CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,647 results for author: <span class="mathjax">Zheng, X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zheng, X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zheng%2C+X&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zheng, X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18191">arXiv:2411.18191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18191">pdf</a>, <a href="https://arxiv.org/format/2411.18191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> InputSnatch: Stealing Input in LLM Services via Timing Side-Channel Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xinyao Zheng</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+H">Husheng Han</a>, <a href="/search/?searchtype=author&amp;query=Shi%2C+S">Shangyi Shi</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+Q">Qiyan Fang</a>, <a href="/search/?searchtype=author&amp;query=Du%2C+Z">Zidong Du</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+Q">Qi Guo</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">Xing Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18191v1-abstract-short" style="display: inline;"> Large language models (LLMs) possess extensive knowledge and question-answering capabilities, having been widely deployed in privacy-sensitive domains like finance and medical consultation. During LLM inferences, cache-sharing methods are commonly employed to enhance efficiency by reusing cached states or responses for the same or similar inference requests. However, we identify that these cache m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18191v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18191v1-abstract-full" style="display: none;"> Large language models (LLMs) possess extensive knowledge and question-answering capabilities, having been widely deployed in privacy-sensitive domains like finance and medical consultation. During LLM inferences, cache-sharing methods are commonly employed to enhance efficiency by reusing cached states or responses for the same or similar inference requests. However, we identify that these cache mechanisms pose a risk of private input leakage, as the caching can result in observable variations in response times, making them a strong candidate for a timing-based attack hint. In this study, we propose a novel timing-based side-channel attack to execute input theft in LLMs inference. The cache-based attack faces the challenge of constructing candidate inputs in a large search space to hit and steal cached user queries. To address these challenges, we propose two primary components. The input constructor employs machine learning techniques and LLM-based approaches for vocabulary correlation learning while implementing optimized search mechanisms for generalized input construction. The time analyzer implements statistical time fitting with outlier elimination to identify cache hit patterns, continuously providing feedback to refine the constructor&#39;s search strategy. We conduct experiments across two cache mechanisms and the results demonstrate that our approach consistently attains high attack success rates in various applications. Our work highlights the security vulnerabilities associated with performance optimizations, underscoring the necessity of prioritizing privacy and security alongside enhancements in LLM inference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18191v1-abstract-full').style.display = 'none'; document.getElementById('2411.18191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18008">arXiv:2411.18008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18008">pdf</a>, <a href="https://arxiv.org/format/2411.18008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Causal and Local Correlations Based Network for Multivariate Time Series Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Du%2C+M">Mingsen Du</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+Y">Yanxuan Wei</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiangwei Zheng</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+C">Cun Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18008v1-abstract-short" style="display: inline;"> Recently, time series classification has attracted the attention of a large number of researchers, and hundreds of methods have been proposed. However, these methods often ignore the spatial correlations among dimensions and the local correlations among features. To address this issue, the causal and local correlations based network (CaLoNet) is proposed in this study for multivariate time series&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18008v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18008v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18008v1-abstract-full" style="display: none;"> Recently, time series classification has attracted the attention of a large number of researchers, and hundreds of methods have been proposed. However, these methods often ignore the spatial correlations among dimensions and the local correlations among features. To address this issue, the causal and local correlations based network (CaLoNet) is proposed in this study for multivariate time series classification. First, pairwise spatial correlations between dimensions are modeled using causality modeling to obtain the graph structure. Then, a relationship extraction network is used to fuse local correlations to obtain long-term dependency features. Finally, the graph structure and long-term dependency features are integrated into the graph neural network. Experiments on the UEA datasets show that CaLoNet can obtain competitive performance compared with state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18008v1-abstract-full').style.display = 'none'; document.getElementById('2411.18008v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted on April 03, 2023; major revisions on March 25, 2024; minor revisions on July 9, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17141">arXiv:2411.17141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17141">pdf</a>, <a href="https://arxiv.org/format/2411.17141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Xue%2C+H">Haiwei Xue</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J">Jialei Chen</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+Y">Yibo Yan</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+L">Lutao Jiang</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+Y">Yuanhuiyi Lyu</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+K">Kailun Yang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">Xuming Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17141v1-abstract-short" style="display: inline;"> Simultaneously using multimodal inputs from multiple sensors to train segmentors is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing, common in real world applications. To this end, we develop the first framework for learning robust segmentor that ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17141v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17141v1-abstract-full" style="display: none;"> Simultaneously using multimodal inputs from multiple sensors to train segmentors is intuitively advantageous but practically challenging. A key challenge is unimodal bias, where multimodal segmentors over rely on certain modalities, causing performance drops when others are missing, common in real world applications. To this end, we develop the first framework for learning robust segmentor that can handle any combinations of visual modalities. Specifically, we first introduce a parallel multimodal learning strategy for learning a strong teacher. The cross-modal and unimodal distillation is then achieved in the multi scale representation space by transferring the feature level knowledge from multimodal to anymodal segmentors, aiming at addressing the unimodal bias and avoiding over-reliance on specific modalities. Moreover, a prediction level modality agnostic semantic distillation is proposed to achieve semantic knowledge transferring for segmentation. Extensive experiments on both synthetic and real-world multi-sensor benchmarks demonstrate that our method achieves superior performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17141v1-abstract-full').style.display = 'none'; document.getElementById('2411.17141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work in progress</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16213">arXiv:2411.16213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16213">pdf</a>, <a href="https://arxiv.org/format/2411.16213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> SAVEn-Vid: Synergistic Audio-Visual Integration for Enhanced Understanding in Long Video Context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jungang Li</a>, <a href="/search/?searchtype=author&amp;query=Tao%2C+S">Sicheng Tao</a>, <a href="/search/?searchtype=author&amp;query=Yan%2C+Y">Yibo Yan</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+X">Xiaojie Gu</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+H">Haodong Xu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+Y">Yuanhuiyi Lyu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Linfeng Zhang</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+X">Xuming Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16213v1-abstract-short" style="display: inline;"> Endeavors have been made to explore Large Language Models for video analysis (Video-LLMs), particularly in understanding and interpreting long videos. However, existing Video-LLMs still face challenges in effectively integrating the rich and diverse audio-visual information inherent in long videos, which is crucial for comprehensive understanding. This raises the question: how can we leverage embe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16213v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16213v1-abstract-full" style="display: none;"> Endeavors have been made to explore Large Language Models for video analysis (Video-LLMs), particularly in understanding and interpreting long videos. However, existing Video-LLMs still face challenges in effectively integrating the rich and diverse audio-visual information inherent in long videos, which is crucial for comprehensive understanding. This raises the question: how can we leverage embedded audio-visual information to enhance long video understanding? Therefore, (i) we introduce SAVEn-Vid, the first-ever long audio-visual video dataset comprising over 58k audio-visual instructions. (ii) From the model perspective, we propose a time-aware Audio-Visual Large Language Model (AV-LLM), SAVEnVideo, fine-tuned on SAVEn-Vid. (iii) Besides, we present AVBench, a benchmark containing 2,500 QAs designed to evaluate models on enhanced audio-visual comprehension tasks within long video, challenging their ability to handle intricate audio-visual interactions. Experiments on AVBench reveal the limitations of current AV-LLMs. Experiments also demonstrate that SAVEnVideo outperforms the best Video-LLM by 3.61% on the zero-shot long video task (Video-MME) and surpasses the leading audio-visual LLM by 1.29% on the zero-shot audio-visual task (Music-AVQA). Consequently, at the 7B parameter scale, SAVEnVideo can achieve state-of-the-art performance. Our dataset and code will be released at https://ljungang.github.io/SAVEn-Vid/ upon acceptance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16213v1-abstract-full').style.display = 'none'; document.getElementById('2411.16213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16078">arXiv:2411.16078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16078">pdf</a>, <a href="https://arxiv.org/ps/2411.16078">ps</a>, <a href="https://arxiv.org/format/2411.16078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> A multiscale Abel kernel and application in viscoelastic problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Qiu%2C+W">Wenlin Qiu</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+T">Tao Guo</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yiqun Li</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+X">Xu Guo</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiangcheng Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16078v1-abstract-short" style="display: inline;"> We consider the variable-exponent Abel kernel and demonstrate its multiscale nature in modeling crossover dynamics from the initial quasi-exponential behavior to long-term power-law behavior. Then we apply this to an integro-differential equation modeling, e.g. mechanical vibration of viscoelastic materials with changing material properties. We apply the Crank-Nicolson method and the linear interp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16078v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16078v1-abstract-full" style="display: none;"> We consider the variable-exponent Abel kernel and demonstrate its multiscale nature in modeling crossover dynamics from the initial quasi-exponential behavior to long-term power-law behavior. Then we apply this to an integro-differential equation modeling, e.g. mechanical vibration of viscoelastic materials with changing material properties. We apply the Crank-Nicolson method and the linear interpolation quadrature to design a temporal second-order scheme, and develop a framework of exponentially weighted energy argument in error estimate to account for the non-positivity and non-monotonicity of the multiscale kernel. Numerical experiments are carried out to substantiate the theoretical findings and the crossover dynamics of the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16078v1-abstract-full').style.display = 'none'; document.getElementById('2411.16078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 45K05; 65M12; 65M60 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15752">arXiv:2411.15752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15752">pdf</a>, <a href="https://arxiv.org/format/2411.15752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of cross sections of $e^+e^-\to K^0_S K^0_S 蠄(3686)$ from $\sqrt{s}=$ 4.682 to 4.951 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a> , et al. (642 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15752v1-abstract-short" style="display: inline;"> The process $e^+e^-\to K^0_S K^0_S 蠄(3686)$ is studied by analyzing $e^+e^-$ collision data samples collected at eight center-of-mass energies ranging from 4.682 to 4.951 GeV with the BESIII detector operating at the BEPCII collider, corresponding to an integrated luminosity of $4.1~{\rm fb}^{-1}$. Observation of the $e^+e^-\to K^0_S K^0_S 蠄(3686)$ process is found for the first time with a statis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15752v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15752v1-abstract-full" style="display: none;"> The process $e^+e^-\to K^0_S K^0_S 蠄(3686)$ is studied by analyzing $e^+e^-$ collision data samples collected at eight center-of-mass energies ranging from 4.682 to 4.951 GeV with the BESIII detector operating at the BEPCII collider, corresponding to an integrated luminosity of $4.1~{\rm fb}^{-1}$. Observation of the $e^+e^-\to K^0_S K^0_S 蠄(3686)$ process is found for the first time with a statistical significance of $6.3蟽$, and the cross sections at each center-of-mass energy are measured. The ratio of cross sections of $e^+e^-\to K_S^0 K_S^0 蠄(3686)$ relative to $e^+e^-\to K^+ K^- 蠄(3686)$ is determined to be $\frac{蟽(e^+e^-\to K_S^0 K_S^0 蠄(3686))}{蟽(e^+e^-\to K^+ K^- 蠄(3686))}=0.45 \pm 0.25$, which is consistent with the prediction based on isospin symmetry. The uncertainty includes both statistical and systematic contributions. Additionally, the $K_S^0蠄(3686)$ invariant mass distribution is found to be consistent with three-body phase space. The significance of a contribution beyond three-body phase space is only $0.8蟽$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15752v1-abstract-full').style.display = 'none'; document.getElementById('2411.15752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15697">arXiv:2411.15697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15697">pdf</a>, <a href="https://arxiv.org/format/2411.15697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> $f$-mode oscillations of hybrid stars with pasta construction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+Z">Zi-Yue Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+J">Jin-Biao Wei</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H">Huan Chen</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiao-Ping Zheng</a>, <a href="/search/?searchtype=author&amp;query=Burgio%2C+G+F">G. F. Burgio</a>, <a href="/search/?searchtype=author&amp;query=Schulze%2C+H+-">H. -J. Schulze</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15697v1-abstract-short" style="display: inline;"> We investigate nonradial $f$-mode oscillations of hybrid neutron stars in full general relativity, employing hybrid equations of state describing a nuclear outer core and a pasta-phase transition to a quark-matter core. The validity of various universal relations is confirmed for those stars. Prospects of observations are also discussed. