CINXE.COM
Search results for: J. I. Rhee
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: J. I. Rhee</title> <meta name="description" content="Search results for: J. I. Rhee"> <meta name="keywords" content="J. I. Rhee"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="J. I. Rhee" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="J. I. Rhee"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: J. I. Rhee</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Production of Human BMP-7 with Recombinant E. coli and B. subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee">Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polypeptide representing the mature part of human BMP-7 was cloned and efficiently expressed in Escherichia coli and Bacillus subtilis, which had a clear band for hBMP-7, a homodimeric protein with an apparent molecular weight of 15.4 kDa. Recombinant E.coli produced 111 pg hBMP-7/mg of protein hBMP-7 through IPTG induction. Recombinant B. subtilis also produced 350 pg hBMP-7/ml of culture medium. The hBMP-7 was purified in 2 steps using an FPLC system with an ion exchange column and a gel filtration column. The hBMP-7 produced in this work also stimulated the alkaline phosphatase (ALP) activity in a dose-dependent manner, i.e. 2.5- and 8.9-fold at 100 and 300 ng hBMP-7/ml, respectively, and showed intact biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20subtilis" title="B. subtilis">B. subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hBMP-7" title=" hBMP-7"> hBMP-7</a> </p> <a href="https://publications.waset.org/abstracts/35799/production-of-human-bmp-7-with-recombinant-e-coli-and-b-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Dinh%20Duong">Hong Dinh Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee"> Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title="nanofiber">nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=QDs" title=" QDs"> QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=ratiometric%20phosphate%20sensor" title=" ratiometric phosphate sensor"> ratiometric phosphate sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%206G" title=" rhodamine 6G"> rhodamine 6G</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/36346/a-ratiometric-inorganic-phosphate-sensor-based-on-cdsezns-qds-and-rhodamine-6g-doped-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Development of Mobile Application for Energy Consumption Assessment of University Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MinHee%20Chung">MinHee Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=BoYeob%20Lee"> BoYeob Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Kim"> Yuri Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eon%20Ku%20Rhee"> Eon Ku Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public鈥檚 main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building鈥檚 energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance%20assessment" title=" energy performance assessment"> energy performance assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20buildings" title=" university buildings "> university buildings </a> </p> <a href="https://publications.waset.org/abstracts/1751/development-of-mobile-application-for-energy-consumption-assessment-of-university-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kwon">Yongseok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woowon%20Jeong"> Woowon Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunjin%20Cho"> Eunjin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkug%20Chung"> Sangkug Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20bubble" title="oscillating bubble">oscillating bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstreaming" title=" microstreaming"> microstreaming</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices"> vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/1749/measurement-of-steady-streaming-from-an-oscillating-bubble-using-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Synthesis and Functionalization of Gold Nanostars for ROS Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Duong">H. D. Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Rhee"> J. I. Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5-aminolevulinic%20acid" title="5-aminolevulinic acid">5-aminolevulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanostars" title=" gold nanostars"> gold nanostars</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS%20production" title=" ROS production"> ROS production</a> </p> <a href="https://publications.waset.org/abstracts/36355/synthesis-and-functionalization-of-gold-nanostars-for-ros-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Naghdi">Samira Naghdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Yop%20Rhee"> Kyong Yop Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antireflection%20coating" title="antireflection coating">antireflection coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20sheet%20resistance" title=" the sheet resistance"> the sheet resistance</a> </p> <a href="https://publications.waset.org/abstracts/92381/antireflection-performance-of-graphene-directly-deposited-on-silicon-substrate-by-the-atmospheric-pressure-chemical-vapor-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Kyung%20Kim">Eun Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerotic%20plaque" title="atherosclerotic plaque">atherosclerotic plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter%20variation" title=" diameter variation"> diameter variation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/74538/analysis-of-wall-deformation-of-the-arterial-plaque-models-effects-of-viscoelasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20W.