CINXE.COM
Search results for: flow curve
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flow curve</title> <meta name="description" content="Search results for: flow curve"> <meta name="keywords" content="flow curve"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flow curve" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flow curve"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5725</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flow curve</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5725</span> Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ardabil" title="ardabil">ardabil</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20river" title=" Gharasou river"> Gharasou river</a> </p> <a href="https://publications.waset.org/abstracts/22653/flow-duration-curve-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5724</span> Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Singh">Amit K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhankar%20Sen"> Subhankar Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20curve" title=" bifurcation curve"> bifurcation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20cylinder" title=" elliptic cylinder"> elliptic cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=GMRES" title=" GMRES"> GMRES</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilized%20finite-element" title=" stabilized finite-element"> stabilized finite-element</a> </p> <a href="https://publications.waset.org/abstracts/40551/study-of-bifurcation-curve-with-aspect-ratio-at-low-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5723</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneously%20flow" title=" simultaneously flow"> simultaneously flow</a> </p> <a href="https://publications.waset.org/abstracts/59190/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5722</span> Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20River" title="Gharasou River">Gharasou River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20management" title=" water flow management"> water flow management</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniformity%20distribution" title=" non-uniformity distribution"> non-uniformity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20flow%20requirement" title=" ecosystem flow requirement"> ecosystem flow requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20alteration" title=" hydraulic alteration"> hydraulic alteration</a> </p> <a href="https://publications.waset.org/abstracts/22677/hydrological-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5721</span> Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Arzani">Hamed K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20K.%20Arzani"> Hamid K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.N.%20Kazi"> S.N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badarudin"> A. Badarudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20forced%20convection" title="laminar forced convection">laminar forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20pipe" title=" curve pipe"> curve pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20bend" title=" return bend"> return bend</a>, <a href="https://publications.waset.org/abstracts/search?q=nanufluid" title=" nanufluid"> nanufluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/51028/numerical-study-of-developing-laminar-forced-convection-flow-of-watercuo-nanofluid-in-a-circular-tube-with-a-180-degrees-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5720</span> Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Can">Ibrahim Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Tosuno%C4%9Flu"> Fatih Tosunoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARMA%20models" title="ARMA models">ARMA models</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87oruh%20basin" title=" Çoruh basin"> Çoruh basin</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/31172/synthetic-daily-flow-duration-curves-for-the-coruh-river-basin-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5719</span> Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADvia%20B.%20Meirelles">Lívia B. Meirelles</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20C.%20A.%20N.%20Chrisman"> Erika C. A. N. Chrisman</a>, <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1via%20B.%20de%20Andrade"> Flávia B. de Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilian%20C.%20M.%20de%20Oliveira"> Lilian C. M. de Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20curve" title="distillation curve">distillation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20distillation" title=" petroleum distillation"> petroleum distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20boiling%20point%20curve" title=" true boiling point curve"> true boiling point curve</a> </p> <a href="https://publications.waset.org/abstracts/68293/comparison-of-the-distillation-curve-obtained-experimentally-with-the-curve-extrapolated-by-a-commercial-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5718</span> Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Jamil%20Nazari">Abdul Jamil Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20recovery" title=" oil recovery"> oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20fingering" title=" water fingering"> water fingering</a> </p> <a href="https://publications.waset.org/abstracts/50965/effect-of-fractional-flow-curves-on-the-heavy-oil-and-light-oil-recoveries-in-petroleum-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5717</span> Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayan%20Arefi">Shayan Arefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qadir%20Esmaili"> Qadir Esmaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Jazayeri"> Seyed Ali Jazayeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbo%20generator" title="turbo generator">turbo generator</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20fan" title=" axial fan"> axial fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/9953/numerical-investigation-into-the-effect-of-axial-fan-blade-angle-on-the-fan-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5716</span> Finding the Free Stream Velocity Using Flow Generated Sound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini">Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor"> Ali Reza Tahavvor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20flow%20generated%20sound" title="the flow generated sound">the flow generated sound</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20stream" title=" free stream"> free stream</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/abstracts/search?q=speed" title=" speed"> speed</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20power" title=" wave power"> wave power</a> </p> <a href="https://publications.waset.org/abstracts/35611/finding-the-free-stream-velocity-using-flow-generated-sound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5715</span> Approximating Maximum Speed on Road from Curvature Information of Bezier Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yushalify%20Misro">M. Yushalify Misro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ramli"> Ahmad Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20M.%20Ali"> Jamaludin M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speed%20estimation" title="speed estimation">speed estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20constraints" title=" path constraints"> path constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trajectory" title=" reference trajectory"> reference trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curve" title=" Bezier curve"> Bezier curve</a> </p> <a href="https://publications.waset.org/abstracts/36228/approximating-maximum-speed-on-road-from-curvature-information-of-bezier-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5714</span> Extraction of Dyes Using an Aqueous Two-Phase System in Stratified and Slug Flow Regimes of a Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garima">Garima</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pushpavanam"> S. Pushpavanam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, analysis of an Aqueous two-phase (polymer-salt) system for extraction of sunset yellow dye is carried out. A polymer-salt ATPS i.e.; Polyethylene glycol-600 and anhydrous sodium sulfate is used for the extraction. Conditions are chosen to ensure that the extraction results in a concentration of the dye in one of the phases. The dye has a propensity to come to the Polyethylene glycol-600 phase. This extracted sunset yellow dye is degraded photo catalytically into less harmful components. The cloud point method was used to obtain the binodal curve of ATPS. From the binodal curve, the composition of salt and Polyethylene glycol -600 was chosen such that the volume of Polyethylene glycol-600 rich phase is low. This was selected to concentrate the dye from a dilute solution in a large volume of contaminated solution into a small volume. This pre-concentration step provides a high reaction rate for photo catalytic degradation reaction. Experimentally the dye is extracted from the salt phase to Polyethylene glycol -600 phase in batch extraction. This was found to be very fast and all dye was extracted. The concentration of sunset yellow dye in salt and polymer phase is measured at 482nm by ultraviolet-visible spectrophotometry. The extraction experiment in micro channels under stratified flow is analyzed to determine factors which affect the dye extraction. Focus will be on obtaining slug flow by adding nanoparticles in micro channel. The primary aim is to exploit the fact that slug flow will help improve mass transfer rate from one phase to another through internal circulation in dispersed phase induced by shear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two%20phase%20system" title="aqueous two phase system">aqueous two phase system</a>, <a href="https://publications.waset.org/abstracts/search?q=binodal%20curve" title=" binodal curve"> binodal curve</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=sunset%20yellow%20dye" title=" sunset yellow dye"> sunset yellow dye</a> </p> <a href="https://publications.waset.org/abstracts/72490/extraction-of-dyes-using-an-aqueous-two-phase-system-in-stratified-and-slug-flow-regimes-of-a-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5713</span> Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Masoud%20Alyami">Jaber Masoud Alyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20H.%20Alsrkhi"> Abdelsalam H. Alsrkhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title="multiphase flow">multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20flow" title=" gas-liquid flow"> gas-liquid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=slippage" title=" slippage"> slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20farction" title=" void farction"> void farction</a> </p> <a href="https://publications.waset.org/abstracts/164960/gas-liquid-flow-void-fraction-identification-using-slippage-number-froud-mixture-number-relation-in-bubbly-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5712</span> Bifurcation Curve for Semipositone Problem with Minkowski-Curvature Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shao-Yuan%20Huang">Shao-Yuan Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the shape of the bifurcation curve of positive solutions for the semipositone problem with the Minkowski-curvature operator. The Minkowski-curvature problem plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity. In addition, it is well known that studying the multiplicity of positive solutions is equivalent to studying the shape of the bifurcation curve. By the shape of the bifurcation curve, we can understand the change in the multiplicity of positive solutions with varying parameters. In this paper, our main technique is a time-map method used in Corsato's PhD