CINXE.COM

Search results for: walking and cycling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: walking and cycling</title> <meta name="description" content="Search results for: walking and cycling"> <meta name="keywords" content="walking and cycling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="walking and cycling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="walking and cycling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 585</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: walking and cycling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> The Application of Dynamic Network Process to Environment Planning Support Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wann-Ming%20Wey">Wann-Ming Wey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment%20planning%20support%20systems" title="environment planning support systems">environment planning support systems</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling" title=" walking and cycling"> walking and cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=transit-oriented%20development%20%28TOD%29" title=" transit-oriented development (TOD)"> transit-oriented development (TOD)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20network%20process%20%28DNP%29" title=" dynamic network process (DNP)"> dynamic network process (DNP)</a> </p> <a href="https://publications.waset.org/abstracts/7792/the-application-of-dynamic-network-process-to-environment-planning-support-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Comparison of Nitrogen Dioxide Pollution for Different Commuting Modes in Kaunas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C4%97del%C4%97">A. Dėdelė</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mi%C5%A1kinyt%C4%97"> A. Miškinytė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of air pollution exposure in different microenvironments is important for better understanding the relationship between health effects caused by air pollution. The recent researches revealed that the level of air pollution in transport microenvironment contributes considerably to the total exposure of air pollution. The aim of the study was to determine air pollution of nitrogen dioxide and to assess the exposure of NO2 dependence on the chosen commuting mode using a global positioning system (GPS). The same travel destination was chosen and 30 rides in three different commuting modes: cycling, walking, and public transport were made. Every different mean of transport is associated with different route. GPS device and travel diary data were used to track all routes of different commuting modes. Air pollution of nitrogen dioxide was determined using the ADMS-Urban dispersion model. The average annual concentration of nitrogen dioxide was modeled for 2011 year in Kaunas city. The geographical information systems were used to visualize the travel routes, to create maps indicating the route of different commuting modes and to combine modelled nitrogen dioxide data. The results showed that there is a significant difference between the selected commuting mode and the exposure of nitrogen dioxide. The concentrations in the microenvironments were 22.4 μg/m3, 21.4 μg/m3, and 25.9 μg/m3 for cycling, walking and public transport respectively. Of all the modes of commuting, the highest average exposure of nitrogen dioxide was found travelling by public transport, while the lowest average concentration of NO2 was determined by walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20dioxide" title="nitrogen dioxide">nitrogen dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20model" title=" dispersion model"> dispersion model</a>, <a href="https://publications.waset.org/abstracts/search?q=commuting%20mode" title=" commuting mode"> commuting mode</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS "> GPS </a> </p> <a href="https://publications.waset.org/abstracts/16106/comparison-of-nitrogen-dioxide-pollution-for-different-commuting-modes-in-kaunas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> The Application of Rhizophora Wood to Design a Walking Stick for Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noppadon%20Sangwalpetch">Noppadon Sangwalpetch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to use Rhizophora wood to design a walking stick for elderly by applying its properties on strength and toughness. The research was conducted by studying the behavior and the type of walking sticks used by 70 elderly aged between 60-80 years in Pragnamdaeng Sub-District, Ampawa District, Samudsongkram Province. Questionnaires were used to collect data which were calculated to find percentage, mean, and standard deviation. The results are as follows: 1) most elderly use walking sticks due to the Osteoarthritis of the knees. 2) Most elderly need to use walking sticks because the walking sticks help to balance their positioning and prevent from stumble. 3) Most elderly agree that Rhizophora wood is suitable to make a walking stick because of its strength and toughness. In addition, it is a local plant which is available and cheap. 4) The design of the walking stick should be fine and practical with comfortable handle and the tip of the stick must not be slippery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizophora%20wood" title="rhizophora wood">rhizophora wood</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20design%20of%20a%20walking%20stick" title=" the design of a walking stick"> the design of a walking stick</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20arts" title=" visual arts"> visual arts</a> </p> <a href="https://publications.waset.org/abstracts/6688/the-application-of-rhizophora-wood-to-design-a-walking-stick-for-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Study on Pedestrian Street Reconstruction under Comfortable Continuous View: Take the Walking Streets of Zhengzhou City as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Mingxin">Liu Mingxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Streets