CINXE.COM

Search results for: indexing data

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indexing data</title> <meta name="description" content="Search results for: indexing data"> <meta name="keywords" content="indexing data"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indexing data" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indexing data"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25166</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indexing data</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25166</span> How to Perform Proper Indexing?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watheq%20Mansour">Watheq Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Bin%20Owais"> Waleed Bin Owais</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Basheer%20Kotit"> Mohammad Basheer Kotit</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Khan"> Khaled Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing" title="indexing">indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=hashing" title=" hashing"> hashing</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20semantic%20indexing" title=" latent semantic indexing"> latent semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=B-tree" title=" B-tree"> B-tree</a> </p> <a href="https://publications.waset.org/abstracts/134844/how-to-perform-proper-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25165</span> Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Wenyu">Guo Wenyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qu%20Youli"> Qu Youli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza &amp; Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the &phi; is more important than the alphabet size on the compression ratio. Unevenly distributed data &phi; makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20suffix%20array" title="compressed suffix array">compressed suffix array</a>, <a href="https://publications.waset.org/abstracts/search?q=self-indexing" title=" self-indexing"> self-indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioned%20Elias-Fano" title=" partitioned Elias-Fano"> partitioned Elias-Fano</a>, <a href="https://publications.waset.org/abstracts/search?q=PEF-CSA" title=" PEF-CSA"> PEF-CSA</a> </p> <a href="https://publications.waset.org/abstracts/65986/compressed-suffix-arrays-to-self-indexes-based-on-partitioned-elias-fano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25164</span> Enhancement of Indexing Model for Heterogeneous Multimedia Documents: User Profile Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Aggoune">Aicha Aggoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Bouramoul"> Abdelkrim Bouramoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khiereddine%20Kholladi"> Mohamed Khiereddine Kholladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent research shows that user profile as important element can improve heterogeneous information retrieval with its content. In this context, we present our indexing model for heterogeneous multimedia documents. This model is based on the combination of user profile to the indexing process. The general idea of our proposal is to operate the common concepts between the representation of a document and the definition of a user through his profile. These two elements will be added as additional indexing entities to enrich the heterogeneous corpus documents indexes. We have developed IRONTO domain ontology allowing annotation of documents. We will present also the developed tool validating the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing%20model" title="indexing model">indexing model</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20profile" title=" user profile"> user profile</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia%20document" title=" multimedia document"> multimedia document</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20of%20sources" title=" heterogeneous of sources"> heterogeneous of sources</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/41159/enhancement-of-indexing-model-for-heterogeneous-multimedia-documents-user-profile-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25163</span> Lecture Video Indexing and Retrieval Using Topic Keywords</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Sandesh">B. J. Sandesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabha%20Jirgi"> Saurabha Jirgi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vidya"> S. Vidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Eljer"> Prakash Eljer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowri%20Srinivasa"> Gowri Srinivasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20indexing%20and%20retrieval" title="video indexing and retrieval">video indexing and retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20videos" title=" lecture videos"> lecture videos</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20video%20search" title=" content based video search"> content based video search</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20indexing" title=" multimodal indexing"> multimodal indexing</a> </p> <a href="https://publications.waset.org/abstracts/77066/lecture-video-indexing-and-retrieval-using-topic-keywords" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25162</span> Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phumelele%20Kubheka">Phumelele Kubheka</a>, <a href="https://publications.waset.org/abstracts/search?q=Pius%20Owolawi"> Pius Owolawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbolahan%20Aiyetoro"> Gbolahan Aiyetoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20Dirichlet%20allocation" title=" latent Dirichlet allocation"> latent Dirichlet allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20semantic%20indexing" title=" latent semantic indexing"> latent semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=telco" title=" telco"> telco</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20modeling" title=" topic modeling"> topic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=twitter" title=" twitter"> twitter</a> </p> <a href="https://publications.waset.org/abstracts/147818/topic-modelling-using-latent-dirichlet-allocation-and-latent-semantic-indexing-on-sa-telco-twitter-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25161</span> Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Vishavjit">Karan Vishavjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Lakra"> Aakash Lakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaq%20Khan"> Shafaq Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=NoSQL" title=" NoSQL"> NoSQL</a>, <a href="https://publications.waset.org/abstracts/search?q=sharding" title=" sharding"> sharding</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20being" title=" well being"> well being</a> </p> <a href="https://publications.waset.org/abstracts/172020/post-pandemic-mobility-analysis-through-indexing-and-sharding-in-mongodb-performance-optimization-and-insights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25160</span> Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wagenpfeil">Stefan Wagenpfeil</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Engel"> Felix Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20McKevitt"> Paul McKevitt</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hemmje"> Matthias