CINXE.COM
Search results for: twin delayed deep deterministic policy gradient
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: twin delayed deep deterministic policy gradient</title> <meta name="description" content="Search results for: twin delayed deep deterministic policy gradient"> <meta name="keywords" content="twin delayed deep deterministic policy gradient"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="twin delayed deep deterministic policy gradient" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="twin delayed deep deterministic policy gradient"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7383</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: twin delayed deep deterministic policy gradient</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7383</span> A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romisaa%20Ali">Romisaa Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackal%20robot%20environments" title="Jackal robot environments">Jackal robot environments</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=TD3" title=" TD3"> TD3</a>, <a href="https://publications.waset.org/abstracts/search?q=SAC" title=" SAC"> SAC</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20navigation" title=" robust navigation"> robust navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=transferability" title=" transferability"> transferability</a>, <a href="https://publications.waset.org/abstracts/search?q=custom%20environment" title=" custom environment"> custom environment</a> </p> <a href="https://publications.waset.org/abstracts/172526/a-comparative-study-of-twin-delayed-deep-deterministic-policy-gradient-and-soft-actor-critic-algorithms-for-robot-exploration-and-navigation-in-unseen-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7382</span> Deep Reinforcement Learning Approach for Trading Automation in The Stock Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taylan%20Kabbani">Taylan Kabbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekrem%20Duman"> Ekrem Duman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20stock%20market" title="the stock market">the stock market</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=MDP" title=" MDP"> MDP</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient" title=" twin delayed deep deterministic policy gradient"> twin delayed deep deterministic policy gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20indicators" title=" technical indicators"> technical indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20agent" title=" autonomous agent"> autonomous agent</a> </p> <a href="https://publications.waset.org/abstracts/142828/deep-reinforcement-learning-approach-for-trading-automation-in-the-stock-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7381</span> Robot Movement Using the Trust Region Policy Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romisaa%20Ali">Romisaa Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=proximal%20policy%20optimization" title=" proximal policy optimization"> proximal policy optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-the-art" title=" state-of-the-art"> state-of-the-art</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20region%20policy%20optimization" title=" trust region policy optimization"> trust region policy optimization</a> </p> <a href="https://publications.waset.org/abstracts/158075/robot-movement-using-the-trust-region-policy-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7380</span> AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Zeinali">Farshad Zeinali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajedeh%20Norouzi"> Sajedeh Norouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Mokari"> Nader Mokari</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Jorswieck"> Eduard Jorswieck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle-to-everything%20%28V2X%29" title="vehicle-to-everything (V2X)">vehicle-to-everything (V2X)</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=BS%20assignment" title=" BS assignment"> BS assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20radio%20%28NR%29" title=" new radio (NR)"> new radio (NR)</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20radio%20unlicensed%20%28NR-U%29" title=" new radio unlicensed (NR-U)"> new radio unlicensed (NR-U)</a>, <a href="https://publications.waset.org/abstracts/search?q=coexistence%20NR-U%20and%20WiFi" title=" coexistence NR-U and WiFi"> coexistence NR-U and WiFi</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20deterministic%20policy%20gradient%20%28DDPG%29" title=" deep deterministic policy gradient (DDPG)"> deep deterministic policy gradient (DDPG)</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20Q-network%20%28DQN%29" title=" deep Q-network (DQN)"> deep Q-network (DQN)</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20BS%20assignment%20and%20resource%20allocation%20%28JBSRA%29" title=" joint BS assignment and resource allocation (JBSRA)"> joint BS assignment and resource allocation (JBSRA)</a>, <a href="https://publications.waset.org/abstracts/search?q=duty%20cycle%20mechanism" title=" duty cycle mechanism"> duty cycle mechanism</a> </p> <a href="https://publications.waset.org/abstracts/165699/ai-based-radio-resource-and-transmission-opportunity-allocation-for-5g-v2x-hetnets-nr-and-nr-u-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7379</span> Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Migena%20Mana">Migena Mana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalid%20Syed"> Ahmed Khalid Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Malik"> Abdul Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Cherian"> Nikhil Cherian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title="autonomous driving">autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=DDPG%20%28deep%20deterministic%20policy%20gradient%29" title=" DDPG (deep deterministic policy gradient)"> DDPG (deep deterministic policy gradient)</a>, <a href="https://publications.waset.org/abstracts/search?q=PPO%20%28proximal%20policy%20optimization%29" title=" PPO (proximal policy optimization)"> PPO (proximal policy optimization)</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a> </p> <a href="https://publications.waset.org/abstracts/106484/comparative-analysis-of-reinforcement-learning-algorithms-for-autonomous-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7378</span> Deep Reinforcement Learning Model for Autonomous Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boumaraf%20Malak">Boumaraf Malak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20deterministic%20policy%20gradient" title=" deep deterministic policy gradient"> deep deterministic policy gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20Q-learning" title=" deep Q-learning"> deep Q-learning</a> </p> <a href="https://publications.waset.org/abstracts/166548/deep-reinforcement-learning-model-for-autonomous-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7377</span> Self-Organizing Control Systems for Unstable and Deterministic Chaotic Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamyrbek%20A.