act as the organizers of each image element on the urban spatial route, and the spatial continuity of urban streets is the basis for people to perceive the overall image of the city. This paper takes the walking space of Zhengzhou city as the research object, conducts investigation and analysis through questionnaire interviews, and selects typical walking space for in-depth study. Through the analysis of questionnaire data, the investigation and analysis of the current situation of walking space, and the analysis of pedestrian psychological behavior activities, the paper summarizes the construction suggestions of urban walking space continuity from the three aspects of the composition of walking street, the bottom interface and side interface, and the service facilities of walking space. The walking space is not only the traffic space but also the comfortable experience and the continuity of the space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=walking%20space" title="walking space">walking space</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20continuity" title=" spatial continuity"> spatial continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20psychology" title=" walking psychology"> walking psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20reconstruction" title=" space reconstruction"> space reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/186586/study-on-pedestrian-street-reconstruction-under-comfortable-continuous-view-take-the-walking-streets-of-zhengzhou-city-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Cepstrum Analysis of Human Walking Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Kurita">Koichi Kurita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20motion" title="human walking motion">human walking motion</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20measurement" title=" motion measurement"> motion measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20measurement" title=" current measurement"> current measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20induction" title=" electrostatic induction"> electrostatic induction</a> </p> <a href="https://publications.waset.org/abstracts/12335/cepstrum-analysis-of-human-walking-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Influence of Peripheral Vision Restrictions on the Walking Trajectory When Texting While Walking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Macky%20Kato">Macky Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Sato"> Takeshi Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizuki%20Nakajima"> Mizuki Nakajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One major problem related to the use of smartphones is texting while simultaneously engaging in other things, resulting in serious road accidents. Apart from texting while driving being one of the most dangerous behaviors, texting while walking is also dangerous because it narrows the pedestrians’ field of vision. However, many of pedestrian text while walking very habitually. Smartphone users often overlook the potential harm associated with this behavior even while crossing roads. The successful texting while walking make them think that they are safe. The purpose of this study is to reveal of the influence of peripheral vision to the stability of walking trajectory with texting while walking. In total, 9 healthy male university students participated in the experiment. Their mean age was 21.4 years, and standard deviation was 0.7 years. They attempted to walk 10 m in three conditions. First one is the control (CTR) condition, with no phone and no restriction. The second one is the texting while walking (TWG) with no restrictions. The third one is restriction condition (PRS), with phone restricted by experimental peripheral goggles. The horizontal distances (HDS) and directions are measured as the scale of horizontal stability. The longitudinal distances (LDS) between the footprints were measured as the scale of the walking rhythm. The results showed that the HDS of the footprints from the straight line increased as the participants walked in the TWG and PRS conditions. In the PRS condition, this tendency was particularly remarkable. In addition, the LDS between the footprints decreased in the order of the CTR, TWG, and PRS conditions. The ANOVA results showed significant differences in the three conditions with respect to HDS. The differences among these conditions showed that the narrowing of the Pedestrian's vision because of smartphone use influences the walking trajectory and rhythm. It can be said that the pedestrians seem to use their peripheral vision marginally on texting while walking. Therefore, we concluded that the texting while walking narrows the peripheral vision so danger to increase the risk of the accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peripheral%20vision" title="peripheral vision">peripheral vision</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=texting%20while%20walking" title=" texting while walking"> texting while walking</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20trajectory" title=" walking trajectory"> walking trajectory</a> </p> <a href="https://publications.waset.org/abstracts/77017/influence-of-peripheral-vision-restrictions-on-the-walking-trajectory-when-texting-while-walking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Factors Influencing Walking in Bandar Baru Bangi, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Aliyas">Zeinab Aliyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walking is known as the most common type of physical activity that helps mental and physical health of people. In the recent years, promoting walking activity in neighborhood areas and cities become as one of the important issues in terms of sustainable cities. Therefore the study aimed to investigate the influence of fear of crime and personal barriers as social and personal factor respectively on neighborhood walking. 