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15697v1-abstract-full" style="display: none;"> We investigate nonradial $f$-mode oscillations of hybrid neutron stars in full general relativity, employing hybrid equations of state describing a nuclear outer core and a pasta-phase transition to a quark-matter core. The validity of various universal relations is confirmed for those stars. Prospects of observations are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15697v1-abstract-full').style.display = 'none'; document.getElementById('2411.15697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15441">arXiv:2411.15441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15441">pdf</a>, <a href="https://arxiv.org/format/2411.15441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study of $\it螞_{\it{b}}^\rm{0}$ and $\it螢_{\it{b}}^\rm{0}$ decays to $\it螞 h^+h^{&#39;-}$ and evidence for $CP$ violation in $\it螞_{\it{b}}^\rm{0}\to\it螞 K^+K^-$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15441v1-abstract-short" style="display: inline;"> A study of $\it螞_{\it{b}}^\rm{0}$ and $\it螢_{\it{b}}^\rm{0}$ decays to $\it螞 h^{+} h^{\prime -}$ $(h^{(\prime)}=蟺, K)$ is performed using $pp$ collision data collected by the LHCb experiment during LHC Runs 1$-$2, corresponding to an integrated luminosity of $9~\rm{fb}^{-1}$. The branching fractions for these decays are measured using the $\it螞_{\it{b}}^\rm{0}\to\it螞_{\it{c}}^+(\to\it螞蟺^+)蟺^-$ dec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15441v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15441v1-abstract-full" style="display: none;"> A study of $\it螞_{\it{b}}^\rm{0}$ and $\it螢_{\it{b}}^\rm{0}$ decays to $\it螞 h^{+} h^{\prime -}$ $(h^{(\prime)}=蟺, K)$ is performed using $pp$ collision data collected by the LHCb experiment during LHC Runs 1$-$2, corresponding to an integrated luminosity of $9~\rm{fb}^{-1}$. The branching fractions for these decays are measured using the $\it螞_{\it{b}}^\rm{0}\to\it螞_{\it{c}}^+(\to\it螞蟺^+)蟺^-$ decay as control channel. The decays $\it螞_{\it{b}}^\rm{0}\to\it螞蟺^+蟺^-$ and $\it螢_{\it{b}}^\rm{0}\to\it螞K^-蟺^+$ are observed for the first time. For decay modes with sufficient signal yields, $CP$ asymmetries are measured in the full and localized regions of the final-state phase space. Evidence is found for $CP$ violation in the $\it螞_{\it{b}}^\rm{0}\to\it螞K^+K^-$ decay, interpreted as originating primarily from an asymmetric $\it螞_{\it{b}}^\rm{0} \to \it{N}^{*+} \it{K}^-$ decay amplitude. The measured $CP$ asymmetries for the other decays are compatible with zero. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15441v1-abstract-full').style.display = 'none'; document.getElementById('2411.15441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2024-043.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-043, CERN-EP-2024-281 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15056">arXiv:2411.15056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15056">pdf</a>, <a href="https://arxiv.org/format/2411.15056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Financial Risk Assessment via Long-term Payment Behavior Sequence Folding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Qiao%2C+Y">Yiran Qiao</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+Y">Yateng Tang</a>, <a href="/search/?searchtype=author&amp;query=Ao%2C+X">Xiang Ao</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+Q">Qi Yuan</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Ziming Liu</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+C">Chen Shen</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xuehao Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15056v1-abstract-short" style="display: inline;"> Online inclusive financial services encounter significant financial risks due to their expansive user base and low default costs. By real-world practice, we reveal that utilizing longer-term user payment behaviors can enhance models&#39; ability to forecast financial risks. However, learning long behavior sequences is non-trivial for deep sequential models. Additionally, the diverse fields of payment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15056v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15056v1-abstract-full" style="display: none;"> Online inclusive financial services encounter significant financial risks due to their expansive user base and low default costs. By real-world practice, we reveal that utilizing longer-term user payment behaviors can enhance models&#39; ability to forecast financial risks. However, learning long behavior sequences is non-trivial for deep sequential models. Additionally, the diverse fields of payment behaviors carry rich information, requiring thorough exploitation. These factors collectively complicate the task of long-term user behavior modeling. To tackle these challenges, we propose a Long-term Payment Behavior Sequence Folding method, referred to as LBSF. In LBSF, payment behavior sequences are folded based on merchants, using the merchant field as an intrinsic grouping criterion, which enables informative parallelism without reliance on external knowledge. Meanwhile, we maximize the utility of payment details through a multi-field behavior encoding mechanism. Subsequently, behavior aggregation at the merchant level followed by relational learning across merchants facilitates comprehensive user financial representation. We evaluate LBSF on the financial risk assessment task using a large-scale real-world dataset. The results demonstrate that folding long behavior sequences based on internal behavioral cues effectively models long-term patterns and changes, thereby generating more accurate user financial profiles for practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15056v1-abstract-full').style.display = 'none'; document.getElementById('2411.15056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICDM2024 long paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14890">arXiv:2411.14890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14890">pdf</a>, <a href="https://arxiv.org/format/2411.14890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Experimental Measurement-Device-Independent Quantum Cryptographic Conferencing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Du%2C+Y">Yifeng Du</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yufeng Liu</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+C">Chengdong Yang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiaodong Zheng</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+X">Xiao-song Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14890v1-abstract-short" style="display: inline;"> Quantum cryptographic conferencing (QCC) allows sharing secret keys among multiple distant users and plays a crucial role in quantum networks. Due to the fragility and low generation rate of genuine multipartite entangled states required in QCC, realizing and extending QCC with the entanglement-based protocol is challenging. Measurement-device-independent QCC (MDI-QCC), which removes all detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14890v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14890v1-abstract-full" style="display: none;"> Quantum cryptographic conferencing (QCC) allows sharing secret keys among multiple distant users and plays a crucial role in quantum networks. Due to the fragility and low generation rate of genuine multipartite entangled states required in QCC, realizing and extending QCC with the entanglement-based protocol is challenging. Measurement-device-independent QCC (MDI-QCC), which removes all detector side-channels, is a feasible long-distance quantum communication scheme to practically generate multipartite correlation with multiphoton projection measurement. Here we experimentally realize the three-user MDI-QCC protocol with four-intensity decoy-state method, in which we employ the polarization encoding and the Greenberger-Horne-Zeilinger (GHZ) state projection measurement. Our work demonstrates the experimental feasibility of the MDI-QCC, which lays the foundation for the future realization of quantum networks with multipartite communication tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14890v1-abstract-full').style.display = 'none'; document.getElementById('2411.14890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14648">arXiv:2411.14648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Manipulating Momentum-Space and Real-Space Topological States in Metallic Strontium Ruthenate Ultrathin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xuan Zheng</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Z">Zengxing Lu</a>, <a href="/search/?searchtype=author&amp;query=Lao%2C+B">Bin Lao</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Sheng Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+R">Run-Wei Li</a>, <a href="/search/?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Zhiming Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14648v1-abstract-short" style="display: inline;"> SrRuO3, a 4d transition metal oxide, has gained significant interest due to its topological states in both momentum space (Weyl points) and real space (skyrmions). However, probing topological states in ultrathin SrRuO3 faces challenges such as the metal-insulator transition and questioned existence of skyrmions due to possible superposition of opposite anomalous Hall effect (AHE) signals. To addr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14648v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14648v1-abstract-full" style="display: none;"> SrRuO3, a 4d transition metal oxide, has gained significant interest due to its topological states in both momentum space (Weyl points) and real space (skyrmions). However, probing topological states in ultrathin SrRuO3 faces challenges such as the metal-insulator transition and questioned existence of skyrmions due to possible superposition of opposite anomalous Hall effect (AHE) signals. To address these issues, we investigate ultrathin SrRuO3/SrIrO3 heterostructures and their AHE and topological Hall effect (THE). Our results reveal metallized ultrathin SrRuO3 down to the monolayer limit with an AHE signal. ARPES measurements confirm the metallic and topological band structure of ultrathin SrRuO3. Furthermore, the AHE sign remains negative over a wide thickness range, where THE is still observed. This observation excludes the two-channel explanation of THE and provides evidence for the existence of skyrmions in ultrathin SrRuO3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14648v1-abstract-full').style.display = 'none'; document.getElementById('2411.14648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14489">arXiv:2411.14489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14489">pdf</a>, <a href="https://arxiv.org/format/2411.14489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21437/Interspeech.2023-2417">10.21437/Interspeech.2023-2417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GhostRNN: Reducing State Redundancy in RNN with Cheap Operations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+H">Hang Zhou</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiaoxu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yunhe Wang</a>, <a href="/search/?searchtype=author&amp;query=Mi%2C+M+B">Michael Bi Mi</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+D">Deyi Xiong</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+K">Kai Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14489v1-abstract-short" style="display: inline;"> Recurrent neural network (RNNs) that are capable of modeling long-distance dependencies are widely used in various speech tasks, eg., keyword spotting (KWS) and speech enhancement (SE). Due to the limitation of power and memory in low-resource devices, efficient RNN models are urgently required for real-world applications. In this paper, we propose an efficient RNN architecture, GhostRNN, which re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14489v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14489v1-abstract-full" style="display: none;"> Recurrent neural network (RNNs) that are capable of modeling long-distance dependencies are widely used in various speech tasks, eg., keyword spotting (KWS) and speech enhancement (SE). Due to the limitation of power and memory in low-resource devices, efficient RNN models are urgently required for real-world applications. In this paper, we propose an efficient RNN architecture, GhostRNN, which reduces hidden state redundancy with cheap operations. In particular, we observe that partial dimensions of hidden states are similar to the others in trained RNN models, suggesting that redundancy exists in specific RNNs. To reduce the redundancy and hence computational cost, we propose to first generate a few intrinsic states, and then apply cheap operations to produce ghost states based on the intrinsic states. Experiments on KWS and SE tasks demonstrate that the proposed GhostRNN significantly reduces the memory usage (~40%) and computation cost while keeping performance similar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14489v1-abstract-full').style.display = 'none'; document.getElementById('2411.14489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. INTERSPEECH 2023, 226-230 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14072">arXiv:2411.14072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14072">pdf</a>, <a href="https://arxiv.org/format/2411.14072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> </div> <p class="title is-5 mathjax"> The Master-Slave Encoder Model for Improving Patent Text Summarization: A New Approach to Combining Specifications and Claims </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+S">Shu Zhou</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+Z">Zhengda Zhou</a>, <a href="/search/?searchtype=author&amp;query=Yi%2C+H">Haohan Yi</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xuhui Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wan%2C+H">Hao Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14072v1-abstract-short" style="display: inline;"> In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by rapid patent updates, and the problem of information redundancy caused by insufficient consideration of the high professionalism, accuracy, and uniqueness of patent texts, we proposes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14072v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14072v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14072v1-abstract-full" style="display: none;"> In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by rapid patent updates, and the problem of information redundancy caused by insufficient consideration of the high professionalism, accuracy, and uniqueness of patent texts, we proposes a patent text abstract generation model (MSEA) based on a master-slave encoder architecture; Firstly, the MSEA model designs a master-slave encoder, which combines the instructions in the patent text with the claims as input, and fully explores the characteristics and details between the two through the master-slave encoder; Then, the model enhances the consideration of new technical terms in the input sequence based on the pointer network, and further enhances the correlation with the input text by re weighing the &#34;remembered&#34; and &#34;for-gotten&#34; parts of the input sequence from the encoder; Finally, an enhanced repetition suppression mechanism for patent text was introduced to ensure accurate and non redundant abstracts generated. On a publicly available patent text dataset, compared to the state-of-the-art model, Improved Multi-Head Attention Mechanism (IMHAM), the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively. MSEA leverages the characteristics of patent texts to effectively enhance the quality of patent text generation, demonstrating its advancement and effectiveness in the experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14072v1-abstract-full').style.display = 'none'; document.getElementById('2411.14072v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13913">arXiv:2411.13913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13913">pdf</a>, <a href="https://arxiv.org/ps/2411.13913">ps</a>, <a href="https://arxiv.org/format/2411.13913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Generalizing subdiffusive Black-Scholes model by variable exponent: Model transformation and numerical approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhang%2C+M">Meihui Zhang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+M">Mengmeng Liu</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+W">Wenlin Qiu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiangcheng Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13913v1-abstract-short" style="display: inline;"> This work generalizes the subdiffusive Black-Scholes model by introducing the variable exponent in order to provide adequate descriptions for the option pricing, where the variable exponent may account for the variation of the memory