CINXE.COM

Search results for: groundwater quality

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: groundwater quality</title> <meta name="description" content="Search results for: groundwater quality"> <meta name="keywords" content="groundwater quality"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="groundwater quality" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="groundwater quality"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10122</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: groundwater quality</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10122</span> Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan">S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Chung"> S. Y. Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Selvam"> S. Selvam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Hussam"> E. E. Hussam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy"> G. Gnanachandrasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WQI%20%28Water%20Quality%20Index%29" title="WQI (Water Quality Index)">WQI (Water Quality Index)</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20index" title=" saturation index"> saturation index</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20types" title=" groundwater types"> groundwater types</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a> </p> <a href="https://publications.waset.org/abstracts/79048/groundwater-quality-assessment-using-water-quality-index-and-geographical-information-system-techniques-a-case-study-of-busan-city-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10121</span> Hydrogeochemical Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Oghenenyoreme%20Eyankware">Moses Oghenenyoreme Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ogubuchi%20Ede"> Christian Ogubuchi Ede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability" title=" suitability"> suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/140253/hydrogeochemical-assessment-of-groundwater-in-selected-part-of-benue-state-southern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10120</span> Geochemical Evaluation Assessment of Groundwater in Selected Part of Benue State Southern, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20Oghnennyoreme%20Eyankware">Moses Oghnennyoreme Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ogubuchi%20Ede"> Christian Ogubuchi Ede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is the principal source for various uses in this study area. The quality and availability of groundwater depend on rock formation within the study area. To effectively study the quality of groundwater, 24 groundwater samples were collected. The study was aimed at investigating the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The following parameters were analyzed using the American Public Health Association standard method: pH, turbidity, Ec, TDS, Mg2+, SO42-, NO3¯, Cl-, HCO3¯, K+, Na2+ and Ca2+. Results obtained from Water Quality Index revealed that the groundwater sample fell within good water quality that implies that groundwater is considered fit for drinking purposes. Deduced results obtained from irrigation indices revealed that Permeability Index (PI), Soluble Sodium Percentage (SSP), Sodium Percentage (Na %), Sodium Absorption Ratio (SAR), Kelly Ratio (KR), Magnesium Hazard (MH) ranges from 0.00 to 0.01, 4.04 to 412.9, 0.63 to 257.7, 0.15 to 2.34, 0.09 to 2.57 and 6.84 to 84.55 respectively. Findings from Total hardness revealed that groundwater fell within soft, moderately hard and hard categories. Estimated results obtained from CSMR, RI and LSI showed that groundwater showed corrosion tendency, salinization influenced groundwater at certain sampling points and chloride and sulfate unlikely to interfere with natural formation film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability" title=" suitability"> suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic" title=" anthropogenic"> anthropogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/140254/geochemical-evaluation-assessment-of-groundwater-in-selected-part-of-benue-state-southern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10119</span> Effect of Waste Dumping on Groundwater Quality at Guntun Layi Funtua, Katsina State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isiya%20Aminu%20Dabai">Isiya Aminu Dabai</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Kayode"> Adebola Kayode</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeosun%20Kayode%20Daniel"> Adeosun Kayode Daniel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural water supply relies mainly on groundwater exploitation, because it is more accessible, reliable, cheaper to develop and maintain, also with good quality compared to the surface water. Despite these advantages, groundwater has come under pollution threats like waste dumps, mineral exploitation, industrialization etc. This study investigates the effects of an open dumping to the surrounding groundwater. Ten hand dug well water samples were collected from the surroundings and tested. The average result shows that temperature, colour and turbidity to be 8.50 c, 6.1 TCU and 3.1 NTU respectively and pH, conductivity, total dissolved solids, chloride content and hardness to be 7.2, 4.78, 1.8, 5.7, and 3.4 respectively while in the bacteriological test well no. 1, 2, 3, and 5 shows the presence of coliforms and E. Coli bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=dump%20site" title=" dump site"> dump site</a>, <a href="https://publications.waset.org/abstracts/search?q=unsafe" title=" unsafe"> unsafe</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality "> quality </a> </p> <a href="https://publications.waset.org/abstracts/18514/effect-of-waste-dumping-on-groundwater-quality-at-guntun-layi-funtua-katsina-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">681</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10118</span> Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modreck%20Gomo">Modreck Gomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO<sub>3</sub> hydrochemical facie while fractured-rock aquifer has a Ca-HCO<sub>3</sub> facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca<sup>2+</sup> in the Ca-HCO<sub>3 </sub>hydrochemical type to result in the Na-HCO<sub>3</sub> hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20aquifer" title="alluvial aquifer">alluvial aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured-rock%20aquifer" title=" fractured-rock aquifer"> fractured-rock aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeochemical%20processes" title=" hydrogeochemical processes"> hydrogeochemical processes</a> </p> <a href="https://publications.waset.org/abstracts/80304/assessment-of-groundwater-chemistry-and-quality-characteristics-in-an-alluvial-aquifer-and-a-single-plane-fractured-rock-aquifer-in-bloemfontein-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10117</span> Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazhar%20Belkhiri">Lazhar Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Tiri"> Ammar Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Mouni"> Lotfi Mouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20water%20quality%20index%20%28EWQI%29" title="entropy water quality index (EWQI)">entropy water quality index (EWQI)</a>, <a href="https://publications.waset.org/abstracts/search?q=moran%E2%80%99s%20i" title=" moran’s i"> moran’s i</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20kriging%20interpolation" title=" ordinary kriging interpolation"> ordinary kriging interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=el%20milia%20plain" title=" el milia plain"> el milia plain</a> </p> <a href="https://publications.waset.org/abstracts/179719/spatio-temporal-distribution-of-the-groundwater-quality-in-the-el-milia-plain-kebir-rhumel-basin-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10116</span> Groundwater Vulnerability of Halabja-Khurmal Sub-Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanja%20F.%20Rauf">Lanja F. Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahalddin%20S.%20Ali"> Salahalddin S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari"> Nadhir Al-Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20vulnerability" title="groundwater vulnerability">groundwater vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20DRASTIC" title=" modified DRASTIC"> modified DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20pollution" title=" nitrate pollution"> nitrate pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title=" water quality index"> water quality index</a> </p> <a href="https://publications.waset.org/abstracts/154484/groundwater-vulnerability-of-halabja-khurmal-sub-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10115</span> Potential Risk Assessment Due to Groundwater Quality Deterioration and Quantifying the Major Influencing Factors Using Geographical Detectors in the Gunabay Watershed of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asnakew%20Mulualem%20Tegegne">Asnakew Mulualem Tegegne</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Kumar%20Lohani"> Tarun Kumar Lohani</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Abunu%20Atlabachew%20Eshete">Abunu Atlabachew Eshete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality has become deteriorated due to natural and anthropogenic activities. Poor water quality has a potential risk to human health and the environment. Therefore, the study aimed to assess the potential risk of groundwater quality contamination levels and public health risks in the Gunabay watershed. For this task, seventy-eight groundwater samples were collected from thirty-nine locations in the dry and wet seasons during 2022. The ground water contamination index was applied to assess the overall quality of groundwater. Six major driving forces (temperature, population density, soil, land cover, recharge, and geology) and their quantitative impact of each factor on groundwater quality deterioration were demonstrated using Geodetector. The results showed that low groundwater quality was detected in urban and agricultural land. Especially nitrate contamination was highly linked to groundwater quality deterioration and public health risks, and a medium contamination level was observed in the area. This indicates that the inappropriate application of fertilizer on agricultural land and wastewater from urban areas has a great impact on shallow aquifers in the study area. Furthermore, the major influencing factors are ranked as soil type (0.33–0.31)>recharge (0.17–0.15)>temperature (0.13–0.08)>population density (0.1–0.08)>land cover types (0.07– 0.04)>lithology (0.05–0.04). The interaction detector revealed that the interaction between soil ∩ recharge, soil ∩ temperature, and soil ∩ land cover, temperature ∩ recharge is more influential to deteriorate groundwater quality in both seasons. Identification and quantification of the major influencing factors may provide new insight into groundwater resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20contamination%20index" title="groundwater contamination index">groundwater contamination index</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20detectors" title=" geographical detectors"> geographical detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health%20%C2%B7%20influencing%20factors" title=" public health · influencing factors"> public health · influencing factors</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20water%20resources%20management" title=" and water resources management"> and water resources management</a> </p> <a href="https://publications.waset.org/abstracts/192443/potential-risk-assessment-due-to-groundwater-quality-deterioration-and-quantifying-the-major-influencing-factors-using-geographical-detectors-in-the-gunabay-watershed-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10114</span> An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priti%20Saha">Priti Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Paul"> Biswajit Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20analysis" title=" water quality analysis"> water quality analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title=" water quality index"> water quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=WQI" title=" WQI"> WQI</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FA" title=" FA"> FA</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20assessment" title=" spatial assessment"> spatial assessment</a> </p> <a href="https://publications.waset.org/abstracts/103535/an-investigation-of-interdisciplinary-techniques-for-assessment-of-water-quality-in-an-industrial-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10113</span> Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Belkhiri">L. Belkhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouni"> L. Mouni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tiri"> A. Tiri</a>, <a href="https://publications.waset.org/abstracts/search?q=T.S.%20Narany"> T.S. Narany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20maps" title=" self-organizing maps"> self-organizing maps</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water" title=" irrigation water"> irrigation water</a> </p> <a href="https://publications.waset.org/abstracts/62284/evaluation-of-groundwater-quality-and-its-suitability-for-drinking-and-agricultural-purposes-using-self-organizing-maps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10112</span> Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdalraheem%20Huwaysh">Abdalraheem Huwaysh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Al%20Samarrai"> Khalil Al Samarrai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20ElAhmar"> Yasmin ElAhmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tajoura" title="Tajoura">Tajoura</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20intrusion" title=" seawater intrusion"> seawater intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/164265/evaluation-of-groundwater-and-seawater-intrusion-at-tajoura-area-nw-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10111</span> A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamakshaiah%20Kolli">Kamakshaiah Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Seshadri"> R. Seshadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20standards" title=" water quality standards"> water quality standards</a>, <a href="https://publications.waset.org/abstracts/search?q=potability" title=" potability"> potability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=JRIP" title=" JRIP"> JRIP</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/40645/a-novel-approach-for-the-analysis-of-ground-water-quality-by-using-classification-rules-and-water-quality-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10110</span> Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiying%20Zhang">Qiying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Xu"> Panpan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Qian"> Hui Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na<sup>+</sup> &gt; Mg<sup>2</sup><sup>+</sup> &gt; Ca<sup>2</sup><sup>+</sup> &gt; K<sup>+</sup>and SO<sub>4</sub><sup>2</sup><sup>-</sup> &gt; HCO<sub>3</sub><sup>-</sup> &gt; Cl<sup>-</sup> &gt; NO<sub>3</sub><sup>-</sup> &gt; CO<sub>3</sub><sup>2</sup><sup>-</sup> &gt; F<sup>-</sup>, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl<sup>-</sup>and SO<sub>4</sub><sup>2</sup><sup>-</sup>have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20chemistry" title="groundwater chemistry">groundwater chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanzhong%20Basin" title=" Guanzhong Basin"> Guanzhong Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality%20evaluation" title=" irrigation water quality evaluation"> irrigation water quality evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaokou%20Irrigation%20District" title=" Jiaokou Irrigation District"> Jiaokou Irrigation District</a> </p> <a href="https://publications.waset.org/abstracts/130501/irrigation-water-quality-evaluation-in-jiaokou-irrigation-district-guanzhong-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10109</span> The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouighi%20Mustapha">Rouighi Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzid%20Laghaa%20Souad"> Bouzid Laghaa Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouighi%20Tahar"> Rouighi Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster" title="cluster">cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=laghouat" title=" laghouat"> laghouat</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/38669/the-use-of-multivariate-statistical-and-gis-for-characterization-groundwater-quality-in-laghouat-region-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10108</span> Determination the Effects of Physico-Chemical Parameters on Groundwater Status by Water Quality Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Abolli">Samaneh Abolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Ahmadi%20Nasab"> Mahdi Ahmadi Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Yaghmaeian"> Kamyar Yaghmaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Alimohammadi"> Mahmood Alimohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of drinking water, in addition to the presence of physicochemical parameters, depends on the type and geographical location of water sources. In this study, groundwater quality was investigated by sampling total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), Cl, Ca²⁺, and Mg²⁺ parameters in 13 sites, and 40 water samples were sent to the laboratory. Electrometric, titration, and spectrophotometer methods were used. In the next step, the water quality index (WQI) was used to investigate the impact and weight of each parameter in the groundwater. The results showed that only the mean of magnesium ion (40.88 mg/l) was lower than the guidelines of World Health Organization (WHO). Interpreting the WQI based on the WHO guidelines showed that the statuses of 21, 11, and 7 samples were very poor, poor, and average quality, respectively, and one sample had excellent quality. Among the studied parameters, the means of EC (2,087.49 mS/cm) and Cl (1,015.87 mg/l) exceeded the global and national limits. Classifying water quality of TH was very hard (87.5%), hard (7.5%), and moderate (5%), respectively. Based on the geographical distribution, the drinking water index in sites 4 and 11 did not have acceptable quality. Chloride ion was identified as the responsible pollutant and the most important ion for raising the index. The outputs of statistical tests and Spearman correlation had significant and direct correlation (p < 0.05, r > 0.7) between TDS, EC, and chloride, EC and chloride, as well as TH, Ca²⁺, and Mg²⁺. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title="water quality index">water quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride" title=" chloride"> chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Garmsar" title=" Garmsar"> Garmsar</a> </p> <a href="https://publications.waset.org/abstracts/173612/determination-the-effects-of-physico-chemical-parameters-on-groundwater-status-by-water-quality-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10107</span> Sustainable Use of Fresh Groundwater Lens of Pleistocene Aquifer in Nam Dinh, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Thanh%20Le">Tran Thanh Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Pham%20Trong%20Duc"> Pham Trong Duc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fresh groundwater lens of the Pleistocene aquifer in Nam Dinh was formed since 12,900 years ago. Currently, the Pleistocene aquifer has been continuously exploited on average of 154,163m3/day, distributed mainly in the districts of Nghia Hung, Hai Hau, a part of Truc Ninh, Y Yen, Nam Truc and Giao Thuy. The groundwater level is still on a declining trend, saltwater intrusion in this freshwater lens can occur if the growth rate in exploitation is maintained. This study focused on groundwater sustainable use by means of 4 groups of criteria including: Groundwater quality and pollution; Aquifers’ productivity and capacity; Environment impacts due to exploitation (groundwater level decline, land subsidence due to water exploitation); Social and economic impacts. Using a combination of methods including field surveys, geophysics, hydrogeochemistry, isotope and numerical models to determine safe groundwater exploitation thresholds for the whole study area has been determined to be 544,314m3/day and the actual exploitation amount is currently about 30% compared to the safe exploitation threshold. However, it should also be noted that the current groundwater exploitation threshold and level of its exploitation compared to the safe exploitation threshold of each locality are not the same. From this result, the groundwater exploitation threshold map of the study area was established to serve the management, licensing and orientation of groundwater exploitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria" title="criteria">criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20groundwater%20lens" title=" fresh groundwater lens"> fresh groundwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=pleistocene" title=" pleistocene"> pleistocene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Dinh" title=" Nam Dinh"> Nam Dinh</a> </p> <a href="https://publications.waset.org/abstracts/145972/sustainable-use-of-fresh-groundwater-lens-of-pleistocene-aquifer-in-nam-dinh-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10106</span> Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Ghosh">N. C. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Das"> Niladri Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Prolay%20Mondal"> Prolay Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranajit%20Ghosh"> Ranajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20facies" title=" hydrological facies"> hydrological facies</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemistry" title=" hydrochemistry"> hydrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/101003/application-of-multivariate-statistics-and-hydro-chemical-approach-for-groundwater-quality-assessment-a-study-on-birbhum-district-west-bengal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10105</span> Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Femi%20Bakare">Babatunde Femi Bakare </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boreholes" title="boreholes">boreholes</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=entrenchment" title=" entrenchment"> entrenchment</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=VIP%20latrines" title=" VIP latrines"> VIP latrines</a> </p> <a href="https://publications.waset.org/abstracts/3677/water-quality-at-a-ventilated-improved-pit-latrine-sludge-entrenchment-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10104</span> Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shakoor">A. Shakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Arshad"> M. Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title=" groundwater management"> groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=PMWIN" title=" PMWIN"> PMWIN</a>, <a href="https://publications.waset.org/abstracts/search?q=MT3D%20model" title=" MT3D model"> MT3D model</a> </p> <a href="https://publications.waset.org/abstracts/15225/vulnerability-assessment-of-groundwater-quality-deterioration-using-pmwin-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10103</span> Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Melki">Samira Melki</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Gueddari"> Moncef Gueddari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphogypsum%20leatchate" title="phosphogypsum leatchate">phosphogypsum leatchate</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sfax-Agareb" title=" Sfax-Agareb"> Sfax-Agareb</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/72556/impact-assessment-of-phosphogypsum-on-the-groundwater-of-sfax-agareb-aquifer-in-southeast-of-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10102</span> Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Xu">Panpan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiying%20Zhang"> Qiying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Qian"> Hui Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup>, Cl<sup>-</sup>, HCO<sub>3</sub><sup>-</sup>, and CO<sub>3</sub><sup>2-</sup>), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl<sup>-</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, and SO<sub>4</sub><sup>2-</sup>, and the HCO<sub>3</sub><sup>-</sup> content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality" title="irrigation water quality">irrigation water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20statistical%20analysis" title=" multivariate statistical analysis"> multivariate statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeochemical%20process" title=" hydrogeochemical process"> hydrogeochemical process</a> </p> <a href="https://publications.waset.org/abstracts/130842/irrigation-water-quality-evaluation-based-on-multivariate-statistical-analysis-a-case-study-of-jiaokou-irrigation-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10101</span> The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Mirzaei%20Aminiyan">Milad Mirzaei Aminiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Akhgar"> Abdolreza Akhgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Mirzaei%20Aminiyan"> Farzad Mirzaei Aminiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title="groundwater quality">groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality" title=" irrigation water quality"> irrigation water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalinity" title=" alkalinity"> alkalinity</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafsanjan%20plain" title=" Rafsanjan plain"> Rafsanjan plain</a>, <a href="https://publications.waset.org/abstracts/search?q=pistachio" title=" pistachio"> pistachio</a> </p> <a href="https://publications.waset.org/abstracts/10469/the-assessment-groundwater-geochemistry-of-some-wells-in-rafsanjan-plain-southeast-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10100</span> Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Qureshi">A. L. Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mahessar"> A. A. Mahessar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dashti"> R. K. Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yasin"> S. M. Yasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjunctive%20use" title="conjunctive use">conjunctive use</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20crop" title=" cotton crop"> cotton crop</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20status" title=" soil salinity status"> soil salinity status</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency "> water use efficiency </a> </p> <a href="https://publications.waset.org/abstracts/17342/effect-of-marginal-quality-groundwater-on-yield-of-cotton-crop-and-soil-salinity-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10099</span> Groundwater Quality Monitoring in the Shoush Suburbs, Khouzestan Province, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahsin%20Karimi%20Nezhad">Mohammad Tahsin Karimi Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaynab%20Shadbahr"> Zaynab Shadbahr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gholami"> Ali Gholami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years many attempts have been made to assess groundwater contamination by nitrates worldwide. The assessment of spatial and temporal variations of physico-chemical parameters of water is necessary to mange water quality. The objectives of the study were to evaluate spatial variability and temporal changes of hydrochemical factors by water sampling from 24 wells in the Shoush City suburb. The analysis was conducted for the whole area and for different land use and geological classes. In addition, nitrate concentration variability with descriptive parameters such as sampling depth, dissolved oxygen, and on ground nitrogen loadings was also investigated The results showed that nitrate concentrations did not