464 questionnaires in Bandar Baru Bangi in Malaysia was distributed to collect data, and finally, 424 questionnaires were qualified to be used in the study. The Smart-PLS was used to analyze the data. The findings of the study revealed that individual barriers and fear of crime both have significant influence on the level of walking behavior in the neighborhood area. It was found that fear of crime has higher influence on walking behavior in comparison to individual factors. The finding of this study can help urban researcher and planner to know the significant influence of crime safety and individual attitudes on the level of walking activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fear%20of%20crime" title="fear of crime">fear of crime</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20walking" title=" neighborhood walking"> neighborhood walking</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20barriers" title=" personal barriers"> personal barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20neighborhood" title=" residential neighborhood"> residential neighborhood</a> </p> <a href="https://publications.waset.org/abstracts/81090/factors-influencing-walking-in-bandar-baru-bangi-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> An Analysis of Conditions for Efficiency Gains in Large ICEs Using Cycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bauer%20Peter">Bauer Peter</a>, <a href="https://publications.waset.org/abstracts/search?q=Murillo%20Jenny"> Murillo Jenny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the bounds of achievable fuel efficiency improvements in engines due to cycling between two operating points assuming a series hybrid configuration . It is shown that for linear bsfc dependencies (as a function of power), cycling is only beneficial if the average power needs are smaller than the power at the optimal bsfc value. Exact expressions for the fuel efficiency gains relative to the constant output power case are derived. This asymptotic analysis is then extended to the case where transient losses due to a change in the operating point are also considered. The case of the boundary bsfc trajectory where constant power application and cycling yield the same fuel consumption.is investigated. It is shown that the boundary bsfc locations of the second non-optimal operating points is hyperbolic. The analysis of the boundary case allows to evaluate whether for a particular engine, cycling can be beneficial. The introduced concepts are illustrated through a number of real world examples, i.e. large production Diesel engines in series hybrid configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycling" title="cycling">cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bsfc" title=" bsfc"> bsfc</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20hybrid" title=" series hybrid"> series hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20point" title=" operating point"> operating point</a> </p> <a href="https://publications.waset.org/abstracts/14203/an-analysis-of-conditions-for-efficiency-gains-in-large-ices-using-cycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Exploring the Charm of Chongqing City based on the Regional Characteristics of Mountain Walking Space: A Case Study of Yuzhong Peninsula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Danping">Liu Danping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walking space has very important historical and cultural value in ancient and even modern urban development. As far as the footpath itself is concerned, it reflects the spatial organization mode and traditional architectural construction characteristics of mountain cities. In terms of the spatial nature of streets, traditional streets contain the history of urban development and the most primitive urban life. The slow walking speed allows people to carefully perceive the space and scenery along the way. The real city life in the streets often makes people feel the cultural connotation and unique charm of the city. According to the regional characteristics of pedestrian traffic in the main urban area of Chongqing, the charm of chongqing is discussed. Based on the study of chongqing characteristic walking space elements, this paper summarizes the characteristics of Chongqing urban walking traffic, analyzes the existing problems of mountain city walking traffic, and takes Yuzhong Peninsula as an example to analyze the charm promotion strategy of urban walking traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20city" title="mountain city">mountain city</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20space" title=" walking space"> walking space</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20charm" title=" urban charm"> urban charm</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20renewal" title=" urban renewal"> urban renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20culture" title=" regional culture"> regional culture</a> </p> <a href="https://publications.waset.org/abstracts/168215/exploring-the-charm-of-chongqing-city-based-on-the-regional-characteristics-of-mountain-walking-space-a-case-study-of-yuzhong-peninsula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> A Method for Evaluating Gender Equity of Cycling from Rawls Justice Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Hamidi">Zahra Hamidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Promoting cycling, as an affordable environmentally friendly mode of transport to replace private car use has been central to sustainable transport policies. Cycling is faster than walking and combined with public transport has the potential to extend the opportunities that people can access. In other words, cycling, besides direct positive health impacts, can improve people mobility and ultimately their quality of life. Transport literature well supports the close relationship between mobility, quality of life, and, well being. At the same time inequity in the distribution of access and mobility has been associated