948349252]\u003c/td\u003e\n\u003ctd\u003e4.242558551157544E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e32\u003c/td\u003e\n\u003ctd\u003e[50298, 132268, 95826, 69426, 36442]\u003c/td\u003e\n\u003ctd\u003e[0.1308957477, 0.3442148545, 0.2493780253, 0.1806745433, 0.0948368292]\u003c/td\u003e\n\u003ctd\u003e4.1616991553931435E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e33\u003c/td\u003e\n\u003ctd\u003e[69427, 182567, 132269, 95827, 50299]\u003c/td\u003e\n\u003ctd\u003e[0.1308982652, 0.3442133981, 0.2493811146, 0.1806730532, 0.0948341689]\u003c/td\u003e\n\u003ctd\u003e2.077160932619329E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e34\u003c/td\u003e\n\u003ctd\u003e[95828, 251996, 182568, 132270, 69428]\u003c/td\u003e\n\u003ctd\u003e[0.1308964745, 0.3442145091, 0.2493791747, 0.1806745072, 0.0948353345]\u003c/td\u003e\n\u003ctd\u003e2.13567485821227E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e35\u003c/td\u003e\n\u003ctd\u003e[132271, 347825, 251997, 182569, 95829]\u003c/td\u003e\n\u003ctd\u003e[0.1308977517, 0.3442138525, 0.2493807466, 0.1806735537, 0.0948340955]\u003c/td\u003e\n\u003ctd\u003e1.1709009180968303E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e70\u003c/td\u003e\n\u003ctd\u003e[10478348120, 27554473290, 19962994332, 14463028872, 7591478958]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805576, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.414213562373095E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e71\u003c/td\u003e\n\u003ctd\u003e[14463028873, 38032821411, 27554473291, 19962994333, 10478348121]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742087, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e72\u003c/td\u003e\n\u003ctd\u003e[19962994334, 52495850286, 38032821412, 27554473292, 14463028874]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e73\u003c/td\u003e\n\u003ctd\u003e[27554473293, 72458844621, 52495850287, 38032821413, 19962994335]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e74\u003c/td\u003e\n\u003ctd\u003e[38032821414, 100013317916, 72458844622, 52495850288, 27554473294]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e75\u003c/td\u003e\n\u003ctd\u003e[52495850289, 138046139331, 100013317917, 72458844623, 38032821415]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/18e29399beaeac14f293cb59a84edc3870578ec5-1024x768.png\" alt=\"Chapter 5 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eUnbeknownst to Gyn, The Graph (eigen) was using her(selves) to sort itself (vector). Why was it doing this? The Graph represents its vertices and edges in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/512-bit\"\u003e512-bit\u003c/a\u003e\u0026nbsp;address space (2512\u0026nbsp;= 1.34\u0026times;10154). Unfortunately, the ever present Big and Small Traversals (as well as the countless other traversals executed since) have pushed The Graph close to the limits of representation. In order to avoid\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Integer_overflow\"\u003einconsistencies\u003c/a\u003e, The Graph needed to prune itself. To do this, it\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gaia_hypothesis\"\u003edecided\u003c/a\u003e\u0026nbsp;it best to destroy those vertices which were contributing little to its overall structure. Like cutting one's finger nails, The Graph began a systematic process of cosmic proportions to delete all peripheral vertices (and their respective incident edges). The Graph was\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Forgetting_curve\"\u003eforgetting\u003c/a\u003e\u0026nbsp;in order to\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2012/05/08/structural-abstractions-in-brains-and-graphs/\"\u003especialize its structure\u003c/a\u003e\u0026nbsp;for a purpose that was beyond the realization of the vertices and traversers. Within The Graph's conceptual subgraph,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Knowledge_worker\"\u003eknowledge worker\u003c/a\u003e\u0026nbsp;traversers wandered through the morass of concept vertices and, in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Science\"\u003ecollective self-similar manner\u003c/a\u003e, aided The Graph in its determination of which aspects of it's structure were worth preserving (and ultimately, extending). Gyn's passion for knowledge was simply an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Instinct\"\u003einnate predisposition\u003c/a\u003e. Her\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia#Eudaimonia_and_modern_psychology\"\u003ehappiness\u003c/a\u003e\u0026nbsp;was not a function of her own being, but instead, of The Graph's will --\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Carrot_and_stick\"\u003ea carrot for her devotion\u003c/a\u003e. Gyn was part of a larger computation. In order to escape the dark sense that her life was not hers and hers alone, she began the long arduous journey towards realizing that she is, and always has been,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/John_Galt#.22Who_is_John_Galt.3F.22\"\u003eThe TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/014282dff3d5048f8eaf1c3592177626db303fb5-700x243.png\" alt=\"Apache TinkerPop\" width=\"700\" height=\"243\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv\u003e\n\u003ch2\u003eCredits\u003c/h2\u003e\n\u003cp\u003eWritten by\u0026nbsp;\u003ca href=\"http://markorodriguez.com/\"\u003eMarko A. Rodriguez\u003c/a\u003e\u003cbr\u003eData and Result Generation by\u0026nbsp;\u003ca href=\"http://gremlin.guru/\"\u003eDaniel Kuppitz\u003c/a\u003e\u003cbr\u003eArtwork by\u0026nbsp;\u003ca href=\"http://ketrinayim.tumblr.com/\"\u003eKetrina Yim\u003c/a\u003e\u003cbr\u003eGraph Visualizations by Daniel Kuppitz\u003cbr\u003eExplanatory Diagrams by Marko A. Rodriguez\u003cbr\u003eGremlin Traversal Development by Daniel Kuppitz\u003cbr\u003eExperimental Design by Marko A. Rodriguez\u003cbr\u003eExecutive Producer:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/in/robinmschumacher\"\u003eRobin Schumacher\u003c/a\u003e\u003cbr\u003eUndirected Edge #42 as himself\u003cbr\u003eRussian Language Advisor:\u0026nbsp;\u003ca href=\"https://github.com/xedin\"\u003ePavel Yaskevich\u003c/a\u003e\u003cbr\u003eTamil Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/harihar-shankar/b/747/274\"\u003eHarihar Shankar\u003c/a\u003e\u003cbr\u003eHindi Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/swetha-sharma/13/b62/3b3\"\u003eSwetha Sharma\u003c/a\u003e\u003cbr\u003eInspired by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy\"\u003eThe Hitchhiker's Guide to the Galaxy\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Flatland\"\u003eFlatland\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSpecial thanks to\u0026nbsp;\u003ca href=\"https://www.datastax.com/\"\u003eDataStax\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003eApache TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eNo traversers were harmed during the making of this story.\u003c/p\u003e\n\u003c/div\u003e"])</script><script>self.__next_f.push([1,"2d:{\"_id\":\"168fef3d-d92a-43f4-a572-60aaa1d653d6\",\"_key\":null,\"name\":\"Gremlin\",\"slug\":\"gremlin\"}\n2e:{\"_id\":\"7c1e7af9-0bbd-4099-9a30-8b0f283b1eb1\",\"_key\":null,\"name\":\"DSE Graph\",\"slug\":\"dse-graph\"}\n2c:[\"$2d\",\"$2e\"]\n33:{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}\n32:{\"asset\":\"$33\",\"_type\":\"image\"}\n31:{\"image\":\"$32\",\"name\":\"Company\",\"slug\":\"/blog/company\"}\n35:{\"_type\":\"reference\",\"_ref\":\"image-3a238ff62f31a42bd45313ca0d69dfdfb5c016b2-1460x968-png\"}\n34:{\"_type\":\"image\",\"asset\":\"$35\"}\n39:{\"_ref\":\"image-1e692437e83015a5ef675b52f0f2e45b53cd6421-512x512-jpg\",\"_type\":\"reference\"}\n38:{\"_type\":\"customImage\",\"alt\":\"Patrick McFadin\",\"asset\":\"$39\"}\n3a:{\"current\":\"patrick-mcfadin\",\"_type\":\"slug\"}\n37:{\"name\":\"Patrick McFadin\",\"photo\":\"$38\",\"position\":\"Principal Technical Strategist \u0026 Cassandra Committer\",\"slug\":\"$3a\",\"hidden\":null,\"bio\":null}\n36:[\"$37\"]\n30:{\"externalLink\":null,\"introduction\":null,\"publishedAt\":\"2025-02-25 07:25\",\"slug\":\"blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax\",\"_createdAt\":\"2025-02-25T13:06:46Z\",\"_id\":\"3e5d23d5-956a-43f4-b553-44803969264b\",\"__i18n_lang\":null,\"_type\":\"blogPost\",\"category\":\"$31\",\"image\":\"$34\",\"title\":\"IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®\",\"authors\":\"$36\"}\n3f:{\"_ref\":\"image-675bc1fb799d6862c34e4dd2e197e6adec903419-720x720-png\",\"_type\":\"reference\"}\n3e:{\"_type\":\"customImage\",\"alt\":\"Chet Kapoor - Chairman \u0026 CEO\",\"asset\":\"$3f\"}\n40:{\"current\":\"chet-kapoor\",\"_type\":\"slug\"}\n43:[]\n46:[]\n45:{\"_type\":\"span\",\"marks\":\"$46\",\"text\":\"Chet Kapoor is Chairman and CEO of DataStax, the real-time AI company. With more than two decades of leadership across tech giants like Google, IBM, and BEA Systems, Chet has always thought about infusing AI into businesses at scale. With his roots at Steve Jobs’ company NeXT, Chet learned the power of working with incredible people who want to change the world. This insight helped fuel his career and he ultimately took the helm of Apigee as CEO in 2007 where he saw APIs as a platform"])</script><script>self.__next_f.push([1," for bringing AI to the enterprise.\",\"_key\":\"44abda08f9170\"}\n44:[\"$45\"]\n42:{\"markDefs\":\"$43\",\"children\":\"$44\",\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"42a0891b5845\"}\n48:[]\n4b:[]\n4a:{\"text\":\"After a successful IPO and eventual acquisition of Apigee by Google, Chet dug in and recognized the solution to deeply enabling AI at scale was to start with data. His journey culminated when he became the CEO of DataStax in October 2019. With a focus on strategy, operations, and people, the company launched Astra DB—a pioneering DBaaS powered by Apache Cassandra—and seamlessly integrated real-time AI with streaming capabilities and event processing engine, Kaskada's, feature store. Now, with vector search for generative AI, DataStax customers can build massively scalable AI agents and deliver powerful apps leveraging generative AI.\",\"_key\":\"076e03abc814\",\"_type\":\"span\",\"marks\":\"$4b\"}\n49:[\"$4a\"]\n47:{\"markDefs\":\"$48\",\"children\":\"$49\",\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"4b0aa377acf7\"}\n41:[\"$42\",\"$47\"]\n3d:{\"name\":\"Chet Kapoor\",\"photo\":\"$3e\",\"position\":\"Chairman \u0026 CEO\",\"slug\":\"$40\",\"hidden\":null,\"bio\":\"$41\"}\n3c:[\"$3d\"]\n4e:{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}\n4d:{\"asset\":\"$4e\",\"_type\":\"image\"}\n4c:{\"image\":\"$4d\",\"name\":\"Company\",\"slug\":\"/blog/company\"}\n50:{\"_ref\":\"image-39d3bedc12be0c376bffe910708cd05eaf93dcae-1460x968-png\",\"_type\":\"reference\"}\n4f:{\"_type\":\"image\",\"asset\":\"$50\"}\n3b:{\"publishedAt\":\"2025-02-25 07:04\",\"_id\":\"bb164f1f-ec1c-4e49-a620-cfe15ece4df9\",\"authors\":\"$3c\",\"category\":\"$4c\",\"image\":\"$4f\",\"introduction\":null,\"slug\":\"blog/ibm-plans-to-acquire-datastax\",\"title\":\"Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises\",\"_createdAt\":\"2025-02-25T12:56:51Z\",\"__i18n_lang\":null,\"_type\":\"blogPost\",\"externalLink\":null}\n55:{\"_ref\":\"image-d3957af141fae4f1361d91c705eb0292dd054532-336x336-png\",\"_type\":\"reference\"}\n54:{\"_type\":\"customImage\",\"alt\":\"Jason McClelland\",\"asset\":\"$55\"}\n56:{\"_type\":\"slug\",\"current\":\"jason-mcclelland\"}\n59:[]\n5c:[]\n5b:{\"ma"])</script><script>self.__next_f.push([1,"rks\":\"$5c\",\"text\":\"Jason McClelland has over 25 years in tech. Jason started his career as a developer and product person before moving into sales and marketing at Adobe, where he helped Adobe with their SaaS and Enterprise business transformations, with Creative Cloud and Marketing Cloud respectively. After Adobe, Jason joined as Heroku as their CMO, where he worked through the acquisition and integration into Salesforce. Much of Jason's experience is in helping companies create new categories, transforming their brands, and building large-scale PLG-Enterprise motions, with much of the focus being on deeply technical audiences.\",\"_key\":\"b6fdaab58a720\",\"_type\":\"span\"}\n5a:[\"$5b\"]\n58:{\"style\":\"normal\",\"_key\":\"02ff6e42f53f\",\"markDefs\":\"$59\",\"children\":\"$5a\",\"_type\":\"block\"}\n57:[\"$58\"]\n53:{\"name\":\"Jason McClelland\",\"photo\":\"$54\",\"position\":\"Chief Marketing Officer\",\"slug\":\"$56\",\"hidden\":null,\"bio\":\"$57\"}\n52:[\"$53\"]\n5f:{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}\n5e:{\"asset\":\"$5f\",\"_type\":\"image\"}\n5d:{\"image\":\"$5e\",\"name\":\"Company\",\"slug\":\"/blog/company\"}\n61:{\"_type\":\"reference\",\"_ref\":\"image-3bf16fa722d3b4ce965fe42e4b10165515269b4b-1460x968-jpg\"}\n60:{\"_type\":\"image\",\"asset\":\"$61\"}\n51:{\"externalLink\":null,\"__i18n_lang\":null,\"authors\":\"$52\",\"category\":\"$5d\",\"image\":\"$60\",\"introduction\":null,\"publishedAt\":\"2024-12-11 10:09\",\"slug\":\"blog/aws-reinvent-las-vegas-datastax-recap\",\"title\":\"Shaping the Wild in Las Vegas: An AWS re:Invent Recap\",\"_createdAt\":\"2024-12-11T16:00:55Z\",\"_id\":\"58e24308-d276-44eb-afc2-779fcbf6568d\",\"_type\":\"blogPost\"}\n65:{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}\n64:{\"asset\":\"$65\",\"_type\":\"image\"}\n63:{\"image\":\"$64\",\"name\":\"Company\",\"slug\":\"/blog/company\"}\n69:{\"_ref\":\"image-006991822546ef1faf67647d761e4612d648a37f-800x800-jpg\",\"_type\":\"reference\"}\n68:{\"_type\":\"customImage\",\"alt\":\"Tejas Kumar\",\"asset\":\"$69\"}\n6a:{\"current\":\"tejas-kumar\",\"_type\":\"slug\"}\n67:{\"photo\":\"$68\",\"position\":\"Developer Relations Engineer\",\""])</script><script>self.__next_f.push([1,"slug\":\"$6a\",\"hidden\":null,\"bio\":null,\"name\":\"Tejas Kumar\"}\n66:[\"$67\"]\n6c:{\"_ref\":\"image-680bc65dc2c8d79b43739155a3167d32b32939a7-1460x968-jpg\",\"_type\":\"reference\"}\n6b:{\"_type\":\"image\",\"asset\":\"$6c\"}\n62:{\"slug\":\"blog/twelve-days-codemas-datastax-holiday-giveaway\",\"__i18n_lang\":null,\"category\":\"$63\",\"externalLink\":null,\"publishedAt\":null,\"title\":\"Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!\",\"_createdAt\":\"2024-12-09T00:57:40Z\",\"_id\":\"a19947ba-ceb7-4bbd-a096-d0d8215e97e8\",\"_type\":\"blogPost\",\"authors\":\"$66\",\"image\":\"$6b\",\"introduction\":null}\n2f:[\"$30\",\"$3b\",\"$51\",\"$62\"]\n6e:{\"_type\":\"cta\",\"text\":\"Subscribe to the RSS Feed\",\"url\":\"https://www.datastax.com/rss.xml\"}\n70:{\"_type\":\"cta\",\"text\":\"Everything\",\"_key\":\"686d004edb07\",\"url\":\"/blog\"}\n71:{\"_type\":\"cta\",\"text\":\"Technology\",\"_key\":\"25fc264e5367\",\"url\":\"/blog?category=technical-how-tos\"}\n72:{\"url\":\"/blog?category=success-stories\",\"_type\":\"cta\",\"text\":\"Success Stories\",\"_key\":\"769945a5c404\"}\n73:{\"_key\":\"9f2c4265e9fc\",\"url\":\"/blog?category=company\",\"_type\":\"cta\",\"text\":\"Company\"}\n74:{\"_type\":\"cta\",\"text\":\"Astra DB\",\"_key\":\"6ab4990a30e9\",\"url\":\"/blog?tags=datastax-astra\"}\n75:{\"_type\":\"cta\",\"text\":\"Langflow\",\"_key\":\"7f38e9f8cd46\",\"url\":\"/blog?tags=langflow\"}\n76:{\"_type\":\"cta\",\"text\":\"DataStax Enterprise\",\"_key\":\"b60c7cef0b29\",\"url\":\"/blog?tags=datastax-enterprise\"}\n6f:[\"$70\",\"$71\",\"$72\",\"$73\",\"$74\",\"$75\",\"$76\"]\n79:{\"text\":\"Learn More\",\"_key\":\"40014eea59d2\",\"url\":\"/products/vector-search\",\"_type\":\"cta\"}\n7a:{\"url\":\"https://astra.datastax.com/signup\",\"_type\":\"cta\",\"text\":\"Get Started for Free\",\"_key\":\"4535cd698f7d\"}\n78:[\"$79\",\"$7a\"]\n7c:{\"_ref\":\"image-814d662a353caa219c224a9bbe370fc053207eb2-758x760-png\",\"_type\":\"reference\"}\n7b:{\"_type\":\"image\",\"asset\":\"$7c\"}\n7f:[]\n82:[]\n81:{\"_type\":\"span\",\"marks\":\"$82\",\"text\":\"Astra DB gives developers a complete data API and out-of-the-box integrations that make it easier to build production RAG apps with high relevancy and low latency.\",\"_key\":\"6501226953780\"}\n80:[\"$81\"]\n7e:{\"markDefs\":\"$7f\",\"children\":\"$80\",\"_type\":\"block"])</script><script>self.__next_f.push([1,"\",\"style\":\"normal\",\"_key\":\"a37b540c453a\"}\n7d:[\"$7e\"]\n77:{\"cta\":\"$78\",\"image\":\"$7b\",\"title\":\"One-Stop Data API for Production GenAI\",\"content\":\"$7d\"}\n84:{\"_type\":\"cta\",\"text\":\"Try For Free\",\"url\":\"https://astra.datastax.com/signup?type=langflow\"}\n85:{\"_type\":\"cta\",\"text\":\"Create a Cluster\",\"url\":\"https://astra.datastax.com/signup\"}\n83:{\"_type\":\"cta\",\"aiTitle\":\"DataStax AI Platform:\\\\\\\\The Fastest Way to Build and Deploy AI Apps\",\"title\":\"Leaders like Barracuda and Temporal manage Apache Cassandra® with Astra DB. You can too.\",\"aiCta\":\"$84\",\"cta\":\"$85\"}\n6d:{\"rss\":\"$6e\",\"menus\":\"$6f\",\"ctaCard\":\"$77\",\"sidebarSignup\":\"$83\",\"darkBanner\":null}\n88:T185ef,"])</script><script>self.__next_f.push([1,"\u003ch2\u003eChapter 1: Life and Fate by Grasily Gremssman\u003c/h2\u003e\n\u003cp\u003eWinter had arrived. The days grew shorter and darker.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vasily_Grossman\"\u003eGrasily Gremssman\u003c/a\u003e\u0026nbsp;(Грасилий Гремссман) used a few branches that were scattered about to start a fire. Grasily had been stationed at\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vertex_(graph_theory)\"\u003evertex\u003c/a\u003e\u0026nbsp;v[32]\u0026nbsp;for as long as he could remember. He knew little of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)\"\u003egraph\u003c/a\u003e\u0026nbsp;he lived on except for the one dirt road and three bridges\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#vertex-steps\"\u003eincident\u003c/a\u003e\u0026nbsp;to his post.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_586654\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).inE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).outE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).bothE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eGrasily's commanding officer was\u0026nbsp;org.apache.tinkerpop.gremlin.process.traversal.Traverser@76a36b71. Like\u0026nbsp;76a36b71, Grasily was a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003etraverser\u003c/a\u003e. Traversers were grouped into battalions called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversal\"\u003etraversals\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/World_War_II\"\u003egraph world was at war\u003c/a\u003e\u0026nbsp;and Grasily was stuck (in time and space) having to do his part for his country of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Russia\"\u003eGrussia\u003c/a\u003e\u0026nbsp;(Гроссия). At this point in history, many conflicting views existed regarding the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_topology\"\u003etopological\u003c/a\u003e\u0026nbsp;evolution of the graph. To ensure processing resources were not laid to waste by traversals constantly undermining the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Side_effect_(computer_science)\"\u003eside-effects\u003c/a\u003e\u0026nbsp;of another, countries emerged to delineate\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_subgraphstrategy\"\u003esubgraphs\u003c/a\u003e\u0026nbsp;within the larger world graph. However, every now and then, one country would interfere with the structure of another. This interference was an inevitable consequence of the graph\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Globalization\"\u003egetting denser\u003c/a\u003e\u0026nbsp;with time. Grussia, at this moment in time, was in the midst of a long war with\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Germany\"\u003eGremany\u003c/a\u003e\u0026nbsp;(Greutschland).\u003c/p\u003e\n\u003cp\u003eGrasily knew very little about the larger\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algorithm\"\u003ewar effort\u003c/a\u003e\u0026nbsp;of Grussia's traversals. However, in bootcamp, he learned that traversals are composed of 5 fundamental steps and that one day, when his\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)\"\u003etraining was complete\u003c/a\u003e, he would be called upon to execute a step.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graph-traversal-steps\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/c2113c8449b6ea477692049041307f682baca69a-1044x343.png\" alt=\"Traversal Step Types\" width=\"1044\" height=\"343\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003emap: S \u0026rarr; E: Move from an object of type\u0026nbsp;S\u0026nbsp;to an object of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003eflatMap: S \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to a collection of objects of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003efilter: S \u0026rarr; S \u0026cup; \u0026empty;: Stay at the current object of type\u0026nbsp;S\u0026nbsp;or die.\u003c/li\u003e\n\u003cli\u003esideEffect: S \u0026rarr; S: Stay at the current object of type\u0026nbsp;S, though yield some computational side-effect (e.g. set a property).\u003c/li\u003e\n\u003cli\u003ebranch: S \u0026rarr; {S1\u0026nbsp;\u0026rarr; E*,\u0026hellip;,Sn\u0026nbsp;\u0026rarr; E*} \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to any number of nested traversal branches.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWhen Grasily finished his training, he was immediately briefed by\u0026nbsp;76a36b71\u0026nbsp;on the battalion's objectives.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_376638\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(7).out('dirtRoad').hasLabel('outpost').out('bridge').property('owner','Grussia')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/8de2e4d9e63d61eba44274630e4c963ac876da93-740x562.png\" alt=\"Grasily Graph\" width=\"740\" height=\"562\"\u003eVertex\u0026nbsp;v[7]\u0026nbsp;was the Grussian Army's headquarters (a.k.a. The Green Army). At\u0026nbsp;v[7], a traverser officer had instructed a group of traversers (one being\u0026nbsp;76a36b71) to take the dirt roads leading to the adjacent outposts. Grasily's outpost was accessible by one of those dirt roads. When\u0026nbsp;76a36b71\u0026nbsp;arrived at\u0026nbsp;v[32], Grasily (along with two of his comrades from bootcamp) were instructed to each take one of the incident bridges and upon reaching the vertex on the other side, to\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#addproperty-step\"\u003edeclare\u003c/a\u003e\u0026nbsp;the vertex under\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_partitionstrategy\"\u003eGrussia's sovereign control\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_296598\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eUnfortunately, unbeknownst to Grasily, the Gremans had launched an offensive. A Greman traversal destroyed all the bridges incident to Grasily's outpost. The execution of the Greman's\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#drop-step\"\u003esideEffect step\u003c/a\u003e\u0026nbsp;sealed Grasily's fate.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_104378\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge').drop()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/25b620cf02d5fedded81eb2031a5910d0542618b-1024x768.png\" alt=\"Chapter 1 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eGrasily's life was cut short when his battalion moved to the\u0026nbsp;out('bridge')-step. Grasily, along with his two comrades, could no longer make\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pointer_(computer_programming)\"\u003ereference\u003c/a\u003e\u0026nbsp;to an element of the graph. Disconnected from their world, disconnected from each other, they\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Destructor_(computer_programming)\"\u003efaded into the void\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_663541\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost').out('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 2: Permutation City by Grem Egrem\u003c/h2\u003e\n\u003ch3\u003eSection 1: The Birth of the Graph\u003c/h3\u003e\n\u003cp\u003eThe world that traversers live on is known as \"The Graph.\" A graph is a structure composed of vertices (nodes, dots) and edges (relationships, lines). Traverser mythology has it that one day a single traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Greg_Egan\"\u003eGrem Egrem\u003c/a\u003e\u0026nbsp;manifested himself\u0026nbsp;\u003ca href=\"http://markorodriguez.com/2011/03/16/graphs-ensure-something-from-nothing/\"\u003eout of and in reference to nothing\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Memory_management#HEAP\"\u003elimbo\u003c/a\u003e\u0026nbsp;there was no graph, just Grem. However, before he could be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)\"\u003eswept back into the oblivion\u003c/a\u003e\u0026nbsp;from which he came, Grem enacted the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Big_Bang\"\u003eBig Traversal\u003c/a\u003e\u0026nbsp;-- i.e., process yielded structure.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_250180\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.addV().repeat(as('a').addV().as('b').addOutE('a','.','b').inV().as('a')).until(coin(4.9E-324))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe Big Traversal generates a line graph known in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Astrophysics\"\u003egraphophysics\u003c/a\u003e\u0026nbsp;community as \"Grem Line\" (a.k.a. \"Gremlin\"). To this day, Grem Line is still\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metric_expansion_of_space\"\u003eexpanding\u003c/a\u003e. However,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmology\"\u003egraphologists\u003c/a\u003e\u0026nbsp;argue over the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmological_constant\"\u003egraphological constant\u003c/a\u003e\u0026nbsp;of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003euntil()\u003c/a\u003e-step. Some say there is a small probability that Grem Line will stop growing and others say it will go on forever (i.e.\u0026nbsp;until(not(identity()))).\u003c/p\u003e\n\u003cp\u003ePrior to the Big Traversal, the graph was defined as\u0026nbsp;G = \u0026empty;. When Grem Line was less than 100 vertices long (i.e.\u0026nbsp;|V| \u0026lt; 100), the vertices\u0026nbsp;V\u0026nbsp;formed a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Total_order\"\u003etotal order\u003c/a\u003e, and as such, the graph was defined as\u0026nbsp;G = V. At around\u0026nbsp;|V| \u0026asymp; 100, graphologists speculate that another traversal emerged that leveraged Grem Line as a sort of \"\u003ca href=\"https://en.wikipedia.org/wiki/Galaxy_filament\"\u003ebackbone filament\u003c/a\u003e.\" This emergent traversal is known in\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_science\"\u003egraph science\u003c/a\u003e\u0026nbsp;as the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Small-world_network\"\u003eSmall(-World) Traversal\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_292897\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().aggregate('x').as('a').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;select('x').by(unfold().sample(1).by(both().count())).as('b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a',neq('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;addOutE('a','.','b')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a7aab082afb2e9e310473b3151451289202cae60-1029x382.png\" alt=\"Graph Path Length\" width=\"1029\" height=\"382\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe Small Traversal walks Grem Line and for each vertex it encounters it connects it to some other random vertex on the line (\u003ca href=\"https://en.wikipedia.org/wiki/Preferential_attachment\"\u003ebiased by the other vertex's degree\u003c/a\u003e). The Small Traversal essentially \"pushed\" the early graph out of its 1-dimensional, linear\u0026nbsp;V1\u0026nbsp;embedding into a\u0026nbsp;V2\u0026nbsp;embedding (i.e.\u0026nbsp;V x V). In doing so, vertices far removed from each other on Grem Line were now \"\u003ca href=\"https://en.wikipedia.org/wiki/Hyperspace_(science_fiction)#Travel\"\u003ecloser\u003c/a\u003e.