exceed the standard limit (50 mg/l). EC of water samples, ranged from 900 to 1200 µs/cm, TDS from 775 to 830 mg/l and pH from 5.6 to 9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/27261/groundwater-quality-monitoring-in-the-shoush-suburbs-khouzestan-province-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10098</span> Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20David">A. O. David</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Akaho"> A. A. Akaho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abah"> M. A. Abah</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Ogunjimi"> J. O. Ogunjimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a> </p> <a href="https://publications.waset.org/abstracts/170946/assessment-of-groundwater-quality-around-a-cement-factory-in-ewekoro-ogun-state-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10097</span> Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olu%20Ale">Olu Ale</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Aribisala"> Olugbenga Aribisala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanmi%20Awopetu"> Sanmi Awopetu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriological" title="bacteriological">bacteriological</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wells" title=" wells"> wells</a>, <a href="https://publications.waset.org/abstracts/search?q=Ado%20Ekiti" title=" Ado Ekiti"> Ado Ekiti</a> </p> <a href="https://publications.waset.org/abstracts/35884/physicochemical-and-bacteriological-quality-characterization-of-some-selected-wells-in-ado-ekiti-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10096</span> Ground Water Sustainable Management in Ethiopia, Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebissa%20Gadissa%20Kedir">Ebissa Gadissa Kedir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the potential groundwater assessment and sustainable management in the selected study area. It is the most preferred water source in all climatic zones for its convenient availability, drought dependability, excellent quality, and low development cost. The rural areas, which account for more than 85% of the country's population, are encountered a shortage of potable water supply which can be solved by proper groundwater utilization. For the present study area, the groundwater potential is assessed and analysed. Thus, the study area falls in four potential groundwater zones ranging from poor to high. However, the current groundwater management practices in the study area are poor. Despite the pervasive and devastating challenges, immediate and proper responses have not yet been given to the problem. Thus, such frustrating threats and challenges have initiated the researcher to work in the project area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GW%20potential" title="GW potential">GW potential</a>, <a href="https://publications.waset.org/abstracts/search?q=GW%20management" title=" GW management"> GW management</a>, <a href="https://publications.waset.org/abstracts/search?q=GW%20sustainability" title=" GW sustainability"> GW sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20gonder" title=" South gonder"> South gonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/179259/ground-water-sustainable-management-in-ethiopia-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10095</span> Development of Groundwater Management Model Using Groundwater Sustainability Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Rwanga">S. S. Rwanga</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ndambuki"> J. M. Ndambuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Woyessa"> Y. Woyessa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20sustainability%20index" title=" groundwater sustainability index"> groundwater sustainability index</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a> </p> <a href="https://publications.waset.org/abstracts/94516/development-of-groundwater-management-model-using-groundwater-sustainability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10094</span> Groundwater Pollution Models for Hebron/Palestine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Jebreen">Hassan Jebreen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=wadis" title=" wadis"> wadis</a>, <a href="https://publications.waset.org/abstracts/search?q=hebron" title=" hebron"> hebron</a> </p> <a href="https://publications.waset.org/abstracts/18476/groundwater-pollution-models-for-hebronpalestine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10093</span> A Plan of Smart Management for Groundwater Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Chen">Jennifer Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei%20Y.%20Hsu"> Pei Y. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20W.%20Chen"> Yu W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20management" title="groundwater management">groundwater management</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20groundwater" title=" internet of groundwater"> internet of groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20hydrological%20model" title=" underground hydrological model"> underground hydrological model</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20of%20flow%20meter" title=" alternative of flow meter"> alternative of flow meter</a> </p> <a href="https://publications.waset.org/abstracts/84970/a-plan-of-smart-management-for-groundwater-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=337">337</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=338">338</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=groundwater%20quality&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10