with the key aspects of injustice and social exclusion. The pattern of social exclusion and inequality in access are also often related to population characteristics such as age, gender, income, health, and ethnic background. Therefore, while investing in transport infrastructure it is important to consider the equity of provided access for different population groups. This paper proposes a method to evaluate the equity of cycling in a city from Rawls egalitarian perspective. Since this perspective is concerned with the difference between individuals and social groups, this method combines accessibility measures and Theil index of inequality that allows capturing the inequalities ‘within’ and ‘between’ groups. The paper specifically focuses on two population characteristics as gender and ethnic background. Following Rawls equity principles, this paper measures accessibility by bikes to a selection of urban activities that can be linked to the concept of the social primary goods. Moreover, as growing number of cities around the world have launched bike-sharing systems (BSS) this paper incorporates both private and public bikes networks in the estimation of accessibility levels. Additionally, the typology of bike lanes (separated from or shared with roads), the presence of a bike sharing system in the network, as well as bike facilities (e.g. parking racks) have been included in the developed accessibility measures. Application of this proposed method to a real case study, the city of Malmö, Sweden, shows its effectiveness and efficiency. Although the accessibility levels were estimated only based on gender and ethnic background characteristics of the population, the author suggests that the analysis can be applied to other contexts and further developed using other properties, such as age, income, or health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=cycling" title=" cycling"> cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=equity" title=" equity"> equity</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a> </p> <a href="https://publications.waset.org/abstracts/67641/a-method-for-evaluating-gender-equity-of-cycling-from-rawls-justice-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Tactical Urbanism and Sustainability: Tactical Experiences in the Promotion of Active Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aline%20Fernandes%20Barata">Aline Fernandes Barata</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Sans%C3%A3o%20Fontes"> Adriana Sansão Fontes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overvaluation of the use of automobile has detrimentally affected the importance of pedestrians within the city and consequently its public spaces. As a way of treating contemporary urban paradigms, Tactical Urbanism aims to recover and activate spaces through fast and easily-applied actions that demonstrate the possibility of large-scale and long-term changes in cities. Tactical interventions have represented an important practice of redefining public spaces and urban mobility. The concept of Active Transportation coheres with the idea of sustainable urban mobility, characterizing the means of transportation through human propulsion, such as walking and cycling. This paper aims to debate the potential of Tactical Urbanism in promoting Active Transportation by revealing opportunities of transformation in the urban space of contemporary cities through initiatives that promote the protection and valorization of the presence of pedestrians and cyclists in cities, and that subvert the importance of motorized vehicles. In this paper, we present the character of these actions in two different ways: when they are used as tests for permanent interventions and when they have pre-defined start and end periods. Using recent initiatives to illustrate, we aim to discuss the role of small-scale actions in promoting and incentivizing a more active, healthy, sustainable and responsive urban way of life, presenting how some of them have developed through public policies. For that, we will present some examples of tactical actions that illustrate the encouragement of Active Transportation and trials to balance the urban opportunities for pedestrians and cyclists. These include temporary closure of streets, the creation of new alternatives and more comfortable areas for walking and cycling, and the subversion of uses in public spaces where the usage of cars are predominant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tactical%20urbanism" title="tactical urbanism">tactical urbanism</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20transportation" title=" active transportation"> active transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20mobility" title=" sustainable mobility"> sustainable mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=non-motorized%20means" title=" non-motorized means"> non-motorized means</a> </p> <a href="https://publications.waset.org/abstracts/73983/tactical-urbanism-and-sustainability-tactical-experiences-in-the-promotion-of-active-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20%20Ebrahimi">Nafiseh Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautham%20%20Muthukumaran"> Gautham Muthukumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Jafari"> Amir Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arm%20swing" title="arm swing">arm swing</a>, <a href="https://publications.waset.org/abstracts/search?q=MET%20%28metabolic%20equivalent%20of%20a%20task%29" title=" MET (metabolic equivalent of a task)"> MET (metabolic equivalent of a task)</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimeter" title=" calorimeter"> calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20consumption" title=" oxygen consumption"> oxygen consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20body%20quasi-passive%20exoskeleton" title=" upper body quasi-passive exoskeleton"> upper body quasi-passive exoskeleton</a> </p> <a href="https://publications.waset.org/abstracts/102630/reduction-in-the-metabolic-cost-of-human-walking-gaits-using-quasi-passive-upper-body-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Promoting Physical Activity through Urban Active Environments: Learning from Practice and Policy Implementation in the EU Space Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosina%20U.