property. In addition to standard nonlinear-to-linear transformation, we apply a further spatial-temporal transformation to convert the model to a more tractable form&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13913v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13913v1-abstract-full" style="display: none;"> This work generalizes the subdiffusive Black-Scholes model by introducing the variable exponent in order to provide adequate descriptions for the option pricing, where the variable exponent may account for the variation of the memory property. In addition to standard nonlinear-to-linear transformation, we apply a further spatial-temporal transformation to convert the model to a more tractable form in order to circumvent the difficulties caused by the ``non-positive, non-monotonic&#39;&#39; variable-exponent memory kernel. An interesting phenomenon is that the spatial transformation not only eliminates the advection term but naturally turns the original noncoercive spatial operator into a coercive one due to the specific structure of the Black-Scholes model, which thus avoids imposing constraints on coefficients. Then we perform numerical analysis for both the semi-discrete and fully discrete schemes to support numerical simulation. Numerical experiments are carried out to substantiate the theoretical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13913v1-abstract-full').style.display = 'none'; document.getElementById('2411.13913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13093">arXiv:2411.13093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13093">pdf</a>, <a href="https://arxiv.org/format/2411.13093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Luo%2C+Y">Yongdong Luo</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiawu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+X">Xiao Yang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+G">Guilin Li</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H">Haojia Lin</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+J">Jinfa Huang</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+J">Jiayi Ji</a>, <a href="/search/?searchtype=author&amp;query=Chao%2C+F">Fei Chao</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+J">Jiebo Luo</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+R">Rongrong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13093v1-abstract-short" style="display: inline;"> Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g.,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13093v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13093v1-abstract-full" style="display: none;"> Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13093v1-abstract-full').style.display = 'none'; document.getElementById('2411.13093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12178">arXiv:2411.12178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12178">pdf</a>, <a href="https://arxiv.org/format/2411.12178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First evidence for direct CP violation in beauty to charmonium decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12178v2-abstract-short" style="display: inline;"> The $C\!P$ asymmetry and branching fraction of the CKM-suppressed decay $B^+\!\to J\mskip -3mu/\mskip -2mu蠄\,蟺^+$ are precisely measured relative to the favoured decay $B^+\!\to J\mskip -3mu/\mskip -2mu蠄\,K^+$, using a sample of proton-proton collision data corresponding to an integrated luminosity of $5.4~\mathrm{fb}^{-1}$ recorded at center-of-mass energy of $13~\mathrm{TeV}$ during 2016--2018.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12178v2-abstract-full').style.display = 'inline'; document.getElementById('2411.12178v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12178v2-abstract-full" style="display: none;"> The $C\!P$ asymmetry and branching fraction of the CKM-suppressed decay $B^+\!\to J\mskip -3mu/\mskip -2mu蠄\,蟺^+$ are precisely measured relative to the favoured decay $B^+\!\to J\mskip -3mu/\mskip -2mu蠄\,K^+$, using a sample of proton-proton collision data corresponding to an integrated luminosity of $5.4~\mathrm{fb}^{-1}$ recorded at center-of-mass energy of $13~\mathrm{TeV}$ during 2016--2018. The results of the $C\!P$ asymmetry difference and branching fraction ratio are \begin{align*} 螖\mathcal{A}^{C\!P} &amp;\equiv \mathcal{A}^{C\!P}(B^+ \to J\mskip -3mu/\mskip -2mu蠄\,蟺^+) - \mathcal{A}^{C\!P}(B^+ \to J\mskip -3mu/\mskip -2mu蠄\,K^+) = (1.29 \pm 0.49 \pm 0.08) \times 10^{-2}, \end{align*} \begin{equation*} \mathcal{R}_{蟺/K} \equiv \frac{\mathcal{B}(B^+ \!\to J\mskip -3mu/\mskip -2mu蠄\,蟺^+)}{\mathcal{B}(B^+ \!\to J\mskip -3mu/\mskip -2mu蠄\,K^+)} = (3.852 \pm 0.022 \pm 0.018) \times 10^{-2}. \end{equation*} where the first uncertainties are statistical and the second systematic. A combination with previous LHCb results based on data collected at $7$ and $8~\mathrm{TeV}$ in 2011 and 2012 yields $螖\mathcal{A}^{C\!P} = (1.42 \pm 0.43 \pm 0.08) \times 10^{-2}$ and $\mathcal{R}_{蟺/K} = (3.846 \pm 0.018 \pm 0.018) \times 10^{-2}$. The combined $螖\mathcal{A}^{C\!P}$ value deviates from zero by 3.2 standard deviations, providing the first evidence for direct $C\!P$ violation in the amplitudes of beauty decays to charmonium final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12178v2-abstract-full').style.display = 'none'; document.getElementById('2411.12178v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 2 figures, no conference or journal information All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/1623/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-031 CERN-EP-2024-286 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11620">arXiv:2411.11620</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11620">pdf</a>, <a href="https://arxiv.org/format/2411.11620">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> ST-Tree with Interpretability for Multivariate Time Series Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Du%2C+M">Mingsen Du</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+Y">Yanxuan Wei</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+Y">Yingxia Tang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiangwei Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+S">Shoushui Wei</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+C">Cun Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11620v1-abstract-short" style="display: inline;"> Multivariate time series classification is of great importance in practical applications and is a challenging task. However, deep neural network models such as Transformers exhibit high accuracy in multivariate time series classification but lack interpretability and fail to provide insights into the decision-making process. On the other hand, traditional approaches based on decision tree classifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11620v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11620v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11620v1-abstract-full" style="display: none;"> Multivariate time series classification is of great importance in practical applications and is a challenging task. However, deep neural network models such as Transformers exhibit high accuracy in multivariate time series classification but lack interpretability and fail to provide insights into the decision-making process. On the other hand, traditional approaches based on decision tree classifiers offer clear decision processes but relatively lower accuracy. Swin Transformer (ST) addresses these issues by leveraging self-attention mechanisms to capture both fine-grained local patterns and global patterns. It can also model multi-scale feature representation learning, thereby providing a more comprehensive representation of time series features. To tackle the aforementioned challenges, we propose ST-Tree with interpretability for multivariate time series classification. Specifically, the ST-Tree model combines ST as the backbone network with an additional neural tree model. This integration allows us to fully leverage the advantages of ST in learning time series context while providing interpretable decision processes through the neural tree. This enables researchers to gain clear insights into the model&#39;s decision-making process and extract meaningful interpretations. Through experimental evaluations on 10 UEA datasets, we demonstrate that the ST-Tree model improves accuracy in multivariate time series classification tasks and provides interpretability through visualizing the decision-making process across different datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11620v1-abstract-full').style.display = 'none'; document.getElementById('2411.11620v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted on May 15, 2024, major revisions on Aug 31, 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10575">arXiv:2411.10575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10575">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Tenure and Research Trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tripodi%2C+G">Giorgio Tripodi</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiang Zheng</a>, <a href="/search/?searchtype=author&amp;query=Qian%2C+Y">Yifan Qian</a>, <a href="/search/?searchtype=author&amp;query=Murray%2C+D">Dakota Murray</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+B+F">Benjamin F. Jones</a>, <a href="/search/?searchtype=author&amp;query=Ni%2C+C">Chaoqun Ni</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+D">Dashun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10575v1-abstract-short" style="display: inline;"> Tenure is a cornerstone of the US academic system, yet its relationship to faculty research trajectories remains poorly understood. Conceptually, tenure systems may act as a selection mechanism, screening in high-output researchers; a dynamic incentive mechanism, encouraging high output prior to tenure but low output after tenure; and a creative search mechanism, encouraging tenured individuals to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10575v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10575v1-abstract-full" style="display: none;"> Tenure is a cornerstone of the US academic system, yet its relationship to faculty research trajectories remains poorly understood. Conceptually, tenure systems may act as a selection mechanism, screening in high-output researchers; a dynamic incentive mechanism, encouraging high output prior to tenure but low output after tenure; and a creative search mechanism, encouraging tenured individuals to undertake high-risk work. Here, we integrate data from seven different sources to trace US tenure-line faculty and their research outputs at an unprecedented scale and scope, covering over 12,000 researchers across 15 disciplines. Our analysis reveals that faculty publication rates typically increase sharply during the tenure track and peak just before obtaining tenure. Post-tenure trends, however, vary across disciplines: in lab-based fields, such as biology and chemistry, research output typically remains high post-tenure, whereas in non-lab-based fields, such as mathematics and sociology, research output typically declines substantially post-tenure. Turning to creative search, faculty increasingly produce novel, high-risk research after securing tenure. However, this shift toward novelty and risk-taking comes with a decline in impact, with post-tenure research yielding fewer highly cited papers. Comparing outcomes across common career ages but different tenure years or comparing research trajectories in tenure-based and non-tenure-based research settings underscores that breaks in the research trajectories are sharply tied to the individual&#39;s tenure year. Overall, these findings provide a new empirical basis for understanding the tenure system, individual research trajectories, and the shape of scientific output. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10575v1-abstract-full').style.display = 'none'; document.getElementById('2411.10575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10219">arXiv:2411.10219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10219">pdf</a>, <a href="https://arxiv.org/format/2411.10219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the photon polarisation in $b \to s 纬$ transitions using $B_s^0 \rightarrow 蠁e^+e^-$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10219v2-abstract-short" style="display: inline;"> An angular analysis of the $B_s^0 \rightarrow 蠁e^+e^-$ decay is performed using the proton-proton collision dataset collected between 2011 and 2018 by the LHCb experiment, corresponding to an integrated luminosity of $9\,{\rm fb}^{-1}$ at centre-of-mass energies of 7, 8 and $13\,{\rm TeV}$. The analysis is performed in the very low dielectron invariant mass-squared region between $0.0009$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10219v2-abstract-full').style.display = 'inline'; document.getElementById('2411.10219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10219v2-abstract-full" style="display: none;"> An angular analysis of the $B_s^0 \rightarrow 蠁e^+e^-$ decay is performed using the proton-proton collision dataset collected between 2011 and 2018 by the LHCb experiment, corresponding to an integrated luminosity of $9\,{\rm fb}^{-1}$ at centre-of-mass energies of 7, 8 and $13\,{\rm TeV}$. The analysis is performed in the very low dielectron invariant mass-squared region between $0.0009$ and $0.2615\,{\rm GeV}^2\!/c^4$. The longitudinal polarisation fraction of the $蠁$ meson is measured to be less than $11.5\%$ at $90\%$ confidence level. The $A_{\mathrm{T}}^{\mathcal{R}e C\!P}$ observable, which is related to the lepton forward-backward asymmetry, is measured to be $0.116 \pm 0.155 \pm 0.006$, where the first uncertainty is statistical and the second systematic. The transverse asymmetries, $A_{\mathrm{T}}^{(2)}$ and $A_{\mathrm{T}}^{\mathcal{I}m C\!P}$ , which are sensitive to the virtual photon polarisation, are found to be $-0.045 \pm 0.235 \pm 0.014$ and $0.002 \pm 0.247 \pm 0.016$, respectively. The results are consistent with Standard Model predictions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10219v2-abstract-full').style.display = 'none'; document.getElementById('2411.10219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures. All figures and tables, along with any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3433/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-030, CERN-EP-2024-276 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09343">arXiv:2411.09343</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09343">pdf</a>, <a href="https://arxiv.org/format/2411.09343">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of $蠁(1020)$ meson production in fixed-target $\textit{p}$Ne collisions at $\sqrt{s_{NN}}$ = 68.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09343v1-abstract-short" style="display: inline;"> The first measurement of $蠁(1020)$ meson production in fixed-target $p$Ne collisions at $\sqrt{s_{NN}}=68.5$ GeV is presented. The $蠁(1020)$ mesons are reconstructed in their $K^{+}K^{-}$ decay in a data sample consisting of proton collisions on neon nuclei at rest, corresponding to an integrated luminosity of $21.7 \pm 1.4$ nb$^{-1}$, collected by the LHCb detector at CERN. The $蠁(1020)$ producti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09343v1-abstract-full').style.display = 'inline'; document.getElementById('2411.09343v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09343v1-abstract-full" style="display: none;"> The first measurement of $蠁(1020)$ meson production in fixed-target $p$Ne collisions at $\sqrt{s_{NN}}=68.5$ GeV is presented. The $蠁(1020)$ mesons are reconstructed in their $K^{+}K^{-}$ decay in a data sample consisting of proton collisions on neon nuclei at rest, corresponding to an integrated luminosity of $21.7 \pm 1.4$ nb$^{-1}$, collected by the LHCb detector at CERN. The $蠁(1020)$ production cross-section in the centre-of-mass rapidity range of $-1.8&lt;y^*&lt;0$ and transverse momentum range of $800&lt;p_{T}&lt;6500$ MeV/c is found to be $蟽=182.7\pm2.7~\text{(stat.)