%20Lee">Doo W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20J.%20Lee"> Soo J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bye%20R.%20Yoon"> Bye R. Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Y.%20Jho"> Jae Y. Jho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finger%20exoskeleton" title="finger exoskeleton">finger exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20polymer%20metal%20composite" title=" ionic polymer metal composite"> ionic polymer metal composite</a>, <a href="https://publications.waset.org/abstracts/search?q=flexion%20and%20extension" title=" flexion and extension"> flexion and extension</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20analysis" title=" motion analysis"> motion analysis</a> </p> <a href="https://publications.waset.org/abstracts/5043/preliminary-study-on-analysis-of-pinching-motion-actuated-by-electro-active-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung-Jin%20You">Kyung-Jin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiwon%20Rhee"> Kiwon Rhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20H.%20Schieber"> Marc H. Schieber</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitish%20V.%20Thakor"> Nitish V. Thakor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Chool%20Shin">Hyun-Chool Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finger%20movement" title="finger movement">finger movement</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20activity" title=" neural activity"> neural activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20decoding" title=" blind decoding"> blind decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=M1" title=" M1"> M1</a> </p> <a href="https://publications.waset.org/abstracts/1874/maximum-likelihood-inference-of-multi-finger-movements-using-neural-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Ju%20Kim">Jeong Ju Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Yoon%20Chung"> Hee Yoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Ho%20Rhee"> Dong Ho Rhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow鈥檚 stream, the gap鈥檚 geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling%20effectiveness" title=" film cooling effectiveness"> film cooling effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=endwall" title=" endwall"> endwall</a>, <a href="https://publications.waset.org/abstracts/search?q=fillet" title=" fillet"> fillet</a> </p> <a href="https://publications.waset.org/abstracts/48138/the-influence-of-step-and-fillet-shape-on-nozzle-endwall-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Role of Tyrosine-Phosphorylated STAT3 in Liver Regeneration: Survival, DNA Synthesis, Inflammatory Reaction and Liver Mass Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JiYoung%20Park">JiYoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=SueGoo%20Rhee"> SueGoo Rhee</a>, <a href="https://publications.waset.org/abstracts/search?q=HyunAe%20Woo"> HyunAe Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In liver regeneration, quiescent hepatocytes need to be primed to fully respond to growth factors such as hepatocyte growth factor. To understand the priming process, it is necessary to analyze patterns of gene expression that occur during liver regeneration after partial hepatectomy (PHx). Recently, tyrosine phosphorylation of signal transducer and activator of transcription 3 (pYSTAT3) has been shown to play an important role in initiating liver regeneration. In order to evaluate the role of pYSTAT3 on liver regeneration after PHx, we used an intrabody which can selectively inhibit pYSTAT3. In our previous studies, an intrabody had been shown that it bound specifically to the pYSTAT3. Adenovirus-mediated expression of the intrabody in HepG2 cells, as well as mouse liver, blocked both accumulation of pYSTAT3 in the nucleus and downstream target of pYSTAT3. In this study, PHx was performed on intrabody-expressing mice and the expression levels of liver regeneration-related genes were analyzed. We also measured liver/body weight ratios and the related cellular signaling pathways were analyzed. Acute phase response genes were reduced in an intrabody-expressing mice during liver regeneration than in control virus-injected mice. However, the time course of liver mass restoration in intrabody-expressing mice was similar to that observed in control virus-injected mice. We also observed that the expression levels of anti-apoptotic genes, such as Bcl2 and Bcl-xL were decreased in intrabody-expressing mice whereas the expression of cell cycle-related genes such as cyclin D1, and c-myc was increased. Liver regeneration after PHx was partially impaired by the selective inhibition of pYSTAT3 with a phosphorylation site-specific