Hemmje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing" title="indexing">indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval" title=" retrieval"> retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia" title=" multimedia"> multimedia</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20code" title=" graph code"> graph code</a> </p> <a href="https://publications.waset.org/abstracts/135289/graph-codes-2d-projections-of-multimedia-feature-graphs-for-fast-and-effective-retrieval" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25159</span> Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Maraoui">Mohsen Maraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept%20extraction" title="concept extraction">concept extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20network%20formalism" title=" conceptual network formalism"> conceptual network formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20association%20rules" title=" fuzzy association rules"> fuzzy association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingual%20thesaurus" title=" multilingual thesaurus"> multilingual thesaurus</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20indexing" title=" semantic indexing"> semantic indexing</a> </p> <a href="https://publications.waset.org/abstracts/98854/semantic-indexing-improvement-for-textual-documents-contribution-of-classification-by-fuzzy-association-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25158</span> Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Fantazi">Walid Fantazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WSN" title="WSN">WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing%20data" title=" indexing data"> indexing data</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=RIA" title=" RIA"> RIA</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system "> geographic information system </a> </p> <a href="https://publications.waset.org/abstracts/88946/design-and-development-of-a-platform-for-analyzing-spatio-temporal-data-from-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25157</span> Extraction of Text Subtitles in Multimedia Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjit%20Singh">Amarjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video" title="video">video</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitles" title=" subtitles"> subtitles</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frames" title=" frames"> frames</a> </p> <a href="https://publications.waset.org/abstracts/24441/extraction-of-text-subtitles-in-multimedia-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25156</span> Comparison of the H-Index of Researchers of Google Scholar and Scopus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adian%20Fatchur%20Rochim">Adian Fatchur Rochim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Muis"> Abdul Muis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riri%20Fitri%20Sari"> Riri Fitri Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference&rsquo;s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers&rsquo; data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper&rsquo;s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Google%20Scholar" title="Google Scholar">Google Scholar</a>, <a href="https://publications.waset.org/abstracts/search?q=H-index" title=" H-index"> H-index</a>, <a href="https://publications.waset.org/abstracts/search?q=Scopus" title=" Scopus"> Scopus</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicator" title=" performance indicator"> performance indicator</a> </p> <a href="https://publications.waset.org/abstracts/75572/comparison-of-the-h-index-of-researchers-of-google-scholar-and-scopus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25155</span> 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Fradi">Ahmed Fradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD" title="CAD">CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20object%20retrieval" title=" 3D object retrieval"> 3D object retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20based%20retrieval" title=" shape based retrieval"> shape based retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20calculation" title=" similarity calculation"> similarity calculation</a> </p> <a href="https://publications.waset.org/abstracts/78341/3d-object-retrieval-based-on-similarity-calculation-in-3d-computer-aided-design-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25154</span> Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bum-Soo%20Kim">Bum-Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Uk%20Kim"> Jin-Uk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20image%20matching" title="boundary image matching">boundary image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20denoising" title=" partial denoising"> partial denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series%20matching" title=" time-series matching"> time-series matching</a> </p> <a href="https://publications.waset.org/abstracts/97170/design-and-implementation-of-partial-denoising-boundary-image-matching-using-indexing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25153</span> Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20N.%20Raju">U. S. N. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Kothuri%20Sai%20Kiran"> Kothuri Sai Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20G.%20Kamal"> Meena G. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Nikhil%20Pabba"> Vinay Nikhil Pabba</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kanaparthi"> Suresh Kanaparthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20lectures" title="video lectures">video lectures</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20video%20data" title=" big video data"> big video data</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20retrieval" title=" video retrieval"> video retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=hadoop" title=" hadoop"> hadoop</a> </p> <a href="https://publications.waset.org/abstracts/26648/distributed-processing-for-content-based-lecture-video-retrieval-on-hadoop-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25152</span> 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hellam">S. Hellam</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Oulahrir"> Y. Oulahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20El%20Mounchid"> F. El Mounchid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sadiq"> A. Sadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mbarki"> S. Mbarki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20indexation" title="3D indexation">3D indexation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20harmonic" title=" spherical harmonic"> spherical harmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20of%203D%20objects" title=" similarity of 3D objects"> similarity of 3D objects</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20similarity" title=" measurement similarity"> measurement similarity</a> </p> <a href="https://publications.waset.org/abstracts/14277/3d-objects-indexing-using-spherical-harmonic-for-optimum-measurement-similarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25151</span> Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Shekhar">Aishwarya Shekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Sharma"> Himanshu Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confidentiality" title="confidentiality">confidentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=deduplication" title=" deduplication"> deduplication</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20compression" title=" data compression"> data compression</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridity%20of%20cloud" title=" hybridity of cloud"> hybridity of cloud</a> </p> <a href="https://publications.waset.org/abstracts/40234/robust-and-dedicated-hybrid-cloud-approach-for-secure-authorized-deduplication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25150</span> Evaluating Alternative Structures for Prefix Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feras%20Hanandeh">Feras Hanandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzat%20Alsmadi"> Izzat Alsmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20Kwafha"> Muhammad M. Kwafha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20structure" title=" tree structure"> tree structure</a>, <a href="https://publications.waset.org/abstracts/search?q=trie" title=" trie"> trie</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/12226/evaluating-alternative-structures-for-prefix-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25149</span> Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adarsh%20Shroff">Adarsh Shroff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20reduce" title=" map reduce"> map reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20processing" title=" incremental processing"> incremental processing</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20computation" title=" iterative computation"> iterative computation</a> </p> <a href="https://publications.waset.org/abstracts/46413/indexing-and-incremental-approach-using-map-reduce-bipartite-graph-mrbg-for-mining-evolving-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25148</span> SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20Chafik">Sanaa Chafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Daoudi"> Imane Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounim%20A.%20El%20Yacoubi"> Mounim A. El Yacoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20El%20Ouardi"> Hamid El Ouardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20nearest%20neighbor%20search" title="approximate nearest neighbor search">approximate nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval%20%28CBIR%29" title=" content based image retrieval (CBIR)"> content based image retrieval (CBIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=curse%20of%20dimensionality" title=" curse of dimensionality"> curse of dimensionality</a>, <a href="https://publications.waset.org/abstracts/search?q=locality%20sensitive%20hashing" title=" locality sensitive hashing"> locality sensitive hashing</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20indexing" title=" multidimensional indexing"> multidimensional indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a> </p> <a href="https://publications.waset.org/abstracts/12901/sc-lsh-an-efficient-indexing-method-for-approximate-similarity-search-in-high-dimensional-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25147</span> Static vs. Stream Mining Trajectories Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Riyadh">Musaab Riyadh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norwati%20Mustapha"> Norwati Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20Riyadh"> Dina Riyadh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20distance%20measure" title="global distance measure">global distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20distance%20measure" title=" local distance measure"> local distance measure</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20trajectory" title=" semantic trajectory"> semantic trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20dimension" title=" spatial dimension"> spatial dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=stream%20data%20mining" title=" stream data mining"> stream data mining</a> </p> <a href="https://publications.waset.org/abstracts/94763/static-vs-stream-mining-trajectories-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25146</span> A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Telesphore%20Tiendrebeogo">Telesphore Tiendrebeogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumarou%20Si%C3%A9"> Oumarou Sié</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20coordinates" title="virtual coordinates">virtual coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20plane" title=" hyperbolic plane"> hyperbolic plane</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a> </p> <a href="https://publications.waset.org/abstracts/40855/a-cloud-computing-system-using-virtual-hyperbolic-coordinates-for-services-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25145</span> Source Separation for Global Multispectral Satellite Images Indexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Bouzid">Aymen Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihen%20Ben%20Smida"> Jihen Ben Smida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title="blind source separation">blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval" title=" content based image retrieval"> content based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20multispectral" title=" feature extraction multispectral"> feature extraction multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a> </p> <a href="https://publications.waset.org/abstracts/28585/source-separation-for-global-multispectral-satellite-images-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25144</span> A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ishtiaq">Ahmed Ishtiaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Maeeda%20Khalid"> Maeeda Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Umair%20Sajjad"> Umair Sajjad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-suggestion" title="auto-suggestion">auto-suggestion</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20engine%20optimization" title=" search engine optimization"> search engine optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SEO" title=" SEO"> SEO</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20mining" title=" web mining"> web mining</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20crawler" title=" web crawler"> web crawler</a> </p> <a href="https://publications.waset.org/abstracts/128880/a-comparative-study-between-different-techniques-of-off-page-and-on-page-search-engine-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25143</span> Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based on Local Color Histograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mawloud%20Mosbah">Mawloud Mosbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Boucheham"> Bachir Boucheham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBIR" title="CBIR">CBIR</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20global%20histogram" title=" color global histogram"> color global histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20local%20histogram" title=" color local histogram"> color local histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20segmentation" title=" weak segmentation"> weak segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20distance" title=" Euclidean