%20Ndukwe">Rosina U. Ndukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20Crone"> Diane Crone</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Cavill"> Nick Cavill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active transport (i.e. walking to school, cycle to work schemes etc.) is an effective approach with multiple social and environmental benefits for transforming urban environments into active urban environments. Although walking and cycling often remain on the margins of urban planning and infrastructure, there are new approaches emerging, along with policy intervention relevant for the creation of sustainable urban active environments conductive to active travel, increasing physical activity levels of involved communities and supporting social inclusion through more active participation. SPAcE - Supporting Policy and Action for Active Environments is a 3 year Erasmus+ project that aims to integrate active transport programmes into public policy across the EU. SPAcE focuses on cities/towns with recorded low physical activity levels to support the development of active environments in 5 sites: Latvia [Tukums], Italy [Palermo], Romania [Brasov], Spain [Castilla-La Mancha] and Greece [Trikala]. The first part of the project involved a review of good practice including case studies from across the EU and project partner countries. This has resulted in the first output from the project, an evidence of good practice summary with case study examples. In the second part of the project, working groups across the 5 sites have carried out co-production to develop Urban Active Environments (UActivE) Action Plans aimed at influencing policy and practice for increasing physical activity primarily through the use of cycling and walking. Action plans are based on international evidence and guidance for healthy urban planning. Remaining project partners include Universities (Gloucestershire, Oxford, Zurich, Thessaly) and Fit for Life programme (National physical activity promotion program, Finland) who provide support and advice incorporating current evidence, healthy urban planning and mentoring. Cooperation and co-production with public health professionals, local government officers, education authorities and transport agencies has been a key approach of the project. The third stage of the project has involved training partners in the WHO HEAT tool to support the implementation of the Action Plans. Project results show how multi-agency, transnational collaboration can produce real-life Action Plans in five EU countries, based on published evidence, real-life experience, consultation and collaborative working with other organisations across the EU. Learning from the processes adopted within this project will demonstrate how public health, local government and transport agencies across the EU, can work together to create healthy environments that have the aim of facilitating active behaviour, even in times of constrained public budgets. The SPAcE project has captured both the challenges and solutions for increasing population physical activity levels, health and wellness in urban spaces and translating evidence into policy and practice ensuring innovation at policy level. Funding acknowledgment: SPAcE (www.activeenvironments.eu) is co-funded by the Sport action of the ERASMUS+ programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20plans" title="action plans">action plans</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20transport" title=" active transport"> active transport</a>, <a href="https://publications.waset.org/abstracts/search?q=SPAcE" title=" SPAcE"> SPAcE</a>, <a href="https://publications.waset.org/abstracts/search?q=UActivE%20urban%20active%20environments" title=" UActivE urban active environments"> UActivE urban active environments</a>, <a href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling" title=" walking and cycling"> walking and cycling</a> </p> <a href="https://publications.waset.org/abstracts/69838/promoting-physical-activity-through-urban-active-environments-learning-from-practice-and-policy-implementation-in-the-eu-space-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koichi%20Kurita">Koichi Kurita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20motion" title="human walking motion">human walking motion</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20control" title=" access control"> access control</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20induction" title=" electrostatic induction"> electrostatic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20monitoring" title=" alarm monitoring"> alarm monitoring</a> </p> <a href="https://publications.waset.org/abstracts/13589/non-contact-human-movement-monitoring-technique-for-security-control-system-based-2n-electrostatic-induction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luen%20Chow%20Chan">Luen Chow Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bike%20frame%20sizes" title="bike frame sizes">bike frame sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=cadence%20rate" title=" cadence rate"> cadence rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pedaling%20power" title=" pedaling power"> pedaling power</a>, <a href="https://publications.waset.org/abstracts/search?q=seat%20height" title=" seat height"> seat height</a> </p> <a href="https://publications.waset.org/abstracts/121431/significance-of-bike-frame-geometric-factors-for-cycling-efficiency-and-muscle-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung%20Hyun%20Goh">Chung Hyun Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Yazdanshenas"> Armin