%20Beisenbi">Mamyrbek A. Beisenbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20M.%20Kissikova"> Nurgul M. Kissikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Saltanat%20E.%20Beisembina"> Saltanat E. Beisembina</a>, <a href="https://publications.waset.org/abstracts/search?q=Salamat%20T.%20Suleimenova"> Salamat T. Suleimenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Samal%20A.%20Kaliyeva"> Samal A. Kaliyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes a method for constructing a self-organizing control system for unstable and deterministic chaotic processes in the class of catastrophe “hyperbolic umbilic” for objects with m-inputs and n-outputs. The self-organizing control system is investigated by the universal gradient-velocity method of Lyapunov vector functions. The conditions for self-organization of the control system in the class of catastrophes “hyperbolic umbilic” are shown in the form of a system of algebraic inequalities that characterize the aperiodic robust stability in the stationary states of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient-velocity%20method%20of%20Lyapunov%20vector-functions" title="gradient-velocity method of Lyapunov vector-functions">gradient-velocity method of Lyapunov vector-functions</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20umbilic" title=" hyperbolic umbilic"> hyperbolic umbilic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20control%20system" title=" self-organizing control system"> self-organizing control system</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/147574/self-organizing-control-systems-for-unstable-and-deterministic-chaotic-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7376</span> A Discovery of the Dual Sequential Pattern of Prime Numbers in P x P: Applications in a Formal Proof of the Twin-Prime Conjecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxu%20Wang">Yingxu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents basic research on the recursive structures and dual sequential patterns of primes for the formal proof of the Twin-Prime Conjecture (TPC). A rigorous methodology of Twin-Prime Decomposition (TPD) is developed in MATLAB to inductively verify potential twins in the dual sequences of primes. The key finding of this basic study confirms that the dual sequences of twin primes are not only symmetric but also infinitive in the unique base 6 cycle, except a limited subset of potential pairs is eliminated by the lack of dual primality. Both theory and experiments have formally proven that the infinity of twin primes stated in TPC holds in the P x P space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=number%20theory" title="number theory">number theory</a>, <a href="https://publications.waset.org/abstracts/search?q=primes" title=" primes"> primes</a>, <a href="https://publications.waset.org/abstracts/search?q=twin-prime%20conjecture" title=" twin-prime conjecture"> twin-prime conjecture</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20primes%20%28P%20x%20P%29" title=" dual primes (P x P)"> dual primes (P x P)</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20prime%20decomposition" title=" twin prime decomposition"> twin prime decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20proof" title=" formal proof"> formal proof</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/182326/a-discovery-of-the-dual-sequential-pattern-of-prime-numbers-in-p-x-p-applications-in-a-formal-proof-of-the-twin-prime-conjecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7375</span> Variable-Fidelity Surrogate Modelling with Kriging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakumar%20Ulaganathan">Selvakumar Ulaganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Couckuyt"> Ivo Couckuyt</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Ferranti"> Francesco Ferranti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Dhaene"> Tom Dhaene</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Laermans"> Eric Laermans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriging" title="Kriging">Kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=CoKriging" title=" CoKriging"> CoKriging</a>, <a href="https://publications.waset.org/abstracts/search?q=Surrogate%20modelling" title=" Surrogate modelling"> Surrogate modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Variable-%20fidelity%20modelling" title=" Variable- fidelity modelling"> Variable- fidelity modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Gradients" title=" Gradients"> Gradients</a> </p> <a href="https://publications.waset.org/abstracts/19031/variable-fidelity-surrogate-modelling-with-kriging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7374</span> Reverse Twin Block with Expansion Screw for Treatment of Skeletal Class III Malocclusion in Growing Patient: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfrina%20Marwan">Alfrina Marwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Sulistyawati"> Erna Sulistyawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Class III malocclusion shows both skeletal and dentoalveolar component. Sketal Class III malocclusion can have variants in different region, maxilla or mandibular. Skeletal Class III malocclusion during growth period is considered to treat to prevent its severity in adulthood. Orthopedics treatment of skeletal Class III malocclusion in growing patient can be treated by using reverse twin block with expansion screw to modify the growth pattern. The objective of this case report was to describe the functional correction of skeletal Class III