CINXE.COM
Search results for: real-time visualisation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: real-time visualisation</title> <meta name="description" content="Search results for: real-time visualisation"> <meta name="keywords" content="real-time visualisation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="real-time visualisation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="real-time visualisation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 69</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: real-time visualisation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Using Knowledge Management and Visualisation Concepts to Improve Patients and Hospitals Staff Workflow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20AlRasheed">A. A. AlRasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Atkins"> A. Atkins</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Campion"> R. Campion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on using knowledge management and visualisation concepts to improve the patients and hospitals employee’s workflow. Hospitals workflow is a complex and complicated process and poor patient flow can put both patients and a hospital’s reputation at risk, and can threaten the facility’s financial sustainability. Healthcare leaders are under increased pressure to reduce costs while maintaining or increasing patient care standards. In this paper, a framework is proposed to help improving patient experience, staff satisfaction, and operational efficiency across hospitals by using knowledge management based visualisation concepts. This framework is using real-time visibility to track and monitor location and status of patients, staff, rooms, and medical equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title="knowledge management">knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=improvements" title=" improvements"> improvements</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=workflow" title=" workflow"> workflow</a> </p> <a href="https://publications.waset.org/abstracts/67969/using-knowledge-management-and-visualisation-concepts-to-improve-patients-and-hospitals-staff-workflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kedra">Bartosz Kedra</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Malkowski"> Robert Malkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20converter" title=" power converter"> power converter</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink%20Real-Time" title=" Simulink Real-Time"> Simulink Real-Time</a>, <a href="https://publications.waset.org/abstracts/search?q=thyristor-controlled%20tap%20changer" title=" thyristor-controlled tap changer"> thyristor-controlled tap changer</a> </p> <a href="https://publications.waset.org/abstracts/50924/150-kva-multifunction-laboratory-test-unit-based-on-power-frequency-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Performance of the Abbott RealTime High Risk HPV Assay with SurePath Liquid Based Cytology Specimens from Women with Low Grade Cytological Abnormalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Sargent">Alexandra Sargent</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Ferris"> Sarah Ferris</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Theofanous"> Ioannis Theofanous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Abbott RealTime High Risk HPV test (RealTime HPV) is one of five assays clinically validated and approved by the English NHS Cervical Screening Programme (CSP) for HPV triage of low grade dyskaryosis and test-of-cure of treated Cervical Intraepithelial Neoplasia. The assay is a highly automated multiplex real-time PCR test for detecting 14 high risk (hr) HPV types, with simultaneous differentiation of HPV 16 and HPV 18 versus non-HPV 16/18 hrHPV. An endogenous internal control ensures sample cellularity, controls extraction efficiency and PCR inhibition. The original cervical specimen collected in SurePath (SP) liquid-based cytology (LBC) medium (BD Diagnostics) and the SP post-gradient cell pellets (SPG) after cytological processing are both CE marked for testing with the RealTime HPV test. During the 2011 NHSCSP validation of new tests only the original aliquot of SP LBC medium was investigated. Residual sample volume left after cytology slide preparation is low and may not always have sufficient volume for repeat HPV testing or for testing of other biomarkers that may be implemented in testing algorithms in the future. The SPG samples, however, have sufficient volumes to carry out additional testing and necessary laboratory validation procedures. This study investigates the correlation of RealTime HPV results of cervical specimens collected in SP LBC medium from women with low grade cytological abnormalities observed with matched pairs of original SP LBC medium and SP post-gradient cell pellets (SPG) after cytology processing. Matched pairs of SP and SPG samples from 750 women with borderline (N = 392) and mild (N = 351) cytology were available for this study. Both specimen types were processed and parallel tested for the presence of hrHPV with RealTime HPV according to the manufacturer´s instructions. HrHPV detection rates and concordance between test results from matched SP and SPGCP pairs were calculated. A total of 743 matched pairs with valid test results on both sample types were available for analysis. An overall-agreement of hrHPV test results of 97.5% (k: 0.95) was found with matched SP/SPG pairs and slightly lower concordance (96.9%; k: 0.94) was observed on 392 pairs from women with borderline cytology compared to 351 pairs from women with mild cytology (98.0%; k: 0.95). Partial typing results were highly concordant in matched SP/SPG pairs for HPV 16 (99.1%), HPV 18 (99.7%) and non-HPV16/18 hrHPV (97.0%), respectively. 