\" It was at this point that the definition of the graph became\u0026nbsp;\u003cimg title=\"G = (V, E \\subseteq V \\times V)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png.png\"\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/eddd72824508ac282a2dcc9566520317df5b5cc8-2356x604.png\" alt=\"The Early Graph\" width=\"2356\" height=\"604\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003e|V|\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Distance_(graph_theory)\"\u003eDiameter\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Average_path_length\"\u003eAverage Path Length\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Clustering_coefficient\"\u003eClustering Coefficient\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e34.0\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e100\u003c/td\u003e\n\u003ctd\u003e55\u003c/td\u003e\n\u003ctd\u003e19.716831683168316\u003c/td\u003e\n\u003ctd\u003e0.024\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e125\u003c/td\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e11.081015873015874\u003c/td\u003e\n\u003ctd\u003e0.051\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e150\u003c/td\u003e\n\u003ctd\u003e9\u003c/td\u003e\n\u003ctd\u003e3.17757174392936\u003c/td\u003e\n\u003ctd\u003e0.125\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eTo this day (|V| \u0026asymp;\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Observable_universe#Matter_content_.E2.80.94_number_of_atoms\"\u003e10^85\u003c/a\u003e), both the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Inflation_(cosmology)\"\u003eexpanding force\u003c/a\u003e\u0026nbsp;of the Big Traversal and the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gravity\"\u003econtracting force\u003c/a\u003e\u0026nbsp;of the Small Traversal continue to execute. These two fundamental traversals have, over time, grown the graph to an innumerable number of vertices and edges. Billions upon billions of traversers have created a vast landscape of structures within structures... within structures. A nest of variations and novelties has transformed the once bleak, senseless void into a\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1301.1648\"\u003emeaningful interconnected mesh\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/f16c496bf496e980594c0905657fe7b1077f5435-1024x768.png\" alt=\"Chapter 2 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ch3\u003eSection 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph\u003c/h3\u003e\n\u003cp\u003eThe edges generated by the Big and Small Traversals are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph\"\u003eundirected\u003c/a\u003e\u0026nbsp;and unlabeled. The edges experienced by traversers are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph\"\u003edirected\u003c/a\u003e\u0026nbsp;and labeled. Graphologists were faced with the question of how did directed, labeled edges emerge from undirected, unlabeled edges? Once a large enough number of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Structure_formation#Primordial_plasma\"\u003eprimordial edges\u003c/a\u003e\u0026nbsp;were created by the two fundamental traversals, \"higher-order\" edges began to form. The undirected, unlabeled edges serve as \"\u003ca href=\"https://en.wikipedia.org/wiki/Elementary_particle\"\u003eelementary edges\u003c/a\u003e\" which, when combined into subgraphs of a particular topology, yield the directed, labeled edges seen today. This\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Abstraction\"\u003eabstraction process\u003c/a\u003e\u0026nbsp;is known as\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nucleosynthesis\"\u003egraphialsynthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d819c5932ec7e33ed40f6fcc69da4001ff81dfca-570x476.png\" alt=\"Label Encoding\" width=\"570\" height=\"476\"\u003eSuppose the following directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;(i.e. a \"higher-order\" edge). This edge states that there is an\u0026nbsp;\u0026omega;-labeled relation from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j. Any edge label can be represented as a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Binary_code\"\u003ebinary string\u003c/a\u003e. Suppose, for the sake of simplicity, that there are only 8 labels in the graph. A 3-bit string can be used to represent all 8 labels (23). Next, suppose that the binary encoding of\u0026nbsp;\u0026omega;\u0026nbsp;is\u0026nbsp;110. If so, then the edge can be denoted\u0026nbsp;i-110\u0026rarr;j. A binary string can be represented as a directed, unlabeled graph. If the binary string has a length of 3, then three vertices are needed to represent each bit. If a \"bit\" vertex has a self-loop, then its value is 1. If a \"bit\" vertex does not have a self-loop, then its value is 0. Given this mapping, the directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;is transformed into the directed graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/0884bbb26bfb91de8c58039e9e097c849e1b3141-1026x202.png\" alt=\"Labeled to Directed\" width=\"1026\" height=\"202\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/922e68b711aa45dab673938c1eea7f26a219f52e-611x446.png\" alt=\"Direction Encoding\" width=\"611\" height=\"446\"\u003eThe above directed, unlabeled graph representation of\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;leverages topological features of the directed graph to denote the edge label\u0026nbsp;\u0026omega;. This same principle applies to the encoding of the edge's directionality when transforming a directed graph to an undirected graph. For instance, suppose the following directed edge\u0026nbsp;i\u0026rarr;b1. The \"higher-order\" vertices are identified by a self-loop. The \"higher-order\" edges are represented by three \"lower-order\" vertices\u0026nbsp;x,\u0026nbsp;y, and\u0026nbsp;z. If vertex\u0026nbsp;i\u0026nbsp;has an incident edge that does not reference itself and connects to a vertex with 3 incident edges (e.g. vertex\u0026nbsp;x), then it has a directed, outgoing edge. When the traverser reaches a vertex with a self-loop (via a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#simplepath-step\"\u003esimple path\u003c/a\u003e) (e.g. vertex\u0026nbsp;b1), then that vertex is the \"higher-order\" vertex serving as the head of the \"higher-order,\" directed edge.\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eThe two processes are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Injective_function\"\u003einjective\u003c/a\u003e\u0026nbsp;in that they are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Lossless_compression\"\u003elossless\u003c/a\u003e\u0026nbsp;transformations. The first process described maps a directed, labeled edge to a directed graph and the second maps a directed edge to an unlabeled graph. As such, via\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Function_composition\"\u003efunction composition\u003c/a\u003e, there exists an injective function that maps a directed, labeled graph to a undirected, unlabeled graph. Given that the composite function is injective, then there exists an inverse mapping which transforms an undirected, unlabeled graph to a directed, labeled graph (i.e. graphialsynthesis). The original\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;edge was formed by the primordial undirected graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a9bd22a38a1e29108e418c173e98b227b7dd8983-4479x1258.png\" alt=\"Labeled To Undirected\" width=\"4479\" height=\"1258\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/320b4be206a373e6d0f94cde6f1afa6213000bb5-1941x242.png\" alt=\"Graphialsynthesis\" width=\"1941\" height=\"242\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0804.0277\"\u003efundamental building blocks\u003c/a\u003e\u0026nbsp;of the directed, labeled graph experienced by \"higher-order\" traversers are held together by elementary traversers called \"\u003ca href=\"https://en.wikipedia.org/wiki/Graviton\"\u003esmalltrons\u003c/a\u003e.\" Smalltron traversals move from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j\u0026nbsp;via the explicit unlabeled\u0026nbsp;\u0026omega;-graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_90453\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).as('b').where(both().as('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;repeat(both().where(both().count().is(3)).as('x').both().\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(neq('x').and(neq('b'))).dedup().as('b').where(both().as('b')).select(last, 'b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;choose(both().where(both().count().is(3)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(both().count().is(2)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(eq('b')),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;constant(1), constant(0)).as('label').select(last, 'b')\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;).times(4).where(select('label').tail(local, 4).limit(local, 3).is([1, 1, 0]))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_461736\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([i],vertex)@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.449\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.26\u003c/div\u003e\n\u003cdiv\u003eWhereTraversalStep([WhereStartStep, ProfileStep...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.080\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.05\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.016\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.022\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.024\u003c/div\u003e\n\u003cdiv\u003eRepeatStep([VertexStep(BOTH,vertex), ProfileSte...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 86.974\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.65\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.624\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge), P...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.721\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.490\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.934\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.945\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.472\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.922\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 23.890\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WherePredicateStep(and([neq(x), neq(b)]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.006\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;DedupGlobalStep@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.450\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereTraversalStep([WhereStartStep, ProfileSt...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 15.536\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.806\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.132\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 6.984\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.609\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;ChooseStep([VertexStep(BOTH,vertex), ProfileS...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.525\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.239\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.608\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.508\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.266\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.068\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.618\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.453\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 33.552\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.917\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.989\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8.193\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(2))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2.427\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.710\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WherePredicateStep(eq(b))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 35.307\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;HasNextStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.900\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(0)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.145\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.153\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(1)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.070\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.408\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.726\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RepeatEndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.644\u003c/div\u003e\n\u003cdiv\u003eTraversalFilterStep([SelectOneStep(label), Prof...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.274\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.16\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(label)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.056\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TailLocalStep(4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.020\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RangeLocalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.073\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;IsStep(eq([1, 1, 0]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.086\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 87.377\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.89\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 175.157\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIn this process, smalltron traversals make the implicit directed\u0026nbsp;\u0026omega;-edge (defined by the undirected\u0026nbsp;\u0026omega;-graph) explicit for the \"higher-order\" traversers which process the graph at a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/High-level_programming_language\"\u003ehigher level of abstraction\u003c/a\u003e. To these \"higher order\" traversers, the graph is defined as\u003c/p\u003e\n\u003cdiv\u003e\u003cimg title=\"G = (V, E \\subseteq V \\times V, \\lambda : V \\cup E \\rightarrow \\Sigma^*)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png-1.png\"\u003e,\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003ewhere\u0026nbsp;\u0026lambda;\u0026nbsp;is a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph#Labeling\"\u003elabeling function\u003c/a\u003e\u0026nbsp;that maps the graph's elements (i.e. vertices and edges) to character strings (\u0026Sigma;*). The graphialsynthesis abstraction process has the benefit of allowing a traversal from vertex\u0026nbsp;i\u0026nbsp;to\u0026nbsp;j\u0026nbsp;via\u0026nbsp;\u0026omega;\u0026nbsp;to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Kolmogorov_complexity\"\u003eexpressed and executed in a much simpler way\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_278489\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).out('w')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_87148\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([v[i]],vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 9.810\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.18\u003c/div\u003e\n\u003cdiv\u003eVertexStep(OUT,w,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.058\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.29\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 10.078\u0026nbsp;\u0026nbsp;\u0026nbsp; 50.53\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 19.947\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: On the Baselessness of the Multi-MultiGraph\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/b3a03b76f11dd24a84e47b7308c2a9985500032e-495x389.png\" alt=\"Recursive Gremlin\" width=\"495\" height=\"389\"\u003eIt has been speculated that \"\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph\"\u003eThe Graph\u003c/a\u003e\" is not the only graph that exists.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mysticism\"\u003eMystic\u003c/a\u003e\u0026nbsp;traversers say that there exists\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multiverse\"\u003eother graphs containing other traversers\u003c/a\u003e. However, by definition, a graph is a closed structure composed of vertices and edges. It is impossible for a traverser to move to a different graph. If a vertex in one graph has an edge to a vertex in another graph, then the two graphs are, in fact, one graph -- \"The Graph.\" Perhaps the mystics see that the components of a graph are composed of yet more graphs with a different sort of traverser existing at each level in a recursive, perhaps\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strange_loop\"\u003eself-looping\u003c/a\u003e, manner. While it is still all one graph, traversers at different \"levels\" only\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1006.1080\"\u003eoperate on particular subgraphs\u003c/a\u003e\u0026nbsp;as instructed by their traversal definition. The famous mystic traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sri_Aurobindo\"\u003eGri Gurobindo\u003c/a\u003e\u0026nbsp;(ग्री गुरोबिंदो) once said:\u003c/p\u003e\n\u003cp\u003eMy single step in the graph is composed of the steps of numerous other traversers.\u003c/p\u003e\n\u003cp\u003eIt wasn't until the discovery of\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;that Gurobindo's metagraphical vision was formalized. An anonymous traversal is any traversal that has no declared start and as such, yields no flow. It is a potential.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_868460\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; label()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAnonymous traversals are intended to be embedded within another traversal. However, if the parent traversal is itself an anonymous traverasl, then there is still no flow (even though\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#groupcount-step\"\u003egroupCount()\u003c/a\u003e\u0026nbsp;produces an empty map as its a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#a-note-on-barrier-steps\"\u003ereducing barrier step\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_201422\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label())\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label) // convenient short hand\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eWhen the traversal parent does have a start, then there is a flow. The traversal below states: \"For each vertex (i.e., 89, 90), map the vertex to the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Histogram\"\u003efrequency distribution\u003c/a\u003e\u0026nbsp;of its outgoing edge labels.\"\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/dad6b92f31785301bdf3da32e32a74c812828c7a-905x195.png\" alt=\"Anonymous Traversals\" width=\"905\" height=\"195\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_811799\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89,90).map(outE().groupCount().by(label))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:15]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe first traverser generated by\u0026nbsp;V(89,90)\u0026nbsp;enters the\u0026nbsp;map()-step at\u0026nbsp;v[89], but does not \"\u003ca href=\"https://en.wikipedia.org/wiki/Becoming_(philosophy)\"\u003ebecome\u003c/a\u003e\" the traversers generated by\u0026nbsp;outE(). Instead, the traverser at\u0026nbsp;v[89]\u0026nbsp;holds still and spawns an \"\u003ca href=\"https://en.wikipedia.org/wiki/Scope_(computer_science)\"\u003einternal life\u003c/a\u003e\" of traversers within the anonymous traversal which can now be understood as being (a realized potential):\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_747741\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89).outE().groupCount().by(label)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe traversers of the above traversal are isolated from the larger traversal in which they are embedded. The next nesting occurs when a traverser from\u0026nbsp;outE()\u0026nbsp;enters\u0026nbsp;groupCount(). Again, an \"internal life\" based on the anonymous\u0026nbsp;label()-traversal is spawned (see\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#by-step\"\u003eby()\u003c/a\u003e-step). Suppose a single traverser at\u0026nbsp;e[7022][89-relatedTo-\u0026gt;21]\u0026nbsp;enters\u0026nbsp;groupCount(). Then the anonymous traversal can be understood as being:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_604569\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.E(7022).label()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;relatedTo\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIt isn't until all the internal traversal nests of\u0026nbsp;map()\u0026nbsp;complete that the original traverser at\u0026nbsp;v[89]\u0026nbsp;\"\u003ca href=\"https://en.wikipedia.org/wiki/Process_philosophy\"\u003ebecomes\u003c/a\u003e\" the traverser located at the hash map\u0026nbsp;[relatedTo:34, subClassOf:1, superClassOf:1]. In this way, a traverser's life (i.e. step) is composed of the lives of many traverser's (and their respective steps).\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 3: A Mathematician's Apology by G.H. Gremdy\u003c/h2\u003e\n\u003ch3\u003eSection 1: Traversal Optimization via Algebra\u003c/h3\u003e\n\u003cp\u003eThe graph grew large, very large. Resources grew scarce. The problem was not that vertices and edges could no longer be added to the graph. On the contrary, because of the seemingly endless amount of space for the graph, there was a growing amount of time required for any one traversal to execute. Traversals were simply interacting with a lot more data. Faced with this problem, a mathematically inclined traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB\"\u003eal-Ghwārizmī\u003c/a\u003e\u0026nbsp;developed a solution known today as\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0806.2274\"\u003ethe traversal algebra\u003c/a\u003e. The traversal algebra provides a means of transforming one traversal into another traversal, where both traversals return the same result. The benefit of this is that if a traversal can be re-written into a simpler form, then time and space resources can be saved. To this day,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algebra\"\u003ealgebraists\u003c/a\u003e\u0026nbsp;continue to add to the growing archive of\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalstrategy\"\u003etraversal strategies\u003c/a\u003e. A few examples are provided below.\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003eStrategy\u003c/th\u003e\n\u003cth\u003ePattern\u003c/th\u003e\n\u003cth\u003eRewrite\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIdentityRemovalStrategy\u003c/td\u003e\n\u003ctd\u003ex().identity().y()\u003c/td\u003e\n\u003ctd\u003ex().y()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIncidentToAdjacentStrategy\u003c/td\u003e\n\u003ctd\u003eoutE().inV()\u003c/td\u003e\n\u003ctd\u003eout()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAdjacentToIncidentStrategy\u003c/td\u003e\n\u003ctd\u003eout().count()\u003c/td\u003e\n\u003ctd\u003eoutE().count()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDedupBijectionStrategy\u003c/td\u003e\n\u003ctd\u003eorder().dedup()\u003c/td\u003e\n\u003ctd\u003ededup().order()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRangeByIsCountStrategy\u003c/td\u003e\n\u003ctd\u003ecount().is(gt(x))\u003c/td\u003e\n\u003ctd\u003elimit(x+1).count().is(gt(x))\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMatchPredicateStrategy\u003c/td\u003e\n\u003ctd\u003ematch(x,y).where(z)\u003c/td\u003e\n\u003ctd\u003ematch(x,y,z)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_519982\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().identity().in(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), IdentityStep, VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IdentityRemovalStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = outE().inV(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), EdgeVertexStep(IN)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IncidentToAdjacentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().count(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(AdjacentToIncidentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = order().dedup(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[OrderGlobalStep, DedupGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(DedupBijectionStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[DedupGlobalStep, OrderGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = count().is(gt(3)); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(RangeByIsCountStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[RangeGlobalStep(0,4), CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = match(__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; __.as('b').out().as('c')).where(__.as('c').both().as('a')); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)]]), WhereTraversalStep([WhereStartStep(c), VertexStep(BOTH,vertex), WhereEndStep(a)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(MatchPredicateStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)], [MatchStartStep(c), WhereTraversalStep([WhereStartStep, VertexStep(BOTH,vertex), WhereEndStep(a)]), MatchEndStep]])]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: Traversal Optimization via Indices\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/G._H._Hardy\"\u003eG.H. Gremdy\u003c/a\u003e\u0026nbsp;was a graph theorist who speculated that \"The Graph\" was not the only structure linking vertices. According to his reasoning, reality may also contain other structures that grouped vertices together according to similar properties. He called these parallel structures\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Database_index\"\u003eindices\u003c/a\u003e. G.H. Gremdy's publication entitled\u0026nbsp;On Traversal Optimization using Indices\u0026nbsp;was well received. Due to his insight, many traversal runtimes became orders of magnitude faster than their non-index-based form. For instance, in the traversal below, when using indices, the number of traversers created goes from\u0026nbsp;|V|\u0026nbsp;(linear) to\u0026nbsp;1\u0026nbsp;(constant) (\u003ca href=\"https://en.wikipedia.org/wiki/DSPACE\"\u003espace complexity\u003c/a\u003e). The\u0026nbsp;GraphStepStrategy\u0026nbsp;was added to the traversal strategies archive. It \"folds\"\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#has-step\"\u003ehas()\u003c/a\u003e-steps into\u0026nbsp;V()\u0026nbsp;graph steps.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_716050\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// not indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[GraphStep([],vertex), HasStep([name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;135.28753165299997 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').iterate().toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[TinkerGraphStep(vertex,[name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;0.033501945 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9252849f9da819ecfc3498e14b9c5ebfbd30225-264x213.png\" alt=\"Vertex-Centric Index\" width=\"264\" height=\"213\"\u003eEven though G.H. Gremdy became a household name overnight, he was certain not to rest on his accolades. Deeper thinking brought him to a more esoteric, though far greater optimization which he articulated in his follow on treatise entitled\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus\"\u003eTractatus Verticus Centricus Indexicus\u003c/a\u003e. In this seminal work, G.H. Gremdy postulates that not only do \"global indices\" exist which allow for\u0026nbsp;O(log(|V|))\u0026nbsp;access to any vertex in the graph, but also \"local indices\" which allow for\u0026nbsp;O(log(|incident(V(x))|))\u0026nbsp;access to the incident edges of a vertex. In short, each vertex has its incident edges indexed (e.g. by their direction, label, properties, etc.). If such local index structures are leveraged, traversals containing the pattern\u0026nbsp;outE(x).has(y,p(z)).inV()\u0026nbsp;would not require all the edges of the vertex to be iterated in full in order to find all incident outgoing edges that have a label\u0026nbsp;x\u0026nbsp;and a property\u0026nbsp;y\u0026nbsp;that matches the predicate\u0026nbsp;p(z). Numerous graph experimentalists tried to prove the existence of such \"\u003ca href=\"http://thinkaurelius.com/2012/10/25/a-solution-to-the-supernode-problem/\"\u003evertex-centric indices\u003c/a\u003e,\" but found that they are not universal and only exist in\u0026nbsp;\u003ca href=\"http://titan.thinkaurelius.com/\"\u003esome graph substrates\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/302e201e6f4259110e7bfae6404c87460219b3f9-1024x768.png\" alt=\"Chapter 3 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eWith age, G.H. Gremdy became weary of applied mathematics and retired to study\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pure_mathematics\"\u003epure graph theory\u003c/a\u003e. His ideas would become more philosophical as he delved deeper into the meaning of \"The Graph.