maloclussion using reverse twin block with expansion screw in growing patient. A patient with concave profile came with a chief complaint of aesthetic problems. The cephalometric analysis showed that patient had skeletal Class III malocclusion (ANB -5<sup>0</sup>, SNA 75º, Wits appraisal -3 mm) with anterior cross bite and deep bite (overjet -3 mm, overbite 6 mm). In this case report, the patient was treated with reverse twin block appliance with expansion screw. After three months of treatment, the skeletal problems have been corrected (ANB -1°), overjet, overbite and aesthetic were improved. Reverse twin block appliance with expansion screw can be used as orthopedics treatment for skeletal Class III malocclusion in growing patient and can improve the aesthetic with great satisfaction which was the main complaint in this patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maxilla%20retrognatism" title="maxilla retrognatism">maxilla retrognatism</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20twin%20block" title=" reverse twin block"> reverse twin block</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20class%20III%20malocclusion" title=" skeletal class III malocclusion"> skeletal class III malocclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20patient" title=" growing patient"> growing patient</a> </p> <a href="https://publications.waset.org/abstracts/80592/reverse-twin-block-with-expansion-screw-for-treatment-of-skeletal-class-iii-malocclusion-in-growing-patient-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7373</span> BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazharuddin%20Syed%20Ahmed">Mazharuddin Syed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modelling" title="building information modelling">building information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy%20integration" title=" circular economy integration"> circular economy integration</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20analytics" title=" predictive analytics"> predictive analytics</a> </p> <a href="https://publications.waset.org/abstracts/184569/bim-data-and-digital-twin-framework-preserving-the-past-and-predicting-the-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7372</span> Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20K.%20Steiger">Martin K. Steiger</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Heisler"> Lukas Heisler</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Georg%20Brachtendorf"> Hans-Georg Brachtendorf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient-based%20learning" title=" gradient-based learning"> gradient-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equation%20networks" title=" ordinary differential equation networks"> ordinary differential equation networks</a> </p> <a href="https://publications.waset.org/abstracts/145435/empirical-evaluation-of-gradient-based-training-algorithms-for-ordinary-differential-equation-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7371</span> Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhifeng%20Kong">Zhifeng Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=over-parameterization" title="over-parameterization">over-parameterization</a>, <a href="https://publications.waset.org/abstracts/search?q=rectified%20linear%20units%20ReLU" title=" rectified linear units ReLU"> rectified linear units ReLU</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent" title=" gradient descent"> gradient descent</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/118561/convergence-analysis-of-training-two-hidden-layer-partially-over-parameterized-relu-networks-via-gradient-descent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7370</span> Digital Twin Platform for BDS-3 Satellite Navigation Using Digital Twin Intelligent Visualization Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rundong%20Li">Rundong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Wu"> Peng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junfeng%20Zhang"> Junfeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Ren"> Zhipeng Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Yang"> Chen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Gan"> Jiahui Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Feng"> Lu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Tong"> Haibo Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemei%20Xiao"> Xuemei Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuying%20Chen"> Yuying Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research of Beidou-3 satellite navigation is on the rise, but in actual work, it is inevitable that satellite data is insecure, research and development is inefficient, and there is no ability to deal with failures in advance. Digital twin technology has obvious advantages in the simulation of life cycle models of aerospace satellite navigation products. In order to meet the increasing demand, this paper builds a Beidou-3 satellite navigation digital twin platform (BDSDTP). The basic establishment of BDSDTP was completed by establishing a digital twin double, Beidou-3 comprehensive digital twin design, predictive maintenance (PdM) mathematical model, and visual interaction design. Finally, this paper provides a time application case of the platform, which provides a reference for the application of BDSDTP in various fields of navigation and provides obvious help for extending the full cycle life of Beidou-3 satellite navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BDS-3" title="BDS-3">BDS-3</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=PdM" title=" PdM"> PdM</a> </p> <a href="https://publications.waset.org/abstracts/167908/digital-twin-platform-for-bds-3-satellite-navigation-using-digital-twin-intelligent-visualization-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7369</span> Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuling%20Cui">Yuling Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Danhao%20Deng"> Danhao Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaowei%20Wang"> Chaowei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weidong%20Wang"> Weidong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20trajectory%20design" title="UAV trajectory design">UAV trajectory design</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title=" energy efficient"> energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=downlink%20throughput" title=" downlink throughput"> downlink throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=DDPG" title=" DDPG"> DDPG</a> </p> <a href="https://publications.waset.org/abstracts/131461/trajectory-design-and-power-allocation-for-energy-efficient-uav-communication-based-on-deep-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7368</span> Umbrella Reinforcement Learning – A Tool for Hard Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egor%20E.