}\pm14.1~\text{(syst)}~渭$b/nucleon. A double-differential measurement of the cross-section is also provided in four regions of rapidity and six regions of transverse momentum of the $蠁(1020)$ meson and compared with the predictions from Pythia and EPOS4, which are found to underestimate the experimental values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09343v1-abstract-full').style.display = 'none'; document.getElementById('2411.09343v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3673/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-036, CERN-EP-2024-274 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06881">arXiv:2411.06881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06881">pdf</a>, <a href="https://arxiv.org/format/2411.06881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> WassFFed: Wasserstein Fair Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Han%2C+Z">Zhongxuan Han</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L">Li Zhang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+C">Chaochao Chen</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiaolin Zheng</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+F">Fei Zheng</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yuyuan Li</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+J">Jianwei Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06881v1-abstract-short" style="display: inline;"> Federated Learning (FL) employs a training approach to address scenarios where users&#39; data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06881v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06881v1-abstract-full" style="display: none;"> Federated Learning (FL) employs a training approach to address scenarios where users&#39; data cannot be shared across clients. Achieving fairness in FL is imperative since training data in FL is inherently geographically distributed among diverse user groups. Existing research on fairness predominantly assumes access to the entire training data, making direct transfer to FL challenging. However, the limited existing research on fairness in FL does not effectively address two key challenges, i.e., (CH1) Current methods fail to deal with the inconsistency between fair optimization results obtained with surrogate functions and fair classification results. (CH2) Directly aggregating local fair models does not always yield a globally fair model due to non Identical and Independent data Distributions (non-IID) among clients. To address these challenges, we propose a Wasserstein Fair Federated Learning framework, namely WassFFed. To tackle CH1, we ensure that the outputs of local models, rather than the loss calculated with surrogate functions or classification results with a threshold, remain independent of various user groups. To resolve CH2, we employ a Wasserstein barycenter calculation of all local models&#39; outputs for each user group, bringing local model outputs closer to the global output distribution to ensure consistency between the global model and local models. We conduct extensive experiments on three real-world datasets, demonstrating that WassFFed outperforms existing approaches in striking a balance between accuracy and fairness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06881v1-abstract-full').style.display = 'none'; document.getElementById('2411.06881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to TKDE</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06641">arXiv:2411.06641</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06641">pdf</a>, <a href="https://arxiv.org/format/2411.06641">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> </div> </div> <p class="title is-5 mathjax"> Convergence analysis of time-splitting projection method for nonlinear quasiperiodic Schr枚dinger equation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jiang%2C+K">Kai Jiang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shifeng Li</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiangcheng Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06641v1-abstract-short" style="display: inline;"> This work proposes and analyzes an efficient numerical method for solving the nonlinear Schr枚dinger equation with quasiperiodic potential, where the projection method is applied in space to account for the quasiperiodic structure and the Strang splitting method is used in time.While the transfer between spaces of low-dimensional quasiperiodic and high-dimensional periodic functions and its couplin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06641v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06641v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06641v1-abstract-full" style="display: none;"> This work proposes and analyzes an efficient numerical method for solving the nonlinear Schr枚dinger equation with quasiperiodic potential, where the projection method is applied in space to account for the quasiperiodic structure and the Strang splitting method is used in time.While the transfer between spaces of low-dimensional quasiperiodic and high-dimensional periodic functions and its coupling with the nonlinearity of the operator splitting scheme make the analysis more challenging. Meanwhile, compared to conventional numerical analysis of periodic Schr枚dinger systems, many of the tools and theories are not applicable to the quasiperiodic case. We address these issues to prove the spectral accuracy in space and the second-order accuracy in time. Numerical experiments are performed to substantiate the theoretical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06641v1-abstract-full').style.display = 'none'; document.getElementById('2411.06641v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06373">arXiv:2411.06373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06373">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved scaling of the scrape-off layer particle flux width by the Bayes theorem on EAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+D+C">D. C. Liu</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+L">L. Wang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X+F">X. F. Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06373v1-abstract-short" style="display: inline;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06373v1-abstract-full" style="display: none;"> The scaling of scrape-off layer (SOL) power width (位q) is essential for advancing the understanding of particle and heat transport in the SOL. Due to the sparse layout of divertor Langmuir probes (Div-LPs) and probe erosion during long-pulse, high-performance operations on EAST, estimating SOL particle flux width (位js, used to approximate 位q) from the ion saturation current density profile (js) often incurs substantial uncertainty. This study presents a maximum a posteriori (MAP) estimation method based on Bayes&#39; theorem, achieving approximately 30% improvement in fitting accuracy over traditional ordinary least squares. Using this method and the FreeGS equilibrium code, we updated databases from Liu et al., Nucl. Fusion 64 (2024). Revised 位js scalings for L-mode and H-mode in deuterium and helium plasmas demonstrate better regression quality and slightly altered regression results. Unified L-mode and H-mode scalings in deuterium and helium are: 位_js^L = 0.11 L_c^1.06 n_e^0.35 Z^0.32 P_SOL^0.25 p^(-0.26) and 位_js^H = 0.11 L_c^1.28 n_e^0.56 Z^0.36 P_SOL^0.30, where L_c is the average SOL connection length, n_e the line-averaged electron density, Z the charge number, PSOL the power crossing the last closed flux surface, and p the core-averaged plasma pressure. Key findings include: (i) 位js strongly depends on SOL connection length, indicating a machine size dependence absent in the Eich scaling, and (ii) helium 位js is slightly larger than deuterium 位js. Extrapolated scalings suggest 位q ~ 6 mm for ITER L-mode (Ip = 12 MA) and ~13 mm for H-mode (Ip = 15 MA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06373v1-abstract-full').style.display = 'none'; document.getElementById('2411.06373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05669">arXiv:2411.05669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05669">pdf</a>, <a href="https://arxiv.org/format/2411.05669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the $蠄(2S)$ to $J/蠄$ cross-section ratio as a function of centrality in PbPb collisions at $\sqrt{s_{\text{NN}}}$ = 5.02 TeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05669v1-abstract-short" style="display: inline;"> The dissociation of quarkonium states with different binding energies produced in heavy-ion collisions is a powerful probe for investigating the formation and properties of the quark-gluon plasma. The ratio of production cross-sections of $蠄(2S)$ and $J/蠄$ mesons times the ratio of their branching fractions into the dimuon final state is measured as a function of centrality using data collected by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05669v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05669v1-abstract-full" style="display: none;"> The dissociation of quarkonium states with different binding energies produced in heavy-ion collisions is a powerful probe for investigating the formation and properties of the quark-gluon plasma. The ratio of production cross-sections of $蠄(2S)$ and $J/蠄$ mesons times the ratio of their branching fractions into the dimuon final state is measured as a function of centrality using data collected by the LHCb detector in PbPb collisions at $\sqrt{s_{\text{NN}}}$ = 5.02 TeV. The measured ratio shows no dependence on the collision centrality, and is compared to the latest theory predictions and to the recent measurements in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05669v1-abstract-full').style.display = 'none'; document.getElementById('2411.05669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2024-041.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-272, LHCb-PAPER-2024-041 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05396">arXiv:2411.05396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05396">pdf</a>, <a href="https://arxiv.org/format/2411.05396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY) II: Project Design, Current Status, and Examples of Initial Data Products </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiang-Tao Li</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+X">Xiaodi Yu</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+H">Huiyang Mao</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+H">Hanxiao Chen</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+T">Tiancheng Yang</a>, <a href="/search/?searchtype=author&amp;query=Qu%2C+Z">Zhijie Qu</a>, <a href="/search/?searchtype=author&amp;query=Bian%2C+F">Fuyan Bian</a>, <a href="/search/?searchtype=author&amp;query=Bregman%2C+J+N">Joel N. Bregman</a>, <a href="/search/?searchtype=author&amp;query=Cai%2C+Z">Zheng Cai</a>, <a href="/search/?searchtype=author&amp;query=Fan%2C+X">Xiaohui Fan</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+T">Taotao Fang</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+L">Li Ji</a>, <a href="/search/?searchtype=author&amp;query=Ji%2C+Z">Zhiyuan Ji</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+S+D">Sean D. Johnson</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+G">Guoliang Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+W">Weizhe Liu</a>, <a href="/search/?searchtype=author&amp;query=Song%2C+Y">Ying-Yi Song</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+F">Feige Wang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+T">Tao Wang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a>, <a href="/search/?searchtype=author&amp;query=Williams%2C+C">Christina Williams</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+M">Mingxuan Xu</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Jinyi Yang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xianzhong Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05396v1-abstract-short" style="display: inline;"> The He II reionization epoch is expected to take place at $z\sim3-5$. In this stage, the helium and metals in the inter-galactic medium (IGM) are further ionized with additional contributions from harder non-stellar sources, and some large-scale gravitationally bound systems approach virialization. The &#34;Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY)&#34; program uti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05396v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05396v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05396v1-abstract-full" style="display: none;"> The He II reionization epoch is expected to take place at $z\sim3-5$. In this stage, the helium and metals in the inter-galactic medium (IGM) are further ionized with additional contributions from harder non-stellar sources, and some large-scale gravitationally bound systems approach virialization. The &#34;Probing the He II re-Ionization ERa via Absorbing C IV Historical Yield (HIERACHY)&#34; program utilizes high- and medium-resolution spectra of bright background quasars at $z\approx3.9-5.2$ to investigate Ly$伪$, C IV, and other metal absorption lines during this epoch. Additionally, we employ narrow-band imaging to search for Ly$伪$ emitters associated with C IV absorbers, alongside multi-wavelength observations to identify and study particularly intriguing cases. In this paper, we present the design of the HIERACHY program, its current status, major scientific goals, and examples of initial data products from completed Magellan/MIKE, MagE spectroscopy, and MDM imaging observations. We also provide a brief outlook on future multi-wavelength observations that may significantly impact the related science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05396v1-abstract-full').style.display = 'none'; document.getElementById('2411.05396v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures, 2 tables, accepted for publication by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05201">arXiv:2411.05201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05201">pdf</a>, <a href="https://arxiv.org/ps/2411.05201">ps</a>, <a href="https://arxiv.org/format/2411.05201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> High precision measurements of the proton elastic electromagnetic form factors and their ratio at $Q^2$ = 0.50, 2.64, 3.20, and 4.10 GeV$^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Qattan%2C+I+A">I. A. Qattan</a>, <a href="/search/?searchtype=author&amp;query=Arrington%2C+J">J. Arrington</a>, <a href="/search/?searchtype=author&amp;query=Aniol%2C+K">K. Aniol</a>, <a href="/search/?searchtype=author&amp;query=Baker%2C+O+K">O. K. Baker</a>, <a href="/search/?searchtype=author&amp;query=Beams%2C+R">R. Beams</a>, <a href="/search/?searchtype=author&amp;query=Brash%2C+E+J">E. J. Brash</a>, <a href="/search/?searchtype=author&amp;query=Camsonne%2C+A">A. Camsonne</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J+-">J. -P. Chen</a>, <a href="/search/?searchtype=author&amp;query=Christy%2C+M+E">M. E. Christy</a>, <a href="/search/?searchtype=author&amp;query=Dutta%2C+D">D. Dutta</a>, <a href="/search/?searchtype=author&amp;query=Ent%2C+R">R. Ent</a>, <a href="/search/?searchtype=author&amp;query=Gaskell%2C+D">D. Gaskell</a>, <a href="/search/?searchtype=author&amp;query=Gayou%2C+O">O. Gayou</a>, <a href="/search/?searchtype=author&amp;query=Gilman%2C+R">R. Gilman</a>, <a href="/search/?searchtype=author&amp;query=Hansen%2C+J+-">J. -O. Hansen</a>, <a href="/search/?searchtype=author&amp;query=Higinbotham%2C+D+W">D. W. Higinbotham</a>, <a href="/search/?searchtype=author&amp;query=Holt%2C+R+J">R. J. Holt</a>, <a href="/search/?searchtype=author&amp;query=Huber%2C+G+M">G. M. Huber</a>, <a href="/search/?searchtype=author&amp;query=Ibrahim%2C+H">H. Ibrahim</a>, <a href="/search/?searchtype=author&amp;query=Jisonna%2C+L">L. Jisonna</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+M+K">M. K. Jones</a>, <a href="/search/?searchtype=author&amp;query=Keppel%2C+C+E">C. E. Keppel</a>, <a href="/search/?searchtype=author&amp;query=Kinney%2C+E">E. Kinney</a>, <a href="/search/?searchtype=author&amp;query=Kumbartzki%2C+G+J">G. J. Kumbartzki</a>, <a href="/search/?searchtype=author&amp;query=Lung%2C+A">A. Lung</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05201v1-abstract-short" style="display: inline;"> The advent of high-intensity, high-polarization electron beams led to significantly improved measurements of the ratio of the proton&#39;s charge to electric form factors, GEp/GMp. However, high-$Q^2$ measurements yielded significant disagreement with extractions based on unpolarized scattering, raising questions about the reliability of the measurements and consistency of the techniques. Jefferson La&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05201v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05201v1-abstract-full" style="display: none;"> The advent of high-intensity, high-polarization electron beams led to significantly improved measurements of the ratio of the proton&#39;s charge to electric form factors, GEp/GMp. However, high-$Q^2$ measurements yielded significant disagreement with extractions based on unpolarized scattering, raising questions about the reliability of the measurements and consistency of the techniques. Jefferson Lab experiment E01-001 was designed to provide a high-precision extraction of GEp/GMp from unpolarized cross section measurements using a modified version of the Rosenbluth technique to allow for a more precise comparison with polarization data. Conventional Rosenbluth separations detect the scattered electron which requires comparisons of measurements with very different detected electron energy and rate for electrons at different angles. Our Super-Rosenbluth measurement detected the struck proton, rather than the scattered electron, to extract the cross section. This yielded a fixed momentum for the detected particle and dramatically reduced cross section variation, reducing rate- and momentum-dependent corrections and uncertainties. We measure the cross section vs