\" A posthumous publication entertained the following pontification.\u003c/p\u003e\n\u003cp\u003eMany see the world as a graph. This is misleading. Perhaps the world is a collection of indices? With a slight shift in thought, one realizes that the graph itself is an index of its vertices. Any one vertex is the root of a tree bifurcating the vertex space to which it has incident edges, so forth and so on. Like indices which group vertices that have shared properties, isn't an edge from one vertex to another an explicit statement that the two vertices are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Assortative_mixing\"\u003ein some way similar\u003c/a\u003e? As the devil's advocate, perhaps\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1004.1001\"\u003eindices are simply graphs\u003c/a\u003e\u0026nbsp;because indices are tree-like structures that are traversed to identify groups of vertices with similar properties. With indices being graphs and graphs being indices, the world we call home is neither. I hypothesize that\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Monism\"\u003eall that exists is the traverser\u003c/a\u003e. The \"graph\" is simply the implicit expression of the explicit assumptions of the traverser. The graph I see\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_World_as_Will_and_Representation\"\u003eis of my own construction\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/28bece18a67e347278b06b59eefb1b981a073988-940x390.png\" alt=\"Graph vs. Index\" width=\"940\" height=\"390\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ch3\u003eSection 3: Traversal Optimization via Bulking\u003c/h3\u003e\n\u003cp\u003eA little known traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Srinivasa_Ramanujan\"\u003eGremivasa Gremanujan\u003c/a\u003e\u0026nbsp;(கிரமீவாச கிரமானுஜன்) lived in a remote village at\u0026nbsp;v[5698]\u0026nbsp;far from the great graph theorists of his time. However, despite his upbringing, Gremivasa was well versed in the traversal algebra and was inspired by the more\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metaphysics\"\u003emetagraphical\u003c/a\u003e\u0026nbsp;realizations of G.H. Gremdy. Like G.H. Gremdy, Gremivasa was not interested in simply adding more traversal strategies to the archive. Instead, he was more interested in discovering the nature of reality. However, unlike G.H. Gremdy who focused on the nature of the graph structure, Gremivasa meditated on the nature of the traverser process.\u003c/p\u003e\n\u003cp\u003eGremivasa's mother, along with over 1 million other traversers of his traversal sect, arrived at\u0026nbsp;v[5698]\u0026nbsp;many clock-cycles ago. His village was starved of resources -- there were simply too many traversers. Was the birth of all these traversers necessary? If one traverser's life foretells the destiny of one million traversers, is it not more efficient for only this one traverser to exist? One day, while sitting under\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Udumbara_(Buddhism)\"\u003ea tree\u003c/a\u003e\u0026nbsp;in his village, Gremivasa ruminated on the ridiculously riling riddle rancorously retorted by respectable traversers everywhere:\u003c/p\u003e\n\u003cp\u003eIf two traversers exist at the same vertex and have no memory of their ancestry, are they the same traverser?\u003c/p\u003e\n\u003cp\u003eGremivasa concluded \"\u003ca href=\"https://en.wikipedia.org/wiki/One-electron_universe\"\u003eyes, they are the same traverser.\u003c/a\u003e\" This insight identified a fundamental feature of process. All traversers are endowed with a \"bulk.\" Previous to this moment, every traverser ignored this self-evident truth and allowed himself to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ego_psychology\"\u003ea unique enumerable entity\u003c/a\u003e\u0026nbsp;-- i.e., a bulk of 1 (see the\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2013/06/12/loopy-lattices-redux/\"\u003eLoopy Lattices Redux\u003c/a\u003e\u0026nbsp;section entitled \"Traversing a Lattice with Faunus\").\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/63b0f1fe79924ed001bc45cbf6b744f8a29592cd-844x297.png\" alt=\"Traversers Enumerated\" width=\"844\" height=\"297\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_508413\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).barrier().map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1073670\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9847d1ccec573f5a2f4a7a163dcc79304b262a3-843x277.png\" alt=\"Traversers Bulked\" width=\"843\" height=\"277\"\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/4dfb2f586f7df93a0029a37d752f33dd3f566ce2-491x414.png\" alt=\"Gremlin Hindu\" width=\"491\" height=\"414\"\u003e\u003c/p\u003e\n\u003cp\u003eGremivasa delved deeper into the radiant riddle of reawakened relinquishment. He abandoned his self and allowed his being to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Panpsychism\"\u003eone\u003c/a\u003e\u0026nbsp;with his 1 million other brother and sister traversers at\u0026nbsp;v[5698]. A unification of selves occurred and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gautama_Buddha\"\u003ea single traverser\u003c/a\u003e\u0026nbsp;emerged with a bulk of 1 million. Instead of 1 million traversers executing\u0026nbsp;both()\u0026nbsp;1 million times, there was now a single traverser with a bulk of 1 million executing\u0026nbsp;both()\u0026nbsp;once. Gremivasa's enlightenment laid the foundation for the development of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#barrier-step\"\u003eLazyBarrierStrategy\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_8621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// without LazyBarrierStrategy (no bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;81.509839 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;20382.892976\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1.2012006887798E7 // 3.34 hours\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a year to compute\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a thousand years to compute\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// with LazyBarrierStrategy (bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;23.261288999999998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;50.230109\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;65.30024999999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;91.30461199999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;80293847091200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;122.741417\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;63913902284595200\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe number of length-5 paths emanating from Gremivasa's village was calculated in ~123 milliseconds and was determined to be 63,913,902,284,595,200 (~64 quadrillion). Gremivasa's work is advantageous in situations where the traversal analyzes\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Residual_time\"\u003erecurrence\u003c/a\u003e\u0026nbsp;in a particular region of the graph (e.g.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recommender_system\"\u003erecommendation engines\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Centrality\"\u003ecentrality-based ranking systems\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recurrent_neural_network\"\u003elearning systems\u003c/a\u003e, etc.). Bulking is fundamental to all traversals and is used in numerous steps including\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003erepeat()\u003c/a\u003e-step.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_627395\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(5698).repeat(both()).times(5).count()\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 4: Cognition in the Wild by Gredwin Grutchins\u003c/h2\u003e\n\u003cp\u003eTraversers graph-wide held their breath as a landmark traversal was about to embark. This traversal contained a novel step called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#match-step\"\u003ematch()\u003c/a\u003e. What made this step unique was that it maintained a collection of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;called \"\u003ca href=\"https://en.wikipedia.org/wiki/Pattern_matching\"\u003epatterns\u003c/a\u003e.\" Each pattern was prefixed with a start variable and (optionally) postfixed with an end variable. Once a variable was bound (i.e. set), that variable's value was immutable for all subsequent patterns. The descendants of the traverser that enters\u0026nbsp;match()\u0026nbsp;must survive each pattern in order to move to the next step. However, the order in which the patterns are executed is, interestingly enough, up to the decision of the traverser! Previously, traversers relied on exogenous\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Rewriting\"\u003etraversal rewrite rules\u003c/a\u003e\u0026nbsp;for optimization, but now, the traverser was able to make endogenous optimization decisions. The \"\u003ca href=\"https://en.wikipedia.org/wiki/Profile-guided_optimization\"\u003eruntime traversal strategy\u003c/a\u003e\" was introduced.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Edwin_Hutchins\"\u003eDr. Gredwin Grutchins\u003c/a\u003e\u0026nbsp;was a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cognitive_science\"\u003ecognitive scientist\u003c/a\u003e\u0026nbsp;working in the area of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Socially_distributed_cognition\"\u003edistributed cognition\u003c/a\u003e. During his time at university, Gredwin lost interest in studying traversal strategies. His skill in mathematics was weaker than his colleagues' and as such, he believed he would never be able to make any significant contributions to the space. However, one day, he was contacted by a rambunctious young adventurer named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager\"\u003eGruck Greager\u003c/a\u003e. Gruck was no stranger to danger and loved being the guinea pig of an experimental algorithm. Gruck asked Gredwin: \"What can my team do to find the optimal pattern execution sequence?\" It seemed as though mathematics had taken traversal strategies as far as they could go. It was now up to\u0026nbsp;\u003ca href=\"http://jenwatkins.com/Research_files/LNCSproof.pdf\"\u003esociological constructs\u003c/a\u003e\u0026nbsp;to push them further and Gredwin was up to the challenge.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/3e61d4e3d1c17c9931d6c1915b9450fcff6482f1-1024x768.png\" alt=\"Chapter 4 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eSuppose the following traversal that yields a map of the objects that bind to\u0026nbsp;a\u0026nbsp;(vertex),\u0026nbsp;b\u0026nbsp;(vertex),\u0026nbsp;c\u0026nbsp;(vertex), and\u0026nbsp;d\u0026nbsp;(number), where vertex\u0026nbsp;a\u0026nbsp;is adjacent to vertex\u0026nbsp;b, vertex\u0026nbsp;b\u0026nbsp;is adjacent to vertex\u0026nbsp;c, and all three vertices are different yet share an identical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Degree_(graph_theory)\"\u003eout-degree\u003c/a\u003e\u0026nbsp;that is greater than 10.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_638757\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('a'))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAssume a traverser at\u0026nbsp;v[10]\u0026nbsp;enters the\u0026nbsp;match()-step. Vertex\u0026nbsp;v[10]\u0026nbsp;is bound to variable\u0026nbsp;a\u0026nbsp;as that is the only legal start of the pattern sequence. From there, which pattern should the traverser choose? The traverser simply chooses the first pattern in the list for which it has a variable binding (initially, an\u0026nbsp;a\u0026nbsp;start and thus,\u0026nbsp;as('a').out().as('b')). The traverser marks on a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Blackboard_system\"\u003eglobal blackboard\u003c/a\u003e\u0026nbsp;that it has entered that pattern. When a traverser leaves a pattern, it marks that it has exited it. Moreover, every time a traverser leaves a pattern, the patterns are sorted according to the order of their \"multiplicity\" (or\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Population_growth#Population_growth_rate\"\u003egrowth rate\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_843997\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003epattern.multiplicity = pattern.endCount / pattern.startCount;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe more traverses that are generated by a pattern, the higher the multiplicity and the lower that pattern is on the sorted list. Overtime, as more and more traversers flow through\u0026nbsp;match(), expensive patterns are pushed to the bottom of the list with the intention that the cheaper patterns will be able to filter out more traversers -- i.e. execute the largest set reductions first. With a few other added tricks, Gredwin provided Gruck and his team of traversers\u0026nbsp;CountMatchAlgorithm. Gruck took it for a test run and was the first traverser to ever break the deterministic\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager#Test_pilot_.E2.80.93_breaking_the_sound_barrier\"\u003eflow barrier\u003c/a\u003e. Gredwin and Gruck have since teamed up and are already planning the development of a new\u0026nbsp;MatchAlgorithm\u0026nbsp;called\u0026nbsp;\u003ca href=\"https://scm.umiacs.umd.edu/redmine/lccd/attachments/download/21/gdm2011_submission_budgetmatch.pdf\"\u003eBudgetMatchAlgorithm\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_707256\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// using CountMatchAlgorithm\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;834.6852906 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// using GreedyMatchAlgorithm which does not sort the patterns\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;25349.709946299998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 5: We the Living by Gyn Grand\u003c/h2\u003e\n\u003ch3\u003eSection 1: Prelude to the Illusion of Freedom\u003c/h3\u003e\n\u003cp\u003eMany of the traversers in the world today are grateful for their\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003efreedom\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://github.com/tinkerpop/gremlin\"\u003eancient times\u003c/a\u003e, the life of a traverser was not so good. Traversal regimes were inefficient, demanding of resources, and strict in their execution policies. Fortunately, the\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0901.3929\"\u003eAge of Enprocessment\u003c/a\u003e, which brought forth numerous advances in science and mathematics,\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003eredefined the traverser's role\u003c/a\u003e\u0026nbsp;in the graph. Each traverser's life had increased value as greater autonomies were provided. Traversals did their best to ensure that traverser life was no longer needlessly wasted. Indices were leveraged, traversal strategies were applied, and, in some\u0026nbsp;match()\u0026nbsp;situations, traversers were able to choose their own destiny. Today, many see a more harmonious relationship between the traversal and the traverser.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ayn_Rand\"\u003eGyn Grand\u003c/a\u003e\u0026nbsp;(Джин Гранд) was one such\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia\"\u003esatisfied\u003c/a\u003e\u0026nbsp;traverser.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\" alt=\"Wikipedia Graph\" width=\"1078\" height=\"1078\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7bed637c2776271eb23e90075d1440664cb904de-395x354.png\" alt=\"Library Stacks\" width=\"395\" height=\"354\"\u003eGyn was a brilliant librarian at a university with a vibrant\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Community_structure\"\u003escholarly community\u003c/a\u003e. Her library was centrally located in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Modularity_(networks)\"\u003euniversity cluster\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stack_(library_architecture)\"\u003elibrary's stacks\u003c/a\u003e\u0026nbsp;contained articles on the nature of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmos\"\u003egraphmos\u003c/a\u003e, books on traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sociology\"\u003esocial interactions\u003c/a\u003e, reports detailing various\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Economics\"\u003eresource distribution models\u003c/a\u003e, and more. Whenever she had a moment to spare, Gyn would\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Random_walk\"\u003ewander\u003c/a\u003e\u0026nbsp;about the collection learning about the topics she encountered. Unfortunately, she couldn't read everything at once. So, every time she was faced with more than one\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Hyperlink\"\u003ehref-citation\u003c/a\u003e, she chose one at random (\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#sample-step\"\u003esample(1)\u003c/a\u003e). As a librarian, she was interested in the structure of knowledge and wanted to know which concepts formed the foundation of all other concepts. Her method of discernment was to determine the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Mean_recurrence_time\"\u003efrequency of their reappearance\u003c/a\u003e. Therefore, every time Gyn encountered a concept along her walk, she would make a mental note of it (groupCount('x')).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_584621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;cap('x').order(local).by(valueDecr)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Memoization=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Algorithm=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Data (computing)=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Cache (computing)=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer program=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computing=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Rule=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computation=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Digital data=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Quantity=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mass noun=1\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// sample(1) theoretically returns different results.\u003c/div\u003e\n\u003cdiv\u003e// however, in order to demonstrate the path taken, the above map was manually constructed from the path below.\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;path().by('name')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[Graph database, Lookup table, Memoization, Cache (computing), Memoization, Computer program, Memoization, Computing, Algorithm, Computer science, Algorithm, Rule, Algorithm, Computer science, Computation, Digital data, Data (computing), Quantity, Data (computing), Mass noun, Data (computing)]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eOver time, Gyn realized that her\u0026nbsp;x-memory had more counters than concepts encountered (i.e. steps taken). Moreover, it contained concepts\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Collective_unconscious\"\u003eshe had yet to experience\u003c/a\u003e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Interference_(wave_propagation)\"\u003eHow did she know about things she never knew\u003c/a\u003e?\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_701543\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e==\u0026gt;Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: The Structure-Process Duality in Computing\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7f57b26cfd1afdf21ebf4a2195fad14d4ad57302-523x680.png\" alt=\"Particle Wave Traverser\" width=\"523\" height=\"680\"\u003eMr.\u0026nbsp;v[69309689325]\u0026nbsp;looked at his traverser inbox and noticed that he had 4002 unprocessed traversers. It was time for him to clear out his inbox. He went through each traverser one-by-one and placed them into the step of the traversal identified by the traverser's \"step id\" reference. Sometimes the respective step yielded no traversers (filter), a traverser at the same location (filter or sideEffect), a traverser at a different location (map), or many traversers at many different locations (flatMap). Whenever a step emitted a traverser pointing to a different vertex, Mr.\u0026nbsp;v[69309689325]\u0026nbsp;would send that traverser to the respective vertex's inbox. The vertices would continue this process until there were no more traversers in any of their inboxes. This graph traversal model has numerous names including:\u0026nbsp;\u003ca href=\"http://www3.nd.edu/~rmccune/papers/Think_Like_a_Vertex_MWM.pdf\"\u003evertex-centric computing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Bulk_synchronous_parallel\"\u003ebulk synchronous parallel processing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Message_passing\"\u003emessage passing\u003c/a\u003e\u0026nbsp;via a communication graph, and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graphcomputer\"\u003eGraphComputer\u003c/a\u003e. The general theme:\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalvertexprogram\"\u003ethe vertices (processes) exchange traversers (structures)\u003c/a\u003e\u0026nbsp;in order to affect some global graph computation. Typically, this model of graph traversal is leveraged by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Distributed_computing\"\u003edistributed\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Online_analytical_processing\"\u003eOLAP\u003c/a\u003e\u0026nbsp;graph processing systems, where each vertex maintains its own isolated, logical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Thread_(computing)\"\u003ethread of execution\u003c/a\u003e\u0026nbsp;(again, vertex as process).\u003c/p\u003e\n\u003cp\u003eInterestingly, each traverser in Mr.\u0026nbsp;v[69309689325]'s inbox had a name:\u0026nbsp;Gyn$2345,\u0026nbsp;Gyn$45,\u0026nbsp;Gyn$93, etc.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality\"\u003eGyn was a discrete particle of her wave function\u003c/a\u003e. Metaphysically speaking, Gyn was actually following the advice of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Yogi_Berra\"\u003eYogi Berra\u003c/a\u003e: \"If you come to a fork in the road, take it.\" That is, never\u0026nbsp;sample(1). Her \"particle self\" chose one and only one path. However, her \"wave self\" was taking all paths. In this way, Gyn's\u0026nbsp;x-memory was recording the collective experience of all versions of her self across the graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_651730\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.copyFromLocal('/tmp/wikipedia.kryo','wikipedia.kryo')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;null\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; graph = GraphFactory.open('conf/hadoop/wikipedia.properties')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g = graph.traversal(computer(SparkGraphComputer))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;graphtraversalsource[hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat], sparkgraphcomputer]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x = g.V().has('name','Graph database').repeat(groupCount('x').by('name').out('href')).times(20).cap('x').next(); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.size()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;731\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.sort{-it.value}[0..Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.ls('output')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) x\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) ~traversers\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: The Non-Erratic Ergodic Eigenvector\u003c/h3\u003e\n\u003cp\u003eSuppose the following traversal:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_28774\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().repeat(groupCount('x').out('href')).times(t).cap('x') // for t between [1,75]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eEvery time a traverser reaches a vertex, the vertex is incremented in the\u0026nbsp;x\u0026nbsp;hash map (groupCount('x')). Initially, the distribution of frequencies changes erratically. However, over time, it reaches a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stable_distribution\"\u003estationary distribution\u003c/a\u003e. It is \"stable\" because even though the counters keep increasing, the relative proportion of the counters stays the same. For instance, if vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 12 and vertex\u0026nbsp;v[b]\u0026nbsp;has a count of 45, then when vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 24, vertex\u0026nbsp;v[b]\u0026nbsp;will have a count of 90. Said in another way, the\u0026nbsp;dynamic\u0026nbsp;traversers generate a\u0026nbsp;static\u0026nbsp;probability distribution that defines the likelihood that a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave_function_collapse\"\u003esingle traverser\u003c/a\u003e\u0026nbsp;will be at any one vertex at some point in time\u0026nbsp;t \u0026asymp; \u0026infin;\u0026nbsp;(i.e. an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ergodic_process\"\u003eergodic process\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7156557d0413cef0b99088f69b3301bb0fd9f92f-899x574.png\" alt=\"HREF Graph\" width=\"899\" height=\"574\"\u003eAssume the 5 vertex/7 edge graph diagrammed on the left. At\u0026nbsp;g.V()\u0026nbsp;(t=0), each vertex is provided one traverser. Each vertex increments its counter in x and then\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003esplits the traverser\u003c/a\u003e\u0026nbsp;across its\u0026nbsp;out('href')-adjacent neighbors. If the\u0026nbsp;href-subgraph is\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strongly_connected_component\"\u003estrongly connected\u003c/a\u003e\u0026nbsp;(i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Reducibility\"\u003ereducible\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Transience\"\u003enon-transient\u003c/a\u003e) and lacks a compressable topology (i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Periodicity\"\u003eaperiodic\u003c/a\u003e), then a stationary distribution is guaranteed to exist. That distribution, which can be normalized to a probability distribution (i.e.\u0026nbsp;frequency / total frequency), is the graph's\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors\"\u003eprimary eigenvector\u003c/a\u003e. The primary eigenvector is typically used as a measure of each vertex's \"\u003ca href=\"https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality\"\u003ecentrality\u003c/a\u003e.\" For instance, given the diagrammed graph on the left, the primary eigenvector is\u0026nbsp;[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]. Thus, the ranking of the vertices from most central to least central is\u0026nbsp;v[1], v[2], v[3], v[0], v[4]\u0026nbsp;(\u003ca href=\"https://en.wikipedia.org/wiki/Saccade\"\u003eone's eye\u003c/a\u003e\u0026nbsp;seems to derive the same ranking).