%20Nuzhin">Egor E. Nuzhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20V.%20Brilliantov">Nikolay V. Brilliantov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=umbrella%20sampling" title="umbrella sampling">umbrella sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20gradient" title=" policy gradient"> policy gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title=" dynamic programming"> dynamic programming</a> </p> <a href="https://publications.waset.org/abstracts/192151/umbrella-reinforcement-learning-a-tool-for-hard-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7367</span> Solving SPDEs by Least Squares Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Manouzi">Hassan Manouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=least%20squares" title="least squares">least squares</a>, <a href="https://publications.waset.org/abstracts/search?q=wick%20product" title=" wick product"> wick product</a>, <a href="https://publications.waset.org/abstracts/search?q=SPDEs" title=" SPDEs"> SPDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20chaos%20expansion" title=" wiener chaos expansion"> wiener chaos expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20method" title=" gradient method"> gradient method</a> </p> <a href="https://publications.waset.org/abstracts/4074/solving-spdes-by-least-squares-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7366</span> Inventory Policy Above Country Level for Cooperating Countries for Vaccines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysun%20P%C4%B1narba%C5%9F%C4%B1">Aysun Pınarbaşı</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Vizv%C3%A1ri"> Béla Vizvári</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covid-19" title="covid-19">covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20policy" title=" inventory policy"> inventory policy</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded%20total%20demand" title=" bounded total demand"> bounded total demand</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20holding%20cost" title=" inventory holding cost"> inventory holding cost</a>, <a href="https://publications.waset.org/abstracts/search?q=cauchy%20distribution" title=" cauchy distribution"> cauchy distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sigmoid%20function" title=" sigmoid function"> sigmoid function</a> </p> <a href="https://publications.waset.org/abstracts/162848/inventory-policy-above-country-level-for-cooperating-countries-for-vaccines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7365</span> A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavan%20K.%20Rallabandi">Pavan K. Rallabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20C.%20Patidar"> Kailash C. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title="hybrid systems">hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models" title=" hidden markov models"> hidden markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20finite%20state%20automata" title=" deterministic finite state automata"> deterministic finite state automata</a> </p> <a href="https://publications.waset.org/abstracts/37759/a-hybrid-system-of-hidden-markov-models-and-recurrent-neural-networks-for-learning-deterministic-finite-state-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7364</span> Delayed Contralateral Prophylactic Mastectomy (CPM): Reasons and Rationale for Patients with Unilateral Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Soh">C. Soh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Muktar"> S. Muktar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Malata"> C. M. Malata</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Benson"> J. R. Benson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Reasons for requesting CPM include prevention of recurrence, peace of mind and moving on after breast cancer. Some women seek CPM as a delayed procedure but factors influencing this are poorly understood. Methods A retrospective analysis examined patients undergoing CPM as either an immediate or delayed procedure with or without breast reconstruction (BR) between January 2009 and December 2019. A cross-sectional survey based on validated questionnaires (5 point Likert scale) explored patients’ decision-making process in terms of timing of CPM and any BR. Results A total of 123 patients with unilateral breast cancer underwent CPM with 39 (32.5%) delayed procedures with or without BR. The response rate amongst patients receiving questionnaires (n=33) was 22/33 (66%). Within this delayed CPM cohort were three reconstructive scenarios 1) unilateral immediate BR with CPM (n=12); 2) delayed CPM with concomitant bilateral BR (n=22); 3) delayed bilateral BR after delayed CPM (n=3). Two patients had delayed CPM without BR. The most common reason for delayed CPM was to complete all cancer treatments (including radiotherapy) before surgery on the unaffected breast (score 2.91). The second reason was unavailability of genetic test results at the time of therapeutic mastectomy (score 2.64) whilst the third most cited reason was a subsequent change in family cancer history. Conclusion Factors for delayed CPM are patient-driven with few women spontaneously changing their mind having initially decided against immediate CPM for reasons also including surgical duration. CPM should be offered as a potentially delayed option with informed discussion of risks and benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Breast%20Cancer" title="Breast Cancer">Breast Cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=CPM" title="CPM">CPM</a>, <a href="https://publications.waset.org/abstracts/search?q=Prophylactic" title="Prophylactic">Prophylactic</a>, <a href="https://publications.waset.org/abstracts/search?q=Rationale" title="Rationale">Rationale</a> </p> <a