Yazdanshenas</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Neil%20Dong"> X. Neil Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Tai%20Wang"> Yong Tai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20electrical%20stimulation" title="functional electrical stimulation">functional electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitative%20walking" title=" rehabilitative walking"> rehabilitative walking</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20walking%20training%20device" title=" robotic walking training device"> robotic walking training device</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injuries" title=" spinal cord injuries"> spinal cord injuries</a> </p> <a href="https://publications.waset.org/abstracts/127966/rehabilitative-walking-the-development-of-a-robotic-walking-training-device-using-functional-electrical-stimulation-for-treating-spinal-cord-injuries-and-lower-limb-paralysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> A Research Review of Cycling Suitability Assessment for Mountainous Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Fu">Xiaofeng Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper begins with the deconstruction of the localization of China's bicycle renaissance. Then think about how to scientifically plan bicycle traffic in a sustainable way in typed cities, especially in mountainous cities, because they need to respond to more serious geographical issues. Therefore, by sorting out the international research on bicycle traffic in mountainous cities, bike-ability is summarized as a prevalent qualitative analysis medium. Then this paper lists the influencing factors of likeability, the general research framework, and responds to the common problem of mountain cities, that is, the treatment of road longitudinal slopes, to assist urban managers in assessing whether the city's complex terrain is suitable for cycling and identifying possible improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20planning" title="traffic planning">traffic planning</a>, <a href="https://publications.waset.org/abstracts/search?q=bikeability" title=" bikeability"> bikeability</a>, <a href="https://publications.waset.org/abstracts/search?q=cycling%20suitability" title=" cycling suitability"> cycling suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=mountainous%20cities" title=" mountainous cities"> mountainous cities</a> </p> <a href="https://publications.waset.org/abstracts/167642/a-research-review-of-cycling-suitability-assessment-for-mountainous-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Pedestrian Behavior at Signalized Intersections in Izmir, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Onelcin">Pelin Onelcin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalcin%20Alver"> Yalcin Alver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the walking speed and delays of pedestrians at two signalized intersections where the vehicle speed limits are different. Data was collected during afternoon and evening peak hours on November 15, 2013 and on December 6, 2013. Observational surveys were conducted by video recording technique. Pedestrians were categorized according to their gender, group size, stuff carrying condition and age. Results showed that individuals walked fastest when the group size is taken into consideration. The smallest 15th percentile walking speed was seen in the oldest age group (over 60 years old). Pedestrians experienced high delays both at roadsides and at medians. Factors affecting the pedestrian walking speed were analyzed by ANOVA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20delay" title="pedestrian delay">pedestrian delay</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20walking%20speed" title=" pedestrian walking speed"> pedestrian walking speed</a>, <a href="https://publications.waset.org/abstracts/search?q=signalized%20crosswalk" title=" signalized crosswalk"> signalized crosswalk</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a> </p> <a href="https://publications.waset.org/abstracts/10600/pedestrian-behavior-at-signalized-intersections-in-izmir-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Walking Progression in Ambulatory Individuals with Spinal Cord Injury Who Daily Walked with a Walking Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makamas%20Kumprou">Makamas Kumprou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipatana%20Amatachaya"> Pipatana Amatachaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugalya%20Amatachaya"> Sugalya Amatachaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiwabhorn%20Thaweewannakij"> Thiwabhorn Thaweewannakij</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeda%20Arayawichanon"> Preeda Arayawichanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many individuals with spinal cord injury (SCI) need an ambulatory assistive device (AAD) to promote their independence and experience of task-specific walking practice. Without a periodic follow-up for their walking progression, however, many individuals may use the same AAD even though up to 66% of them had the potential to progress walking ability. This may distort their optimal ability and increase the possibility of having negative impacts due to the long-lasting used of an AAD. However, these findings were cross-sectionally collected without data confirmation for the benefit or negative impacts of those who changed the types of AAD used. Therefore, this study prospectively assessed the proportion of ambulatory individuals with SCI who were able to progress their walking ability as determined using a type of AAD, and the changes of their functional ability as well as the incidence of falls over 6 months. Twenty-four subjects with SCI who daily walked with an AAD were involved in the study for 2 visits over 6 months. At the first visit (baseline assessments), the subjects were assessed for their spatiotemporal variables (i.e., cadence, step length, stride length, and step symmetry) and walking ability using the 10-meter walk test (10MWT). Then, they were