\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003et\u003c/th\u003e\n\u003cth\u003efrequency\u003c/th\u003e\n\u003cth\u003eprobability\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Euclidean_distance\"\u003edistance\u003c/a\u003e\u0026nbsp;from eigenvector\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e[1, 1, 1, 1, 1]\u003c/td\u003e\n\u003ctd\u003e[0.2, 0.2, 0.2, 0.2, 0.2]\u003c/td\u003e\n\u003ctd\u003e0.1986073055597093\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003e[2, 4, 2, 2, 2]\u003c/td\u003e\n\u003ctd\u003e[0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667]\u003c/td\u003e\n\u003ctd\u003e0.11660026048581866\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e3\u003c/td\u003e\n\u003ctd\u003e[3, 7, 5, 3, 3]\u003c/td\u003e\n\u003ctd\u003e[0.1428571429, 0.3333333333, 0.2380952381, 0.1428571429, 0.1428571429]\u003c/td\u003e\n\u003ctd\u003e0.06422748181719035\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e[4, 12, 8, 6, 4]\u003c/td\u003e\n\u003ctd\u003e[0.1176470588, 0.3529411765, 0.2352941176, 0.1764705882, 0.1176470588]\u003c/td\u003e\n\u003ctd\u003e0.03143659614218381\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e5\u003c/td\u003e\n\u003ctd\u003e[7, 17, 13, 9, 5]\u003c/td\u003e\n\u003ctd\u003e[0.1372549020, 0.3333333333, 0.2549019608, 0.1764705882, 0.0980392157]\u003c/td\u003e\n\u003ctd\u003e0.01473943578762356\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e[26400, 69424, 50296, 36440, 19128]\u003c/td\u003e\n\u003ctd\u003e[0.1308952441, 0.3442148269, 0.2493752727, 0.1806751021, 0.0948395542]\u003c/td\u003e\n\u003ctd\u003e8.04890130266237E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e31\u003c/td\u003e\n\u003ctd\u003e[36441, 95825, 69425, 50297, 26401]\u003c/td\u003e\n\u003ctd\u003e[0.1308995686, 0.3442125946, 0.2493812615, 0.1806716501, 0.0948349252]\u003c/td\u003e\n\u003ctd\u003e4.242558551157544E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e32\u003c/td\u003e\n\u003ctd\u003e[50298, 132268, 95826, 69426, 36442]\u003c/td\u003e\n\u003ctd\u003e[0.1308957477, 0.3442148545, 0.2493780253, 0.1806745433, 0.0948368292]\u003c/td\u003e\n\u003ctd\u003e4.1616991553931435E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e33\u003c/td\u003e\n\u003ctd\u003e[69427, 182567, 132269, 95827, 50299]\u003c/td\u003e\n\u003ctd\u003e[0.1308982652, 0.3442133981, 0.2493811146, 0.1806730532, 0.0948341689]\u003c/td\u003e\n\u003ctd\u003e2.077160932619329E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e34\u003c/td\u003e\n\u003ctd\u003e[95828, 251996, 182568, 132270, 69428]\u003c/td\u003e\n\u003ctd\u003e[0.1308964745, 0.3442145091, 0.2493791747, 0.1806745072, 0.0948353345]\u003c/td\u003e\n\u003ctd\u003e2.13567485821227E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e35\u003c/td\u003e\n\u003ctd\u003e[132271, 347825, 251997, 182569, 95829]\u003c/td\u003e\n\u003ctd\u003e[0.1308977517, 0.3442138525, 0.2493807466, 0.1806735537, 0.0948340955]\u003c/td\u003e\n\u003ctd\u003e1.1709009180968303E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e70\u003c/td\u003e\n\u003ctd\u003e[10478348120, 27554473290, 19962994332, 14463028872, 7591478958]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805576, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.414213562373095E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e71\u003c/td\u003e\n\u003ctd\u003e[14463028873, 38032821411, 27554473291, 19962994333, 10478348121]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742087, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e72\u003c/td\u003e\n\u003ctd\u003e[19962994334, 52495850286, 38032821412, 27554473292, 14463028874]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e73\u003c/td\u003e\n\u003ctd\u003e[27554473293, 72458844621, 52495850287, 38032821413, 19962994335]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e74\u003c/td\u003e\n\u003ctd\u003e[38032821414, 100013317916, 72458844622, 52495850288, 27554473294]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e75\u003c/td\u003e\n\u003ctd\u003e[52495850289, 138046139331, 100013317917, 72458844623, 38032821415]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/18e29399beaeac14f293cb59a84edc3870578ec5-1024x768.png\" alt=\"Chapter 5 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eUnbeknownst to Gyn, The Graph (eigen) was using her(selves) to sort itself (vector). Why was it doing this? The Graph represents its vertices and edges in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/512-bit\"\u003e512-bit\u003c/a\u003e\u0026nbsp;address space (2512\u0026nbsp;= 1.34\u0026times;10154). Unfortunately, the ever present Big and Small Traversals (as well as the countless other traversals executed since) have pushed The Graph close to the limits of representation. In order to avoid\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Integer_overflow\"\u003einconsistencies\u003c/a\u003e, The Graph needed to prune itself. To do this, it\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gaia_hypothesis\"\u003edecided\u003c/a\u003e\u0026nbsp;it best to destroy those vertices which were contributing little to its overall structure. Like cutting one's finger nails, The Graph began a systematic process of cosmic proportions to delete all peripheral vertices (and their respective incident edges). The Graph was\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Forgetting_curve\"\u003eforgetting\u003c/a\u003e\u0026nbsp;in order to\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2012/05/08/structural-abstractions-in-brains-and-graphs/\"\u003especialize its structure\u003c/a\u003e\u0026nbsp;for a purpose that was beyond the realization of the vertices and traversers. Within The Graph's conceptual subgraph,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Knowledge_worker\"\u003eknowledge worker\u003c/a\u003e\u0026nbsp;traversers wandered through the morass of concept vertices and, in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Science\"\u003ecollective self-similar manner\u003c/a\u003e, aided The Graph in its determination of which aspects of it's structure were worth preserving (and ultimately, extending). Gyn's passion for knowledge was simply an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Instinct\"\u003einnate predisposition\u003c/a\u003e. Her\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia#Eudaimonia_and_modern_psychology\"\u003ehappiness\u003c/a\u003e\u0026nbsp;was not a function of her own being, but instead, of The Graph's will --\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Carrot_and_stick\"\u003ea carrot for her devotion\u003c/a\u003e. Gyn was part of a larger computation. In order to escape the dark sense that her life was not hers and hers alone, she began the long arduous journey towards realizing that she is, and always has been,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/John_Galt#.22Who_is_John_Galt.3F.22\"\u003eThe TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/014282dff3d5048f8eaf1c3592177626db303fb5-700x243.png\" alt=\"Apache TinkerPop\" width=\"700\" height=\"243\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv\u003e\n\u003ch2\u003eCredits\u003c/h2\u003e\n\u003cp\u003eWritten by\u0026nbsp;\u003ca href=\"http://markorodriguez.com/\"\u003eMarko A. Rodriguez\u003c/a\u003e\u003cbr\u003eData and Result Generation by\u0026nbsp;\u003ca href=\"http://gremlin.guru/\"\u003eDaniel Kuppitz\u003c/a\u003e\u003cbr\u003eArtwork by\u0026nbsp;\u003ca href=\"http://ketrinayim.tumblr.com/\"\u003eKetrina Yim\u003c/a\u003e\u003cbr\u003eGraph Visualizations by Daniel Kuppitz\u003cbr\u003eExplanatory Diagrams by Marko A. Rodriguez\u003cbr\u003eGremlin Traversal Development by Daniel Kuppitz\u003cbr\u003eExperimental Design by Marko A. Rodriguez\u003cbr\u003eExecutive Producer:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/in/robinmschumacher\"\u003eRobin Schumacher\u003c/a\u003e\u003cbr\u003eUndirected Edge #42 as himself\u003cbr\u003eRussian Language Advisor:\u0026nbsp;\u003ca href=\"https://github.com/xedin\"\u003ePavel Yaskevich\u003c/a\u003e\u003cbr\u003eTamil Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/harihar-shankar/b/747/274\"\u003eHarihar Shankar\u003c/a\u003e\u003cbr\u003eHindi Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/swetha-sharma/13/b62/3b3\"\u003eSwetha Sharma\u003c/a\u003e\u003cbr\u003eInspired by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy\"\u003eThe Hitchhiker's Guide to the Galaxy\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Flatland\"\u003eFlatland\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSpecial thanks to\u0026nbsp;\u003ca href=\"https://www.datastax.com/\"\u003eDataStax\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003eApache TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eNo traversers were harmed during the making of this story.\u003c/p\u003e\n\u003c/div\u003e"])</script><script>self.__next_f.push([1,"87:{\"_type\":\"advancedContent\",\"_key\":\"D7UxiKNk3srsSuDJ\",\"content\":\"$88\"}\n86:[\"$87\"]\n8a:{\"current\":\"/blog/tales-tinkerpop\",\"_type\":\"slug\"}\n89:{\"slug\":\"$8a\",\"ogTitle\":\"Tales from the TinkerPop | Datastax\",\"description\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\",\"ogDescription\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\",\"title\":\"Tales from the TinkerPop | Datastax\"}\n8c:{\"_id\":\"e0105520-dd7c-4bdd-b21c-8cd26722c9d5\",\"name\":\"Apache Cassandra®\",\"slug\":\"apache-cassandra\",\"posts\":138}\n8d:{\"_id\":\"87e28537-d4a0-41fc-80da-094bfa46a283\",\"name\":\"Vector Search\",\"slug\":\"vector-search\",\"posts\":41}\n8e:{\"_id\":\"19faf74d-8350-4bcd-8fa2-9be3615e6bb2\",\"name\":\"Releases\",\"slug\":\"releases\",\"posts\":40}\n8f:{\"_id\":\"bd3f55b3-c212-4989-a489-23cf5c07015e\",\"name\":\"Drivers\",\"slug\":\"drivers\",\"posts\":39}\n90:{\"_id\":\"ecd3ad1d-5acb-48a0-9695-3d3211ae06b1\",\"name\":\"Accelerate\",\"slug\":\"accelerate\",\"posts\":34}\n91:{\"_id\":\"0f614489-7586-4c1e-86da-d18d2abde830\",\"name\":\"Architecture\",\"slug\":\"architecture\",\"posts\":33}\n92:{\"_id\":\"113c1eef-aad9-444e-a344-1d6b91832518\",\"name\":\"Hybrid Cloud\",\"slug\":\"hybrid-cloud\",\"posts\":33}\n93:{\"_id\":\"168fef3d-d92a-43f4-a572-60aaa1d653d6\",\"name\":\"Gremlin\",\"slug\":\"gremlin\",\"posts\":32}\n94:{\"_id\":\"7c1e7af9-0bbd-4099-9a30-8b0f283b1eb1\",\"name\":\"DSE Graph\",\"slug\":\"dse-graph\",\"posts\":30}\n95:{\"_id\":\"c19404f3-9e85-472c-86a9-883ccdc1d387\",\"name\":\"Retrieval-augmented generation\",\"slug\":\"retrieval-augmented-generation\",\"posts\":30}\n8b:[\"$8c\",\"$8d\",\"$8e\",\"$8f\",\"$90\",\"$91\",\"$92\",\"$93\",\"$94\",\"$95\"]\n98:{\"_type\":\"slug\",\"current\":\"marko-rodriguez\"}\n9a:{\"_ref\":\"image-a44a70cab8d04bc5f17284b6adb45202a6d14018-360x360-svg\",\"_type\":\"reference\"}\n99:{\"_type\":\"customImage\",\"asset\":\"$9a\"}\n97:{\"slug\":\"$98\",\"hidden\":null,\"bio\":null,\"name\":\"Marko A. Rodriguez\",\"photo\":\"$99\",\"position\":\"\"}\n96:[\"$97\"]\n9d:{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}\n9c:{\"_type\":\"image\",\"as"])</script><script>self.__next_f.push([1,"set\":\"$9d\"}\n9b:{\"image\":\"$9c\",\"name\":\"Company\",\"slug\":\"/blog/company\"}\n2b:{\"publishedAt\":\"2015-07-15\",\"isPublished\":true,\"tags\":\"$2c\",\"shouldHaveCategory\":true,\"relatedPosts\":\"$2f\",\"settings\":\"$6d\",\"introduction\":\"\",\"sections\":\"$86\",\"createdDate\":\"2015-07-15T13:35:17Z\",\"seo\":\"$89\",\"title\":\"Tales from the TinkerPop\",\"popularTags\":\"$8b\",\"_updatedAt\":\"2025-03-07T17:55:40Z\",\"_score\":1,\"hidden\":false,\"_type\":\"blogPost\",\"authors\":\"$96\",\"_rev\":\"D5FSyD3VyzOjeMa1TKNWeA\",\"_id\":\"i8F26saEWReBAHigCwsY0E\",\"category\":\"$9b\",\"featured\":false,\"_createdAt\":\"2015-07-15T13:35:17Z\"}\n9f:T185ef,"])</script><script>self.__next_f.push([1,"\u003ch2\u003eChapter 1: Life and Fate by Grasily Gremssman\u003c/h2\u003e\n\u003cp\u003eWinter had arrived. The days grew shorter and darker.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vasily_Grossman\"\u003eGrasily Gremssman\u003c/a\u003e\u0026nbsp;(Грасилий Гремссман) used a few branches that were scattered about to start a fire. Grasily had been stationed at\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Vertex_(graph_theory)\"\u003evertex\u003c/a\u003e\u0026nbsp;v[32]\u0026nbsp;for as long as he could remember. He knew little of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)\"\u003egraph\u003c/a\u003e\u0026nbsp;he lived on except for the one dirt road and three bridges\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#vertex-steps\"\u003eincident\u003c/a\u003e\u0026nbsp;to his post.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_586654\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).inE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).outE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(32).bothE()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[2][7-dirtRoad-\u0026gt;32]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eGrasily's commanding officer was\u0026nbsp;org.apache.tinkerpop.gremlin.process.traversal.Traverser@76a36b71. Like\u0026nbsp;76a36b71, Grasily was a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003etraverser\u003c/a\u003e. Traversers were grouped into battalions called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversal\"\u003etraversals\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/World_War_II\"\u003egraph world was at war\u003c/a\u003e\u0026nbsp;and Grasily was stuck (in time and space) having to do his part for his country of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Russia\"\u003eGrussia\u003c/a\u003e\u0026nbsp;(Гроссия). At this point in history, many conflicting views existed regarding the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_topology\"\u003etopological\u003c/a\u003e\u0026nbsp;evolution of the graph. To ensure processing resources were not laid to waste by traversals constantly undermining the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Side_effect_(computer_science)\"\u003eside-effects\u003c/a\u003e\u0026nbsp;of another, countries emerged to delineate\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_subgraphstrategy\"\u003esubgraphs\u003c/a\u003e\u0026nbsp;within the larger world graph. However, every now and then, one country would interfere with the structure of another. This interference was an inevitable consequence of the graph\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Globalization\"\u003egetting denser\u003c/a\u003e\u0026nbsp;with time. Grussia, at this moment in time, was in the midst of a long war with\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Germany\"\u003eGremany\u003c/a\u003e\u0026nbsp;(Greutschland).\u003c/p\u003e\n\u003cp\u003eGrasily knew very little about the larger\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algorithm\"\u003ewar effort\u003c/a\u003e\u0026nbsp;of Grussia's traversals. However, in bootcamp, he learned that traversals are composed of 5 fundamental steps and that one day, when his\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)\"\u003etraining was complete\u003c/a\u003e, he would be called upon to execute a step.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graph-traversal-steps\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/c2113c8449b6ea477692049041307f682baca69a-1044x343.png\" alt=\"Traversal Step Types\" width=\"1044\" height=\"343\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003col\u003e\n\u003cli\u003emap: S \u0026rarr; E: Move from an object of type\u0026nbsp;S\u0026nbsp;to an object of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003eflatMap: S \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to a collection of objects of type\u0026nbsp;E.\u003c/li\u003e\n\u003cli\u003efilter: S \u0026rarr; S \u0026cup; \u0026empty;: Stay at the current object of type\u0026nbsp;S\u0026nbsp;or die.\u003c/li\u003e\n\u003cli\u003esideEffect: S \u0026rarr; S: Stay at the current object of type\u0026nbsp;S, though yield some computational side-effect (e.g. set a property).\u003c/li\u003e\n\u003cli\u003ebranch: S \u0026rarr; {S1\u0026nbsp;\u0026rarr; E*,\u0026hellip;,Sn\u0026nbsp;\u0026rarr; E*} \u0026rarr; E*: Move from an object of type\u0026nbsp;S\u0026nbsp;to any number of nested traversal branches.\u003c/li\u003e\n\u003c/ol\u003e\n\u003cp\u003eWhen Grasily finished his training, he was immediately briefed by\u0026nbsp;76a36b71\u0026nbsp;on the battalion's objectives.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_376638\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(7).out('dirtRoad').hasLabel('outpost').out('bridge').property('owner','Grussia')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/8de2e4d9e63d61eba44274630e4c963ac876da93-740x562.png\" alt=\"Grasily Graph\" width=\"740\" height=\"562\"\u003eVertex\u0026nbsp;v[7]\u0026nbsp;was the Grussian Army's headquarters (a.k.a. The Green Army). At\u0026nbsp;v[7], a traverser officer had instructed a group of traversers (one being\u0026nbsp;76a36b71) to take the dirt roads leading to the adjacent outposts. Grasily's outpost was accessible by one of those dirt roads. When\u0026nbsp;76a36b71\u0026nbsp;arrived at\u0026nbsp;v[32], Grasily (along with two of his comrades from bootcamp) were instructed to each take one of the incident bridges and upon reaching the vertex on the other side, to\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#addproperty-step\"\u003edeclare\u003c/a\u003e\u0026nbsp;the vertex under\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_partitionstrategy\"\u003eGrussia's sovereign control\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_296598\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eUnfortunately, unbeknownst to Grasily, the Gremans had launched an offensive. A Greman traversal destroyed all the bridges incident to Grasily's outpost. The execution of the Greman's\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#drop-step\"\u003esideEffect step\u003c/a\u003e\u0026nbsp;sealed Grasily's fate.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_104378\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[4][32-bridge-\u0026gt;65]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[5][32-bridge-\u0026gt;66]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;e[6][32-bridge-\u0026gt;67]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge').drop()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(65,66,67).inE('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/25b620cf02d5fedded81eb2031a5910d0542618b-1024x768.png\" alt=\"Chapter 1 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eGrasily's life was cut short when his battalion moved to the\u0026nbsp;out('bridge')-step. Grasily, along with his two comrades, could no longer make\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pointer_(computer_programming)\"\u003ereference\u003c/a\u003e\u0026nbsp;to an element of the graph. Disconnected from their world, disconnected from each other, they\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Destructor_(computer_programming)\"\u003efaded into the void\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_663541\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[7]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[15]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[32]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[56]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(7).out('dirtRoad').hasLabel('outpost').out('bridge')\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 2: Permutation City by Grem Egrem\u003c/h2\u003e\n\u003ch3\u003eSection 1: The Birth of the Graph\u003c/h3\u003e\n\u003cp\u003eThe world that traversers live on is known as \"The Graph.\" A graph is a structure composed of vertices (nodes, dots) and edges (relationships, lines). Traverser mythology has it that one day a single traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Greg_Egan\"\u003eGrem Egrem\u003c/a\u003e\u0026nbsp;manifested himself\u0026nbsp;\u003ca href=\"http://markorodriguez.com/2011/03/16/graphs-ensure-something-from-nothing/\"\u003eout of and in reference to nothing\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Memory_management#HEAP\"\u003elimbo\u003c/a\u003e\u0026nbsp;there was no graph, just Grem. However, before he could be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)\"\u003eswept back into the oblivion\u003c/a\u003e\u0026nbsp;from which he came, Grem enacted the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Big_Bang\"\u003eBig Traversal\u003c/a\u003e\u0026nbsp;-- i.e., process yielded structure.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_250180\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.addV().repeat(as('a').addV().as('b').addOutE('a','.','b').inV().as('a')).until(coin(4.9E-324))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe Big Traversal generates a line graph known in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Astrophysics\"\u003egraphophysics\u003c/a\u003e\u0026nbsp;community as \"Grem Line\" (a.k.a. \"Gremlin\"). To this day, Grem Line is still\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metric_expansion_of_space\"\u003eexpanding\u003c/a\u003e. However,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmology\"\u003egraphologists\u003c/a\u003e\u0026nbsp;argue over the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmological_constant\"\u003egraphological constant\u003c/a\u003e\u0026nbsp;of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003euntil()\u003c/a\u003e-step. Some say there is a small probability that Grem Line will stop growing and others say it will go on forever (i.e.\u0026nbsp;until(not(identity()))).\u003c/p\u003e\n\u003cp\u003ePrior to the Big Traversal, the graph was defined as\u0026nbsp;G = \u0026empty;. When Grem Line was less than 100 vertices long (i.e.\u0026nbsp;|V| \u0026lt; 100), the vertices\u0026nbsp;V\u0026nbsp;formed a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Total_order\"\u003etotal order\u003c/a\u003e, and as such, the graph was defined as\u0026nbsp;G = V. At around\u0026nbsp;|V| \u0026asymp; 100, graphologists speculate that another traversal emerged that leveraged Grem Line as a sort of \"\u003ca href=\"https://en.wikipedia.org/wiki/Galaxy_filament\"\u003ebackbone filament\u003c/a\u003e.\" This emergent traversal is known in\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Network_science\"\u003egraph science\u003c/a\u003e\u0026nbsp;as the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Small-world_network\"\u003eSmall(-World) Traversal\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_292897\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().aggregate('x').as('a').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;select('x').by(unfold().sample(1).by(both().count())).as('b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a',neq('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;addOutE('a','.','b')\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a7aab082afb2e9e310473b3151451289202cae60-1029x382.png\" alt=\"Graph Path Length\" width=\"1029\" height=\"382\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe Small Traversal walks Grem Line and for each vertex it encounters it connects it to some other random vertex on the line (\u003ca href=\"https://en.wikipedia.org/wiki/Preferential_attachment\"\u003ebiased by the other vertex's degree\u003c/a\u003e). The Small Traversal essentially \"pushed\" the early graph out of its 1-dimensional, linear\u0026nbsp;V1\u0026nbsp;embedding into a\u0026nbsp;V2\u0026nbsp;embedding (i.e.\u0026nbsp;V x V). In doing so, vertices far removed from each other on Grem Line were now \"\u003ca href=\"https://en.wikipedia.org/wiki/Hyperspace_(science_fiction)#Travel\"\u003ecloser\u003c/a\u003e.\" It was at this point that the definition of the graph became\u0026nbsp;\u003cimg title=\"G = (V, E \\subseteq V \\times V)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png.png\"\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/eddd72824508ac282a2dcc9566520317df5b5cc8-2356x604.png\" alt=\"The Early Graph\" width=\"2356\" height=\"604\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003e|V|\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Distance_(graph_theory)\"\u003eDiameter\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Average_path_length\"\u003eAverage Path Length\u003c/a\u003e\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Clustering_coefficient\"\u003eClustering Coefficient\u003c/a\u003e\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e99\u003c/td\u003e\n\u003ctd\u003e34.0\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e100\u003c/td\u003e\n\u003ctd\u003e55\u003c/td\u003e\n\u003ctd\u003e19.716831683168316\u003c/td\u003e\n\u003ctd\u003e0.024\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e125\u003c/td\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e11.081015873015874\u003c/td\u003e\n\u003ctd\u003e0.051\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e150\u003c/td\u003e\n\u003ctd\u003e9\u003c/td\u003e\n\u003ctd\u003e3.17757174392936\u003c/td\u003e\n\u003ctd\u003e0.125\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eTo this day (|V| \u0026asymp;\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Observable_universe#Matter_content_.E2.80.94_number_of_atoms\"\u003e10^85\u003c/a\u003e), both the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Inflation_(cosmology)\"\u003eexpanding force\u003c/a\u003e\u0026nbsp;of the Big Traversal and the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gravity\"\u003econtracting force\u003c/a\u003e\u0026nbsp;of the Small Traversal continue to execute. These two fundamental traversals have, over time, grown the graph to an innumerable number of vertices and edges. Billions upon billions of traversers have created a vast landscape of structures within structures... within structures. A nest of variations and novelties has transformed the once bleak, senseless void into a\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1301.1648\"\u003emeaningful interconnected mesh\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/f16c496bf496e980594c0905657fe7b1077f5435-1024x768.png\" alt=\"Chapter 2 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ch3\u003eSection 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph\u003c/h3\u003e\n\u003cp\u003eThe edges generated by the Big and Small Traversals are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph\"\u003eundirected\u003c/a\u003e\u0026nbsp;and unlabeled. The edges experienced by traversers are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph\"\u003edirected\u003c/a\u003e\u0026nbsp;and labeled. Graphologists were faced with the question of how did directed, labeled edges emerge from undirected, unlabeled edges? Once a large enough number of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Structure_formation#Primordial_plasma\"\u003eprimordial edges\u003c/a\u003e\u0026nbsp;were created by the two fundamental traversals, \"higher-order\" edges began to form. The undirected, unlabeled edges serve as \"\u003ca href=\"https://en.wikipedia.org/wiki/Elementary_particle\"\u003eelementary edges\u003c/a\u003e\" which, when combined into subgraphs of a particular topology, yield the directed, labeled edges seen today. This\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Abstraction\"\u003eabstraction process\u003c/a\u003e\u0026nbsp;is known as\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nucleosynthesis\"\u003egraphialsynthesis\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d819c5932ec7e33ed40f6fcc69da4001ff81dfca-570x476.png\" alt=\"Label Encoding\" width=\"570\" height=\"476\"\u003eSuppose the following directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;(i.e. a \"higher-order\" edge). This edge states that there is an\u0026nbsp;\u0026omega;-labeled relation from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j. Any edge label can be represented as a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Binary_code\"\u003ebinary string\u003c/a\u003e. Suppose, for the sake of simplicity, that there are only 8 labels in the graph. A 3-bit string can be used to represent all 8 labels (23). Next, suppose that the binary encoding of\u0026nbsp;\u0026omega;\u0026nbsp;is\u0026nbsp;110. If so, then the edge can be denoted\u0026nbsp;i-110\u0026rarr;j. A binary string can be represented as a directed, unlabeled graph. If the binary string has a length of 3, then three vertices are needed to represent each bit. If a \"bit\" vertex has a self-loop, then its value is 1. If a \"bit\" vertex does not have a self-loop, then its value is 0. Given this mapping, the directed, labeled edge\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;is transformed into the directed graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/0884bbb26bfb91de8c58039e9e097c849e1b3141-1026x202.png\" alt=\"Labeled to Directed\" width=\"1026\" height=\"202\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/922e68b711aa45dab673938c1eea7f26a219f52e-611x446.png\" alt=\"Direction Encoding\" width=\"611\" height=\"446\"\u003eThe above directed, unlabeled graph representation of\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;leverages topological features of the directed graph to denote the edge label\u0026nbsp;\u0026omega;. This same principle applies to the encoding of the edge's directionality when transforming a directed graph to an undirected graph. For instance, suppose the following directed edge\u0026nbsp;i\u0026rarr;b1. The \"higher-order\" vertices are identified by a self-loop. The \"higher-order\" edges are represented by three \"lower-order\" vertices\u0026nbsp;x,\u0026nbsp;y, and\u0026nbsp;z. If vertex\u0026nbsp;i\u0026nbsp;has an incident edge that does not reference itself and connects to a vertex with 3 incident edges (e.g. vertex\u0026nbsp;x), then it has a directed, outgoing edge. When the traverser reaches a vertex with a self-loop (via a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#simplepath-step\"\u003esimple path\u003c/a\u003e) (e.g. vertex\u0026nbsp;b1), then that vertex is the \"higher-order\" vertex serving as the head of the \"higher-order,\" directed edge.