Thesis. By this method, studying the shape of the bifurcation curve is equivalent to studying the shape of a certain function T with improper integral. Generally speaking, it is difficult to study the shape of T. So, in this paper, we consider two cases that the nonlinearity is convex or concave. Thus we obtain the following results: (i) If f''(u) < 0 for u > 0, then the bifurcation curve is C-shaped. (ii) If f''(u) > 0 for u > 0, then there exists η>β such that the bifurcation curve does not exist for 0 <L≤ η and is C- like shaped for L>η. Furthermore, we prove that the bifurcation is C-shaped for L > η under a certain condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20curve" title="bifurcation curve">bifurcation curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Minkowski-curvature%20problem" title=" Minkowski-curvature problem"> Minkowski-curvature problem</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20solution" title=" positive solution"> positive solution</a>, <a href="https://publications.waset.org/abstracts/search?q=time-map%20method" title=" time-map method"> time-map method</a> </p> <a href="https://publications.waset.org/abstracts/159183/bifurcation-curve-for-semipositone-problem-with-minkowski-curvature-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5711</span> Evaluation of Different Anticoagulant Effects on Flow Properties of Human Blood Using Falling Needle Rheometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Tsuneda">Hiroki Tsuneda</a>, <a href="https://publications.waset.org/abstracts/search?q=Takamasa%20Suzuki"> Takamasa Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimito%20Kawamura"> Kimito Kawamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Tamura"> Eiji Tamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Wochner"> Katharina Wochner</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Plasenzotti"> Roberto Plasenzotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow property of human blood is one of the important factors on the prevention of the circulatory condition such as a high blood pressure, a diabetes mellitus, and a cardiac infarction. However, the measurement of flow property of human blood, especially blood viscosity, is not so easy, because of their coagulation or aggregation behaviors after taking a sample from blood vessel. In the experiment, some kinds of anticoagulant were added into the human blood to avoid its solidification. Anticoagulant used in the blood test has been chosen for each purpose of blood test, for anticoagulant effect on blood is different mechanism for each. So that, there is a problem that the evaluation of measured blood property with different anticoagulant is so difficult. Therefore, it is so important to make clear the difference of anticoagulant effect on the blood property. In the previous work, a compact-size falling needle rheometer (FNR) has been developed in order to measure the flow property of human blood such as a flow curve, an apparent viscosity. It was found that FNR system can apply to a rheometer or a viscometry for various experimental conditions for not only human blood but also mammalians blood. In this study, the measurements of human blood viscosity with different anticoagulant (EDTA and Heparin) were carried out using newly developed FNR system. The effect of anticoagulant on blood viscosity was also tested by using the standard liquid for each. The accuracy on the viscometry was also tested by using the standard liquid for calibrating materials (JS-10, JS-20) and observed data have satisfactory agreement with reference data around 1.0% at 310K. The flow curve of six males and females with different anticoagulant were measured using FNR. In this experiment, EDTA and Heparin were chosen as anticoagulant for blood. Heparin can inhibit the coagulation of human blood by activating the body of anti-thrombin. To examine the effect of human blood viscosity on anticoagulant, flow curve was measured at high shear rate (>350s-1), and apparent viscosity of each person were determined with different anticoagulant. The apparent viscosity of human blood with heparin was 2%-9% higher than that with EDTA. However, the difference of blood viscosity for two anticoagulants for same blood was different for each. Further discussion, we need the consideration of effect on other physical property, such as cellular component and plasma component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falling-needle%20rheometer" title="falling-needle rheometer">falling-needle rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20blood" title=" human blood"> human blood</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=anticoagulant" title=" anticoagulant"> anticoagulant</a> </p> <a href="https://publications.waset.org/abstracts/35527/evaluation-of-different-anticoagulant-effects-on-flow-properties-of-human-blood-using-falling-needle-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5710</span> Solving 94-Bit ECDLP with 70 Computers in Parallel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunsuke%20Miyoshi">Shunsuke Miyoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nogami"> Yasuyuki Nogami</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Kusaka"> Takuya Kusaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nariyoshi%20Yamai"> Nariyoshi Yamai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pollard%27s%20rho%20method" title="Pollard's rho method">Pollard's rho method</a>, <a href="https://publications.waset.org/abstracts/search?q=BN%20curve" title=" BN curve"> BN curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Montgomery%20multiplication" title=" Montgomery multiplication"> Montgomery multiplication</a> </p> <a href="https://publications.waset.org/abstracts/28038/solving-94-bit-ecdlp-with-70-computers-in-parallel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5709</span> Generating Arabic Fonts Using Rational Cubic Ball Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakharuddin%20Ibrahim">Fakharuddin Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Md.