19 matched pairs were found with discrepant results: 9 from women with borderline cytology and 4 from women with mild cytology were negative on SPG and positive on SP; 3 from women with borderline cytology and 3 from women with mild cytology were negative on SP and positive on SPG. Excellent correlation of hrHPV DNA test results was found between matched pairs of SP original fluid and post-gradient cell pellets from women with low grade cytological abnormalities tested with the Abbott RealTime High-Risk HPV assay, demonstrating robust performance of the test with both specimen types and reassuring the utility of the assay for cytology triage with both specimen types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbott%20realtime%20test" title="Abbott realtime test">Abbott realtime test</a>, <a href="https://publications.waset.org/abstracts/search?q=HPV" title=" HPV"> HPV</a>, <a href="https://publications.waset.org/abstracts/search?q=SurePath%20liquid%20based%20cytology" title=" SurePath liquid based cytology"> SurePath liquid based cytology</a>, <a href="https://publications.waset.org/abstracts/search?q=surepath%20post-gradient%20cell%20pellet" title=" surepath post-gradient cell pellet"> surepath post-gradient cell pellet</a> </p> <a href="https://publications.waset.org/abstracts/61325/performance-of-the-abbott-realtime-high-risk-hpv-assay-with-surepath-liquid-based-cytology-specimens-from-women-with-low-grade-cytological-abnormalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rivindu%20Nethmin%20Bandara%20Menik%20Hitihamy%20Mudiyanselage">Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hank%20Haeusler"> Matthias Hank Haeusler</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Doherty"> Ben Doherty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title="embodied carbon">embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=summarisation" title=" summarisation"> summarisation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20filtering" title=" data filtering"> data filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=early-stage%20decision-making" title=" early-stage decision-making"> early-stage decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=materiality" title=" materiality"> materiality</a> </p> <a href="https://publications.waset.org/abstracts/161905/carbon-skimming-towards-an-application-to-summarise-and-compare-embodied-carbon-to-aid-early-stage-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Developing a Multiagent-Based Decision Support System for Realtime Multi-Risk Disaster Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Moser">D. Moser</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinto"> D. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cipriano"> A. Cipriano </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Disaster Management System (DMS) for countries with different disasters is very important. In the world different disasters like earthquakes, tsunamis, volcanic eruption, fire or other natural or man-made disasters occurs and have an effect on the population. It is also possible that two or more disasters arisen at the same time, this means to handle multi-risk situations. To handle such a situation a Decision Support System (DSS) based on multiagents is a suitable architecture. The most known DMSs deal with one (in the case of an earthquake-tsunami combination with two) disaster and often with one particular disaster. Nevertheless, a DSS helps for a better realtime response. Analyze the existing systems in the literature and expand them for multi-risk disasters to construct a well-organized system is the proposal of our work. The here shown work is an approach of a multi-risk system, which needs an architecture, and well-defined aims. In this moment our study is a kind of case study to analyze the way we have to follow to create our proposed system in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20support%20system" title="decision support system">decision support system</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management%20system" title=" disaster management system"> disaster management system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-risk" title=" multi-risk"> multi-risk</a>, <a href="https://publications.waset.org/abstracts/search?q=multiagent%20system" title=" multiagent system"> multiagent system</a> </p> <a href="https://publications.waset.org/abstracts/26119/developing-a-multiagent-based-decision-support-system-for-realtime-multi-risk-disaster-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saqib%20Manzoor">Muhammad Saqib Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Camille%20Dickson-Deane"> Camille Dickson-Deane</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashan%20Karunaratne"> Prashan Karunaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobb-douglas%20production%20function" title="cobb-douglas production function">cobb-douglas production function</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-Delphi%20method" title=" quasi-Delphi method"> quasi-Delphi method</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20teaching%20and%20learning" title=" effective teaching and learning"> effective teaching and learning</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-visualisations" title=" 3D-visualisations"> 3D-visualisations</a> </p> <a href="https://publications.waset.org/abstracts/142864/a-perspective-on-teaching-mathematical-concepts-to-freshman-economics-students-using-3d-visualisations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Restoration Process of Kastamonu - Tufekciler Village Houses for Potential Eco-Tourism Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turkan%20Sultan%20Yasar%20Ismail">Turkan Sultan Yasar Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Cetin"> Mehmet Cetin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Danial%20Ismail"> M. Danial Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Sevik"> Hakan Sevik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, there is a need for the real world to be translated to the virtual environment by three-dimensional visualisation for restoration and promotional modelling of historic sites in protected areas. Visualisation models have also become the very important basis for the creation of three-dimensional Geographic Information System. The protection of historical and cultural heritage and documenting in Turkey as well as all over the world is an important