angle with high relative precision, allowing for extremely precise extractions of GEp/GMp at $Q^2$ = 2.64, 3.20, and 4.10 GeV$^2$. Our results are consistent with traditional extractions but with much smaller corrections and systematic uncertainties, comparable to the uncertainties from polarization measurements. Our data confirm the discrepancy between Rosenbluth and polarization extractions of the proton form factor ratio using an improved Rosenbluth extraction that yields smaller and less-correlated uncertainties than typical of previous Rosenbluth extractions. We compare our results to calculations of two-photon exchange effects and find that the observed discrepancy can be relatively well explained by such effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05201v1-abstract-full').style.display = 'none'; document.getElementById('2411.05201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 21 figures. arXiv admin note: text overlap with arXiv:nucl-ex/0610006</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03752">arXiv:2411.03752</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03752">pdf</a>, <a href="https://arxiv.org/format/2411.03752">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Deferred Poisoning: Making the Model More Vulnerable via Hessian Singularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=He%2C+Y">Yuhao He</a>, <a href="/search/?searchtype=author&amp;query=Tian%2C+J">Jinyu Tian</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xianwei Zheng</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+L">Li Dong</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yuanman Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+L+Y">Leo Yu Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">Jiantao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03752v1-abstract-short" style="display: inline;"> Recent studies have shown that deep learning models are very vulnerable to poisoning attacks. Many defense methods have been proposed to address this issue. However, traditional poisoning attacks are not as threatening as commonly believed. This is because they often cause differences in how the model performs on the training set compared to the validation set. Such inconsistency can alert defende&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03752v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03752v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03752v1-abstract-full" style="display: none;"> Recent studies have shown that deep learning models are very vulnerable to poisoning attacks. Many defense methods have been proposed to address this issue. However, traditional poisoning attacks are not as threatening as commonly believed. This is because they often cause differences in how the model performs on the training set compared to the validation set. Such inconsistency can alert defenders that their data has been poisoned, allowing them to take the necessary defensive actions. In this paper, we introduce a more threatening type of poisoning attack called the Deferred Poisoning Attack. This new attack allows the model to function normally during the training and validation phases but makes it very sensitive to evasion attacks or even natural noise. We achieve this by ensuring the poisoned model&#39;s loss function has a similar value as a normally trained model at each input sample but with a large local curvature. A similar model loss ensures that there is no obvious inconsistency between the training and validation accuracy, demonstrating high stealthiness. On the other hand, the large curvature implies that a small perturbation may cause a significant increase in model loss, leading to substantial performance degradation, which reflects a worse robustness. We fulfill this purpose by making the model have singular Hessian information at the optimal point via our proposed Singularization Regularization term. We have conducted both theoretical and empirical analyses of the proposed method and validated its effectiveness through experiments on image classification tasks. Furthermore, we have confirmed the hazards of this form of poisoning attack under more general scenarios using natural noise, offering a new perspective for research in the field of security. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03752v1-abstract-full').style.display = 'none'; document.getElementById('2411.03752v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03399">arXiv:2411.03399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03399">pdf</a>, <a href="https://arxiv.org/format/2411.03399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study of $D_{s1}(2460)^{+}\to D_{s}^{+}蟺^{+}蟺^{-}$ in $B\to {\bar{D}}^{(*)}D_{s}^{+}蟺^{+}蟺^{-}$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03399v1-abstract-short" style="display: inline;"> An amplitude analysis of the $D_{s1}(2460)^+\to D_{s}^{+}蟺^{+}蟺^{-}$ transition is performed simultaneously in $B^{0}\to D^{-}D_{s}^{+}蟺^{+}蟺^{-}$, $B^{+}\to{\bar{D}}^{0} D_{s}^{+}蟺^{+}蟺^{-}$, and $B^{0}\to D^{*-}D_{s}^{+}蟺^{+}蟺^{-}$ decays. The study is based on a data sample of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of $\sqrt{s}=7,8,$ and $13\,$TeV, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03399v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03399v1-abstract-full" style="display: none;"> An amplitude analysis of the $D_{s1}(2460)^+\to D_{s}^{+}蟺^{+}蟺^{-}$ transition is performed simultaneously in $B^{0}\to D^{-}D_{s}^{+}蟺^{+}蟺^{-}$, $B^{+}\to{\bar{D}}^{0} D_{s}^{+}蟺^{+}蟺^{-}$, and $B^{0}\to D^{*-}D_{s}^{+}蟺^{+}蟺^{-}$ decays. The study is based on a data sample of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of $\sqrt{s}=7,8,$ and $13\,$TeV, corresponding to a total integrated luminosity of $9\,\rm{fb}^{-1}$. A clear double-peak structure is observed in the $m(蟺^{+}蟺^{-})$ spectrum of the $D_{s1}(2460)^{+}\to D_{s}^{+}蟺^{+}蟺^{-}$ decay. The data can be described either with a model including $f_0(500)$, $f_0(980)$ and $f_2(1270)$ resonances, in which the contributions of $f_0(980)$ and $f_2(1270)$ are unexpectedly large, or with a model including $f_0(500)$, a doubly charged open-charm tetraquark state $T_{c\bar{s}}^{++}$ and its isospin partner $T_{c\bar{s}}^{0}$. If the former is considered implausible, the $T_{c\bar{s}}$ states are observed with high significance, and the data are consistent with isospin symmetry. When imposing isospin constraints between the two $T_{c\bar{s}}$ states, their mass and width are determined to be $2327\pm13\pm13\,$MeV and $96\pm16\,^{+170}_{-23}\,$MeV, respectively, where the first uncertainty is statistical and the second is systematic. The mass is slightly below the $DK$ threshold, and a spin-parity of $0^+$ is favoured with high significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03399v1-abstract-full').style.display = 'none'; document.getElementById('2411.03399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3280/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-033, CERN-EP-2024-264 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02937">arXiv:2411.02937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02937">pdf</a>, <a href="https://arxiv.org/format/2411.02937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yangning Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yinghui Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xinyu Wang</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y">Yong Jiang</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xinran Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+H">Hui Wang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+H">Hai-Tao Zheng</a>, <a href="/search/?searchtype=author&amp;query=Xie%2C+P">Pengjun Xie</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+P+S">Philip S. Yu</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+F">Fei Huang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">Jingren Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02937v2-abstract-short" style="display: inline;"> Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the &#34;hallucination&#34; issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately ref&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02937v2-abstract-full').style.display = 'inline'; document.getElementById('2411.02937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02937v2-abstract-full" style="display: none;"> Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the &#34;hallucination&#34; issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of &#34;dynamic&#34; questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02937v2-abstract-full').style.display = 'none'; document.getElementById('2411.02937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01277">arXiv:2411.01277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01277">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A novel Kagome uud-ddu spin order in Heisenberg spin-1/2 Clinoatacamite Cu$_4$(OH)$_6$Cl$_2$, the parent compound of Herbertsmithite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X+G">X. G. Zheng</a>, <a href="/search/?searchtype=author&amp;query=Hagihala%2C+M">M. Hagihala</a>, <a href="/search/?searchtype=author&amp;query=Yamauchi%2C+I">I. Yamauchi</a>, <a href="/search/?searchtype=author&amp;query=Nishibori%2C+E">E. Nishibori</a>, <a href="/search/?searchtype=author&amp;query=Honda%2C+T">T. Honda</a>, <a href="/search/?searchtype=author&amp;query=Yuasa%2C+T">T. Yuasa</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+C+-">C. -N. Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01277v1-abstract-short" style="display: inline;"> The newly identified field-induced up-up-down order in Ba$_3$CoSb$_2$O$_9$ etc. renewed attention on exotic phases in spin-1/2 triangular-lattice antiferromagnets. Here, we report a unique zero-field noncoplanar up,up,down, down,down,up Kagome spin order in spin-1/2 antiferromagnet Clinoatacamite, Cu$_4$(OH)$_6$Cl$_2$, which consists of weakly-coupled Kagome layers and was known as the parent comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01277v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01277v1-abstract-full" style="display: none;"> The newly identified field-induced up-up-down order in Ba$_3$CoSb$_2$O$_9$ etc. renewed attention on exotic phases in spin-1/2 triangular-lattice antiferromagnets. Here, we report a unique zero-field noncoplanar up,up,down, down,down,up Kagome spin order in spin-1/2 antiferromagnet Clinoatacamite, Cu$_4$(OH)$_6$Cl$_2$, which consists of weakly-coupled Kagome layers and was known as the parent compound for the most researched spin liquid candidate Herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$. The two-dimensional uud-ddu Kagome order develops below T$_{N1}$ = 18.1 K in Clinoatacamite before a further transition into a three-dimensional magnetic order at low temperatures below T$_{N2}$ ~ 6.4 K with persistent spin fluctuations. The present work reveals a new unpredicted Kagome order in a readily accessible temperature range in the parent compound of a well-studied spin liquid. In addition, it has also solved a puzzling issue for a mysterious magnetic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01277v1-abstract-full').style.display = 'none'; document.getElementById('2411.01277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures and 3 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00388">arXiv:2411.00388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00388">pdf</a>, <a href="https://arxiv.org/format/2411.00388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Towards Data Valuation via Asymmetric Data Shapley </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xi Zheng</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+X">Xiangyu Chang</a>, <a href="/search/?searchtype=author&amp;query=Jia%2C+R">Ruoxi Jia</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+Y">Yong Tan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00388v2-abstract-short" style="display: inline;"> As data emerges as a vital driver of technological and economic advancements, a key challenge is accurately quantifying its value in algorithmic decision-making. The Shapley value, a well-established concept from cooperative game theory, has been widely adopted to assess the contribution of individual data sources in supervised machine learning. However, its symmetry axiom assumes all players in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00388v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00388v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00388v2-abstract-full" style="display: none;"> As data emerges as a vital driver of technological and economic advancements, a key challenge is accurately quantifying its value in algorithmic decision-making. The Shapley value, a well-established concept from cooperative game theory, has been widely adopted to assess the contribution of individual data sources in supervised machine learning. However, its symmetry axiom assumes all players in the cooperative game are homogeneous, which overlooks the complex structures and dependencies present in real-world datasets. To address this limitation, we extend the traditional data Shapley framework to asymmetric data Shapley, making it flexible enough to incorporate inherent structures within the datasets for structure-aware data valuation. We also introduce an efficient $k$-nearest neighbor-based algorithm for its exact computation. We demonstrate the practical applicability of our framework across various machine learning tasks and data market contexts. The code is available at: https://github.com/xzheng01/Asymmetric-Data-Shapley. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00388v2-abstract-full').style.display = 'none'; document.getElementById('2411.00388v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23612">arXiv:2410.23612</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23612">pdf</a>, <a href="https://arxiv.org/ps/2410.23612">ps</a>, <a href="https://arxiv.org/format/2410.23612">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2473-6">10.1007/s11433-024-2473-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating the neutron star physics through observations of several young pulsars in the dipole-field re-emergence scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+Y">Yu-Long Yan</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+Q">Quan Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiao-Ping Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23612v1-abstract-short" style="display: inline;"> The observed timing data, magnetic tilt angle $蠂$, and age of young pulsars could be used to probe some important issues about neutron star (NS) physics, e.g., the NS internal magnetic field configuration, and the number of precession cycles $尉$. \textbf{Both} quantities are critical in studying the continuous gravitational wave emission from pulsars, and the latter generally characterizes the mut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23612v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23612v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23612v1-abstract-full" style="display: none;"> The observed timing data, magnetic tilt angle $蠂$, and age of young pulsars could be used to probe some important issues about neutron star (NS) physics, e.g., the NS internal magnetic field configuration, and the number of precession cycles $尉$. \textbf{Both} quantities are critical in studying the continuous gravitational wave emission from pulsars, and the latter generally characterizes the mutual interactions between superfluid neutrons and other particles in the NS interior. The timing behavior of pulsars can be influenced by the dipole field evolution, which instead of decaying, may increase with time. An increase in the dipole field may result from the re-emergence of the initial dipole field $B_{\rm d,i}$ that was buried into the NS interior shortly after the birth of the NS. In this work, the field re-emergence scenario $尉$ and the internal field configuration of several young pulsars, as well as their $B_{\rm d, i}$ are investigated by assuming typical accreted masses $螖M$. Moreover, since the Crab pulsar has an exactly known age and its tilt angle change rate can be inferred from observations, we can set stringent constraints on its $尉$, $B_{\rm d,i}$, and $螖M$. Although for other young pulsars without exactly known ages and tilt angle change rates, these quantities cannot be accurately determined, we find that their $尉$ are generally within $\sim10^4-10^6$, and some of them probably have magnetar-strength $B_{\rm d,i}$. Our work could be important for investigating the transient emissions associated with NSs, the origin of strong magnetic fields of NSs, pulsar population, continuous gravitational wave emission from pulsars, and accretion under extreme conditions in principle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23612v1-abstract-full').style.display = 'none'; document.getElementById('2410.23612v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23585">arXiv:2410.23585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23585">pdf</a>, <a href="https://arxiv.org/format/2410.23585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jheap.2023.12.003">10.1016/j.jheap.2023.12.