%20Ali"> Jamaludin Md. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ramli"> Ahmad Ramli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G<sup>1</sup> continuity. The conditions considered are known as the G<sup>1</sup> Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20interpolation" title="data interpolation">data interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20ball%20curve" title=" rational ball curve"> rational ball curve</a>, <a href="https://publications.waset.org/abstracts/search?q=hermite%20condition" title=" hermite condition"> hermite condition</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a> </p> <a href="https://publications.waset.org/abstracts/44202/generating-arabic-fonts-using-rational-cubic-ball-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5708</span> An Optimized RDP Algorithm for Curve Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Lomaliza">Jean-Pierre Lomaliza</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Seok%20Moon"> Kwang-Seok Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanhoon%20Park"> Hanhoon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20approximation" title="curve approximation">curve approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20point" title=" essential point"> essential point</a>, <a href="https://publications.waset.org/abstracts/search?q=RDP%20algorithm" title=" RDP algorithm"> RDP algorithm</a> </p> <a href="https://publications.waset.org/abstracts/29359/an-optimized-rdp-algorithm-for-curve-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5707</span> A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.J.%20Wang">Y.J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Ru"> C. Q. Ru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fracture" title="dynamic fracture">dynamic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=traction-separation%20law" title=" traction-separation law"> traction-separation law</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=J-integral" title=" J-integral"> J-integral</a> </p> <a href="https://publications.waset.org/abstracts/21419/a-cohesive-zone-model-with-parameters-determined-by-uniaxial-stress-strain-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5706</span> Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Wang">Y. J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Ru"> C. Q. Ru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fracture" title="dynamic fracture">dynamic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=traction-separation%20law" title=" traction-separation law"> traction-separation law</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=J-integral" title=" J-integral"> J-integral</a> </p> <a href="https://publications.waset.org/abstracts/23486/determination-of-cohesive-zone-models-parameters-based-on-the-uniaxial-stress-strain-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5705</span> GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Ramli">Suzana Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wardah%20Tahir"> Wardah Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff" title="surface runoff">surface runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20number%20method" title=" curve number method"> curve number method</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/4351/gis-application-in-surface-runoff-estimation-for-upper-klang-river-basin-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5704</span> Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoujia%20Fang">Shoujia Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Ding"> Guoqing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen"> Xin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=keypoint%20detection" title="keypoint detection">keypoint detection</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20feature" title=" curve feature"> curve feature</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=press-fit%20assembly" title=" press-fit assembly"> press-fit assembly</a> </p> <a href="https://publications.waset.org/abstracts/98263/detection-of-keypoint-in-press-fit-curve-based-on-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5703</span> The Term Structure of Government Bond Yields in an Emerging Market: Empirical Evidence from Pakistan Bond Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wali%20Ullah">Wali Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nishat"> Muhammad Nishat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the extent to which the so called Nelson-Siegel model (DNS) and its extended version that accounts for time varying volatility (DNS-EGARCH) can optimally fit the yield curve and predict its future path in the context of an emerging economy. For the in-sample fit, both models fit the curve remarkably well even in the emerging markets. However, the DNS-EGARCH model fits the curve slightly better than the DNS. Moreover, both specifications of yield curve that are based on the Nelson-Siegel functional form outperform the benchmark VAR forecasts at all forecast horizons. The DNS-EGARCH comes with more precise forecasts than the DNS for the 6- and 12-month ahead forecasts, while the two have almost similar performance in terms of RMSE for the very short forecast horizons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yield%20curve" title="yield curve">yield curve</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20markets" title=" emerging markets"> emerging markets</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=EGARCH" title=" EGARCH"> EGARCH</a> </p> <a href="https://publications.waset.org/abstracts/17242/the-term-structure-of-government-bond-yields-in-an-emerging-market-empirical-evidence-from-pakistan-bond-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5702</span> Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20L.