issue. This heritage is a bridge between the past and the future of humanity. Many historical and cultural heritages suffer neglect and for reasons arising from natural causes. This is to determine the current status of the work and documenting information from the selected buildings. This process is important for their conservation and renovation work that might be done in the future. Kastamonu city is one of the historical cities in Turkey with a number of heritage buildings. However, Tufekciler Village is not visited and famous even though it includes several historical buildings and peaceful landscape. Digital terrestrial photogrammetry is one of the most important methods used in the documentation of cultural and historical heritage. Firstly, measurements were made primarily around creating polygon mesh and 3D model drawings of the structures to be modelled on images with the move to digital media such as picture size and by subsequent visualisation process. Secondly, a restoration project is offered to the village with the concept of eco-tourism with all scales such as, interior space to landscape design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-tourism" title="eco-tourism">eco-tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration" title=" restoration"> restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20village" title=" cultural village"> cultural village</a> </p> <a href="https://publications.waset.org/abstracts/54337/restoration-process-of-kastamonu-tufekciler-village-houses-for-potential-eco-tourism-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Recommender System Based on Mining Graph Databases for Data-Intensive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Gamal">Mostafa Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20K.%20Mohamed"> Hoda K. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20El-Maddah"> Islam El-Maddah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hamdi"> Ali Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20databases" title="graph databases">graph databases</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation%20systems" title=" recommendation systems"> recommendation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20metrics" title=" similarity metrics"> similarity metrics</a> </p> <a href="https://publications.waset.org/abstracts/163018/recommender-system-based-on-mining-graph-databases-for-data-intensive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Visualisation in Health Communication: Taking Weibo Interaction in COVD19 as the Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zicheng%20Zhang">Zicheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Linli%20Zhang"> Linli Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As China's biggest social media platform, Weibo has taken on essential health communication responsibilities during the pandemic. This research takes 105 posters in 15 health-related official Weibo accounts as the analysis objects to explore COVID19 health information communication and visualisation. First, the interaction between the audiences and Weibo, including forwarding, comments, and likes, is statistically analysed. The comments about the information design are extracted manually, and then the sentiment analysis is carried out to verdict audiences' views about the poster's design. The forwarding and comments are quantified as the attention index for a reference to the degree of likes. In addition, this study also designed an evaluation scale based on the standards of Health Literacy Resource by the Centers for Medicare& Medicaid Services (US). Then designers scored all selected posters one by one. Finally, combining the data of the two parts, concluded that: 1. To a certain extent, people think that the posters do not deliver substantive and practical information; 2. Non-knowledge posters(i.e., cartoon posters) gained more Forwarding and Likes, such as Go, Wuhan poster; 3. The analysis of COVID posters is still mainly picture-oriented, mainly about encouraging people to overcome difficulties; 4. Posters for pandemic prevention usually contain more text and fewer illustrations and do not clearly show cultural differences. In conclusion, health communication usually involves a lot of professional knowledge, so visualising that knowledge in an accessible way for the general public is challenging. The relevant posters still have the problems of lack of effective communication, superficial design, and insufficient content accessibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weibo" title="weibo">weibo</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=covid%20posters" title=" covid posters"> covid posters</a>, <a href="https://publications.waset.org/abstracts/search?q=poster%20design" title=" poster design"> poster design</a> </p> <a href="https://publications.waset.org/abstracts/157287/visualisation-in-health-communication-taking-weibo-interaction-in-covd19-as-the-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Fernandes">Henrique Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Catalucci"> Sofia Catalucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Leach"> Richard Leach</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapil%20Sugand"> Kapil Sugand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holography" title="holography">holography</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scans" title=" 3D scans"> 3D scans</a>, <a href="https://publications.waset.org/abstracts/search?q=hologram%20box" title=" hologram box"> hologram box</a>, <a href="https://publications.waset.org/abstracts/search?q=metrology" title=" metrology"> metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a> </p> <a href="https://publications.waset.org/abstracts/163214/holographic-visualisation-of-3d-point-clouds-in-real-time-measurements-a-proof-of-concept-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Digitally Mapping Aboriginal Journey Ways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Longley%20Arthur">Paul Longley Arthur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on an Australian Research Council-funded project