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the internal physics of neutron stars from the observational data of several young pulsars: the role of a power-law decaying dipole magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+Y">Yu-Long Yan</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+Q">Quan Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiao-Ping Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23585v1-abstract-short" style="display: inline;"> The observational data (e.g., the timing data and magnetic tilt angles $蠂$) of young pulsars can be used to probe some critical issues about the internal physics of neutron stars (NSs), for instance, the number of precession cycles $尉$ and the internal magnetic field configuration (IMFC) of NSs. Evolution of the dipole magnetic field $B_{\rm d}$ of NSs may play an important role in determining the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23585v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23585v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23585v1-abstract-full" style="display: none;"> The observational data (e.g., the timing data and magnetic tilt angles $蠂$) of young pulsars can be used to probe some critical issues about the internal physics of neutron stars (NSs), for instance, the number of precession cycles $尉$ and the internal magnetic field configuration (IMFC) of NSs. Evolution of the dipole magnetic field $B_{\rm d}$ of NSs may play an important role in determining the final results. In this work, a power-law form is adopted to describe the decay of $B_{\rm d}$. In such a scenario, the IMFC and $尉$ of young pulsars with an ordinary $B_{\rm d}\sim10^{12}-\-10^{13}$ G and a steady braking index $n$ are investigated. Since the tilt angle change rates $\dot蠂$ of pulsars with $n&lt;3$ can be theoretically predicted, a test on the power-law decay model can thus be made by comparing the theoretical values to that obtained from observations. However, such a comparison can only be made on the Crab pulsar currently, and the results show that the power-law decay model is inconsistent with the Crab&#39;s observations. We suggest that rather than decay, the Crab&#39;s $B_{\rm d}$ should increase with time at a rate $\sim12-14$ G/s. A definite conclusion on the validity of the power-law decay model for pulsars with ordinary $B_{\rm d}$ may be given if $\dot蠂$ of other pulsars could be measured. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23585v1-abstract-full').style.display = 'none'; document.getElementById('2410.23585v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23576">arXiv:2410.23576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23576">pdf</a>, <a href="https://arxiv.org/ps/2410.23576">ps</a>, <a href="https://arxiv.org/format/2410.23576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13406-0">10.1140/epjc/s10052-024-13406-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the initial spin periods of magnetars born in weak supernova explosions and their gravitational wave radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+Y">Yu-Long Yan</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+Q">Quan Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiao-Ping Zheng</a>, <a href="/search/?searchtype=author&amp;query=Ouyang%2C+X">Xia-Xia Ouyang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23576v1-abstract-short" style="display: inline;"> The initial spin periods of newborn magnetars are \textbf{strongly associated with the origin of their strong magnetic fields, both of which can affect the electromagnetic radiation and gravitational waves (GWs) emitted at their birth.} Combining the upper limit $E_{\rm SNR}\lesssim10^{51}$ erg on the explosion energies of \textbf{the supernova (SN) remnants around slowly-spinning magnetars} with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23576v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23576v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23576v1-abstract-full" style="display: none;"> The initial spin periods of newborn magnetars are \textbf{strongly associated with the origin of their strong magnetic fields, both of which can affect the electromagnetic radiation and gravitational waves (GWs) emitted at their birth.} Combining the upper limit $E_{\rm SNR}\lesssim10^{51}$ erg on the explosion energies of \textbf{the supernova (SN) remnants around slowly-spinning magnetars} with a detailed investigation on the evolution of newborn magnetars, we set constraints on the initial spin periods of magnetars \textbf{born in weak SN explosions}. Depending on the conversion efficiency $畏$ of the electromagnetic energy of \textbf{these} newborn magnetars into the kinetic energy of SN ejecta, the minimum initial spin periods of \textbf{these} newborn magnetars are $P_{\rm i, min}\simeq 5-6$ ms for an ideal efficiency $畏=1$, $P_{\rm i, min}\simeq 3-4$ ms for a possible efficiency $畏=0.4$, and $P_{\rm i, min}\simeq 1-2$ ms for a relatively low efficiency $畏=0.1$. \textbf{Based on these constraints and adopting reasonable values for the physical parameters of the newborn magnetars, we find that their GW radiation at $谓_{\rm e,1}=谓$ may be undetectable by the Einstein Telescope (ET) since the maximum signal-to-noise ratio (${\rm S/N}$) is only 2.41 even the sources are located at a very close distance of 5 Mpc, where $谓$ are the spin frequencies of the magnetars. At such a distance, the GWs emitted at $谓_{\rm e,2}=2谓$ from the newborn magnetars with dipole fields $B_{\rm d}=5\times10^{14}$ and $10^{15}$ G may be detectable by the ET because ${\rm S/N}$ are 10.01 and 19.85, respectively. However, if these newborn magnetars are located at $20$ Mpc away in the Virgo supercluster, no GWs could be detected by the ET due to low ${\rm S/N}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23576v1-abstract-full').style.display = 'none'; document.getElementById('2410.23576v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23345">arXiv:2410.23345</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23345">pdf</a>, <a href="https://arxiv.org/format/2410.23345">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202451045">10.1051/0004-6361/202451045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SRG/eROSITA diffuse soft X-ray background. I. The local hot bubble in the western Galactic hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yeung%2C+M+C+H">Michael C. H. Yeung</a>, <a href="/search/?searchtype=author&amp;query=Ponti%2C+G">Gabriele Ponti</a>, <a href="/search/?searchtype=author&amp;query=Freyberg%2C+M+J">Michael J. Freyberg</a>, <a href="/search/?searchtype=author&amp;query=Dennerl%2C+K">Konrad Dennerl</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+T">Teng Liu</a>, <a href="/search/?searchtype=author&amp;query=Locatelli%2C+N">Nicola Locatelli</a>, <a href="/search/?searchtype=author&amp;query=Mayer%2C+M+G+F">Martin G. F. Mayer</a>, <a href="/search/?searchtype=author&amp;query=Sanders%2C+J+S">Jeremy S. Sanders</a>, <a href="/search/?searchtype=author&amp;query=Sasaki%2C+M">Manami Sasaki</a>, <a href="/search/?searchtype=author&amp;query=Strong%2C+A">Andy Strong</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xueying Zheng</a>, <a href="/search/?searchtype=author&amp;query=Gatuzz%2C+E">Efrain Gatuzz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23345v1-abstract-short" style="display: inline;"> The SRG/eROSITA All-Sky Surveys (eRASSs) combine the advantages of complete sky coverage and the energy resolution provided by the charge couple device and offer the most holistic and detailed view of the diffuse soft X-ray background (SXRB) to date. The first eRASS (eRASS1) was completed at solar minimum, when solar wind charge exchange emission was minimal, providing the clearest view of the SXR&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23345v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23345v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23345v1-abstract-full" style="display: none;"> The SRG/eROSITA All-Sky Surveys (eRASSs) combine the advantages of complete sky coverage and the energy resolution provided by the charge couple device and offer the most holistic and detailed view of the diffuse soft X-ray background (SXRB) to date. The first eRASS (eRASS1) was completed at solar minimum, when solar wind charge exchange emission was minimal, providing the clearest view of the SXRB. We aim to extract spatial and spectral information from each constituent of the SXRB in the western Galactic hemisphere, focusing on the local hot bubble (LHB). We extracted and analysed eRASS1 spectra from almost all directions in the western Galactic hemisphere by dividing the sky into equal signal-to-noise bins. We fitted all bins with fixed spectral templates of known background constituents. We find the temperature of the LHB exhibits a north-south dichotomy at high latitudes ($|b|&gt;30^{\circ}$), with the south being hotter, with a mean temperature at $kT=121.8\pm0.6\,$eV and the north at $kT=100.8\pm0.5\,$eV. At low latitudes, the LHB temperature increases towards the Galactic plane, especially towards the inner Galaxy. The LHB emission measure (${\rm EM_{LHB}}$) enhances approximately towards the Galactic poles. The ${\rm EM_{LHB}}$ map shows clear anti-correlation with the local dust column density. In particular, we found tunnels of dust cavities filled with hot plasma, potentially forming a wider network of hot interstellar medium. We also constructed a three-dimensional LHB model from ${\rm EM_{LHB}}$, assuming constant density. The average thermal pressure of the LHB is $P_{\rm thermal}/k=10100^{+1200}_{-1500}\,{\rm cm^{-3}\,K}$, a lower value than typical supernova remnants and wind-blown bubbles. This could be an indication of the LHB being open towards high Galactic latitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23345v1-abstract-full').style.display = 'none'; document.getElementById('2410.23345v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 37 figures, published in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A (2024), 690, A399 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21871">arXiv:2410.21871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21871">pdf</a>, <a href="https://arxiv.org/ps/2410.21871">ps</a>, <a href="https://arxiv.org/format/2410.21871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Self-similar plasmonic nanolenses: mesoscopic ensemble averaging and chiral light-matter interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kyvelos%2C+N">Nikolaos Kyvelos</a>, <a href="/search/?searchtype=author&amp;query=Mortensen%2C+N+A">N. Asger Mortensen</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xuezhi Zheng</a>, <a href="/search/?searchtype=author&amp;query=Tserkezis%2C+C">Christos Tserkezis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21871v1-abstract-short" style="display: inline;"> We investigate how the near-field enhancement of self-similar nanolenses, made of three plasmonic nanospheres with decreasing sizes and separations, is affected by quantum corrections in the optical response of the metal, and by fabrication imperfections related to the positioning of the spheres in the nanolens. In particular, we integrate mesoscopic phenomena, such as electron spill-in and -out a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21871v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21871v1-abstract-full" style="display: none;"> We investigate how the near-field enhancement of self-similar nanolenses, made of three plasmonic nanospheres with decreasing sizes and separations, is affected by quantum corrections in the optical response of the metal, and by fabrication imperfections related to the positioning of the spheres in the nanolens. In particular, we integrate mesoscopic phenomena, such as electron spill-in and -out and surface-enabled Landau damping, via the surface response formalism, focusing particularly on the role of spill-out in alkali metals. In addition, we take realistic imperfections in the nanofabrication process into account, through numerical averaging of both far- and near-field spectra for large collections of nanolenses. Statistical analysis of hundreds of trimers shows that inevitable deviations from the perfectly aligned chain only slightly, if at all, impair the field enhancement, as long as the average misplacement is kept within 1 nm from the ideal situation. Wishing to explore whether such imperfections can be harvested for practical applications, we probe the potential for triggering chiral response. Our results verify that imperfect nanolenses can display considerable circular dichroism, while providing a means to manipulate the optical chirality density. Nonetheless, we emphasize that quantification of chiral light-matter interactions can be largely affected by mesoscopic phenomena, which cannot be ignored when near-field quantities like optical chirality density are investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21871v1-abstract-full').style.display = 'none'; document.getElementById('2410.21871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21115">arXiv:2410.21115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21115">pdf</a>, <a href="https://arxiv.org/format/2410.21115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the CKM angle $纬$ in $B^{\pm} \to D K^*(892)^{\pm}$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21115v1-abstract-short" style="display: inline;"> Measurements of $CP$ observables and the CKM angle $纬$ are performed in $B^{\pm} \to D K^*(892)^{\pm}$ decays, where $D$ represents a superposition of $D^0$ and $\overline{D}{}^0$ states, using the LHCb dataset collected during Run 1 (2011-2012) and Run 2 (2015-2018). A comprehensive study of this channel is presented with the $D$ meson reconstructed in two-body final states $K^{\pm}蟺^{\mp}$,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21115v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21115v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21115v1-abstract-full" style="display: none;"> Measurements of $CP$ observables and the CKM angle $纬$ are performed in $B^{\pm} \to D K^*(892)^{\pm}$ decays, where $D$ represents a superposition of $D^0$ and $\overline{D}{}^0$ states, using the LHCb dataset collected during Run 1 (2011-2012) and Run 2 (2015-2018). A comprehensive study of this channel is presented with the $D$ meson reconstructed in two-body final states $K^{\pm}蟺^{\mp}$, $K^+K^-$ and $蟺^+蟺^-$; four-body final states $K^{\pm}蟺^{\mp}蟺^{\pm}蟺^{\mp}$ and $蟺^+蟺^-蟺^+蟺^-$; and three-body final states $K^0_{S} 蟺^+蟺^-$ and $K^0_{S} K^+ K^-$. This analysis includes the first observation of the suppressed $B^{\pm} \to [蟺^+K^-]_D K^{*\pm}$ and $B^{\pm} \to [蟺^+K^-蟺^+蟺^-]_D K^{*\pm}$ decays. The combined result gives $纬=(63\pm 13)^\circ$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21115v1-abstract-full').style.display = 'none'; document.getElementById('2410.21115v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3180/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-023, CERN-EP-2024-260 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20971">arXiv:2410.20971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20971">pdf</a>, <a href="https://arxiv.org/format/2410.20971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> BlueSuffix: Reinforced Blue Teaming for Vision-Language Models Against Jailbreak Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhao%2C+Y">Yunhan Zhao</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiang Zheng</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+L">Lin Luo</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yige Li</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+X">Xingjun Ma</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+Y">Yu-Gang Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20971v1-abstract-short" style="display: inline;"> Despite their superb multimodal capabilities, Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks, which are inference-time attacks that induce the model to output harmful responses with tricky prompts. It is thus essential to defend VLMs against potential jailbreaks for their trustworthy deployment in real-world applications. In this work, we focus on black-box def&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20971v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20971v1-abstract-full" style="display: none;"> Despite their superb multimodal capabilities, Vision-Language Models (VLMs) have been shown to be vulnerable to jailbreak attacks, which are inference-time attacks that induce the model to output harmful responses with tricky prompts. It is thus essential to defend VLMs against potential jailbreaks for their trustworthy deployment in real-world applications. In this work, we focus on black-box defense for VLMs against jailbreak attacks. Existing black-box defense methods are either unimodal or bimodal. Unimodal methods enhance either the vision or language module