distance"> Euclidean distance</a> </p> <a href="https://publications.waset.org/abstracts/14435/selecting-the-best-sub-region-indexing-the-images-in-the-case-of-weak-segmentation-based-on-local-color-histograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25142</span> Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Hussain">Tanveer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Khan%20Muhammad"> Khan Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ullah"> Amin Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Young%20Lee"> Mi Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Wook%20Baik"> Sung Wook Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20video%20data%20analysis" title="big video data analysis">big video data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view%20video%20summarization" title=" multi-view video summarization"> multi-view video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=saliency%20detection" title=" saliency detection"> saliency detection</a> </p> <a href="https://publications.waset.org/abstracts/135176/fuzzy-inference-assisted-saliency-aware-convolution-neural-networks-for-multi-view-summarization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25141</span> Development of Innovative Islamic Web Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farrukh%20Shahzad">Farrukh Shahzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20resources" title="Islamic resources">Islamic resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslim%20scholars" title=" Muslim scholars"> Muslim scholars</a>, <a href="https://publications.waset.org/abstracts/search?q=hadith" title=" hadith"> hadith</a>, <a href="https://publications.waset.org/abstracts/search?q=narrators" title=" narrators"> narrators</a>, <a href="https://publications.waset.org/abstracts/search?q=history" title=" history"> history</a>, <a href="https://publications.waset.org/abstracts/search?q=fiqh" title=" fiqh"> fiqh</a> </p> <a href="https://publications.waset.org/abstracts/46581/development-of-innovative-islamic-web-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25140</span> Common Orthodontic Indices and Classification in the United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Mohan">Ashwini Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haris%20Batley"> Haris Batley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=indices" title=" indices"> indices</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontics" title=" orthodontics"> orthodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a> </p> <a href="https://publications.waset.org/abstracts/152293/common-orthodontic-indices-and-classification-in-the-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25139</span> Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Regina%20Carreira-Lopez">M. Regina Carreira-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypernymy" title="hypernymy">hypernymy</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20ontology" title=" lightweight ontology"> lightweight ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a> </p> <a href="https://publications.waset.org/abstracts/127342/mondoc-informal-lightweight-ontology-for-faceted-semantic-classification-of-hypernymy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25138</span> Text Similarity in Vector Space Models: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Shahmirzadi">Omid Shahmirzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Lugowski"> Adam Lugowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Younge"> Kenneth Younge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20embedding" title=" text embedding"> text embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20similarity" title=" text similarity"> text similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a> </p> <a href="https://publications.waset.org/abstracts/102930/text-similarity-in-vector-space-models-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25137</span> A Systematic Review of the Methodological and Reporting Quality of Case Series in Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riaz%20A.%20Agha">Riaz A. Agha</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20J.%20Fowler"> Alexander J. Fowler</a>, <a href="https://publications.waset.org/abstracts/search?q=Seon-Young%20Lee"> Seon-Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Buket%20Gundogan"> Buket Gundogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharine%20Whitehurst"> Katharine Whitehurst</a>, <a href="https://publications.waset.org/abstracts/search?q=Harkiran%20K.%20Sagoo"> Harkiran K. Sagoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Jin%20Lee%20Jeong"> Kyung Jin Lee Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20G.%20Altman"> Douglas G. Altman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20P.%20Orgill"> Dennis P. Orgill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Case Series are an important and common study type. Currently, no guideline exists for reporting case series and there is evidence of key data being missed from such reports. We propose to develop a reporting guideline for case series using a methodologically robust technique. The first step in this process is a systematic review of literature relevant to the reporting deficiencies of case series. Methods: A systematic review of methodological and reporting quality in surgical case series was performed. The electronic search strategy was developed by an information specialist and included MEDLINE, EMBASE, Cochrane Methods Register, Science Citation index and Conference Proceedings Citation index, from the start of indexing until 5th November 2014. Independent screening, eligibility assessments and data extraction was performed. Included articles were analyzed for five areas of deficiency: failure to use standardized definitions missing or selective data transparency or incomplete reporting whether alternate study designs were considered. Results: The database searching identified 2,205 records. Through the process of screening and eligibility assessments, 92 articles met inclusion criteria. Frequency of methodological and reporting issues identified was a failure to use standardized definitions (57%), missing or selective data (66%), transparency, or incomplete reporting (70%), whether alternate study designs were considered (11%) and other issues (52%). Conclusion: The methodological and reporting quality of surgical case series needs improvement. Our data shows that clear evidence-based guidelines for the conduct and reporting of a case series may be useful to those planning or conducting them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20series" title="case series">case series</a>, <a href="https://publications.waset.org/abstracts/search?q=reporting%20quality" title=" reporting quality"> reporting quality</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review "> systematic review </a> </p> <a href="https://publications.waset.org/abstracts/39886/a-systematic-review-of-the-methodological-and-reporting-quality-of-case-series-in-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=838">838</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=839">839</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing%20data&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10