utilising the Australian digital research infrastructure the ‘Time-Layered Cultural Map of Australia’ (TLCMap) (https://www.tlcmap.org/) [1]. This resource has been developed to help researchers create digital maps from cultural, textual, and historical data, layered with datasets registered on the platform. TLCMap is a set of online tools that allows humanities researchers to compile humanities data using spatio-temporal coordinates – to upload, gather, analyse and visualise data. It is the only purpose-designed, Australian-developed research tool for humanities and social science researchers to identify geographical clusters and parallel journeys by sight. This presentation discusses a series of Aboriginal mapping and visualisation experiments using TLCMap to show how Indigenous knowledge can reconfigure contemporary understandings of space including the urbanised landscape [2, 3]. The research data being generated – investigating the historical movements of Aboriginal people, the distribution of networks, and their relation to land – lends itself to mapping and geo-spatial visualisation and analysis. TLCMap allows researchers to create layers on a 3D map which pinpoint locations with accompanying information, and this has enabled our research team to plot out traditional historical journeys undertaken by Aboriginal people as well as to compile a gazetteer of Aboriginal place names, many of which have largely been undocumented until now [4]. The documented journeys intersect with and overlay many of today’s urban formations including main roads, municipal boundaries, and state borders. The paper questions how such data can be incorporated into a more culturally and ethically responsive understanding of contemporary urban spaces and as well as natural environments [5]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20mapping" title="spatio-temporal mapping">spatio-temporal mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=Indigenous%20knowledge" title=" Indigenous knowledge"> Indigenous knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20and%20migration" title=" mobility and migration"> mobility and migration</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20infrastructure" title=" research infrastructure"> research infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/189247/digitally-mapping-aboriginal-journey-ways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Visser">J. Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Driver"> C. Driver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ebenhan"> T. Ebenhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> [¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorodeoxyglucose" title="fluorodeoxyglucose">fluorodeoxyglucose</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20imaging" title=" tumour imaging"> tumour imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodent" title=" Rodent"> Rodent</a>, <a href="https://publications.waset.org/abstracts/search?q=Blood%20Glucose" title=" Blood Glucose"> Blood Glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20Imaging" title=" PET/CT Imaging"> PET/CT Imaging</a> </p> <a href="https://publications.waset.org/abstracts/193486/method-optimisation-for-18f-fdg-rodent-imaging-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basiru%20Amuneni">Basiru Amuneni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astronomy" title="astronomy">astronomy</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwavelenght%20dataset" title=" multiwavelenght dataset"> multiwavelenght dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/163959/harnessing-emerging-creative-technology-for-knowledge-discovery-of-multiwavelenght-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> A Tool for Facilitating an Institutional Risk Profile Definition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Graf">Roman Graf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiu%20Gordea"> Sergiu Gordea</a>, <a href="https://publications.waset.org/abstracts/search?q=Heather%20M.%20Ryan"> Heather M. Ryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20information%20management" title="digital information management">digital information management</a>, <a href="https://publications.waset.org/abstracts/search?q=file%20format" title=" file format"> file format</a>, <a href="https://publications.waset.org/abstracts/search?q=endangerment%20analysis" title=" endangerment analysis"> endangerment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20models" title=" fuzzy models"> fuzzy models</a> </p> <a href="https://publications.waset.org/abstracts/25898/a-tool-for-facilitating-an-institutional-risk-profile-definition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Recent Advances in Data Warehouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Hanash%20Alzahrani">Fahad Hanash Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20warehouse" title="data warehouse">data warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20in%20databases" title=" knowledge discovery in databases"> knowledge discovery in databases</a>, <a href="https://publications.waset.org/abstracts/search?q=on-line%20analytical%20processing" title=" on-line analytical processing"> on-line analytical processing</a> </p> <a href="https://publications.waset.org/abstracts/63299/recent-advances-in-data-warehouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Graf">Roman Graf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergiu%20Gordea"> Sergiu Gordea</a>, <a href="https://publications.waset.org/abstracts/search?q=Heather%20M.