of the VLM, while bimodal methods robustify the model through text-image representation realignment. However, these methods suffer from two limitations: 1) they fail to fully exploit the cross-modal information, or 2) they degrade the model performance on benign inputs. To address these limitations, we propose a novel blue-team method BlueSuffix that defends the black-box target VLM against jailbreak attacks without compromising its performance. BlueSuffix includes three key components: 1) a visual purifier against jailbreak images, 2) a textual purifier against jailbreak texts, and 3) a blue-team suffix generator fine-tuned via reinforcement learning for enhancing cross-modal robustness. We empirically show on three VLMs (LLaVA, MiniGPT-4, and Gemini) and two safety benchmarks (MM-SafetyBench and RedTeam-2K) that BlueSuffix outperforms the baseline defenses by a significant margin. Our BlueSuffix opens up a promising direction for defending VLMs against jailbreak attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20971v1-abstract-full').style.display = 'none'; document.getElementById('2410.20971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20374">arXiv:2410.20374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20374">pdf</a>, <a href="https://arxiv.org/format/2410.20374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A CT-guided Control Framework of a Robotic Flexible Endoscope for the Diagnosis of the Maxillary Sinusitis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhu%2C+P">Puchen Zhu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+H">Huayu Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+X">Xin Ma</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiaoyin Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xuchen Wang</a>, <a href="/search/?searchtype=author&amp;query=Au%2C+K+W+S">Kwok Wai Samuel Au</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20374v1-abstract-short" style="display: inline;"> Flexible endoscopes are commonly adopted in narrow and confined anatomical cavities due to their higher reachability and dexterity. However, prolonged and unintuitive manipulation of these endoscopes leads to an increased workload on surgeons and risks of collision. To address these challenges, this paper proposes a CT-guided control framework for the diagnosis of maxillary sinusitis by using a ro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20374v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20374v1-abstract-full" style="display: none;"> Flexible endoscopes are commonly adopted in narrow and confined anatomical cavities due to their higher reachability and dexterity. However, prolonged and unintuitive manipulation of these endoscopes leads to an increased workload on surgeons and risks of collision. To address these challenges, this paper proposes a CT-guided control framework for the diagnosis of maxillary sinusitis by using a robotic flexible endoscope. In the CT-guided control framework, a feasible path to the target position in the maxillary sinus cavity for the robotic flexible endoscope is designed. Besides, an optimal control scheme is proposed to autonomously control the robotic flexible endoscope to follow the feasible path. This greatly improves the efficiency and reduces the workload for surgeons. Several experiments were conducted based on a widely utilized sinus phantom, and the results showed that the robotic flexible endoscope can accurately and autonomously follow the feasible path and reach the target position in the maxillary sinus cavity. The results also verified the feasibility of the CT-guided control framework, which contributes an effective approach to early diagnosis of sinusitis in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20374v1-abstract-full').style.display = 'none'; document.getElementById('2410.20374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19483">arXiv:2410.19483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19483">pdf</a>, <a href="https://arxiv.org/format/2410.19483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwidth Quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+W">Weihang Liu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X+X">Xue Xian Zheng</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+J">Jingyi Yu</a>, <a href="/search/?searchtype=author&amp;query=Lou%2C+X">Xin Lou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19483v1-abstract-short" style="display: inline;"> The recent popular radiance field models, exemplified by Neural Radiance Fields (NeRF), Instant-NGP and 3D Gaussian Splatting, are designed to represent 3D content by that training models for each individual scene. This unique characteristic of scene representation and per-scene training distinguishes radiance field models from other neural models, because complex scenes necessitate models with hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19483v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19483v1-abstract-full" style="display: none;"> The recent popular radiance field models, exemplified by Neural Radiance Fields (NeRF), Instant-NGP and 3D Gaussian Splatting, are designed to represent 3D content by that training models for each individual scene. This unique characteristic of scene representation and per-scene training distinguishes radiance field models from other neural models, because complex scenes necessitate models with higher representational capacity and vice versa. In this paper, we propose content-aware radiance fields, aligning the model complexity with the scene intricacies through Adversarial Content-Aware Quantization (A-CAQ). Specifically, we make the bitwidth of parameters differentiable and trainable, tailored to the unique characteristics of specific scenes and requirements. The proposed framework has been assessed on Instant-NGP, a well-known NeRF variant and evaluated using various datasets. Experimental results demonstrate a notable reduction in computational complexity, while preserving the requisite reconstruction and rendering quality, making it beneficial for practical deployment of radiance fields models. Codes are available at https://github.com/WeihangLiu2024/Content_Aware_NeRF. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19483v1-abstract-full').style.display = 'none'; document.getElementById('2410.19483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by ECCV2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19368">arXiv:2410.19368</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19368">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic strain sensing using Doppler-shift-immune phase-sensitive OFDR with ultra-weak reflection array and frequency-tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+Q">Qiang Yang</a>, <a href="/search/?searchtype=author&amp;query=Xie%2C+W">Weilin Xie</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C">Congfan Wang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiang Zheng</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+W">Wei Wei</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+Y">Yi Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19368v1-abstract-short" style="display: inline;"> In distributed fiber-optic sensing based on optical frequency domain reflectometry (OFDR), Doppler frequency shifts due to the changes of disturbances during one sweep period introduce demodulation errors that accumulate along both the distance and time, impairing the sensing performance. Here, we report distributed dynamic strain sensing using Doppler-shift-immune phase-sensitive OFDR based on fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19368v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19368v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19368v1-abstract-full" style="display: none;"> In distributed fiber-optic sensing based on optical frequency domain reflectometry (OFDR), Doppler frequency shifts due to the changes of disturbances during one sweep period introduce demodulation errors that accumulate along both the distance and time, impairing the sensing performance. Here, we report distributed dynamic strain sensing using Doppler-shift-immune phase-sensitive OFDR based on frequency-tracking and spectrum-zooming with ultra-weak reflection array. Theoretical study has been carried out with the introduction of mismatch coefficient, unveiling quantitatively the impact of Doppler shift. Following a numerical analysis of the proposed method, a retained precision has been experimentally verified regardless of the position mismatch due to the Doppler effect. Doppler-shift-immune sensing for dynamic strains covering continuous spatial resolution over a distance of 1000 m with a 2.5 cm sensing spatial resolution has been demonstrated, verifying the high fidelity promised by the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19368v1-abstract-full').style.display = 'none'; document.getElementById('2410.19368v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18995">arXiv:2410.18995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18995">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Management of Large-Scale Optical Networks through RFID Technology Integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xiaoying Zheng</a>, <a href="/search/?searchtype=author&amp;query=Xuan%2C+X">Xingqi Xuan</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+S">Shilie Zheng</a>, <a href="/search/?searchtype=author&amp;query=Hui%2C+X">Xiaonan Hui</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X">Xianmin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18995v1-abstract-short" style="display: inline;"> Managing large-scale optical distribution networks is a daunting task. This paper introduces a novel solution using radio frequency identification (RFID) technology to transform the procedure we monitor and manage the complex optical network dumb resources (ONDR). By implementing and deploying removable RFID tag pairing based on the serial peripheral interface (SPI) communication protocol, the sys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18995v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18995v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18995v1-abstract-full" style="display: none;"> Managing large-scale optical distribution networks is a daunting task. This paper introduces a novel solution using radio frequency identification (RFID) technology to transform the procedure we monitor and manage the complex optical network dumb resources (ONDR). By implementing and deploying removable RFID tag pairing based on the serial peripheral interface (SPI) communication protocol, the system identifies 30 pairs of tags within one second, even at densities of up to 5.1 tagged components per square inch of patch panel surface area. The integration of light-emitting diode (LED) navigation aids in indicating correctly matched interfaces, effectively addressing the complexities associated with large-scale fiber matching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18995v1-abstract-full').style.display = 'none'; document.getElementById('2410.18995v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 pages, 4 figures, conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18464">arXiv:2410.18464</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18464">pdf</a>, <a href="https://arxiv.org/ps/2410.18464">ps</a>, <a href="https://arxiv.org/format/2410.18464">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Search for $畏_c(2S)\to p\bar{p}$ and branching fraction measurements of $蠂_{cJ} \to p\bar{p}$ via $蠄(2S)$ radiative decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (640 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18464v1-abstract-short" style="display: inline;"> Using $(27.12\pm0.14) \times 10^{8}$ $蠄(2S)$ events collected by the BESIII detector operating at BEPCII, we search for the decay $畏_c(2S)\to p\bar{p}$ via the process $蠄(2S)\to 纬畏_c(2S)$, and only find a signal with a significance of $1.7\,蟽$. The upper limit of the product branching fraction at the 90% confidence level is determined to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18464v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18464v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18464v1-abstract-full" style="display: none;"> Using $(27.12\pm0.14) \times 10^{8}$ $蠄(2S)$ events collected by the BESIII detector operating at BEPCII, we search for the decay $畏_c(2S)\to p\bar{p}$ via the process $蠄(2S)\to 纬畏_c(2S)$, and only find a signal with a significance of $1.7\,蟽$. The upper limit of the product branching fraction at the 90% confidence level is determined to be $\mathcal{B}(蠄(2S)\to 纬畏_c(2S))\times \mathcal{B}(畏_c(2S)\to p\bar{p})&lt;2.4\times 10^{-7}$. The branching fractions of $蠂_{cJ}\to p\bar{p}~(J=0,1,2)$ are also measured to be $\mathcal{B}(蠂_{c0}\to p\bar{p})=(2.51\pm0.02\pm0.08)\times 10^{-4}$, $\mathcal{B}(蠂_{c1}\to p\bar{p})=(8.16\pm0.09\pm0.25)\times 10^{-4}$, and $\mathcal{B}(蠂_{c2}\to p\bar{p})=(8.33\pm0.09\pm0.22)\times 10^{-4}$, where the first uncertainty is statistical and the second systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18464v1-abstract-full').style.display = 'none'; document.getElementById('2410.18464v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18408">arXiv:2410.18408</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18408">pdf</a>, <a href="https://arxiv.org/format/2410.18408">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Scale Propagation Network for Generalizable Depth Completion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+H">Haotian Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+M">Meng Yang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xinhu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Hua%2C+G">Gang Hua</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18408v1-abstract-short" style="display: inline;"> Depth completion, inferring dense depth maps from sparse measurements, is crucial for robust 3D perception. Although deep learning based methods have made tremendous progress in this problem, these models cannot generalize well across different scenes that are unobserved in training, posing a fundamental limitation that yet to be overcome. A careful analysis of existing deep neural network archite&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18408v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18408v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18408v1-abstract-full" style="display: none;"> Depth completion, inferring dense depth maps from sparse measurements, is crucial for robust 3D perception. Although deep learning based methods have made tremendous progress in this problem, these models cannot generalize well across different scenes that are unobserved in training, posing a fundamental limitation that yet to be overcome. A careful analysis of existing deep neural network architectures for depth completion, which are largely borrowing from successful backbones for image analysis tasks, reveals that a key design bottleneck actually resides in the conventional normalization layers. These normalization layers are designed, on one hand, to make training more stable, on the other hand, to build more visual invariance across scene scales. However, in depth completion, the scale is actually what we want to robustly estimate in order to better generalize to unseen scenes. To mitigate, we propose a novel scale propagation normalization (SP-Norm) method to propagate scales from input to output, and simultaneously preserve the normalization operator for easy convergence. More specifically, we rescale the input using learned features of a single-layer perceptron from the normalized input, rather than directly normalizing the input as conventional normalization layers. We then develop a new network architecture based on SP-Norm and the ConvNeXt V2 backbone. We explore the composition of various basic blocks and architectures to achieve superior performance and efficient inference for generalizable depth completion. Extensive experiments are conducted on six unseen datasets with various types of sparse depth maps, i.e., randomly sampled 0.1\%/1\%/10\% valid pixels, 4/8/16/32/64-line LiDAR points, and holes from Structured-Light. Our model consistently achieves the best accuracy with faster speed and lower memory when compared to state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18408v1-abstract-full').style.display = 'none'; document.getElementById('2410.18408v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Major revision in IEEE Transactions on Pattern Analysis and Machine Intelligence</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18075">arXiv:2410.18075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18075">pdf</a>, <a href="https://arxiv.org/format/2410.18075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> ProFL: Performative Robust Optimal Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xue Zheng</a>, <a href="/search/?searchtype=author&amp;query=Xie%2C+T">Tian Xie</a>, <a href="/search/?searchtype=author&amp;query=Tan%2C+X">Xuwei Tan</a>, <a href="/search/?searchtype=author&amp;query=Yener%2C+A">Aylin