%20Goodwin">Roger L. Goodwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20estimation" title="Bayesian estimation">Bayesian estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=rank%20statistics" title=" rank statistics"> rank statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20curve" title=" correlation curve"> correlation curve</a> </p> <a href="https://publications.waset.org/abstracts/9847/choosing-between-the-regression-correlation-the-rank-correlation-and-the-correlation-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5701</span> Representation of the Solution of One Dynamical System on the Plane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kushakov%20Kholmurodjon">Kushakov Kholmurodjon</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammadjonov%20Akbarshox"> Muhammadjonov Akbarshox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20system" title="dynamic system">dynamic system</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipse" title=" ellipse"> ellipse</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbola" title=" hyperbola"> hyperbola</a>, <a href="https://publications.waset.org/abstracts/search?q=Hess%20system" title=" Hess system"> Hess system</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20coordinate%20system" title=" polar coordinate system"> polar coordinate system</a> </p> <a href="https://publications.waset.org/abstracts/140142/representation-of-the-solution-of-one-dynamical-system-on-the-plane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5700</span> Behaviour of an RC Circuit near Extreme Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tribhuvan%20N.%20Soorya">Tribhuvan N. Soorya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging" title="charging">charging</a>, <a href="https://publications.waset.org/abstracts/search?q=discharging" title=" discharging"> discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20Circuit" title=" RC Circuit"> RC Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/28590/behaviour-of-an-rc-circuit-near-extreme-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5699</span> A Bathtub Curve from Nonparametric Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20C.%20Guardia">Eduardo C. Guardia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20W.%20M.%20Lima"> Jose W. M. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Afonso%20H.%20M.%20Santos"> Afonso H. M. Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathtub%20curve" title="bathtub curve">bathtub curve</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20estimation" title=" lifetime estimation"> lifetime estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title=" Weibull distribution"> Weibull distribution</a> </p> <a href="https://publications.waset.org/abstracts/10780/a-bathtub-curve-from-nonparametric-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5698</span> Weighted G2 Multi-Degree Reduction of Bezier Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salisu%20ibrahim">Salisu ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20Rababah"> Abdalla Rababah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we use Weighted G2-Multi-degree reduction of Bezier curve of degree n to a Bezier curve of degree m, m < n. The degree reduction of Bezier curves is used to represent a given Bezier curve of n by a Bezier curve of degree m, m < n. Exact degree reduction is not possible, and degree reduction is approximate process in nature. We derive a weighted degree reducing method that is geometrically continuous at the end points. Different norms will be considered, several error minimizations will be given. The proposed methods produce error function that are less than the errors of existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title="Bezier curves">Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20degree%20reduction" title=" multiple degree reduction"> multiple degree reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20continuity" title=" geometric continuity"> geometric continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20function" title=" error function"> error function</a> </p> <a href="https://publications.waset.org/abstracts/18669/weighted-g2-multi-degree-reduction-of-bezier-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5697</span> Comparison of Receiver Operating Characteristic Curve Smoothing Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sigirli">D. Sigirli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20estimator" title="empirical estimator">empirical estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20function" title=" kernel function"> kernel function</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothing" title=" smoothing"> smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20curve" title=" receiver operating characteristic curve"> receiver operating characteristic curve</a> </p> <a href="https://publications.waset.org/abstracts/103835/comparison-of-receiver-operating-characteristic-curve-smoothing-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5696</span> Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alebachew%20Halefom">Alebachew Halefom</a>, <a href="https://publications.waset.org/abstracts/search?q=Navsal%20Kumar"> Navsal Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunava%20Poddar"> Arunava Poddar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseflow%20index" title="baseflow index">baseflow index</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20graphical%20methods" title=" digital graphical methods"> digital graphical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=Emba%20Madre%20Watershed" title=" Emba Madre Watershed"> Emba Madre Watershed</a> </p> <a href="https://publications.waset.org/abstracts/160630/evaluation-of-three-digital-graphical-methods-of-baseflow-separation-techniques-in-the-tekeze-water-basin-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flow%20curve&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>