%20Ryan"> Heather M. Ryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linked%20open%20data" title="linked open data">linked open data</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20integration" title=" information integration"> information integration</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20libraries" title=" digital libraries"> digital libraries</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/25041/a-bayesian-classification-system-for-facilitating-an-institutional-risk-profile-definition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Tamborrino">R. Tamborrino</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rinaudo"> F. Rinaudo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20urban%20history" title="digital urban history">digital urban history</a>, <a href="https://publications.waset.org/abstracts/search?q=census" title=" census"> census</a>, <a href="https://publications.waset.org/abstracts/search?q=digitalisation" title=" digitalisation"> digitalisation</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20humanities" title=" digital humanities"> digital humanities</a> </p> <a href="https://publications.waset.org/abstracts/53074/creative-mapping-landuse-and-human-activities-from-the-inventories-of-factories-to-the-history-of-the-city-and-citizens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Visualization-Based Feature Extraction for Classification in Real-Time Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81goston%20Nagy">Ágoston Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gesture%20recognition" title="gesture recognition">gesture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20interaction" title=" real-time interaction"> real-time interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/68382/visualization-based-feature-extraction-for-classification-in-real-time-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Y.%20C.%20Wong">Eugene Y. C. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20W.%20Mo"> Daniel Y. W. Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cosmo%20T.%20Y.%20Ng"> Cosmo T. Y. Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20K.%20Y.%20Chan"> Jessica K. Y. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Leith%20K.%20Y.%20Chan"> Leith K. Y. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Y.%20K.%20Lau"> Henry Y. K. Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20cargo%20load%20planning" title="air cargo load planning">air cargo load planning</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20and%20balance" title=" weight and balance"> weight and balance</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20load%20device" title=" unit load device"> unit load device</a> </p> <a href="https://publications.waset.org/abstracts/54970/development-of-immersive-virtual-reality-system-for-planning-of-cargo-loading-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Cuenca">Jacques Cuenca</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Colangeli"> Claudio Colangeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Mroz"> Agnieszka Mroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Janssens"> Karl Janssens</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Riexinger"> Gunther Riexinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20D%27Antuono"> Antonio D'Antuono</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Pandarese"> Giuseppe Pandarese</a>, <a href="https://publications.waset.org/abstracts/search?q=Milena%20Martarelli"> Milena Martarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Marco%20Revel"> Gian Marco Revel</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Barcena%20Martin"> Carlos Barcena Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20inspection" title="acoustic inspection">acoustic inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20building%20components" title=" prefabricated building components"> prefabricated building components</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20source%20localization" title=" sound source localization"> sound source localization</a> </p> <a href="https://publications.waset.org/abstracts/80668/sound-source-localisation-and-augmented-reality-for-on-site-inspection-of-prefabricated-building-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Evaluation of Fetal brain using Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Farajzadeh%20Ajirlou">Mahdi Farajzadeh Ajirlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal" title=" fetal"> fetal</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/173367/evaluation-of-fetal-brain-using-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terry%20Lucas">Terry Lucas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=drawdown" title=" drawdown"> drawdown</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/158394/a-quantitative-plan-for-drawing-down-emissions-to-attenuate-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Using Data from Foursquare Web Service to Represent the Commercial Activity of a City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taras%20Agryzkov">Taras Agryzkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Almudena%20Nolasco-Cirugeda"> Almudena Nolasco-Cirugeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Oliver"> Jose L. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Serrano-Estrada"> Leticia Serrano-Estrada</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20Tortosa"> Leandro Tortosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20F.%20Vicent"> Jose F. Vicent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues –especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people`s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title="social networks">social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title=" data visualization"> data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=geocomputation" title=" geocomputation"> geocomputation</a>, <a href="https://publications.waset.org/abstracts/search?q=Foursquare" title=" Foursquare"> Foursquare</a> </p> <a href="https://publications.waset.org/abstracts/19260/using-data-from-foursquare-web-service-to-represent-the-commercial-activity-of-a-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Human Creativity through Dooyeweerd's Philosophy: The Case of Creative Diagramming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamaran%20Fathulla">Kamaran Fathulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human creativity knows no bounds. More than a millennia ago humans have expressed their knowledge on cave walls and on clay artefacts. Using visuals such as diagrams and paintings have always provided us with a natural and intuitive medium for expressing