Yener</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+X">Xueru Zhang</a>, <a href="/search/?searchtype=author&amp;query=Payani%2C+A">Ali Payani</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+M">Myungjin Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18075v1-abstract-short" style="display: inline;"> Performative prediction (PP) is a framework that captures distribution shifts that occur during the training of machine learning models due to their deployment. As the trained model is used, its generated data could cause the model to evolve, leading to deviations from the original data distribution. The impact of such model-induced distribution shifts in the federated learning (FL) setup remains&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18075v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18075v1-abstract-full" style="display: none;"> Performative prediction (PP) is a framework that captures distribution shifts that occur during the training of machine learning models due to their deployment. As the trained model is used, its generated data could cause the model to evolve, leading to deviations from the original data distribution. The impact of such model-induced distribution shifts in the federated learning (FL) setup remains unexplored despite being increasingly likely to transpire in real-life use cases. Although Jin et al. (2024) recently extended PP to FL in a straightforward manner, the resulting model only converges to a performative stable point, which may be far from optimal. The methods in Izzo et al. (2021); Miller et al. (2021) can find a performative optimal point in centralized settings, but they require the performative risk to be convex and the training data to be noiseless, assumptions often violated in realistic FL systems. This paper overcomes all of these shortcomings and proposes Performative robust optimal Federated Learning (ProFL), an algorithm that finds performative optimal points in FL from noisy and contaminated data. We present the convergence analysis under the Polyak-Lojasiewicz condition, which applies to non-convex objectives. Extensive experiments on multiple datasets validate our proposed algorithms&#39; efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18075v1-abstract-full').style.display = 'none'; document.getElementById('2410.18075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages with Appendix, 18 figures. The paper has been submitted and is currently under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18018">arXiv:2410.18018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18018">pdf</a>, <a href="https://arxiv.org/format/2410.18018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Measurements of $蠄{(2S)}$ and $蠂_{c1}(3872)$ production within fully reconstructed jets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18018v1-abstract-short" style="display: inline;"> This paper presents the first measurement of $蠄{(2S)}$ and $蠂_{c1}(3872)$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the $J/蠄$($\rightarrow渭^+渭^-$)$蟺^+蟺^-$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of $13 \text{TeV}$ in 2016, corresponding to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18018v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18018v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18018v1-abstract-full" style="display: none;"> This paper presents the first measurement of $蠄{(2S)}$ and $蠂_{c1}(3872)$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the $J/蠄$($\rightarrow渭^+渭^-$)$蟺^+蟺^-$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of $13 \text{TeV}$ in 2016, corresponding to an integrated luminosity of $1.64 \text{fb}^{-1}$. The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($p_{\mathrm{T}}(\text{tag})/p_{\mathrm{T}}(\text{jet})$), is measured differentially in $p_{\mathrm{T}}(\text{jet})$ and $p_{\mathrm{T}}(\text{tag})$ bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displaced $b$-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18018v1-abstract-full').style.display = 'none'; document.getElementById('2410.18018v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/1618/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-021, CERN-EP-2024-241 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13748">arXiv:2410.13748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13748">pdf</a>, <a href="https://arxiv.org/format/2410.13748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Test of lepton flavour universality with $B_s^0 \rightarrow 蠁\ell^+\ell^-$ decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/?searchtype=author&amp;query=Adefisoye%2C+A+A">A. A. Adefisoye</a>, <a href="/search/?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/?searchtype=author&amp;query=Amato%2C+S">S. Amato</a>, <a href="/search/?searchtype=author&amp;query=Amey%2C+J+L">J. L. Amey</a>, <a href="/search/?searchtype=author&amp;query=Amhis%2C+Y">Y. Amhis</a> , et al. (1124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13748v1-abstract-short" style="display: inline;"> Lepton flavour universality in rare $b\rightarrow s$ transitions is tested for the first time using $B_s^0$ meson decays. The measurements are performed using $pp$ collision data collected by the LHCb experiment between 2011 and 2018, corresponding to a total integrated luminosity of 9$\,{\rm fb}^{-1}$. Branching fraction ratios between the $B_s^0 \rightarrow 蠁e^+e^-$ and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13748v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13748v1-abstract-full" style="display: none;"> Lepton flavour universality in rare $b\rightarrow s$ transitions is tested for the first time using $B_s^0$ meson decays. The measurements are performed using $pp$ collision data collected by the LHCb experiment between 2011 and 2018, corresponding to a total integrated luminosity of 9$\,{\rm fb}^{-1}$. Branching fraction ratios between the $B_s^0 \rightarrow 蠁e^+e^-$ and $B_s^0 \rightarrow 蠁渭^+渭^-$ decays are measured in three regions of dilepton mass squared, $q^2$, with $0.1 &lt; q^2 &lt; 1.1$, $1.1 &lt; q^2 &lt; 6.0$, and $15 &lt; q^2 &lt; 19\,{\rm GeV}^2/c^4$. The results agree with the Standard Model expectation of lepton flavour universality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13748v1-abstract-full').style.display = 'none'; document.getElementById('2410.13748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lbfence.cern.ch/alcm/public/analysis/full-details/3513/ (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-PAPER-2024-032, CERN-EP-2024-255 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13402">arXiv:2410.13402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13402">pdf</a>, <a href="https://arxiv.org/format/2410.13402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Monte Carlo Simulation of Angular Response of GRID Detectors for GRID Mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Liu%2C+Q">Qize Liu</a>, <a href="/search/?searchtype=author&amp;query=Pan%2C+X">Xiaofan Pan</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xutao Zheng</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+H">Huaizhong Gao</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+L">Longhao Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qidong Wang</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Z">Zirui Yang</a>, <a href="/search/?searchtype=author&amp;query=Tang%2C+C">Chenchong Tang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+W">Wenxuan Wu</a>, <a href="/search/?searchtype=author&amp;query=Cheng%2C+J">Jianping Cheng</a>, <a href="/search/?searchtype=author&amp;query=Zeng%2C+Z">Zhi Zeng</a>, <a href="/search/?searchtype=author&amp;query=Zeng%2C+M">Ming Zeng</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+H">Hua Feng</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+B">Binbin Zhang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Zhonghai Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+R">Rong Zhou</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yuanyuan Liu</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a>, <a href="/search/?searchtype=author&amp;query=Zhong%2C+J">Jiayong Zhong</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+J">Jianyong Jiang</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+W">Wentao Han</a>, <a href="/search/?searchtype=author&amp;query=Tian%2C+Y">Yang Tian</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+B">Benda Xu</a>, <a href="/search/?searchtype=author&amp;query=Collaboration%2C+G">GRID Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13402v1-abstract-short" style="display: inline;"> The Gamma-Ray Integrated Detectors (GRID) are a space science mission that employs compact gamma-ray detectors mounted on NanoSats in low Earth orbit (LEO) to monitor the transient gamma-ray sky. Owing to the unpredictability of the time and location of gamma-ray bursts (GRBs), obtaining the photon responses of gamma-ray detectors at various incident angles is important for the scientific analysis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13402v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13402v1-abstract-full" style="display: none;"> The Gamma-Ray Integrated Detectors (GRID) are a space science mission that employs compact gamma-ray detectors mounted on NanoSats in low Earth orbit (LEO) to monitor the transient gamma-ray sky. Owing to the unpredictability of the time and location of gamma-ray bursts (GRBs), obtaining the photon responses of gamma-ray detectors at various incident angles is important for the scientific analysis of GRB data captured by GRID detectors. For this purpose, a dedicated Monte Carlo simulation framework has been developed for GRID detectors. By simulating each GRID detector and the NanoSat carrying it, the spectral energy response, detection efficiency, and other angular responses of each detector for photons with different incident angles and energies can be obtained within this framework. The accuracy of these simulations has been corroborated through on-ground calibration, and the derived angular responses have been successfully applied to the data analysis of recorded GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13402v1-abstract-full').style.display = 'none'; document.getElementById('2410.13402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13257">arXiv:2410.13257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13257">pdf</a>, <a href="https://arxiv.org/format/2410.13257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> scFusionTTT: Single-cell transcriptomics and proteomics fusion with Test-Time Training layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Meng%2C+D">Dian Meng</a>, <a href="/search/?searchtype=author&amp;query=Xing%2C+B">Bohao Xing</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+X">Xinlei Huang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yanran Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+Y">Yijun Zhou</a>, <a href="/search/?searchtype=author&amp;query=xiao%2C+Y">Yongjun xiao</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+Z">Zitong Yu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xubin Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13257v1-abstract-short" style="display: inline;"> Single-cell multi-omics (scMulti-omics) refers to the paired multimodal data, such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), where the regulation of each cell was measured from different modalities, i.e. genes and proteins. scMulti-omics can reveal heterogeneity inside tumors and understand the distinct genetic properties of diverse cell types, which is crucial&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13257v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13257v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13257v1-abstract-full" style="display: none;"> Single-cell multi-omics (scMulti-omics) refers to the paired multimodal data, such as Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), where the regulation of each cell was measured from different modalities, i.e. genes and proteins. scMulti-omics can reveal heterogeneity inside tumors and understand the distinct genetic properties of diverse cell types, which is crucial to targeted therapy. Currently, deep learning methods based on attention structures in the bioinformatics area face two challenges. The first challenge is the vast number of genes in a single cell. Traditional attention-based modules struggled to effectively leverage all gene information due to their limited capacity for long-context learning and high-complexity computing. The second challenge is that genes in the human genome are ordered and influence each other&#39;s expression. Most of the methods ignored this sequential information. The recently introduced Test-Time Training (TTT) layer is a novel sequence modeling approach, particularly suitable for handling long contexts like genomics data because TTT layer is a linear complexity sequence modeling structure and is better suited to data with sequential relationships. In this paper, we propose scFusionTTT, a novel method for Single-Cell multimodal omics Fusion with TTT-based masked autoencoder. Of note, we combine the order information of genes and proteins in the human genome with the TTT layer, fuse multimodal omics, and enhance unimodal omics analysis. Finally, the model employs a three-stage training strategy, which yielded the best performance across most metrics in four multimodal omics datasets and four unimodal omics datasets, demonstrating the superior performance of our model. The dataset and code will be available on https://github.com/DM0815/scFusionTTT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13257v1-abstract-full').style.display = 'none'; document.getElementById('2410.13257v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12657">arXiv:2410.12657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12657">pdf</a>, <a href="https://arxiv.org/format/2410.12657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chen%2C+Z">Zhuomin Chen</a>, <a href="/search/?searchtype=author&amp;query=Ni%2C+J">Jingchao Ni</a>, <a href="/search/?searchtype=author&amp;query=Salehi%2C+H+A">Hojat Allah Salehi</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+X">Xu Zheng</a>, <a href="/search/?searchtype=author&amp;query=Schafir%2C+E">Esteban Schafir</a>, <a href="/search/?searchtype=author&amp;query=Shirani%2C+F">Farhad Shirani</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+D">Dongsheng Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12657v1-abstract-short" style="display: inline;"> Graph representation learning (GRL), enhanced by graph augmentation methods, has emerged as an effective technique achieving performance improvements in wide tasks such as node classification and graph classification. In self-supervised GRL, paired graph augmentations are generated from each graph. Its objective is to infer similar representations for augmentations of the same graph, but maximally&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12657v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12657v1-abstract-full" style="display: none;"> Graph representation learning (GRL), enhanced by graph augmentation methods, has emerged as an effective technique achieving performance improvements in wide tasks such as node classification and graph classification. In self-supervised GRL, paired graph augmentations are generated from each graph. Its objective is to infer similar representations for augmentations of the same graph, but maximally distinguishable representations for augmentations of different graphs. Analogous to image and language domains, the desiderata of an ideal augmentation method include both (1) semantics-preservation; and (2) data-perturbation; i.e., an augmented graph should preserve the semantics of its original graph while carrying sufficient variance. However, most existing (un-)/self-supervised GRL methods focus on data perturbation but largely neglect semantics preservation. To address this challenge, in this paper, we propose a novel method, Explanation-Preserving Augmentation (EPA), that leverages graph explanation techniques for generating augmented graphs that can bridge the gap between semantics-preservation and data-perturbation. EPA first uses a small number of labels to train a graph explainer to infer the sub-structures (explanations) that are most relevant to a graph&#39;s semantics. These explanations are then used to generate semantics-preserving augmentations for self-supervised GRL, namely EPA-GRL. We demonstrate theoretically, using an analytical example, and through extensive experiments on a variety of benchmark datasets that EPA-GRL outperforms the state-of-the-art (SOTA) GRL methods, which are built upon semantics-agnostic data augmentations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12657v1-abstract-full').style.display = 'none'; document.getElementById('2410.12657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 7 tables</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zheng%2C+X&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10