assessed for the possibility of their walking progression as determined using the ability of walking with the least support AAD with no more than contact guarding assist. Those who were capable of changing an AAD were trained for the ability to walk with a new AAD. Thereafter, all subjects were monthly monitored for incidence of fall over 6 months. At the second visit (after 6 months followed-up), subjects were reassessed for their spatiotemporal variables and 10MWT. The findings indicated that, of all 24 subjects, 8 subjects (33.3%) were able to walk with less support AAD than their usual one. The walking cadence, step length symmetry, and walking ability of these subjects improved significantly greater than those who walked with the same AAD (p < 0.05). Among these subjects, one subject (12.5%) reported fell (3 times) during the follow-up period, whereas 5 subjects (31.3%) who walked with the same AAD experienced at least one fall (range 1 – 16 times). The findings indicated that a large proportion of ambulatory individuals with SCI who daily walked with an AAD could progress their walking ability, whereby their walking ability and safety also significantly improved after they walked with an optimal AAD. The findings suggest the need for a periodic follow-up for an appropriate AAD used for these individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=walking%20device" title="walking device">walking device</a>, <a href="https://publications.waset.org/abstracts/search?q=walker" title=" walker"> walker</a>, <a href="https://publications.waset.org/abstracts/search?q=crutches" title=" crutches"> crutches</a>, <a href="https://publications.waset.org/abstracts/search?q=cane" title=" cane"> cane</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation "> rehabilitation </a> </p> <a href="https://publications.waset.org/abstracts/115359/walking-progression-in-ambulatory-individuals-with-spinal-cord-injury-who-daily-walked-with-a-walking-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Assessing the Walkability and Urban Design Qualities of Campus Streets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhehao%20Zhang">Zhehao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=walkability" title="walkability">walkability</a>, <a href="https://publications.waset.org/abstracts/search?q=streetscapes" title=" streetscapes"> streetscapes</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20activity" title=" pedestrian activity"> pedestrian activity</a>, <a href="https://publications.waset.org/abstracts/search?q=walk%20score" title=" walk score"> walk score</a> </p> <a href="https://publications.waset.org/abstracts/127512/assessing-the-walkability-and-urban-design-qualities-of-campus-streets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Passenger Movement Pattern during Ship Evacuation Considering the Combined Effect of Ship Heeling and Trim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinlu%20Sun">Jinlu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Siuming%20Lo"> Siuming Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large passenger ship, especially luxury cruise, is one of the most prevalent means of marine transportation and tourism nowadays. In case of an accident, an effective evacuation would be the ultimate way to minimize the consequence. Ship heeling and trim has a considerable influence on passenger walking speed and posture during ship evacuation. To investigate passenger movement pattern under the combined effect of ship heeling and trim, a ship corridor simulator was developed. Both fast and freely individual walking experiments by male and female experimental subjects under heeling and trim conditions were conducted and recorded therein. It is found that routes of experimental subjects would change due to the heeling and trim angles, although they always walk along the right side because of cultural factors. Experimental subjects would also change their posture to adapt the combined heeling and trim conditions, such as leaning forward, adopting larger arm swaying, shorter and more frequent steps. While for individual walking speed, the speed would decrease with the increasing heeling and trim angles. But the maximum individual walking speed is achieved at heeling angle of 0° with trim angle ranging from -15° to -5 °, instead of on level ground, which may be attributable to the effect of the gravitational acceleration. Female is approximately 10% slower than male due to the discrepancy in physical quality. Besides, individual walking speed shows similar trends in both fast and freely walking modes, and the speed value in freely walking mode is about 78% of that in fast walking mode under each experimental condition. Furthermore, to designate the movement pattern of passengers in heeling and trim conditions, a model of the walking speed reduction was proposed. This work would provide guidance on the development of evacuation models and the design of evacuation facilities on board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evacuation" title="evacuation">evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=heeling" title=" heeling"> heeling</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20walking%20speed" title=" individual walking speed"> individual walking speed</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20corridor%20simulator" title=" ship corridor simulator"> ship corridor simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=trim" title=" trim"> trim</a> </p> <a href="https://publications.waset.org/abstracts/74724/passenger-movement-pattern-during-ship-evacuation-considering-the-combined-effect-of-ship-heeling-and-trim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Modeling and Analysis of a Cycling Prosthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Tolentino">John Tolentino</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seok%20Park"> Yong Seok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter &amp; Schmidt&rsquo;s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cycling" title=" Cycling"> Cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosthetic%20design" title=" Prosthetic design"> Prosthetic design</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20design." title=" Synthetic design."