such creativity. Making sense of human generated visualisation has been influenced by western scientific philosophies which are often reductionist in their nature. Theoretical frameworks such as those delivered by Peirce dominated our views of how to make sense of visualisation where a visual is seen as an emergent property of our thoughts. Others have reduced the richness of human-generated visuals to mere shapes drawn on a piece of paper or on a screen. This paper introduces an alternate framework where the centrality of human functioning is given explicit and richer consideration through the multi aspectual philosophical works of Herman Dooyeweerd. Dooyeweerd's framework of understanding reality was based on fifteen aspects of reality, each having a distinct core meaning. The totality of the aspects formed a ‘rainbow’ like spectrum of meaning. The thesis of this approach is that meaningful human functioning in most cases involves the diversity of all aspects working in synergy and harmony. Illustration of the foundations and applicability of this approach is underpinned in the case of humans use of diagramming for creative purposes, particularly within an educational context. Diagrams play an important role in education. Students and lecturers use diagrams as a powerful tool to aid their thinking. However, research into the role of diagrams used in education continues to reveal difficulties students encounter during both processes of interpretation and construction of diagrams. Their main problems shape up students difficulties with diagrams. The ever-increasing diversity of diagrams' types coupled with the fact that most real-world diagrams often contain a mix of these different types of diagrams such as boxes and lines, bar charts, surfaces, routes, shapes dotted around the drawing area, and so on with each type having its own distinct set of static and dynamic semantics. We argue that the persistence of these problems is grounded in our existing ways of understanding diagrams that are often reductionist in their underpinnings driven by a single perspective or formalism. In this paper, we demonstrate the limitations of these approaches in dealing with the three problems. Consequently, we propose, discuss, and demonstrate the potential of a nonreductionist framework for understanding diagrams based on Symbolic and Spatial Mappings (SySpM) underpinned by Dooyeweerd philosophy. The potential of the framework to account for the meaning of diagrams is demonstrated by applying it to a real-world case study physics diagram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SySpM" title="SySpM">SySpM</a>, <a href="https://publications.waset.org/abstracts/search?q=drawing%20style" title=" drawing style"> drawing style</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a> </p> <a href="https://publications.waset.org/abstracts/86449/human-creativity-through-dooyeweerds-philosophy-the-case-of-creative-diagramming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Using Collaborative Pictures to Understand Student Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tessa%20Berg">Tessa Berg</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Guion%20Akdag"> Emma Guion Akdag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Summative feedback forms are used in academia for gathering data on course quality and student understanding. Students answer a series of questions based on the course they are soon to finish in these forms. Feedback forms are notorious for being homogenised and limiting and thus the data captured is often neutral and lacking in tacit emotional responses. This paper contrasts student feedback forms with collaborative drawing. We analyse 19 pictures drawn by international students on a pre-sessional course. Through visuals we present an approach to enable a holistic level of student understanding. Visuals communicate irrespective of possible language, cultural and educational barriers. This paper sought to discover if the pictures mirrored the feedback given on a typical feedback form. Findings indicate a considerable difference in the two approaches and thus we highlight the value of collaborative drawing as a complimentary resource to aid the understanding of student experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feedback%20forms" title="feedback forms">feedback forms</a>, <a href="https://publications.waset.org/abstracts/search?q=visualisation" title=" visualisation"> visualisation</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20experience" title=" student experience"> student experience</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20drawing" title=" collaborative drawing"> collaborative drawing</a> </p> <a href="https://publications.waset.org/abstracts/46260/using-collaborative-pictures-to-understand-student-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Alves">Manuel Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelica%20Reis"> Angelica Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Armindo%20Lobo"> Armindo Lobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Valdemar%20Leiras"> Valdemar Leiras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20regression" title=" symbolic regression"> symbolic regression</a> </p> <a href="https://publications.waset.org/abstracts/151469/incorporating-anomaly-detection-in-a-digital-twin-scenario-using-symbolic-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Hsing%20Lin">Chih Hsing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Ching%20Chen"> Wen-Ching Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ssu-Ying%20Chen"> Ssu-Ying Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chyau%20Yang"> Chih-Chyau Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ming%20Wu"> Chien-Ming Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ming%20Huang"> Chun-Ming Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20structure%20health%20monitoring" title="building structure health monitoring">building structure health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effective" title=" cost effective"> cost effective</a>, <a