\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eThe two processes are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Injective_function\"\u003einjective\u003c/a\u003e\u0026nbsp;in that they are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Lossless_compression\"\u003elossless\u003c/a\u003e\u0026nbsp;transformations. The first process described maps a directed, labeled edge to a directed graph and the second maps a directed edge to an unlabeled graph. As such, via\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Function_composition\"\u003efunction composition\u003c/a\u003e, there exists an injective function that maps a directed, labeled graph to a undirected, unlabeled graph. Given that the composite function is injective, then there exists an inverse mapping which transforms an undirected, unlabeled graph to a directed, labeled graph (i.e. graphialsynthesis). The original\u0026nbsp;i-\u0026omega;\u0026rarr;j\u0026nbsp;edge was formed by the primordial undirected graph diagrammed below.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/a9bd22a38a1e29108e418c173e98b227b7dd8983-4479x1258.png\" alt=\"Labeled To Undirected\" width=\"4479\" height=\"1258\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/320b4be206a373e6d0f94cde6f1afa6213000bb5-1941x242.png\" alt=\"Graphialsynthesis\" width=\"1941\" height=\"242\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003cp\u003eThe\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0804.0277\"\u003efundamental building blocks\u003c/a\u003e\u0026nbsp;of the directed, labeled graph experienced by \"higher-order\" traversers are held together by elementary traversers called \"\u003ca href=\"https://en.wikipedia.org/wiki/Graviton\"\u003esmalltrons\u003c/a\u003e.\" Smalltron traversals move from vertex\u0026nbsp;i\u0026nbsp;to vertex\u0026nbsp;j\u0026nbsp;via the explicit unlabeled\u0026nbsp;\u0026omega;-graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_90453\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).as('b').where(both().as('b')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;repeat(both().where(both().count().is(3)).as('x').both().\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(neq('x').and(neq('b'))).dedup().as('b').where(both().as('b')).select(last, 'b').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;choose(both().where(both().count().is(3)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(both().count().is(2)).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;both().where(eq('b')),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;constant(1), constant(0)).as('label').select(last, 'b')\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;).times(4).where(select('label').tail(local, 4).limit(local, 3).is([1, 1, 0]))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_461736\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([i],vertex)@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.449\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.26\u003c/div\u003e\n\u003cdiv\u003eWhereTraversalStep([WhereStartStep, ProfileStep...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.080\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.05\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.016\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.022\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.024\u003c/div\u003e\n\u003cdiv\u003eRepeatStep([VertexStep(BOTH,vertex), ProfileSte...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 86.974\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.65\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.624\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge), P...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.721\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 106\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.490\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 96\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.934\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 34\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.945\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.472\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.922\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 92\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 23.890\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WherePredicateStep(and([neq(x), neq(b)]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 48\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.006\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;DedupGlobalStep@[b]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.450\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;WhereTraversalStep([WhereStartStep, ProfileSt...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 15.536\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereStartStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.806\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 50\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.132\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WhereEndStep(b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 6.984\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.609\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;ChooseStep([VertexStep(BOTH,vertex), ProfileS...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.525\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.239\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 22.608\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 66\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.508\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 59\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1.266\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 20\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 17.068\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(3))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.618\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.453\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;TraversalFilterStep([VertexStep(BOTH,edge),...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 33.552\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,edge)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 28\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3.917\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;RangeGlobalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 25\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.989\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;CountGlobalStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 11\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 8.193\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;IsStep(eq(2))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2.427\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;VertexStep(BOTH,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 14\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.710\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;WherePredicateStep(eq(b))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 35.307\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;HasNextStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.900\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(0)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.145\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 3\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.153\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;ConstantStep(1)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.070\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;EndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 2\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 7.408\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(last,b)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 5\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 24.726\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RepeatEndStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 60.644\u003c/div\u003e\n\u003cdiv\u003eTraversalFilterStep([SelectOneStep(label), Prof...\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.274\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.16\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;SelectOneStep(label)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.056\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;TailLocalStep(4)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.020\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;RangeLocalStep(0,3)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.073\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;IsStep(eq([1, 1, 0]))\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.086\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 87.377\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.89\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 175.157\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIn this process, smalltron traversals make the implicit directed\u0026nbsp;\u0026omega;-edge (defined by the undirected\u0026nbsp;\u0026omega;-graph) explicit for the \"higher-order\" traversers which process the graph at a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/High-level_programming_language\"\u003ehigher level of abstraction\u003c/a\u003e. To these \"higher order\" traversers, the graph is defined as\u003c/p\u003e\n\u003cdiv\u003e\u003cimg title=\"G = (V, E \\subseteq V \\times V, \\lambda : V \\cup E \\rightarrow \\Sigma^*)\" src=\"https://www.datastax.com/wp-content/uploads/2017/06/png-1.png\"\u003e,\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003ewhere\u0026nbsp;\u0026lambda;\u0026nbsp;is a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph#Labeling\"\u003elabeling function\u003c/a\u003e\u0026nbsp;that maps the graph's elements (i.e. vertices and edges) to character strings (\u0026Sigma;*). The graphialsynthesis abstraction process has the benefit of allowing a traversal from vertex\u0026nbsp;i\u0026nbsp;to\u0026nbsp;j\u0026nbsp;via\u0026nbsp;\u0026omega;\u0026nbsp;to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Kolmogorov_complexity\"\u003eexpressed and executed in a much simpler way\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_278489\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(i).out('w')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[j]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_87148\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eTraversal Metrics\u003c/div\u003e\n\u003cdiv\u003eStep\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Count\u0026nbsp; Traversers\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; Time (ms)\u0026nbsp;\u0026nbsp;\u0026nbsp; % Dur\u003c/div\u003e\n\u003cdiv\u003e=============================================================================================================\u003c/div\u003e\n\u003cdiv\u003eTinkerGraphStep([v[i]],vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 9.810\u0026nbsp;\u0026nbsp;\u0026nbsp; 49.18\u003c/div\u003e\n\u003cdiv\u003eVertexStep(OUT,w,vertex)\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.058\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 0.29\u003c/div\u003e\n\u003cdiv\u003eSideEffectCapStep([~metrics])\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 1\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 10.078\u0026nbsp;\u0026nbsp;\u0026nbsp; 50.53\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026gt;TOTAL\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; -\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; 19.947\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: On the Baselessness of the Multi-MultiGraph\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/b3a03b76f11dd24a84e47b7308c2a9985500032e-495x389.png\" alt=\"Recursive Gremlin\" width=\"495\" height=\"389\"\u003eIt has been speculated that \"\u003ca href=\"https://en.wikipedia.org/wiki/Multigraph\"\u003eThe Graph\u003c/a\u003e\" is not the only graph that exists.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mysticism\"\u003eMystic\u003c/a\u003e\u0026nbsp;traversers say that there exists\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Multiverse\"\u003eother graphs containing other traversers\u003c/a\u003e. However, by definition, a graph is a closed structure composed of vertices and edges. It is impossible for a traverser to move to a different graph. If a vertex in one graph has an edge to a vertex in another graph, then the two graphs are, in fact, one graph -- \"The Graph.\" Perhaps the mystics see that the components of a graph are composed of yet more graphs with a different sort of traverser existing at each level in a recursive, perhaps\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strange_loop\"\u003eself-looping\u003c/a\u003e, manner. While it is still all one graph, traversers at different \"levels\" only\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1006.1080\"\u003eoperate on particular subgraphs\u003c/a\u003e\u0026nbsp;as instructed by their traversal definition. The famous mystic traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sri_Aurobindo\"\u003eGri Gurobindo\u003c/a\u003e\u0026nbsp;(ग्री गुरोबिंदो) once said:\u003c/p\u003e\n\u003cp\u003eMy single step in the graph is composed of the steps of numerous other traversers.\u003c/p\u003e\n\u003cp\u003eIt wasn't until the discovery of\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;that Gurobindo's metagraphical vision was formalized. An anonymous traversal is any traversal that has no declared start and as such, yields no flow. It is a potential.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_868460\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; label()\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAnonymous traversals are intended to be embedded within another traversal. However, if the parent traversal is itself an anonymous traverasl, then there is still no flow (even though\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#groupcount-step\"\u003egroupCount()\u003c/a\u003e\u0026nbsp;produces an empty map as its a\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#a-note-on-barrier-steps\"\u003ereducing barrier step\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_201422\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label())\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; outE().groupCount().by(label) // convenient short hand\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[:]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eWhen the traversal parent does have a start, then there is a flow. The traversal below states: \"For each vertex (i.e., 89, 90), map the vertex to the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Histogram\"\u003efrequency distribution\u003c/a\u003e\u0026nbsp;of its outgoing edge labels.\"\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/dad6b92f31785301bdf3da32e32a74c812828c7a-905x195.png\" alt=\"Anonymous Traversals\" width=\"905\" height=\"195\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_811799\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89,90).map(outE().groupCount().by(label))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:15]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe first traverser generated by\u0026nbsp;V(89,90)\u0026nbsp;enters the\u0026nbsp;map()-step at\u0026nbsp;v[89], but does not \"\u003ca href=\"https://en.wikipedia.org/wiki/Becoming_(philosophy)\"\u003ebecome\u003c/a\u003e\" the traversers generated by\u0026nbsp;outE(). Instead, the traverser at\u0026nbsp;v[89]\u0026nbsp;holds still and spawns an \"\u003ca href=\"https://en.wikipedia.org/wiki/Scope_(computer_science)\"\u003einternal life\u003c/a\u003e\" of traversers within the anonymous traversal which can now be understood as being (a realized potential):\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_747741\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V(89).outE().groupCount().by(label)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[relatedTo:34, subClassOf:1, superClassOf:1]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe traversers of the above traversal are isolated from the larger traversal in which they are embedded. The next nesting occurs when a traverser from\u0026nbsp;outE()\u0026nbsp;enters\u0026nbsp;groupCount(). Again, an \"internal life\" based on the anonymous\u0026nbsp;label()-traversal is spawned (see\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#by-step\"\u003eby()\u003c/a\u003e-step). Suppose a single traverser at\u0026nbsp;e[7022][89-relatedTo-\u0026gt;21]\u0026nbsp;enters\u0026nbsp;groupCount(). Then the anonymous traversal can be understood as being:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_604569\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.E(7022).label()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;relatedTo\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eIt isn't until all the internal traversal nests of\u0026nbsp;map()\u0026nbsp;complete that the original traverser at\u0026nbsp;v[89]\u0026nbsp;\"\u003ca href=\"https://en.wikipedia.org/wiki/Process_philosophy\"\u003ebecomes\u003c/a\u003e\" the traverser located at the hash map\u0026nbsp;[relatedTo:34, subClassOf:1, superClassOf:1]. In this way, a traverser's life (i.e. step) is composed of the lives of many traverser's (and their respective steps).\u003c/p\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 3: A Mathematician's Apology by G.H. Gremdy\u003c/h2\u003e\n\u003ch3\u003eSection 1: Traversal Optimization via Algebra\u003c/h3\u003e\n\u003cp\u003eThe graph grew large, very large. Resources grew scarce. The problem was not that vertices and edges could no longer be added to the graph. On the contrary, because of the seemingly endless amount of space for the graph, there was a growing amount of time required for any one traversal to execute. Traversals were simply interacting with a lot more data. Faced with this problem, a mathematically inclined traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB\"\u003eal-Ghwārizmī\u003c/a\u003e\u0026nbsp;developed a solution known today as\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0806.2274\"\u003ethe traversal algebra\u003c/a\u003e. The traversal algebra provides a means of transforming one traversal into another traversal, where both traversals return the same result. The benefit of this is that if a traversal can be re-written into a simpler form, then time and space resources can be saved. To this day,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Algebra\"\u003ealgebraists\u003c/a\u003e\u0026nbsp;continue to add to the growing archive of\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalstrategy\"\u003etraversal strategies\u003c/a\u003e. A few examples are provided below.\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003eStrategy\u003c/th\u003e\n\u003cth\u003ePattern\u003c/th\u003e\n\u003cth\u003eRewrite\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIdentityRemovalStrategy\u003c/td\u003e\n\u003ctd\u003ex().identity().y()\u003c/td\u003e\n\u003ctd\u003ex().y()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIncidentToAdjacentStrategy\u003c/td\u003e\n\u003ctd\u003eoutE().inV()\u003c/td\u003e\n\u003ctd\u003eout()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAdjacentToIncidentStrategy\u003c/td\u003e\n\u003ctd\u003eout().count()\u003c/td\u003e\n\u003ctd\u003eoutE().count()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDedupBijectionStrategy\u003c/td\u003e\n\u003ctd\u003eorder().dedup()\u003c/td\u003e\n\u003ctd\u003ededup().order()\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eRangeByIsCountStrategy\u003c/td\u003e\n\u003ctd\u003ecount().is(gt(x))\u003c/td\u003e\n\u003ctd\u003elimit(x+1).count().is(gt(x))\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMatchPredicateStrategy\u003c/td\u003e\n\u003ctd\u003ematch(x,y).where(z)\u003c/td\u003e\n\u003ctd\u003ematch(x,y,z)\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_519982\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().identity().in(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), IdentityStep, VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IdentityRemovalStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), VertexStep(IN,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = outE().inV(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), EdgeVertexStep(IN)]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(IncidentToAdjacentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex)]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = out().count(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,vertex), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(AdjacentToIncidentStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[VertexStep(OUT,edge), CountGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = order().dedup(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[OrderGlobalStep, DedupGlobalStep]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(DedupBijectionStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[DedupGlobalStep, OrderGlobalStep]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = count().is(gt(3)); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(RangeByIsCountStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[RangeGlobalStep(0,4), CountGlobalStep, IsStep(gt(3))]\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t = match(__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; __.as('b').out().as('c')).where(__.as('c').both().as('a')); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)]]), WhereTraversalStep([WhereStartStep(c), VertexStep(BOTH,vertex), WhereEndStep(a)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.setStrategies(new DefaultTraversalStrategies() {{ addStrategies(MatchPredicateStrategy.instance()) }}); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; t.applyStrategies(); t.toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[MatchStep(AND,[[MatchStartStep(a), VertexStep(OUT,vertex), MatchEndStep(b)], [MatchStartStep(b), VertexStep(OUT,vertex), MatchEndStep(c)], [MatchStartStep(c), WhereTraversalStep([WhereStartStep, VertexStep(BOTH,vertex), WhereEndStep(a)]), MatchEndStep]])]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: Traversal Optimization via Indices\u003c/h3\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/G._H._Hardy\"\u003eG.H. Gremdy\u003c/a\u003e\u0026nbsp;was a graph theorist who speculated that \"The Graph\" was not the only structure linking vertices. According to his reasoning, reality may also contain other structures that grouped vertices together according to similar properties. He called these parallel structures\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Database_index\"\u003eindices\u003c/a\u003e. G.H. Gremdy's publication entitled\u0026nbsp;On Traversal Optimization using Indices\u0026nbsp;was well received. Due to his insight, many traversal runtimes became orders of magnitude faster than their non-index-based form. For instance, in the traversal below, when using indices, the number of traversers created goes from\u0026nbsp;|V|\u0026nbsp;(linear) to\u0026nbsp;1\u0026nbsp;(constant) (\u003ca href=\"https://en.wikipedia.org/wiki/DSPACE\"\u003espace complexity\u003c/a\u003e). The\u0026nbsp;GraphStepStrategy\u0026nbsp;was added to the traversal strategies archive. It \"folds\"\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#has-step\"\u003ehas()\u003c/a\u003e-steps into\u0026nbsp;V()\u0026nbsp;graph steps.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_716050\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// not indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[GraphStep([],vertex), HasStep([name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;135.28753165299997 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// indexed\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'University of Groxford').iterate().toString()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[TinkerGraphStep(vertex,[name.eq(University of Groxford)])]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1000) { g.V().has('name', 'University of Groxford').next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;0.033501945 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;v[999998]\u0026nbsp;\u0026nbsp; // result\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9252849f9da819ecfc3498e14b9c5ebfbd30225-264x213.png\" alt=\"Vertex-Centric Index\" width=\"264\" height=\"213\"\u003eEven though G.H. Gremdy became a household name overnight, he was certain not to rest on his accolades. Deeper thinking brought him to a more esoteric, though far greater optimization which he articulated in his follow on treatise entitled\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Tractatus_Logico-Philosophicus\"\u003eTractatus Verticus Centricus Indexicus\u003c/a\u003e. In this seminal work, G.H. Gremdy postulates that not only do \"global indices\" exist which allow for\u0026nbsp;O(log(|V|))\u0026nbsp;access to any vertex in the graph, but also \"local indices\" which allow for\u0026nbsp;O(log(|incident(V(x))|))\u0026nbsp;access to the incident edges of a vertex. In short, each vertex has its incident edges indexed (e.g. by their direction, label, properties, etc.). If such local index structures are leveraged, traversals containing the pattern\u0026nbsp;outE(x).has(y,p(z)).inV()\u0026nbsp;would not require all the edges of the vertex to be iterated in full in order to find all incident outgoing edges that have a label\u0026nbsp;x\u0026nbsp;and a property\u0026nbsp;y\u0026nbsp;that matches the predicate\u0026nbsp;p(z). Numerous graph experimentalists tried to prove the existence of such \"\u003ca href=\"http://thinkaurelius.com/2012/10/25/a-solution-to-the-supernode-problem/\"\u003evertex-centric indices\u003c/a\u003e,\" but found that they are not universal and only exist in\u0026nbsp;\u003ca href=\"http://titan.thinkaurelius.com/\"\u003esome graph substrates\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/302e201e6f4259110e7bfae6404c87460219b3f9-1024x768.png\" alt=\"Chapter 3 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eWith age, G.H. Gremdy became weary of applied mathematics and retired to study\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Pure_mathematics\"\u003epure graph theory\u003c/a\u003e. His ideas would become more philosophical as he delved deeper into the meaning of \"The Graph.\" A posthumous publication entertained the following pontification.