href="https://publications.waset.org/abstracts/147785/delayed-contralateral-prophylactic-mastectomy-cpm-reasons-and-rationale-for-patients-with-unilateral-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7363</span> Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shady%20Adib">Shady Adib</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Vinogradov"> Vladimir Vinogradov</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Gosling"> Peter Gosling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition%20system" title="data acquisition system">data acquisition system</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20uncertainties" title=" model uncertainties"> model uncertainties</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20basis" title=" reduced basis"> reduced basis</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20order%20model" title=" reduced order model"> reduced order model</a> </p> <a href="https://publications.waset.org/abstracts/152242/development-of-digital-twin-concept-to-detect-abnormal-changes-in-structural-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7362</span> Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ben%20Youssef">Nadia Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouzid"> Aicha Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion" title=" quaternion"> quaternion</a> </p> <a href="https://publications.waset.org/abstracts/141138/review-on-quaternion-gradient-operator-with-marginal-and-vector-approaches-for-colour-edge-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7361</span> Mathematical Modeling of the Working Principle of Gravity Gradient Instrument</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danni%20Cong">Danni Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiping%20Wu"> Meiping Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Mu"> Hua Mu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20He"> Xiaofeng He</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxiang%20Lian"> Junxiang Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliang%20Cao"> Juliang Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Cai"> Shaokun Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Qin"> Hao Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title="gravity gradient">gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient%20sensor" title=" gravity gradient sensor"> gravity gradient sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=single-axis%20rotation%20modulation" title=" single-axis rotation modulation"> single-axis rotation modulation</a> </p> <a href="https://publications.waset.org/abstracts/74776/mathematical-modeling-of-the-working-principle-of-gravity-gradient-instrument" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7360</span> Digital Twin Technology: A Solution for Remote Operation and Productivity Improvement During Covid-19 Era and Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Sahir%20Bin%20Ahmad%20Shatiry">Muhamad Sahir Bin Ahmad Shatiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Normeza%20Wan%20Zakaria"> Wan Normeza Wan Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Zaki%20Hassan"> Mohamad Zaki Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pandemic Covid19 has significantly impacted the world; the spreading of the Covid19 virus initially from China has dramatically impacted the world's economy. Therefore, the world reacts with establishing the new way or norm in daily life. The rapid rise of the latest technology has been seen by introducing many technologies to ease human life to have a minor contract between humans and avoid spreading the virus Covid19. Digital twin technologies are one of the technologies created before the pandemic Covid19 but slow adoption in the industry. Throughout the Covid19, most of the companies in the world started to explore to use it. The digital twin technology provides the virtual platform to replicate the existing condition or setup for anything such as office, manufacturing line, factories' machine, building, and many more. This study investigates the effect on the economic perspective after the companies use the Digital Twin technology in the industry. To minimize the contact between humans and to have the ability to operate the system digitally remotely. In this study, the explanation of the digital twin technology impacts the world's microeconomic and macroeconomic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=artificially%20intelligence" title=" artificially intelligence"> artificially intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a> </p> <a href="https://publications.waset.org/abstracts/146588/digital-twin-technology-a-solution-for-remote-operation-and-productivity-improvement-during-covid-19-era-and-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7359</span> Characterization of Optical Communication Channels as Non-Deterministic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale">Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford"> Elmo Thiago Lins Cöuras Ford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasingly telecommunications sectors are adopting optical technologies, due to its ability to transmit large amounts of data over long distances. However, as in all systems of data transmission, optical communication channels suffer from undesirable and non-deterministic effects, being essential to know the same. Thus, this research allows the assessment of these effects, as well as their characterization and beneficial uses of these effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20communication" title="optical communication">optical communication</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=non-deterministic%20effects" title=" non-deterministic effects"> non-deterministic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=telecommunication" title=" telecommunication"> telecommunication</a> </p> <a href="https://publications.waset.org/abstracts/18372/characterization-of-optical-communication-channels-as-non-deterministic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">788</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7358</span> Study and Simulation of a Dynamic System Using Digital Twin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.P.%20Henriques">J.P. Henriques</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Neto"> E. R. Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Almeida"> G. Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ribeiro"> G. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=J.V.%20Coutinho"> J.V. Coutinho</a>, <a href="https://publications.waset.org/abstracts/search?q=A.B.%20Lugli"> A.B. Lugli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title="industry 4.0">industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20and%20nonlinear%20models" title=" linear and nonlinear models"> linear and nonlinear models</a> </p> <a href="https://publications.waset.org/abstracts/125117/study-and-simulation-of-a-dynamic-system-using-digital-twin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7357</span> Smart Campus Digital Twin: Basic Framework - Current State, Trends and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enido%20Fabiano%20de%20Ramos">Enido Fabiano de Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ieda%20Kanashiro%20Makiya"> Ieda Kanashiro Makiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20I.%20Giocondo%20Cesar"> Francisco I. Giocondo Cesar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an analysis of the Digital Twin concept applied to the academic environment, focusing on the development of a Digital Twin Smart Campus Framework. Using bibliometric analysis methodologies and literature review, the research investigates the evolution and applications of the Digital Twin in educational contexts, comparing these findings with the advances of Industry 4.0. It was identified gaps in the existing literature and highlighted the need to adapt Digital Twin principles to meet the specific demands of a smart campus. By integrating Industry 4.0 concepts such as automation, Internet of Things, and real-time data analytics, we propose an innovative framework for the successful implementation of the Digital Twin in academic settings. The results of this study provide valuable insights for university campus managers, allowing for a better understanding of the potential applications of the Digital Twin for operations, security, and user experience optimization. In addition, our framework offers practical guidance for transitioning from a digital campus to a digital twin smart campus, promoting innovation and efficiency in the educational environment. This work contributes to the growing literature on Digital Twins and Industry 4.0, while offering a specific and tailored approach to transforming university campuses into smart and connected spaces, high demanded by Society 5.0 trends. It is hoped that this framework will serve as a basis for future research and practical implementations in the field of higher education and educational technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20campus" title="smart campus">smart campus</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20trends" title=" education trends"> education trends</a>, <a href="https://publications.waset.org/abstracts/search?q=society%205.0" title=" society 5.0"> society 5.0</a> </p> <a href="https://publications.waset.org/abstracts/184120/smart-campus-digital-twin-basic-framework-current-state-trends-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7356</span> A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alhawarat">Ahmad Alhawarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Mamat"> Mustafa Mamat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rivaie"> Mohd Rivaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Mohd"> Ismail Mohd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20coefficient" title=" conjugate gradient coefficient"> conjugate gradient coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a> </p> <a href="https://publications.waset.org/abstracts/1392/a-new-modification-of-nonlinear-conjugate-gradient-coefficients-with-global-convergence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7355</span> Virtualization of Production Using Digital Twin Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bohuslava%20Juhasova">Bohuslava Juhasova</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Halenar"> Igor Halenar</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Juhas"> Martin Juhas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contribution deals with the current situation in modern manufacturing enterprises, which is affected by digital virtualization of different parts of the production process. The overview part of this article points to the fact, that wide informatization of all areas causes substitution of real elements and relationships between them with their digital, often virtual images, in real practice. Key characteristics of the systems implemented using digital twin technology along with essential conditions for intelligent products deployment were identified across many published studies. The goal was to propose a template for the production system realization using digital twin technology as a supplement to standardized concepts for Industry 4.0. The main resulting idea leads to the statement that the current trend of implementation of the new technologies and ways of communication between industrial facilities erases the boundaries between the real environment and the virtual world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title=" Industry 4.0"> Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a> </p> <a href="https://publications.waset.org/abstracts/98221/virtualization-of-production-using-digital-twin-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7354</span> A Conceptual Framework of Digital Twin for Homecare</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raja%20Omman%20Zafar">Raja Omman Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Rybarczyk"> Yves Rybarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Borg"> Johan Borg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title="digital twin">digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=homecare" title=" homecare"> homecare</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20adults" title=" older adults"> older adults</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/184065/a-conceptual-framework-of-digital-twin-for-homecare" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=246">246</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=247">247</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=twin%20delayed%20deep%20deterministic%20policy%20gradient&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>