intrabody and these results indicated that pYSTAT3 might have limited role in liver mass recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STAT3" title="STAT3">STAT3</a>, <a href="https://publications.waset.org/abstracts/search?q=pYSTAT3" title=" pYSTAT3"> pYSTAT3</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20regeneration" title=" liver regeneration"> liver regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=intrabody" title=" intrabody "> intrabody </a> </p> <a href="https://publications.waset.org/abstracts/47847/role-of-tyrosine-phosphorylated-stat3-in-liver-regeneration-survival-dna-synthesis-inflammatory-reaction-and-liver-mass-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Anti-Colitic and Anti-Inflammatory Effects of Lactobacillus sakei K040706 in Mice with Ulcerative Colitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seunghwan%20Seo">Seunghwan Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Seok%20Lee"> Woo-Seok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Sun%20Shin"> Ji-Sun Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyoung%20Rhee"> Young Kyoung Rhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Won%20Cho"> Chang-Won Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Do%20Hong"> Hee-Do Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Tae%20Lee"> Kyung-Tae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doenjang, known as traditional Korean food, is product of a natural mixed fermentation process carried out by lactic acid bacteria (LAB). Lactobacillus sakei K040706 (K040706) has been accepted as the most populous LAB in over ripened doenjang. Recently, we reported the immunostimulatory effects of K040706 in RAW 264.7 macrophages and in a cyclophosphamide-induced mouse model. In this study, we investigated the ameliorative effects of K040706 in a dextran sulfate sodium (DSS)-induced colitis mouse model. We induced colitis using DSS in 5-week-ICR mice over 14 days with or without 0.1, 1 g/kg/day K040706 orally. The body weight, stool consistency, and gross bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and colonic tissues were collected and subjected to histological experiments and myeloperoxidase (MPO) accumulation, cytokine determination, qRT-PCR and Western blot analysis. Results showed that K040706 significantly attenuated DSS-induced DAI score, shortening of colon length, enlargement of spleen and immune cell infiltrations into colonic tissues. Histological examinations indicated that K040706 suppressed edema, mucosal damage, and the loss of crypts induced by DSS. These results were correlated with the restoration of tight junction protein expression, such as, ZO-1 and occludin in K040706-treated mice. Moreover, K040706 reduced the abnormal secretions and mRNA expressions of pro-inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-伪 (TNF-伪), interleukin-1尾 (IL-1尾), and interleukin-6 (IL-6). DSS-induced mRNA expression of intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in colonic tissues was also downregulated by K040706 treatment. Furthermore, K040706 suppressed the protein and mRNA expression of toll-like receptor 4 (TLR4) and phosphorylation of NF-魏B and signal transducer and activator of transcription 3 (STAT3). These results suggest that K040706 has an anti-colitic effect by inhibition of intestinal inflammatory responses in DSS-induced colitic mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20sakei" title="Lactobacillus sakei">Lactobacillus sakei</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BAB" title=" NF-魏B"> NF-魏B</a>, <a href="https://publications.waset.org/abstracts/search?q=STAT3" title=" STAT3"> STAT3</a>, <a href="https://publications.waset.org/abstracts/search?q=ulcerative%20colitis" title=" ulcerative colitis"> ulcerative colitis</a> </p> <a href="https://publications.waset.org/abstracts/50144/anti-colitic-and-anti-inflammatory-effects-of-lactobacillus-sakei-k040706-in-mice-with-ulcerative-colitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> AI-Based Information System for Hygiene and Safety Management of Shared Kitchens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongtae%20Rhee">Jongtae Rhee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkwon%20Han"> Sangkwon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbin%20Ji"> Seungbin Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhyeong%20Park"> Junhyeong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeonghun%20Kim"> Byeonghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyung%20Kim"> Taekyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeonghyeon%20Jeon"> Byeonghyeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwoo%20Yang"> Jiwoo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20system" title=" information system"> information system</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management" title=" safety management"> safety management</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20kitchen" title=" shared kitchen"> shared kitchen</a> </p> <a href="https://publications.waset.org/abstracts/176107/ai-based-information-system-for-hygiene-and-safety-management-of-shared-kitchens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>