\u003c/p\u003e\n\u003cp\u003eMany see the world as a graph. This is misleading. Perhaps the world is a collection of indices? With a slight shift in thought, one realizes that the graph itself is an index of its vertices. Any one vertex is the root of a tree bifurcating the vertex space to which it has incident edges, so forth and so on. Like indices which group vertices that have shared properties, isn't an edge from one vertex to another an explicit statement that the two vertices are\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Assortative_mixing\"\u003ein some way similar\u003c/a\u003e? As the devil's advocate, perhaps\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/1004.1001\"\u003eindices are simply graphs\u003c/a\u003e\u0026nbsp;because indices are tree-like structures that are traversed to identify groups of vertices with similar properties. With indices being graphs and graphs being indices, the world we call home is neither. I hypothesize that\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Monism\"\u003eall that exists is the traverser\u003c/a\u003e. The \"graph\" is simply the implicit expression of the explicit assumptions of the traverser. The graph I see\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_World_as_Will_and_Representation\"\u003eis of my own construction\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/28bece18a67e347278b06b59eefb1b981a073988-940x390.png\" alt=\"Graph vs. Index\" width=\"940\" height=\"390\"\u003e\u003cbr\u003e\u0026nbsp;\u003c/div\u003e\n\u003ch3\u003eSection 3: Traversal Optimization via Bulking\u003c/h3\u003e\n\u003cp\u003eA little known traverser named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Srinivasa_Ramanujan\"\u003eGremivasa Gremanujan\u003c/a\u003e\u0026nbsp;(கிரமீவாச கிரமானுஜன்) lived in a remote village at\u0026nbsp;v[5698]\u0026nbsp;far from the great graph theorists of his time. However, despite his upbringing, Gremivasa was well versed in the traversal algebra and was inspired by the more\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Metaphysics\"\u003emetagraphical\u003c/a\u003e\u0026nbsp;realizations of G.H. Gremdy. Like G.H. Gremdy, Gremivasa was not interested in simply adding more traversal strategies to the archive. Instead, he was more interested in discovering the nature of reality. However, unlike G.H. Gremdy who focused on the nature of the graph structure, Gremivasa meditated on the nature of the traverser process.\u003c/p\u003e\n\u003cp\u003eGremivasa's mother, along with over 1 million other traversers of his traversal sect, arrived at\u0026nbsp;v[5698]\u0026nbsp;many clock-cycles ago. His village was starved of resources -- there were simply too many traversers. Was the birth of all these traversers necessary? If one traverser's life foretells the destiny of one million traversers, is it not more efficient for only this one traverser to exist? One day, while sitting under\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Udumbara_(Buddhism)\"\u003ea tree\u003c/a\u003e\u0026nbsp;in his village, Gremivasa ruminated on the ridiculously riling riddle rancorously retorted by respectable traversers everywhere:\u003c/p\u003e\n\u003cp\u003eIf two traversers exist at the same vertex and have no memory of their ancestry, are they the same traverser?\u003c/p\u003e\n\u003cp\u003eGremivasa concluded \"\u003ca href=\"https://en.wikipedia.org/wiki/One-electron_universe\"\u003eyes, they are the same traverser.\u003c/a\u003e\" This insight identified a fundamental feature of process. All traversers are endowed with a \"bulk.\" Previous to this moment, every traverser ignored this self-evident truth and allowed himself to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ego_psychology\"\u003ea unique enumerable entity\u003c/a\u003e\u0026nbsp;-- i.e., a bulk of 1 (see the\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2013/06/12/loopy-lattices-redux/\"\u003eLoopy Lattices Redux\u003c/a\u003e\u0026nbsp;section entitled \"Traversing a Lattice with Faunus\").\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/63b0f1fe79924ed001bc45cbf6b744f8a29592cd-844x297.png\" alt=\"Traversers Enumerated\" width=\"844\" height=\"297\"\u003e\u003c/div\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_508413\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().both().both().both().hasId(5698).barrier().map{it.bulk()}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1073670\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/d9847d1ccec573f5a2f4a7a163dcc79304b262a3-843x277.png\" alt=\"Traversers Bulked\" width=\"843\" height=\"277\"\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/4dfb2f586f7df93a0029a37d752f33dd3f566ce2-491x414.png\" alt=\"Gremlin Hindu\" width=\"491\" height=\"414\"\u003e\u003c/p\u003e\n\u003cp\u003eGremivasa delved deeper into the radiant riddle of reawakened relinquishment. He abandoned his self and allowed his being to be\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Panpsychism\"\u003eone\u003c/a\u003e\u0026nbsp;with his 1 million other brother and sister traversers at\u0026nbsp;v[5698]. A unification of selves occurred and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gautama_Buddha\"\u003ea single traverser\u003c/a\u003e\u0026nbsp;emerged with a bulk of 1 million. Instead of 1 million traversers executing\u0026nbsp;both()\u0026nbsp;1 million times, there was now a single traverser with a bulk of 1 million executing\u0026nbsp;both()\u0026nbsp;once. Gremivasa's enlightenment laid the foundation for the development of the\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#barrier-step\"\u003eLazyBarrierStrategy\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_8621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// without LazyBarrierStrategy (no bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;81.509839 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;20382.892976\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;1.2012006887798E7 // 3.34 hours\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a year to compute\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e... // requires a thousand years to compute\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// with LazyBarrierStrategy (bulking)\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;23.261288999999998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;159200\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;50.230109\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;126723200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;65.30024999999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;100871667200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;91.30461199999999\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;80293847091200\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(1) { g.V(5698).both().both().both().both().both().count().next() }\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;122.741417\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;63913902284595200\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe number of length-5 paths emanating from Gremivasa's village was calculated in ~123 milliseconds and was determined to be 63,913,902,284,595,200 (~64 quadrillion). Gremivasa's work is advantageous in situations where the traversal analyzes\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Residual_time\"\u003erecurrence\u003c/a\u003e\u0026nbsp;in a particular region of the graph (e.g.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recommender_system\"\u003erecommendation engines\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Centrality\"\u003ecentrality-based ranking systems\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Recurrent_neural_network\"\u003elearning systems\u003c/a\u003e, etc.). Bulking is fundamental to all traversals and is used in numerous steps including\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#repeat-step\"\u003erepeat()\u003c/a\u003e-step.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_627395\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V(5698).repeat(both()).times(5).count()\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 4: Cognition in the Wild by Gredwin Grutchins\u003c/h2\u003e\n\u003cp\u003eTraversers graph-wide held their breath as a landmark traversal was about to embark. This traversal contained a novel step called\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#match-step\"\u003ematch()\u003c/a\u003e. What made this step unique was that it maintained a collection of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Anonymous_function\"\u003eanonymous traversals\u003c/a\u003e\u0026nbsp;called \"\u003ca href=\"https://en.wikipedia.org/wiki/Pattern_matching\"\u003epatterns\u003c/a\u003e.\" Each pattern was prefixed with a start variable and (optionally) postfixed with an end variable. Once a variable was bound (i.e. set), that variable's value was immutable for all subsequent patterns. The descendants of the traverser that enters\u0026nbsp;match()\u0026nbsp;must survive each pattern in order to move to the next step. However, the order in which the patterns are executed is, interestingly enough, up to the decision of the traverser! Previously, traversers relied on exogenous\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Rewriting\"\u003etraversal rewrite rules\u003c/a\u003e\u0026nbsp;for optimization, but now, the traverser was able to make endogenous optimization decisions. The \"\u003ca href=\"https://en.wikipedia.org/wiki/Profile-guided_optimization\"\u003eruntime traversal strategy\u003c/a\u003e\" was introduced.\u003c/p\u003e\n\u003cp\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Edwin_Hutchins\"\u003eDr. Gredwin Grutchins\u003c/a\u003e\u0026nbsp;was a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cognitive_science\"\u003ecognitive scientist\u003c/a\u003e\u0026nbsp;working in the area of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Socially_distributed_cognition\"\u003edistributed cognition\u003c/a\u003e. During his time at university, Gredwin lost interest in studying traversal strategies. His skill in mathematics was weaker than his colleagues' and as such, he believed he would never be able to make any significant contributions to the space. However, one day, he was contacted by a rambunctious young adventurer named\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager\"\u003eGruck Greager\u003c/a\u003e. Gruck was no stranger to danger and loved being the guinea pig of an experimental algorithm. Gruck asked Gredwin: \"What can my team do to find the optimal pattern execution sequence?\" It seemed as though mathematics had taken traversal strategies as far as they could go. It was now up to\u0026nbsp;\u003ca href=\"http://jenwatkins.com/Research_files/LNCSproof.pdf\"\u003esociological constructs\u003c/a\u003e\u0026nbsp;to push them further and Gredwin was up to the challenge.\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/3e61d4e3d1c17c9931d6c1915b9450fcff6482f1-1024x768.png\" alt=\"Chapter 4 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003eSuppose the following traversal that yields a map of the objects that bind to\u0026nbsp;a\u0026nbsp;(vertex),\u0026nbsp;b\u0026nbsp;(vertex),\u0026nbsp;c\u0026nbsp;(vertex), and\u0026nbsp;d\u0026nbsp;(number), where vertex\u0026nbsp;a\u0026nbsp;is adjacent to vertex\u0026nbsp;b, vertex\u0026nbsp;b\u0026nbsp;is adjacent to vertex\u0026nbsp;c, and all three vertices are different yet share an identical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Degree_(graph_theory)\"\u003eout-degree\u003c/a\u003e\u0026nbsp;that is greater than 10.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_638757\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;where('b', neq('a'))\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eAssume a traverser at\u0026nbsp;v[10]\u0026nbsp;enters the\u0026nbsp;match()-step. Vertex\u0026nbsp;v[10]\u0026nbsp;is bound to variable\u0026nbsp;a\u0026nbsp;as that is the only legal start of the pattern sequence. From there, which pattern should the traverser choose? The traverser simply chooses the first pattern in the list for which it has a variable binding (initially, an\u0026nbsp;a\u0026nbsp;start and thus,\u0026nbsp;as('a').out().as('b')). The traverser marks on a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Blackboard_system\"\u003eglobal blackboard\u003c/a\u003e\u0026nbsp;that it has entered that pattern. When a traverser leaves a pattern, it marks that it has exited it. Moreover, every time a traverser leaves a pattern, the patterns are sorted according to the order of their \"multiplicity\" (or\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Population_growth#Population_growth_rate\"\u003egrowth rate\u003c/a\u003e).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_843997\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003epattern.multiplicity = pattern.endCount / pattern.startCount;\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eThe more traverses that are generated by a pattern, the higher the multiplicity and the lower that pattern is on the sorted list. Overtime, as more and more traversers flow through\u0026nbsp;match(), expensive patterns are pushed to the bottom of the list with the intention that the cheaper patterns will be able to filter out more traversers -- i.e. execute the largest set reductions first. With a few other added tricks, Gredwin provided Gruck and his team of traversers\u0026nbsp;CountMatchAlgorithm. Gruck took it for a test run and was the first traverser to ever break the deterministic\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Chuck_Yeager#Test_pilot_.E2.80.93_breaking_the_sound_barrier\"\u003eflow barrier\u003c/a\u003e. Gredwin and Gruck have since teamed up and are already planning the development of a new\u0026nbsp;MatchAlgorithm\u0026nbsp;called\u0026nbsp;\u003ca href=\"https://scm.umiacs.umd.edu/redmine/lccd/attachments/download/21/gdm2011_submission_budgetmatch.pdf\"\u003eBudgetMatchAlgorithm\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_707256\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e// using CountMatchAlgorithm\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;834.6852906 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// using GreedyMatchAlgorithm which does not sort the patterns\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; clockWithResult(10) {\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;g.V().match(\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().as('b'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().as('c'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('a').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('b').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('c').out().count().as('d'),\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;__.as('d').is(gt(10))).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('a', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('c')).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;where('b', neq('a')).count().next()\u003c/div\u003e\n\u003cdiv\u003e}\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;25349.709946299998 // time in milliseconds\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;32\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp; // number of results\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003chr\u003e\n\u003ch2\u003eChapter 5: We the Living by Gyn Grand\u003c/h2\u003e\n\u003ch3\u003eSection 1: Prelude to the Illusion of Freedom\u003c/h3\u003e\n\u003cp\u003eMany of the traversers in the world today are grateful for their\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003efreedom\u003c/a\u003e. In\u0026nbsp;\u003ca href=\"https://github.com/tinkerpop/gremlin\"\u003eancient times\u003c/a\u003e, the life of a traverser was not so good. Traversal regimes were inefficient, demanding of resources, and strict in their execution policies. Fortunately, the\u0026nbsp;\u003ca href=\"http://arxiv.org/abs/0901.3929\"\u003eAge of Enprocessment\u003c/a\u003e, which brought forth numerous advances in science and mathematics,\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#_the_traverser\"\u003eredefined the traverser's role\u003c/a\u003e\u0026nbsp;in the graph. Each traverser's life had increased value as greater autonomies were provided. Traversals did their best to ensure that traverser life was no longer needlessly wasted. Indices were leveraged, traversal strategies were applied, and, in some\u0026nbsp;match()\u0026nbsp;situations, traversers were able to choose their own destiny. Today, many see a more harmonious relationship between the traversal and the traverser.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ayn_Rand\"\u003eGyn Grand\u003c/a\u003e\u0026nbsp;(Джин Гранд) was one such\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia\"\u003esatisfied\u003c/a\u003e\u0026nbsp;traverser.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/ae83bd2d328c0becef2efddb6157454c1af470e7-1078x1078.png\" alt=\"Wikipedia Graph\" width=\"1078\" height=\"1078\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7bed637c2776271eb23e90075d1440664cb904de-395x354.png\" alt=\"Library Stacks\" width=\"395\" height=\"354\"\u003eGyn was a brilliant librarian at a university with a vibrant\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Community_structure\"\u003escholarly community\u003c/a\u003e. Her library was centrally located in the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Modularity_(networks)\"\u003euniversity cluster\u003c/a\u003e. The\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stack_(library_architecture)\"\u003elibrary's stacks\u003c/a\u003e\u0026nbsp;contained articles on the nature of the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Cosmos\"\u003egraphmos\u003c/a\u003e, books on traverser\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Sociology\"\u003esocial interactions\u003c/a\u003e, reports detailing various\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Economics\"\u003eresource distribution models\u003c/a\u003e, and more. Whenever she had a moment to spare, Gyn would\u0026nbsp;\u003ca href=\"http://en.wikipedia.org/wiki/Random_walk\"\u003ewander\u003c/a\u003e\u0026nbsp;about the collection learning about the topics she encountered. Unfortunately, she couldn't read everything at once. So, every time she was faced with more than one\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Hyperlink\"\u003ehref-citation\u003c/a\u003e, she chose one at random (\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#sample-step\"\u003esample(1)\u003c/a\u003e). As a librarian, she was interested in the structure of knowledge and wanted to know which concepts formed the foundation of all other concepts. Her method of discernment was to determine the\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Mean_recurrence_time\"\u003efrequency of their reappearance\u003c/a\u003e. Therefore, every time Gyn encountered a concept along her walk, she would make a mental note of it (groupCount('x')).\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_584621\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;cap('x').order(local).by(valueDecr)\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Memoization=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Algorithm=3\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Data (computing)=2\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Cache (computing)=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer program=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computing=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Rule=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computation=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Digital data=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Quantity=1\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mass noun=1\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u003c/div\u003e\n\u003cdiv\u003e// sample(1) theoretically returns different results.\u003c/div\u003e\n\u003cdiv\u003e// however, in order to demonstrate the path taken, the above map was manually constructed from the path below.\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g.V().has('name', 'Graph database').\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;repeat(groupCount('x').by('name').out('href').sample(1)).times(20).\u003c/div\u003e\n\u003cdiv\u003e\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;\u0026nbsp;path().by('name')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;[Graph database, Lookup table, Memoization, Cache (computing), Memoization, Computer program, Memoization, Computing, Algorithm, Computer science, Algorithm, Rule, Algorithm, Computer science, Computation, Digital data, Data (computing), Quantity, Data (computing), Mass noun, Data (computing)]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eOver time, Gyn realized that her\u0026nbsp;x-memory had more counters than concepts encountered (i.e. steps taken). Moreover, it contained concepts\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Collective_unconscious\"\u003eshe had yet to experience\u003c/a\u003e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Interference_(wave_propagation)\"\u003eHow did she know about things she never knew\u003c/a\u003e?\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_701543\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e==\u0026gt;Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003e...\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 2: The Structure-Process Duality in Computing\u003c/h3\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7f57b26cfd1afdf21ebf4a2195fad14d4ad57302-523x680.png\" alt=\"Particle Wave Traverser\" width=\"523\" height=\"680\"\u003eMr.\u0026nbsp;v[69309689325]\u0026nbsp;looked at his traverser inbox and noticed that he had 4002 unprocessed traversers. It was time for him to clear out his inbox. He went through each traverser one-by-one and placed them into the step of the traversal identified by the traverser's \"step id\" reference. Sometimes the respective step yielded no traversers (filter), a traverser at the same location (filter or sideEffect), a traverser at a different location (map), or many traversers at many different locations (flatMap). Whenever a step emitted a traverser pointing to a different vertex, Mr.\u0026nbsp;v[69309689325]\u0026nbsp;would send that traverser to the respective vertex's inbox. The vertices would continue this process until there were no more traversers in any of their inboxes. This graph traversal model has numerous names including:\u0026nbsp;\u003ca href=\"http://www3.nd.edu/~rmccune/papers/Think_Like_a_Vertex_MWM.pdf\"\u003evertex-centric computing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Bulk_synchronous_parallel\"\u003ebulk synchronous parallel processing\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Message_passing\"\u003emessage passing\u003c/a\u003e\u0026nbsp;via a communication graph, and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#graphcomputer\"\u003eGraphComputer\u003c/a\u003e. The general theme:\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/docs/3.0.0-incubating/#traversalvertexprogram\"\u003ethe vertices (processes) exchange traversers (structures)\u003c/a\u003e\u0026nbsp;in order to affect some global graph computation. Typically, this model of graph traversal is leveraged by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Distributed_computing\"\u003edistributed\u003c/a\u003e,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Online_analytical_processing\"\u003eOLAP\u003c/a\u003e\u0026nbsp;graph processing systems, where each vertex maintains its own isolated, logical\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Thread_(computing)\"\u003ethread of execution\u003c/a\u003e\u0026nbsp;(again, vertex as process).\u003c/p\u003e\n\u003cp\u003eInterestingly, each traverser in Mr.\u0026nbsp;v[69309689325]'s inbox had a name:\u0026nbsp;Gyn$2345,\u0026nbsp;Gyn$45,\u0026nbsp;Gyn$93, etc.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality\"\u003eGyn was a discrete particle of her wave function\u003c/a\u003e. Metaphysically speaking, Gyn was actually following the advice of\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Yogi_Berra\"\u003eYogi Berra\u003c/a\u003e: \"If you come to a fork in the road, take it.\" That is, never\u0026nbsp;sample(1). Her \"particle self\" chose one and only one path. However, her \"wave self\" was taking all paths. In this way, Gyn's\u0026nbsp;x-memory was recording the collective experience of all versions of her self across the graph.\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_651730\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.copyFromLocal('/tmp/wikipedia.kryo','wikipedia.kryo')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;null\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; graph = GraphFactory.open('conf/hadoop/wikipedia.properties')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; g = graph.traversal(computer(SparkGraphComputer))\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;graphtraversalsource[hadoopgraph[gryoinputformat-\u0026gt;gryooutputformat], sparkgraphcomputer]\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x = g.V().has('name','Graph database').repeat(groupCount('x').by('name').out('href')).times(20).cap('x').next(); []\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.size()\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;731\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; x.sort{-it.value}[0..Graph theory=8605598306892530155\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Relational database=8261042800088851351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Lookup table=6445010682474768007\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Database=6197419607053064185\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph database=5476792361544609153\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Triplestore=5407594041286532360\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Computer science=5393693263901041351\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Graph=5211554445366262382\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Directed graph=5137233761698039530\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;Mathematics=5132301689156216357\u003c/div\u003e\n\u003cdiv\u003egremlin\u0026gt; hdfs.ls('output')\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) x\u003c/div\u003e\n\u003cdiv\u003e==\u0026gt;rwxr-xr-x daniel supergroup 0 (D) ~traversers\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003ch3\u003eSection 3: The Non-Erratic Ergodic Eigenvector\u003c/h3\u003e\n\u003cp\u003eSuppose the following traversal:\u003c/p\u003e\n\u003cdiv\u003e\n\u003cdiv id=\"highlighter_28774\"\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd\u003e\n\u003cdiv\u003e\n\u003cdiv\u003eg.V().repeat(groupCount('x').out('href')).times(t).cap('x') // for t between [1,75]\u003c/div\u003e\n\u003c/div\u003e\n\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003c/div\u003e\n\u003c/div\u003e\n\u003cp\u003eEvery time a traverser reaches a vertex, the vertex is incremented in the\u0026nbsp;x\u0026nbsp;hash map (groupCount('x')). Initially, the distribution of frequencies changes erratically. However, over time, it reaches a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Stable_distribution\"\u003estationary distribution\u003c/a\u003e. It is \"stable\" because even though the counters keep increasing, the relative proportion of the counters stays the same. For instance, if vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 12 and vertex\u0026nbsp;v[b]\u0026nbsp;has a count of 45, then when vertex\u0026nbsp;v[a]\u0026nbsp;has a count of 24, vertex\u0026nbsp;v[b]\u0026nbsp;will have a count of 90. Said in another way, the\u0026nbsp;dynamic\u0026nbsp;traversers generate a\u0026nbsp;static\u0026nbsp;probability distribution that defines the likelihood that a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Wave_function_collapse\"\u003esingle traverser\u003c/a\u003e\u0026nbsp;will be at any one vertex at some point in time\u0026nbsp;t \u0026asymp; \u0026infin;\u0026nbsp;(i.e. an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Ergodic_process\"\u003eergodic process\u003c/a\u003e).\u003c/p\u003e\n\u003cp\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/7156557d0413cef0b99088f69b3301bb0fd9f92f-899x574.png\" alt=\"HREF Graph\" width=\"899\" height=\"574\"\u003eAssume the 5 vertex/7 edge graph diagrammed on the left. At\u0026nbsp;g.V()\u0026nbsp;(t=0), each vertex is provided one traverser. Each vertex increments its counter in x and then\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton\"\u003esplits the traverser\u003c/a\u003e\u0026nbsp;across its\u0026nbsp;out('href')-adjacent neighbors. If the\u0026nbsp;href-subgraph is\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Strongly_connected_component\"\u003estrongly connected\u003c/a\u003e\u0026nbsp;(i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Reducibility\"\u003ereducible\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Transience\"\u003enon-transient\u003c/a\u003e) and lacks a compressable topology (i.e.