href="https://publications.waset.org/abstracts/search?q=1-axis%20accelerometers" title=" 1-axis accelerometers"> 1-axis accelerometers</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20diagnosis" title=" real-time diagnosis"> real-time diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/54760/a-building-structure-health-monitoring-devicebased-on-cost-effective-1-axis-accelerometers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Intrusion Detection Based on Graph Oriented Big Data Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Abid">Ahlem Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20%20Jemili"> Farah Jemili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apache%20Spark%20Streaming" title="Apache Spark Streaming">Apache Spark Streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=Graph" title=" Graph"> Graph</a>, <a href="https://publications.waset.org/abstracts/search?q=Intrusion%20detection" title=" Intrusion detection"> Intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=k2%20algorithm" title=" k2 algorithm"> k2 algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20Learning" title=" Machine Learning"> Machine Learning</a>, <a href="https://publications.waset.org/abstracts/search?q=MAWILab" title=" MAWILab"> MAWILab</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20Azure%20Cloud" title=" Microsoft Azure Cloud"> Microsoft Azure Cloud</a> </p> <a href="https://publications.waset.org/abstracts/127073/intrusion-detection-based-on-graph-oriented-big-data-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Building Information Modelling: A Review to Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Agnivesh">P. Agnivesh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ponambala%20Moorthi"> P. V. Ponambala Moorthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolution of information modelling leads to the visualisation of well-organized built environment. Building Information Modelling (BIM) is considered as evolution in the off-site construction which essentially enhances and controls the present scenario of on-site construction paradigms. Promptness, sustainability and security are considered as the important characteristics of the building information modelling. Projects that uses BIM are tied firmly by technology but distributed organizationally. This allows different team members in the project to associate and integrate the works and work flows. This will in turn improve the efficiency of work breakdown structure. Internationally BIM had been accepted as modern computer aided way of information sharing by construction industry for efficient way of manipulation in order to avoid the on-site misperceptions. Even though, in developing countries like India BIM is in the phase of start and requires lot of mandates and policies to be brought about by the government for its widespread implementations. This paper reviews the current scenario of BIM worldwide and in India and suggests for the improved implementation of building modelling for Indian policy condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modelling" title="building information modelling">building information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20polity" title=" Indian polity"> Indian polity</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20modelling" title=" information modelling"> information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20sharing" title=" information sharing"> information sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=mandates%20and%20policies" title=" mandates and policies"> mandates and policies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability." title=" sustainability."> sustainability.</a> </p> <a href="https://publications.waset.org/abstracts/43108/building-information-modelling-a-review-to-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Computer Network Applications, Practical Implementations and Structural Control System Representations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Miloudi%20Djelloul">El Miloudi Djelloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20area%20networks" title="local area networks">local area networks</a>, <a href="https://publications.waset.org/abstracts/search?q=LANs" title=" LANs"> LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20schema%20presentations" title=" block schema presentations"> block schema presentations</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20network%20system" title=" computer network system"> computer network system</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20node" title=" computer node"> computer node</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20packed%20collisions" title=" critical infrastructure packed collisions"> critical infrastructure packed collisions</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control%20system%20representations" title=" structural control system representations"> structural control system representations</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20network" title=" computer network"> computer network</a>, <a href="https://publications.waset.org/abstracts/search?q=implementations" title=" implementations"> implementations</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20structural%20representations" title=" modeling structural representations"> modeling structural representations</a>, <a href="https://publications.waset.org/abstracts/search?q=companies" title=" companies"> companies</a>, <a href="https://publications.waset.org/abstracts/search?q=computers" title=" computers"> computers</a>, <a href="https://publications.waset.org/abstracts/search?q=context" title=" context"> context</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a> </p> <a href="https://publications.waset.org/abstracts/18709/computer-network-applications-practical-implementations-and-structural-control-system-representations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-time%20visualisation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-time%20visualisation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-time%20visualisation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>