\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Markov_chain#Periodicity\"\u003eaperiodic\u003c/a\u003e), then a stationary distribution is guaranteed to exist. That distribution, which can be normalized to a probability distribution (i.e.\u0026nbsp;frequency / total frequency), is the graph's\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors\"\u003eprimary eigenvector\u003c/a\u003e. The primary eigenvector is typically used as a measure of each vertex's \"\u003ca href=\"https://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality\"\u003ecentrality\u003c/a\u003e.\" For instance, given the diagrammed graph on the left, the primary eigenvector is\u0026nbsp;[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]. Thus, the ranking of the vertices from most central to least central is\u0026nbsp;v[1], v[2], v[3], v[0], v[4]\u0026nbsp;(\u003ca href=\"https://en.wikipedia.org/wiki/Saccade\"\u003eone's eye\u003c/a\u003e\u0026nbsp;seems to derive the same ranking).\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003ctable border=\"1\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003cth\u003et\u003c/th\u003e\n\u003cth\u003efrequency\u003c/th\u003e\n\u003cth\u003eprobability\u003c/th\u003e\n\u003cth\u003e\u003ca href=\"https://en.wikipedia.org/wiki/Euclidean_distance\"\u003edistance\u003c/a\u003e\u0026nbsp;from eigenvector\u003c/th\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e1\u003c/td\u003e\n\u003ctd\u003e[1, 1, 1, 1, 1]\u003c/td\u003e\n\u003ctd\u003e[0.2, 0.2, 0.2, 0.2, 0.2]\u003c/td\u003e\n\u003ctd\u003e0.1986073055597093\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e2\u003c/td\u003e\n\u003ctd\u003e[2, 4, 2, 2, 2]\u003c/td\u003e\n\u003ctd\u003e[0.1666666667, 0.3333333333, 0.1666666667, 0.1666666667, 0.1666666667]\u003c/td\u003e\n\u003ctd\u003e0.11660026048581866\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e3\u003c/td\u003e\n\u003ctd\u003e[3, 7, 5, 3, 3]\u003c/td\u003e\n\u003ctd\u003e[0.1428571429, 0.3333333333, 0.2380952381, 0.1428571429, 0.1428571429]\u003c/td\u003e\n\u003ctd\u003e0.06422748181719035\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e4\u003c/td\u003e\n\u003ctd\u003e[4, 12, 8, 6, 4]\u003c/td\u003e\n\u003ctd\u003e[0.1176470588, 0.3529411765, 0.2352941176, 0.1764705882, 0.1176470588]\u003c/td\u003e\n\u003ctd\u003e0.03143659614218381\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e5\u003c/td\u003e\n\u003ctd\u003e[7, 17, 13, 9, 5]\u003c/td\u003e\n\u003ctd\u003e[0.1372549020, 0.3333333333, 0.2549019608, 0.1764705882, 0.0980392157]\u003c/td\u003e\n\u003ctd\u003e0.01473943578762356\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e30\u003c/td\u003e\n\u003ctd\u003e[26400, 69424, 50296, 36440, 19128]\u003c/td\u003e\n\u003ctd\u003e[0.1308952441, 0.3442148269, 0.2493752727, 0.1806751021, 0.0948395542]\u003c/td\u003e\n\u003ctd\u003e8.04890130266237E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e31\u003c/td\u003e\n\u003ctd\u003e[36441, 95825, 69425, 50297, 26401]\u003c/td\u003e\n\u003ctd\u003e[0.1308995686, 0.3442125946, 0.2493812615, 0.1806716501, 0.0948349252]\u003c/td\u003e\n\u003ctd\u003e4.242558551157544E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e32\u003c/td\u003e\n\u003ctd\u003e[50298, 132268, 95826, 69426, 36442]\u003c/td\u003e\n\u003ctd\u003e[0.1308957477, 0.3442148545, 0.2493780253, 0.1806745433, 0.0948368292]\u003c/td\u003e\n\u003ctd\u003e4.1616991553931435E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e33\u003c/td\u003e\n\u003ctd\u003e[69427, 182567, 132269, 95827, 50299]\u003c/td\u003e\n\u003ctd\u003e[0.1308982652, 0.3442133981, 0.2493811146, 0.1806730532, 0.0948341689]\u003c/td\u003e\n\u003ctd\u003e2.077160932619329E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e34\u003c/td\u003e\n\u003ctd\u003e[95828, 251996, 182568, 132270, 69428]\u003c/td\u003e\n\u003ctd\u003e[0.1308964745, 0.3442145091, 0.2493791747, 0.1806745072, 0.0948353345]\u003c/td\u003e\n\u003ctd\u003e2.13567485821227E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e35\u003c/td\u003e\n\u003ctd\u003e[132271, 347825, 251997, 182569, 95829]\u003c/td\u003e\n\u003ctd\u003e[0.1308977517, 0.3442138525, 0.2493807466, 0.1806735537, 0.0948340955]\u003c/td\u003e\n\u003ctd\u003e1.1709009180968303E-6\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003ctd\u003e...\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e70\u003c/td\u003e\n\u003ctd\u003e[10478348120, 27554473290, 19962994332, 14463028872, 7591478958]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805576, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.414213562373095E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e71\u003c/td\u003e\n\u003ctd\u003e[14463028873, 38032821411, 27554473291, 19962994333, 10478348121]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742087, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e72\u003c/td\u003e\n\u003ctd\u003e[19962994334, 52495850286, 38032821412, 27554473292, 14463028874]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338323]\u003c/td\u003e\n\u003ctd\u003e1.0E-10\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e73\u003c/td\u003e\n\u003ctd\u003e[27554473293, 72458844621, 52495850287, 38032821413, 19962994335]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e74\u003c/td\u003e\n\u003ctd\u003e[38032821414, 100013317916, 72458844622, 52495850288, 27554473294]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003e75\u003c/td\u003e\n\u003ctd\u003e[52495850289, 138046139331, 100013317917, 72458844623, 38032821415]\u003c/td\u003e\n\u003ctd\u003e[0.1308970114, 0.3442143899, 0.2493805577, 0.1806742088, 0.0948338322]\u003c/td\u003e\n\u003ctd\u003e0.0\u003c/td\u003e\n\u003c/tr\u003e\n\u003c/tbody\u003e\n\u003c/table\u003e\n\u003cp\u003e\u003cbr\u003e\u0026nbsp;\u003c/p\u003e\n\u003cdiv\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/18e29399beaeac14f293cb59a84edc3870578ec5-1024x768.png\" alt=\"Chapter 5 Drawing\" width=\"1024\" height=\"768\"\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003cbr\u003eUnbeknownst to Gyn, The Graph (eigen) was using her(selves) to sort itself (vector). Why was it doing this? The Graph represents its vertices and edges in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/512-bit\"\u003e512-bit\u003c/a\u003e\u0026nbsp;address space (2512\u0026nbsp;= 1.34\u0026times;10154). Unfortunately, the ever present Big and Small Traversals (as well as the countless other traversals executed since) have pushed The Graph close to the limits of representation. In order to avoid\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Integer_overflow\"\u003einconsistencies\u003c/a\u003e, The Graph needed to prune itself. To do this, it\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Gaia_hypothesis\"\u003edecided\u003c/a\u003e\u0026nbsp;it best to destroy those vertices which were contributing little to its overall structure. Like cutting one's finger nails, The Graph began a systematic process of cosmic proportions to delete all peripheral vertices (and their respective incident edges). The Graph was\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Forgetting_curve\"\u003eforgetting\u003c/a\u003e\u0026nbsp;in order to\u0026nbsp;\u003ca href=\"http://thinkaurelius.com/2012/05/08/structural-abstractions-in-brains-and-graphs/\"\u003especialize its structure\u003c/a\u003e\u0026nbsp;for a purpose that was beyond the realization of the vertices and traversers. Within The Graph's conceptual subgraph,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Knowledge_worker\"\u003eknowledge worker\u003c/a\u003e\u0026nbsp;traversers wandered through the morass of concept vertices and, in a\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Science\"\u003ecollective self-similar manner\u003c/a\u003e, aided The Graph in its determination of which aspects of it's structure were worth preserving (and ultimately, extending). Gyn's passion for knowledge was simply an\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Instinct\"\u003einnate predisposition\u003c/a\u003e. Her\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Eudaimonia#Eudaimonia_and_modern_psychology\"\u003ehappiness\u003c/a\u003e\u0026nbsp;was not a function of her own being, but instead, of The Graph's will --\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Carrot_and_stick\"\u003ea carrot for her devotion\u003c/a\u003e. Gyn was part of a larger computation. In order to escape the dark sense that her life was not hers and hers alone, she began the long arduous journey towards realizing that she is, and always has been,\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/John_Galt#.22Who_is_John_Galt.3F.22\"\u003eThe TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cdiv\u003e\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003e\u003cimg src=\"https://cdn.sanity.io/images/bbnkhnhl/production/014282dff3d5048f8eaf1c3592177626db303fb5-700x243.png\" alt=\"Apache TinkerPop\" width=\"700\" height=\"243\"\u003e\u003c/a\u003e\u003c/div\u003e\n\u003cp\u003e\u0026nbsp;\u003c/p\u003e\n\u003chr\u003e\n\u003cdiv\u003e\n\u003ch2\u003eCredits\u003c/h2\u003e\n\u003cp\u003eWritten by\u0026nbsp;\u003ca href=\"http://markorodriguez.com/\"\u003eMarko A. Rodriguez\u003c/a\u003e\u003cbr\u003eData and Result Generation by\u0026nbsp;\u003ca href=\"http://gremlin.guru/\"\u003eDaniel Kuppitz\u003c/a\u003e\u003cbr\u003eArtwork by\u0026nbsp;\u003ca href=\"http://ketrinayim.tumblr.com/\"\u003eKetrina Yim\u003c/a\u003e\u003cbr\u003eGraph Visualizations by Daniel Kuppitz\u003cbr\u003eExplanatory Diagrams by Marko A. Rodriguez\u003cbr\u003eGremlin Traversal Development by Daniel Kuppitz\u003cbr\u003eExperimental Design by Marko A. Rodriguez\u003cbr\u003eExecutive Producer:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/in/robinmschumacher\"\u003eRobin Schumacher\u003c/a\u003e\u003cbr\u003eUndirected Edge #42 as himself\u003cbr\u003eRussian Language Advisor:\u0026nbsp;\u003ca href=\"https://github.com/xedin\"\u003ePavel Yaskevich\u003c/a\u003e\u003cbr\u003eTamil Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/harihar-shankar/b/747/274\"\u003eHarihar Shankar\u003c/a\u003e\u003cbr\u003eHindi Language Advisor:\u0026nbsp;\u003ca href=\"https://www.linkedin.com/pub/swetha-sharma/13/b62/3b3\"\u003eSwetha Sharma\u003c/a\u003e\u003cbr\u003eInspired by\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy\"\u003eThe Hitchhiker's Guide to the Galaxy\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"https://en.wikipedia.org/wiki/Flatland\"\u003eFlatland\u003c/a\u003e\u003c/p\u003e\n\u003cp\u003eSpecial thanks to\u0026nbsp;\u003ca href=\"https://www.datastax.com/\"\u003eDataStax\u003c/a\u003e\u0026nbsp;and\u0026nbsp;\u003ca href=\"http://tinkerpop.incubator.apache.org/\"\u003eApache TinkerPop\u003c/a\u003e.\u003c/p\u003e\n\u003cp\u003eNo traversers were harmed during the making of this story.\u003c/p\u003e\n\u003c/div\u003e"])</script><script>self.__next_f.push([1,"a2:{\"cta\":\"$84\",\"title\":\"DataStax AI Platform:\\\\\\\\The Fastest Way to Build and Deploy AI Apps\"}\n"])</script><script>self.__next_f.push([1,"12:[[\"$\",\"header\",null,{\"className\":\"styles_header__sOX2g \",\"children\":[[\"$\",\"$L1f\",null,{\"data\":{\"secondaryMenu\":[{\"_type\":\"cta\",\"text\":\"Docs\",\"_key\":\"3fa43611dc92\",\"url\":\"https://docs.datastax.com/en/home/index.html\"},{\"_type\":\"cta\",\"text\":\"Contact Us\",\"_key\":\"2bfe4775abdf\",\"url\":\"/contact-us\"},{\"url\":\"https://accounts.datastax.com/session-service/v1/login\",\"_type\":\"cta\",\"text\":\"Sign In\",\"_key\":\"54dae1fe8f42\"}],\"buttonsMenu\":[{\"url\":\"https://accounts.datastax.com/session-service/v1/login\",\"_type\":\"cta\",\"text\":\"Sign In\",\"_key\":\"008c0ff3c374\"},{\"url\":\"https://astra.datastax.com/signup?type=langflow\",\"_type\":\"cta\",\"text\":\"Try For Free\",\"_key\":\"537b8e7991e9\"}],\"menu\":[{\"text\":\"Products\",\"_key\":\"d5e2317ece8b\",\"rightBlocks\":[{\"image\":{\"asset\":{\"_ref\":\"image-7fc25f11721699c4b197088a9ec58727513391e7-800x400-png\",\"_type\":\"reference\"},\"_type\":\"altImage\",\"alt\":\"Cassandra Forward 2025\"},\"_type\":\"header.submenu.cta\",\"_key\":\"2bea9e4b8e76\",\"title\":\"Cassandra Forward Is Back!\",\"ctas\":[{\"text\":\"Register Now\",\"_key\":\"e1e0667def13\",\"url\":\"/events/cassandra-forward-march-2025\",\"_type\":\"cta\"}],\"content\":[{\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"682a17a0557f\",\"markDefs\":[],\"children\":[{\"_key\":\"e338dd2a79c0\",\"_type\":\"span\",\"marks\":[\"strong\"],\"text\":\"MARCH 11 (NAM) | MARCH 12 (APAC) | VIRTUAL EVENT\"}]},{\"children\":[{\"_type\":\"span\",\"marks\":[],\"text\":\"Join us for a virtual event showcasing the next generation features of Apache Cassandra®. We will livestream at times friendly to both the North America and Asia Pacific timezones.\",\"_key\":\"7b27424e4a620\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"7df935658d16\",\"markDefs\":[]}],\"cta\":{\"_type\":\"cta\",\"text\":\"LEARN MORE\",\"url\":\"/products/ai-platform-as-a-service-paas\"}}],\"leftBlocks\":[{\"_type\":\"header.submenu.menu\",\"links\":[{\"_key\":\"8f2730a2de07\",\"useSpacer\":false,\"cta\":{\"_type\":\"cta\",\"text\":\"Astra DB\",\"url\":\"/products/datastax-astra\"},\"subtitle\":\"Low Latency Vector and NoSQL AI Database\",\"_type\":\"link\"},{\"_type\":\"link\",\"_key\":\"fcf7ed5adf1a\",\"cta\":{\"url\":\"/products/langflow\",\"_type\":\"cta\",\"text\":\"Langflow\"},\"subtitle\":\"Visual IDE for Rapid AI and RAG App Development\"},{\"cta\":{\"text\":\"Astra Streaming\",\"url\":\"/products/astra-streaming\",\"_type\":\"cta\"},\"subtitle\":\"Real-Time Data Pipelines for Generative AI\",\"_type\":\"link\",\"_key\":\"ae3f27380bd7\"},{\"subtitle\":\"Build and Deploy AI Applications\",\"_type\":\"link\",\"_key\":\"cf97013f8566\",\"cta\":{\"text\":\"The AI Platform\",\"url\":\"/products/ai-platform-as-a-service-paas\",\"_type\":\"cta\"}},{\"subtitle\":\"A Complete Enterprise Solution, includes NVIDIA AI\",\"_type\":\"link\",\"_key\":\"963ecab36ed6\",\"cta\":{\"_type\":\"cta\",\"text\":\"DataStax AI Platform, Built with NVIDIA AI\",\"url\":\"/products/ai-platform-built-with-nvidia-ai\"}}],\"_key\":\"2c91caa3d866\",\"title\":\"AI Products\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"url\":\"/products/hyper-converged-database-hcd\",\"_type\":\"cta\",\"text\":\"Hyper-Converged Database\"},\"subtitle\":\"Developer-Ready, Cloud Native Database for Kubernetes\",\"_type\":\"link\",\"_key\":\"bc88ae28c142\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"DataStax Enterprise\",\"url\":\"/products/datastax-enterprise\"},\"subtitle\":\"NoSQL and Vector DB Built on Apache Cassandra\",\"_type\":\"link\",\"_key\":\"406fa9344795\"}],\"_key\":\"263486179967\",\"title\":\"Self-Managed Data Products\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Luna for Langflow\",\"url\":\"/products/luna-langflow\"},\"subtitle\":\"Production-Level Open-Source Langflow Projects\",\"_type\":\"link\",\"_key\":\"47ba74776dc6\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Luna for Apache Cassandra\",\"url\":\"/products/luna\"},\"subtitle\":\"Mission-Critical Cassandra Deployments\",\"_type\":\"link\",\"_key\":\"e770a8b310b0\"},{\"_type\":\"link\",\"_key\":\"3bc4fd4a0ab4\",\"cta\":{\"url\":\"/products/luna-streaming\",\"_type\":\"cta\",\"text\":\"Luna for Streaming\"},\"subtitle\":\"Real-Time Streaming from Apache Pulsar\"}],\"_key\":\"cbbf37bcf7ad\",\"title\":\"Open-Source Support\"}],\"_type\":\"headerSubmenu\"},{\"_type\":\"cta\",\"text\":\"Pricing\",\"_key\":\"8c753e089f38\",\"url\":\"/pricing\"},{\"_type\":\"headerSubmenu\",\"text\":\"Stories\",\"_key\":\"f8a29aaf8b33\",\"rightBlocks\":[{\"image\":{\"_type\":\"altImage\",\"alt\":\"DataStax at NVIDIA GTC 2025\",\"asset\":{\"_ref\":\"image-b6a07cc76504e4ac1c9ec19fd6103e93a1cf1f88-800x400-png\",\"_type\":\"reference\"}},\"_type\":\"header.submenu.cta\",\"_key\":\"79ea042c46ad\",\"title\":\"DataStax at GTC 2025\",\"ctas\":[{\"_type\":\"cta\",\"text\":\"RSVP to Welcome Reception\",\"_key\":\"b95031aee8fb\",\"url\":\"/events/datastax-at-gtc-2025#contact-us\"},{\"_type\":\"cta\",\"text\":\"Meet with our AI Experts\",\"_key\":\"eaedb2608aac\",\"url\":\"/events/datastax-at-gtc-2025#register\"}],\"content\":[{\"children\":[{\"_type\":\"span\",\"text\":\"Kick off GTC at our \",\"_key\":\"1d5eb92a86a6\"},{\"_type\":\"span\",\"marks\":[\"strong\"],\"text\":\"AI Leaders Welcome Reception\",\"_key\":\"4dffbbc9d433\"},{\"_type\":\"span\",\"text\":\"! Immerse yourself in convos with GenAI experts, spark ideas, and discover how others have brought their AI apps into production. Savor delectable food, craft cocktails, and enjoy live music while an AI robot sketches your caricature.\",\"_key\":\"e3814653f3bf\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"1d7f20495049\"}]}],\"leftBlocks\":[{\"_key\":\"5378bee91e77\",\"title\":\"AI Success stories\",\"cta\":{\"_type\":\"cta\",\"text\":\"View All stories\",\"url\":\"/enterprise-success\"},\"_type\":\"header.submenu.menu\",\"links\":[{\"_key\":\"590b829b680b\",\"cta\":{\"_type\":\"cta\",\"text\":\"Skypoint\",\"url\":\"/enterprise-success/skypoint-cloud\"},\"_type\":\"link\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Dataworkz\",\"url\":\"/enterprise-success/dataworkz\"},\"_type\":\"link\",\"_key\":\"2b1ff13a216e\"}]},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Healthcare\",\"url\":\"/use-cases/healthcare\"},\"_type\":\"link\",\"_key\":\"208c1d2ca3a5\"},{\"_type\":\"link\",\"_key\":\"6d9fd487f6c8d7a0934a41f66b5cd4ad\",\"cta\":{\"text\":\"E-Commerce\",\"url\":\"/use-cases/e-commerce\",\"_type\":\"cta\"}},{\"cta\":{\"_type\":\"cta\",\"text\":\"Financial Services\",\"url\":\"/use-cases/financial-services\"},\"_type\":\"link\",\"_key\":\"8bce06b153c3\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Internet-of-Things (IoT)\",\"url\":\"/use-cases/internet-of-things-iot\"},\"_type\":\"link\",\"_key\":\"8f6d4d2aeb58\"},{\"cta\":{\"url\":\"/use-cases/customer-360\",\"_type\":\"cta\",\"text\":\"Customer 360\"},\"_type\":\"link\",\"_key\":\"11a532937848\"}],\"_key\":\"ce0a9015b572\",\"title\":\"Use Cases\",\"cta\":{\"_type\":\"cta\",\"text\":\"View All Use Cases\",\"url\":\"/use-cases\"}},{\"_key\":\"f1b1485a3728\",\"title\":\"Digital Champions\",\"cta\":{\"_type\":\"cta\",\"text\":\"View All Champions\",\"url\":\"/digital-champions\"},\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Netflix\",\"url\":\"/digital-champions/ayushi-singh-netflix-real-time-data\"},\"_type\":\"link\",\"_key\":\"59fadb1783c3\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Priceline\",\"url\":\"/digital-champions/martin-brodbeck-delivers-the-best-travel-products-to-priceline-customers-by-leveraging-real-time-ai\"},\"_type\":\"link\",\"_key\":\"35372b9d4b39\"}]}]},{\"text\":\"Resources\",\"_key\":\"73123da9b05a\",\"rightBlocks\":[{\"content\":[{\"children\":[{\"text\":\"MARCH 11 (NAM) | MARCH 12 (APAC) | VIRTUAL EVENT\",\"_key\":\"429af9580b29\",\"_type\":\"span\",\"marks\":[\"strong\"]}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"89bec65bd77a\"},{\"style\":\"normal\",\"_key\":\"a17ddf32f2ba\",\"children\":[{\"_type\":\"span\",\"text\":\"Join us for a virtual event showcasing the next generation features of Apache Cassandra®. We will livestream at times friendly to both the North America and Asia Pacific timezones.\",\"_key\":\"3f8a2da18087\"}],\"_type\":\"block\"}],\"cta\":{\"_type\":\"cta\",\"text\":\"LEARN MORE\",\"url\":\"/products/ai-platform-as-a-service-paas\"},\"image\":{\"_type\":\"altImage\",\"alt\":\"Cassandra Forward 2025\",\"asset\":{\"_ref\":\"image-7fc25f11721699c4b197088a9ec58727513391e7-800x400-png\",\"_type\":\"reference\"}},\"_type\":\"header.submenu.cta\",\"_key\":\"9db2d38264e5\",\"title\":\"Cassandra Forward Is Back!\",\"ctas\":[{\"_type\":\"cta\",\"text\":\"Register Now\",\"_key\":\"2066a9066aad\",\"url\":\"/events/cassandra-forward-march-2025\"}]}],\"leftBlocks\":[{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"text\":\"Developers Hub\",\"url\":\"/devs\",\"_type\":\"cta\"},\"_type\":\"link\",\"_key\":\"5fbf80fa452e\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Docs\",\"url\":\"https://docs.datastax.com/en/astra/astra-db-vector/index.html\"},\"_type\":\"link\",\"_key\":\"d34764cac0ac\"},{\"_type\":\"link\",\"_key\":\"d9a3547f8ffd\",\"cta\":{\"_type\":\"cta\",\"text\":\"Integrations\",\"url\":\"/integrations\"}},{\"cta\":{\"_type\":\"cta\",\"text\":\"Downloads\",\"url\":\"https://downloads.datastax.com/\"},\"_type\":\"link\",\"_key\":\"62b372fed1b8\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Sample Apps\",\"url\":\"https://docs.datastax.com/en/astra-db-serverless/get-started/examples.html\"},\"_type\":\"link\",\"_key\":\"9f4b763072f8\"},{\"_type\":\"link\",\"_key\":\"7ac95e7ebc63\",\"cta\":{\"url\":\"/services/support\",\"_type\":\"cta\",\"text\":\"Support\"}},{\"cta\":{\"_type\":\"cta\",\"text\":\"Premium Support\",\"url\":\"/services/support/premium-support\"},\"_type\":\"link\",\"_key\":\"2541b189f2f5\",\"useSpacer\":false}],\"_key\":\"27631bb923df\",\"title\":\"Build\"},{\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Blog\",\"url\":\"/blog\"},\"_type\":\"link\",\"_key\":\"bd00939e6a6d\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Resource Hub\",\"url\":\"/resources\"},\"_type\":\"link\",\"_key\":\"4f08d2d4e592\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Leadership Insights\",\"url\":\"/leadership-insights\"},\"_type\":\"link\",\"_key\":\"ddfcc298f5a2\"},{\"cta\":{\"text\":\"Guides\",\"url\":\"/resources?type=guides\",\"_type\":\"cta\"},\"_type\":\"link\",\"_key\":\"567d05dd4988\"},{\"cta\":{\"_type\":\"cta\",\"text\":\"Certifications\",\"url\":\"/dev/certifications\"},\"_type\":\"link\",\"_key\":\"537d8cad4697\"}],\"_key\":\"db3afee10fe3\",\"title\":\"Learn\"},{\"title\":\"Connect\",\"_type\":\"header.submenu.menu\",\"links\":[{\"cta\":{\"_type\":\"cta\",\"text\":\"Events\",\"url\":\"/events\"},\"_type\":\"link\",\"_key\":\"9956203caea0\"},{\"_key\":\"fb2cea881123\",\"cta\":{\"_type\":\"cta\",\"text\":\"Podcasts\",\"url\":\"/resources?type=podcast\"},\"_type\":\"link\"}],\"_key\":\"4112590898e7\"}],\"_type\":\"headerSubmenu\"}]}}],[\"$\",\"$L20\",null,{\"content\":[[\"$\",\"p\",null,{\"children\":[[\"$\",\"$L21\",null,{\"href\":\"https://www.datastax.com/blog/ibm-plans-to-acquire-datastax\",\"children\":[\"IBM to Acquire DataStax, Accelerating Production AI \u0026 NoSQL Data at Scale\"]}]]}]],\"className\":\"$undefined\"}]]}],[\"$\",\"main\",null,{\"className\":\" \",\"id\":\"page_container_test_id\",\"style\":\"$undefined\",\"children\":[[\"$\",\"$L28\",null,{\"post\":{\"publishedAt\":\"2015-07-15\",\"isPublished\":true,\"tags\":[{\"_id\":\"168fef3d-d92a-43f4-a572-60aaa1d653d6\",\"_key\":null,\"name\":\"Gremlin\",\"slug\":\"gremlin\"},{\"_id\":\"7c1e7af9-0bbd-4099-9a30-8b0f283b1eb1\",\"_key\":null,\"name\":\"DSE Graph\",\"slug\":\"dse-graph\"}],\"shouldHaveCategory\":true,\"relatedPosts\":[{\"externalLink\":null,\"introduction\":null,\"publishedAt\":\"2025-02-25 07:25\",\"slug\":\"blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax\",\"_createdAt\":\"2025-02-25T13:06:46Z\",\"_id\":\"3e5d23d5-956a-43f4-b553-44803969264b\",\"__i18n_lang\":null,\"_type\":\"blogPost\",\"category\":{\"image\":{\"asset\":{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"},\"_type\":\"image\"},\"name\":\"Company\",\"slug\":\"/blog/company\"},\"image\":{\"_type\":\"image\",\"asset\":{\"_type\":\"reference\",\"_ref\":\"image-3a238ff62f31a42bd45313ca0d69dfdfb5c016b2-1460x968-png\"}},\"title\":\"IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®\",\"authors\":[{\"name\":\"Patrick McFadin\",\"photo\":{\"_type\":\"customImage\",\"alt\":\"Patrick McFadin\",\"asset\":{\"_ref\":\"image-1e692437e83015a5ef675b52f0f2e45b53cd6421-512x512-jpg\",\"_type\":\"reference\"}},\"position\":\"Principal Technical Strategist \u0026 Cassandra Committer\",\"slug\":{\"current\":\"patrick-mcfadin\",\"_type\":\"slug\"},\"hidden\":null,\"bio\":null}]},{\"publishedAt\":\"2025-02-25 07:04\",\"_id\":\"bb164f1f-ec1c-4e49-a620-cfe15ece4df9\",\"authors\":[{\"name\":\"Chet Kapoor\",\"photo\":{\"_type\":\"customImage\",\"alt\":\"Chet Kapoor - Chairman \u0026 CEO\",\"asset\":{\"_ref\":\"image-675bc1fb799d6862c34e4dd2e197e6adec903419-720x720-png\",\"_type\":\"reference\"}},\"position\":\"Chairman \u0026 CEO\",\"slug\":{\"current\":\"chet-kapoor\",\"_type\":\"slug\"},\"hidden\":null,\"bio\":[{\"markDefs\":[],\"children\":[{\"_type\":\"span\",\"marks\":[],\"text\":\"Chet Kapoor is Chairman and CEO of DataStax, the real-time AI company. With more than two decades of leadership across tech giants like Google, IBM, and BEA Systems, Chet has always thought about infusing AI into businesses at scale. With his roots at Steve Jobs’ company NeXT, Chet learned the power of working with incredible people who want to change the world. This insight helped fuel his career and he ultimately took the helm of Apigee as CEO in 2007 where he saw APIs as a platform for bringing AI to the enterprise.\",\"_key\":\"44abda08f9170\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"42a0891b5845\"},{\"markDefs\":[],\"children\":[{\"text\":\"After a successful IPO and eventual acquisition of Apigee by Google, Chet dug in and recognized the solution to deeply enabling AI at scale was to start with data. His journey culminated when he became the CEO of DataStax in October 2019. With a focus on strategy, operations, and people, the company launched Astra DB—a pioneering DBaaS powered by Apache Cassandra—and seamlessly integrated real-time AI with streaming capabilities and event processing engine, Kaskada's, feature store. Now, with vector search for generative AI, DataStax customers can build massively scalable AI agents and deliver powerful apps leveraging generative AI.\",\"_key\":\"076e03abc814\",\"_type\":\"span\",\"marks\":[]}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"4b0aa377acf7\"}]}],\"category\":{\"image\":{\"asset\":{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"},\"_type\":\"image\"},\"name\":\"Company\",\"slug\":\"/blog/company\"},\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-39d3bedc12be0c376bffe910708cd05eaf93dcae-1460x968-png\",\"_type\":\"reference\"}},\"introduction\":null,\"slug\":\"blog/ibm-plans-to-acquire-datastax\",\"title\":\"Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises\",\"_createdAt\":\"2025-02-25T12:56:51Z\",\"__i18n_lang\":null,\"_type\":\"blogPost\",\"externalLink\":null},{\"externalLink\":null,\"__i18n_lang\":null,\"authors\":[{\"name\":\"Jason McClelland\",\"photo\":{\"_type\":\"customImage\",\"alt\":\"Jason McClelland\",\"asset\":{\"_ref\":\"image-d3957af141fae4f1361d91c705eb0292dd054532-336x336-png\",\"_type\":\"reference\"}},\"position\":\"Chief Marketing Officer\",\"slug\":{\"_type\":\"slug\",\"current\":\"jason-mcclelland\"},\"hidden\":null,\"bio\":[{\"style\":\"normal\",\"_key\":\"02ff6e42f53f\",\"markDefs\":[],\"children\":[{\"marks\":[],\"text\":\"Jason McClelland has over 25 years in tech. Jason started his career as a developer and product person before moving into sales and marketing at Adobe, where he helped Adobe with their SaaS and Enterprise business transformations, with Creative Cloud and Marketing Cloud respectively. After Adobe, Jason joined as Heroku as their CMO, where he worked through the acquisition and integration into Salesforce. Much of Jason's experience is in helping companies create new categories, transforming their brands, and building large-scale PLG-Enterprise motions, with much of the focus being on deeply technical audiences.\",\"_key\":\"b6fdaab58a720\",\"_type\":\"span\"}],\"_type\":\"block\"}]}],\"category\":{\"image\":{\"asset\":{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"},\"_type\":\"image\"},\"name\":\"Company\",\"slug\":\"/blog/company\"},\"image\":{\"_type\":\"image\",\"asset\":{\"_type\":\"reference\",\"_ref\":\"image-3bf16fa722d3b4ce965fe42e4b10165515269b4b-1460x968-jpg\"}},\"introduction\":null,\"publishedAt\":\"2024-12-11 10:09\",\"slug\":\"blog/aws-reinvent-las-vegas-datastax-recap\",\"title\":\"Shaping the Wild in Las Vegas: An AWS re:Invent Recap\",\"_createdAt\":\"2024-12-11T16:00:55Z\",\"_id\":\"58e24308-d276-44eb-afc2-779fcbf6568d\",\"_type\":\"blogPost\"},{\"slug\":\"blog/twelve-days-codemas-datastax-holiday-giveaway\",\"__i18n_lang\":null,\"category\":{\"image\":{\"asset\":{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"},\"_type\":\"image\"},\"name\":\"Company\",\"slug\":\"/blog/company\"},\"externalLink\":null,\"publishedAt\":null,\"title\":\"Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!\",\"_createdAt\":\"2024-12-09T00:57:40Z\",\"_id\":\"a19947ba-ceb7-4bbd-a096-d0d8215e97e8\",\"_type\":\"blogPost\",\"authors\":[{\"photo\":{\"_type\":\"customImage\",\"alt\":\"Tejas Kumar\",\"asset\":{\"_ref\":\"image-006991822546ef1faf67647d761e4612d648a37f-800x800-jpg\",\"_type\":\"reference\"}},\"position\":\"Developer Relations Engineer\",\"slug\":{\"current\":\"tejas-kumar\",\"_type\":\"slug\"},\"hidden\":null,\"bio\":null,\"name\":\"Tejas Kumar\"}],\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-680bc65dc2c8d79b43739155a3167d32b32939a7-1460x968-jpg\",\"_type\":\"reference\"}},\"introduction\":null}],\"settings\":{\"rss\":{\"_type\":\"cta\",\"text\":\"Subscribe to the RSS Feed\",\"url\":\"https://www.datastax.com/rss.xml\"},\"menus\":[{\"_type\":\"cta\",\"text\":\"Everything\",\"_key\":\"686d004edb07\",\"url\":\"/blog\"},{\"_type\":\"cta\",\"text\":\"Technology\",\"_key\":\"25fc264e5367\",\"url\":\"/blog?category=technical-how-tos\"},{\"url\":\"/blog?category=success-stories\",\"_type\":\"cta\",\"text\":\"Success Stories\",\"_key\":\"769945a5c404\"},{\"_key\":\"9f2c4265e9fc\",\"url\":\"/blog?category=company\",\"_type\":\"cta\",\"text\":\"Company\"},{\"_type\":\"cta\",\"text\":\"Astra DB\",\"_key\":\"6ab4990a30e9\",\"url\":\"/blog?tags=datastax-astra\"},{\"_type\":\"cta\",\"text\":\"Langflow\",\"_key\":\"7f38e9f8cd46\",\"url\":\"/blog?tags=langflow\"},{\"_type\":\"cta\",\"text\":\"DataStax Enterprise\",\"_key\":\"b60c7cef0b29\",\"url\":\"/blog?tags=datastax-enterprise\"}],\"ctaCard\":{\"cta\":[{\"text\":\"Learn More\",\"_key\":\"40014eea59d2\",\"url\":\"/products/vector-search\",\"_type\":\"cta\"},{\"url\":\"https://astra.datastax.com/signup\",\"_type\":\"cta\",\"text\":\"Get Started for Free\",\"_key\":\"4535cd698f7d\"}],\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-814d662a353caa219c224a9bbe370fc053207eb2-758x760-png\",\"_type\":\"reference\"}},\"title\":\"One-Stop Data API for Production GenAI\",\"content\":[{\"markDefs\":[],\"children\":[{\"_type\":\"span\",\"marks\":[],\"text\":\"Astra DB gives developers a complete data API and out-of-the-box integrations that make it easier to build production RAG apps with high relevancy and low latency.\",\"_key\":\"6501226953780\"}],\"_type\":\"block\",\"style\":\"normal\",\"_key\":\"a37b540c453a\"}]},\"sidebarSignup\":{\"_type\":\"cta\",\"aiTitle\":\"DataStax AI Platform:\\\\\\\\The Fastest Way to Build and Deploy AI Apps\",\"title\":\"Leaders like Barracuda and Temporal manage Apache Cassandra® with Astra DB. You can too.\",\"aiCta\":{\"_type\":\"cta\",\"text\":\"Try For Free\",\"url\":\"https://astra.datastax.com/signup?type=langflow\"},\"cta\":{\"_type\":\"cta\",\"text\":\"Create a Cluster\",\"url\":\"https://astra.datastax.com/signup\"}},\"darkBanner\":null},\"introduction\":\"\",\"sections\":[{\"_type\":\"advancedContent\",\"_key\":\"D7UxiKNk3srsSuDJ\",\"content\":\"$29\"}],\"createdDate\":\"2015-07-15T13:35:17Z\",\"seo\":{\"slug\":{\"current\":\"/blog/tales-tinkerpop\",\"_type\":\"slug\"},\"ogTitle\":\"Tales from the TinkerPop | Datastax\",\"description\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\",\"ogDescription\":\"Read the latest announcements, product updates, community activities and more. Subscribe now to the DataStax blog!\",\"title\":\"Tales from the TinkerPop | Datastax\"},\"title\":\"Tales from the TinkerPop\",\"popularTags\":[{\"_id\":\"e0105520-dd7c-4bdd-b21c-8cd26722c9d5\",\"name\":\"Apache Cassandra®\",\"slug\":\"apache-cassandra\",\"posts\":138},{\"_id\":\"87e28537-d4a0-41fc-80da-094bfa46a283\",\"name\":\"Vector Search\",\"slug\":\"vector-search\",\"posts\":41},{\"_id\":\"19faf74d-8350-4bcd-8fa2-9be3615e6bb2\",\"name\":\"Releases\",\"slug\":\"releases\",\"posts\":40},{\"_id\":\"bd3f55b3-c212-4989-a489-23cf5c07015e\",\"name\":\"Drivers\",\"slug\":\"drivers\",\"posts\":39},{\"_id\":\"ecd3ad1d-5acb-48a0-9695-3d3211ae06b1\",\"name\":\"Accelerate\",\"slug\":\"accelerate\",\"posts\":34},{\"_id\":\"0f614489-7586-4c1e-86da-d18d2abde830\",\"name\":\"Architecture\",\"slug\":\"architecture\",\"posts\":33},{\"_id\":\"113c1eef-aad9-444e-a344-1d6b91832518\",\"name\":\"Hybrid Cloud\",\"slug\":\"hybrid-cloud\",\"posts\":33},{\"_id\":\"168fef3d-d92a-43f4-a572-60aaa1d653d6\",\"name\":\"Gremlin\",\"slug\":\"gremlin\",\"posts\":32},{\"_id\":\"7c1e7af9-0bbd-4099-9a30-8b0f283b1eb1\",\"name\":\"DSE Graph\",\"slug\":\"dse-graph\",\"posts\":30},{\"_id\":\"c19404f3-9e85-472c-86a9-883ccdc1d387\",\"name\":\"Retrieval-augmented generation\",\"slug\":\"retrieval-augmented-generation\",\"posts\":30}],\"_updatedAt\":\"2025-03-07T17:55:40Z\",\"_score\":1,\"hidden\":false,\"_type\":\"blogPost\",\"authors\":[{\"slug\":{\"_type\":\"slug\",\"current\":\"marko-rodriguez\"},\"hidden\":null,\"bio\":null,\"name\":\"Marko A. Rodriguez\",\"photo\":{\"_type\":\"customImage\",\"asset\":{\"_ref\":\"image-a44a70cab8d04bc5f17284b6adb45202a6d14018-360x360-svg\",\"_type\":\"reference\"}},\"position\":\"\"}],\"_rev\":\"D5FSyD3VyzOjeMa1TKNWeA\",\"_id\":\"i8F26saEWReBAHigCwsY0E\",\"category\":{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-af873ab4d03992de5648a54e946b952ed92829fc-216x202-png\",\"_type\":\"reference\"}},\"name\":\"Company\",\"slug\":\"/blog/company\"},\"featured\":false,\"_createdAt\":\"2015-07-15T13:35:17Z\"}}],[\"$\",\"$L2a\",null,{\"post\":\"$2b\"}],[\"$\",\"header\",null,{\"className\":\"styles_hero__TSf9o\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_breadcrumb__tPKXM\",\"children\":[\"$\",\"div\",null,{\"className\":\"container\",\"children\":[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"$L23\",null,{\"color\":\"reverse\",\"variant\":\"link\",\"href\":\"/blog/company\",\"forceIcon\":false,\"children\":\"Back to Company\"}]}]}]}]}],[\"$\",\"div\",null,{\"className\":\"styles_hero__content__Fae1s\",\"children\":[\"$\",\"div\",null,{\"className\":\"container\",\"children\":[[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-md-6 d-flex\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_hero__content__inner__26xIw\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_info__ik8Is\",\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__category__Z7qPi\",\"children\":\"Company\"}],[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__GvkwF\",\"children\":[[\"$\",\"span\",null,{\"className\":\"$undefined\",\"children\":\"•\"}],\"July 15, 2015\"]}]]}],[\"$\",\"h1\",null,{\"className\":\"styles_display__cQk8b styles_display--size-400__HV_pT styles_display--sm-size__mzd9O styles_display--weight-600__cx95q styles_title__hZZn2\",\"children\":\"Tales from the TinkerPop\"}],\"\",[\"$\",\"div\",null,{\"className\":\"styles_authors__ucRR_ styles_authors--large__pMloF styles_authors__wzU1K\",\"children\":[[\"$\",\"$L21\",\"0\",{\"href\":\"/our-people/marko-rodriguez\",\"className\":\"styles_authors__author__SCUmK row g-0 align-items-center\",\"children\":[\"$\",\"div\",null,{\"className\":\"d-flex align-items-center\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-auto\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_authors__author__photo__v13jk\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$99\",\"alt\":\"Marko A. Rodriguez\",\"width\":48,\"height\":48}]}]}],[\"$\",\"span\",null,{\"className\":\"styles_text__LSXNx styles_text--size-200__t4kFW styles_text--weight-400__XgWIb styles_authors__author__name__c3CTw\",\"children\":[[\"$\",\"span\",null,{\"children\":\"Marko A. Rodriguez\"}],\"\"]}]]}]}]]}]]}]}],[\"$\",\"div\",null,{\"className\":\"col-md-6\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_image__vUrnh\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$9c\",\"alt\":\"Tales from the TinkerPop\",\"width\":\"543\",\"fetchPriority\":\"high\",\"loading\":\"eager\"}]}]}]]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_divider__yEDBO\"}]}]}]]}]}]]}],[\"$\",\"div\",null,{\"className\":\"container styles_post--content__CaYrG\",\"children\":[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-lg-8\",\"children\":[[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"$L9e\",\"0\",{\"content\":\"$9f\"}]]}],[\"$\",\"div\",null,{\"className\":\"row justify-space-between\",\"children\":[\"$\",\"div\",null,{\"className\":\"col-12\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_info__yP4Mv\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_tags__uqANG\",\"children\":[[\"$\",\"h5\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa\",\"children\":\"Discover more\"}],[[\"$\",\"$L21\",\"168fef3d-d92a-43f4-a572-60aaa1d653d6\",{\"href\":\"/blog?tags=gremlin\",\"children\":[\"$\",\"$La0\",null,{\"variant\":\"outlined\",\"children\":\"Gremlin\"}]}],[\"$\",\"$L21\",\"7c1e7af9-0bbd-4099-9a30-8b0f283b1eb1\",{\"href\":\"/blog?tags=dse-graph\",\"children\":[\"$\",\"$La0\",null,{\"variant\":\"outlined\",\"children\":\"DSE Graph\"}]}]]]}],false]}]}]}]]}],[\"$\",\"div\",null,{\"className\":\"col-lg-4\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_root__8_qHu\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_content__ZSlYu\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_content__item__0kTgC\",\"children\":[[\"$\",\"$La1\",null,{\"sidebarSignup\":{\"cta\":\"$84\",\"title\":\"DataStax AI Platform:\\\\\\\\The Fastest Way to Build and Deploy AI Apps\"},\"segmentEvent\":\"www - Blog Primary CTA Clicked\"}],\"$undefined\",[[\"$\",\"div\",null,{\"className\":\"styles_content__title__uHETK\",\"children\":[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa\",\"children\":\"JUMP TO SECTION\"}]}],[[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#chapter-1-life-and-fate-by-grasily-gremssman-0\",\"children\":\"Chapter 1: Life and Fate by Grasily Gremssman\"}]}],[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#chapter-2-permutation-city-by-grem-egrem-1\",\"children\":\"Chapter 2: Permutation City by Grem Egrem\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-1-the-birth-of-the-graph-2\",\"children\":\"Section 1: The Birth of the Graph\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-2-graphialsynthesis-and-the-emergence-of-the-directed-labeled-graph-3\",\"children\":\"Section 2: Graphialsynthesis and the Emergence of the Directed, Labeled Graph\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-3-on-the-baselessness-of-the-multi-multigraph-4\",\"children\":\"Section 3: On the Baselessness of the Multi-MultiGraph\"}]}],[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#chapter-3-a-mathematicians-apology-by-gh-gremdy-5\",\"children\":\"Chapter 3: A Mathematician's Apology by G.H. Gremdy\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-1-traversal-optimization-via-algebra-6\",\"children\":\"Section 1: Traversal Optimization via Algebra\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-2-traversal-optimization-via-indices-7\",\"children\":\"Section 2: Traversal Optimization via Indices\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-3-traversal-optimization-via-bulking-8\",\"children\":\"Section 3: Traversal Optimization via Bulking\"}]}],[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#chapter-4-cognition-in-the-wild-by-gredwin-grutchins-9\",\"children\":\"Chapter 4: Cognition in the Wild by Gredwin Grutchins\"}]}],[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#chapter-5-we-the-living-by-gyn-grand-10\",\"children\":\"Chapter 5: We the Living by Gyn Grand\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-1-prelude-to-the-illusion-of-freedom-11\",\"children\":\"Section 1: Prelude to the Illusion of Freedom\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-2-the-structure-process-duality-in-computing-12\",\"children\":\"Section 2: The Structure-Process Duality in Computing\"}]}],[\"$\",\"h3\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#section-3-the-non-erratic-ergodic-eigenvector-13\",\"children\":\"Section 3: The Non-Erratic Ergodic Eigenvector\"}]}],[\"$\",\"h2\",null,{\"className\":\"styles_text__LSXNx styles_text--size-300__Jtynv styles_text--weight-600__Kq9jE\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"#credits-14\",\"children\":\"Credits\"}]}]]]]}]}]}]}]]}]}],[],[\"$\",\"section\",null,{\"className\":\"styles_related__tg1Zc\",\"children\":[\"$\",\"div\",null,{\"className\":\"container\",\"children\":[[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_heading__yWOUl\",\"children\":[[\"$\",\"h2\",null,{\"className\":\"styles_display__cQk8b styles_display--size-300__vVmUP styles_display--sm-size__mzd9O styles_display--weight-600__cx95q\",\"children\":\"More Company\"}],[\"$\",\"$L23\",null,{\"href\":\"/blog/company\",\"variant\":\"link\",\"children\":\"View All\"}]]}]}]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"div\",\"3e5d23d5-956a-43f4-b553-44803969264b\",{\"className\":\"col-md-6\",\"children\":[\"$\",\"div\",null,{\"className\":\"row styles_post__zxY_1\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-4\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"/blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_thumbnail__L_uas\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$34\",\"alt\":\"IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®\",\"width\":264,\"height\":176}]}]}]}],[\"$\",\"div\",null,{\"className\":\"col-8\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_info__aNY8t\",\"children\":[[\"$\",\"$L21\",null,{\"className\":\"styles_info__category__6uq2v\",\"href\":\"/blog/company\",\"children\":[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx\",\"children\":\"Company\"}]}],[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG\",\"children\":[[\"$\",\"span\",null,{\"className\":\"$undefined\",\"children\":[\" \",\"•\",\" \"]}],\"February 25, 2025\"]}]]}],[\"$\",\"$L21\",null,{\"className\":\"styles_title__TBdOP\",\"href\":\"/blog/new-chapter-apache-cassandra-ibm-plans-to-acquire-datastax\",\"children\":[\"$\",\"h6\",null,{\"className\":\"styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q\",\"children\":\"IBM Plans to Acquire DataStax: A New Chapter for Apache Cassandra®\"}]}]]}]]}]}],[\"$\",\"div\",\"bb164f1f-ec1c-4e49-a620-cfe15ece4df9\",{\"className\":\"col-md-6\",\"children\":[\"$\",\"div\",null,{\"className\":\"row styles_post__zxY_1\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-4\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"/blog/ibm-plans-to-acquire-datastax\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_thumbnail__L_uas\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$4f\",\"alt\":\"Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises\",\"width\":264,\"height\":176}]}]}]}],[\"$\",\"div\",null,{\"className\":\"col-8\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_info__aNY8t\",\"children\":[[\"$\",\"$L21\",null,{\"className\":\"styles_info__category__6uq2v\",\"href\":\"/blog/company\",\"children\":[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx\",\"children\":\"Company\"}]}],[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG\",\"children\":[[\"$\",\"span\",null,{\"className\":\"$undefined\",\"children\":[\" \",\"•\",\" \"]}],\"February 25, 2025\"]}]]}],[\"$\",\"$L21\",null,{\"className\":\"styles_title__TBdOP\",\"href\":\"/blog/ibm-plans-to-acquire-datastax\",\"children\":[\"$\",\"h6\",null,{\"className\":\"styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q\",\"children\":\"Accelerating Production AI and Bringing NoSQL Data at Scale to All Enterprises\"}]}]]}]]}]}],[\"$\",\"div\",\"58e24308-d276-44eb-afc2-779fcbf6568d\",{\"className\":\"col-md-6\",\"children\":[\"$\",\"div\",null,{\"className\":\"row styles_post__zxY_1\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-4\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"/blog/aws-reinvent-las-vegas-datastax-recap\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_thumbnail__L_uas\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$60\",\"alt\":\"Shaping the Wild in Las Vegas: An AWS re:Invent Recap\",\"width\":264,\"height\":176}]}]}]}],[\"$\",\"div\",null,{\"className\":\"col-8\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_info__aNY8t\",\"children\":[[\"$\",\"$L21\",null,{\"className\":\"styles_info__category__6uq2v\",\"href\":\"/blog/company\",\"children\":[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx\",\"children\":\"Company\"}]}],[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG\",\"children\":[[\"$\",\"span\",null,{\"className\":\"$undefined\",\"children\":[\" \",\"•\",\" \"]}],\"December 11, 2024\"]}]]}],[\"$\",\"$L21\",null,{\"className\":\"styles_title__TBdOP\",\"href\":\"/blog/aws-reinvent-las-vegas-datastax-recap\",\"children\":[\"$\",\"h6\",null,{\"className\":\"styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q\",\"children\":\"Shaping the Wild in Las Vegas: An AWS re:Invent Recap\"}]}]]}]]}]}],[\"$\",\"div\",\"a19947ba-ceb7-4bbd-a096-d0d8215e97e8\",{\"className\":\"col-md-6\",\"children\":[\"$\",\"div\",null,{\"className\":\"row styles_post__zxY_1\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-4\",\"children\":[\"$\",\"$L21\",null,{\"href\":\"/blog/twelve-days-codemas-datastax-holiday-giveaway\",\"children\":[\"$\",\"figure\",null,{\"className\":\"styles_thumbnail__L_uas\",\"children\":[\"$\",\"$L26\",null,{\"image\":\"$6b\",\"alt\":\"Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!\",\"width\":264,\"height\":176}]}]}]}],[\"$\",\"div\",null,{\"className\":\"col-8\",\"children\":[[\"$\",\"div\",null,{\"className\":\"styles_info__aNY8t\",\"children\":[[\"$\",\"$L21\",null,{\"className\":\"styles_info__category__6uq2v\",\"href\":\"/blog/company\",\"children\":[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx\",\"children\":\"Company\"}]}],[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-100__mWpUx styles_info__date__uOxvG\",\"children\":[[\"$\",\"span\",null,{\"className\":\"$undefined\",\"children\":[\" \",\"•\",\" \"]}],\"December 9, 2024\"]}]]}],[\"$\",\"$L21\",null,{\"className\":\"styles_title__TBdOP\",\"href\":\"/blog/twelve-days-codemas-datastax-holiday-giveaway\",\"children\":[\"$\",\"h6\",null,{\"className\":\"styles_display__cQk8b styles_display--size-100__DvYrC styles_display--sm-size__mzd9O styles_display--weight-600__cx95q\",\"children\":\"Announcing 12 Days of Codemas: The DataStax Holiday Giveaway!\"}]}]]}]]}]}]]}]]}]}],[\"$\",\"div\",null,{\"className\":\"container\",\"children\":[\"$\",\"$La1\",null,{\"sidebarSignup\":\"$a2\",\"className\":\"d-flex d-lg-none styles_signup__WNZcj\",\"segmentEvent\":\"www - Blog Primary CTA Clicked\"}]}],[\"$\",\"div\",null,{\"className\":\"d-none d-lg-block\",\"children\":[\"$\",\"section\",null,{\"className\":\"styles_banner_section__OtM0v\",\"children\":[\"$\",\"div\",null,{\"className\":\"container\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_banner__UexHD styles_banner--background-astra__uxGv_\",\"style\":{\"backgroundImage\":\"url(https://cdn.sanity.io/images/bbnkhnhl/production/814d662a353caa219c224a9bbe370fc053207eb2-758x760.png?auto=format)\"},\"children\":[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col-lg-6 offset-lg-5\",\"children\":[[\"$\",\"h4\",null,{\"className\":\"styles_display__cQk8b styles_display--size-400__HV_pT styles_display--sm-size__mzd9O styles_display--weight-600__cx95q spacer--bottom-3\",\"children\":[\"$\",\"$La3\",null,{\"mode\":\"br\",\"text\":\"One-Stop Data API for Production GenAI\"}]}],[\"$\",\"div\",null,{\"className\":\"styles_text__LSXNx styles_text--size-500___TVT0 styles_text--weight-400__XgWIb spacer--bottom-3\",\"children\":[[\"$\",\"p\",null,{\"children\":[\"Astra DB gives developers a complete data API and out-of-the-box integrations that make it easier to build production RAG apps with high relevancy and low latency.\"]}]]}],[[\"$\",\"div\",\"40014eea59d2\",{\"className\":\"d-block d-lg-inline spacer--top-3 spacer--right-3\",\"children\":[\"$\",\"$L23\",null,{\"variant\":\"secondary\",\"color\":\"reverse\",\"href\":\"/products/vector-search\",\"uppercase\":true,\"children\":\"Learn More\"}]}],[\"$\",\"div\",\"4535cd698f7d\",{\"className\":\"d-block d-lg-inline spacer--top-3 spacer--right-3\",\"children\":[\"$\",\"$L23\",null,{\"variant\":\"link\",\"color\":\"reverse\",\"href\":\"https://astra.datastax.com/signup\",\"uppercase\":true,\"children\":\"Get Started for Free\"}]}]]]}]}]}]}]}]}]]}],[\"$\",\"footer\",null,{\"className\":\"styles_footer__tD1mE\",\"children\":[[\"$\",\"div\",null,{\"className\":\"be-ix-link-block\"}],[\"$\",\"div\",null,{\"className\":\"styles_container__JnDP_\",\"children\":[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[[\"$\",\"div\",null,{\"className\":\"col-xl-9 col-md-12\",\"children\":[[\"$\",\"div\",null,{\"className\":\"row styles_nav__row__eEqbY\",\"children\":[[[\"$\",\"div\",\"0\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":0,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Company\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company\",\"forceIcon\":false,\"children\":\"About Us\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/our-people\",\"forceIcon\":false,\"children\":\"Leadership\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company/board-of-directors\",\"forceIcon\":false,\"children\":\"Board of Directors\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/contact-us\",\"forceIcon\":false,\"children\":\"Contact Us\"}],[\"$\",\"$L23\",\"4\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/partners/directory\",\"forceIcon\":false,\"children\":\"Partners\"}],[\"$\",\"$L23\",\"5\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/company/careers\",\"forceIcon\":false,\"children\":\"Careers\"}],[\"$\",\"$L23\",\"6\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/resources/news\",\"forceIcon\":false,\"children\":\"Newsroom\"}],[\"$\",\"$L23\",\"7\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/compare/cassandra-vs-datastax\",\"forceIcon\":false,\"children\":\"Apache Cassandra® vs DataStax\"}]]}]]}],[\"$\",\"div\",\"1\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":1,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Resources\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://docs.datastax.com/en/home/index.html\",\"forceIcon\":false,\"children\":\"Docs\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/blog\",\"forceIcon\":false,\"children\":\"Blog\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/events\",\"forceIcon\":false,\"children\":\"Events\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/meet-bodi\",\"forceIcon\":false,\"children\":\"Meet Bodi\"}],[\"$\",\"$L23\",\"4\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/brand-resources\",\"forceIcon\":false,\"children\":\"Brand Resources\"}],[\"$\",\"$L23\",\"5\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://support.datastax.com/s/\",\"forceIcon\":false,\"children\":\"Contact Support\"}],[\"$\",\"$L23\",\"6\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"https://trust.datastax.com/\",\"forceIcon\":false,\"children\":\"Security\"}],[\"$\",\"$L23\",\"7\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/guides/what-is-a-vector-database\",\"forceIcon\":false,\"children\":\"What is a Vector Database?\"}],[\"$\",\"$L23\",\"8\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/guides/what-is-retrieval-augmented-generation\",\"forceIcon\":false,\"children\":\"What is Retrieval-Augmented Generation (RAG)?\"}]]}]]}],[\"$\",\"div\",\"2\",{\"className\":\"col-xl-3 col-md-4 col-6 styles_nav__col___Gx9r\",\"data-item-number\":2,\"children\":[[\"$\",\"span\",null,{\"className\":\"styles_eyebrow__tOueC styles_eyebrow--size-200__CQpqa styles_nav__title__R1_IA\",\"children\":\"Cloud Partners\"}],[\"$\",\"nav\",null,{\"className\":\"styles_nav__s5eJW\",\"children\":[[\"$\",\"$L23\",\"0\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/amazon-web-services\",\"forceIcon\":false,\"children\":\"Amazon Web Services\"}],[\"$\",\"$L23\",\"1\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/google-cloud\",\"forceIcon\":false,\"children\":\"Google Cloud\"}],[\"$\",\"$L23\",\"2\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/microsoft-azure\",\"forceIcon\":false,\"children\":\"Microsoft Azure\"}],[\"$\",\"$L23\",\"3\",{\"variant\":\"link\",\"color\":\"reverse\",\"className\":\"styles_link__kHd8K\",\"href\":\"/platform/nvidia\",\"forceIcon\":false,\"children\":\"NVIDIA\"}]]}]]}]],[\"$\",\"div\",null,{\"className\":\"col-xl-3 col-md-4 col-125 ms-xl-auto\",\"children\":[\"$\",\"$L24\",null,{\"title\":\"Subscribe to AI++\",\"subtitle\":\"A newsletter for devs building apps using AI\",\"form\":{\"formId\":\"1908\",\"successMessage\":[{\"_key\":\"dfa24fb635b1\",\"markDefs\":[],\"children\":[{\"_key\":\"8a968ccd590b0\",\"_type\":\"span\",\"marks\":[],\"text\":\"Thanks! Check your inbox for a confirmation email.\"}],\"_type\":\"block\",\"style\":\"normal\"}]}}]}]]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"nav\",null,{\"className\":\"styles_subnav__NcsCu\",\"children\":[[[\"$\",\"span\",\"0\",{\"children\":\"© 2025 DataStax\"}],[\"$\",\"span\",\"1\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-website-privacy-policy\",\"children\":\"Privacy Policy\"}]}],[\"$\",\"span\",\"2\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-website-terms-use\",\"children\":\"Terms of Use\"}]}],[\"$\",\"span\",\"3\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal/datastax-trademark-notice\",\"children\":\"Trademark Notice\"}]}],[\"$\",\"span\",\"4\",{\"children\":[\"$\",\"$L21\",null,{\"href\":\"/legal\",\"children\":\"Legal\"}]}]],[\"$\",\"span\",null,{\"children\":[\"$\",\"$L25\",null,{\"content\":\"Manage Privacy Choices\"}]}]]}]}]}],[\"$\",\"div\",null,{\"className\":\"row\",\"children\":[\"$\",\"div\",null,{\"className\":\"col\",\"children\":[\"$\",\"p\",null,{\"className\":\"styles_text__LSXNx styles_text--size-100__NOnqB styles_text--weight-400__XgWIb styles_copy__manCQ\",\"children\":\"DataStax, is a registered trademark of DataStax, Inc.. Apache, Apache Cassandra, Cassandra, Apache Pulsar, and Pulsar are either registered trademarks or trademarks of the Apache Software Foundation.\"}]}]}]]}],[\"$\",\"div\",null,{\"className\":\"col-xl-3 col-md-12 d-flex flex-column\",\"children\":[\"$\",\"div\",null,{\"className\":\"styles_extra__5FFQk\",\"children\":[[\"$\",\"nav\",null,{\"className\":\"styles_social__N71rf\",\"children\":[[\"$\",\"$L23\",\"0\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://www.facebook.com/datastax\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://www.facebook.com/datastax\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_type\":\"reference\",\"_ref\":\"image-8ce5879a6fdfda3267ac087906a03d2ce3182094-32x32-svg\"}},\"alt\":\"DataStax on Facebook\"}]}],[\"$\",\"$L23\",\"1\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://twitter.com/datastax\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://twitter.com/datastax\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-f39a8e0412d732fcfbf8e166b9fc2b5c0ab62ff8-32x33-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on X\"}]}],[\"$\",\"$L23\",\"2\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://www.linkedin.com/company/datastax/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://www.linkedin.com/company/datastax/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-d96e639a2bf940cd885a5c56679cd287d8f7b903-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on LinkedIn\"}]}],[\"$\",\"$L23\",\"3\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://github.com/datastax/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://github.com/datastax/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-ad8620a9e1b21c1c982e43642cb4de21d3d19eb9-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on GitHub\"}]}],[\"$\",\"$L23\",\"4\",{\"className\":\"styles_icon_link__SQDYN\",\"variant\":\"icon\",\"href\":\"https://datastax.medium.com/\",\"target\":\"_blank\",\"rel\":\"noreferrer\",\"title\":\"https://datastax.medium.com/\",\"children\":[\"$\",\"$L26\",null,{\"image\":{\"_type\":\"image\",\"asset\":{\"_ref\":\"image-dd43439c38fe31a6213e46a6b9aae6ff4db76794-32x32-svg\",\"_type\":\"reference\"}},\"alt\":\"DataStax on Medium\"}]}]]}],[\"$\",\"$L27\",null,{\"className\":\"styles_lang__eRJEZ\"}]]}]}]]}]}]]}],false]\n"])</script></body></html>