> Synthetic design.</a> </p> <a href="https://publications.waset.org/abstracts/123679/modeling-and-analysis-of-a-cycling-prosthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Shi">Sun Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Cheng"> Sun Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crowded%20severity" title="crowded severity">crowded severity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20preference" title=" pedestrian preference"> pedestrian preference</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20space%20design" title=" urban space design"> urban space design</a> </p> <a href="https://publications.waset.org/abstracts/82996/agent-based-modeling-of-pedestrian-corridor-congestion-on-the-characteristics-of-physical-space-form" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Cepeda">Magda Cepeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Frances%20Hodgson"> Frances Hodgson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Jopson"> Ann Jopson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycling" title="cycling">cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20variable%20model" title=" latent variable model"> latent variable model</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20planned%20behaviour" title=" theory of planned behaviour"> theory of planned behaviour</a> </p> <a href="https://publications.waset.org/abstracts/59532/extending-the-theory-of-planned-behaviour-to-predict-intention-to-commute-by-bicycle-case-study-of-mexico-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Effect of Pole Weight on Nordic Walking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Sato">Takeshi Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizuki%20Nakajima"> Mizuki Nakajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Macky%20Kato"> Macky Kato</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoji%20Igawa"> Shoji Igawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (&plusmn;1.0) years, body mass = 61.4 (&plusmn;3.6) kg, height = 170.3 (&plusmn;4.3) cm] and three healthy women [age = 22.7 (&plusmn;2.9) years, body mass = 53.0 (&plusmn;1.7) kg, height = 156.7 (&plusmn;4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO<sub>2</sub>), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p &lt; 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p &lt; 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nordic%20walking" title="Nordic walking">Nordic walking</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyogram" title=" electromyogram"> electromyogram</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=RPE" title=" RPE"> RPE</a> </p> <a href="https://publications.waset.org/abstracts/77579/effect-of-pole-weight-on-nordic-walking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Cycling Usage and Determinants on University Campus in Ghana: The Case of Kwame Nkrumah University of Science and Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Anarfi%20Bofah">Nicholas Anarfi Bofah</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Damsere-%20Derry"> James Damsere- Derry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is increasing interest among institutions, governments, and international organisations to combat congestion, reduce contribution to green gases and provide sustainable urban transportation. College campuses are a preeminent setting for promoting active commuting to ameliorate a community's healthy lifestyle. Cycling is an important physical activity and has a long-term effect on health, and it is considered one of the top five interventions to reduce the prevalence of non-communicable diseases. The main objectives of the research were: (i) to identify students’ attitudes and behavior toward cycling usage, (ii) to identify barriers and opportunities for cycling on a university campus, and (iii) to construct tangible policy recommendations for promoting cycling in the vicinity of the university. The data used in this study were obtained from a survey conducted among students at the Kwame Nkrumah University of Science and Technology (KNUST) in Kumasi between May 2022 and September 2022. A convenient sampling method was used to recruit and interview 398 participants. Two survey assistants who are former students of the university were engaged to administer the questionnaires randomly to students at the selected locations. Descriptive statistics were employed in the analysis of the data. Out of the 398 questionnaires, bicycle ridership and ownership among university students were 57% and 39%, respectively. Generally, the desire to use a bicycle as a mode of transport on campus was 36%. The desire to use a bicycle on campus was more prevalent among males 41% compared to females 30%. There is a high potential for increasing bicycle use among students. Recommendations include the provision of bicycle lanes, public education on the use of bicycles, and a campus bicycle-sharing program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=cycling" title=" cycling"> cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20campus" title=" university campus"> university campus</a>, <a href="https://publications.waset.org/abstracts/search?q=bicycle" title=" bicycle"> bicycle</a> </p> <a href="https://publications.waset.org/abstracts/169809/cycling-usage-and-determinants-on-university-campus-in-ghana-the-case-of-kwame-nkrumah-university-of-science-and-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Safaei">Nima Safaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Masoud"> Arezoo Masoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei"> Babak Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=walking" title=" walking"> walking</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20trips" title=" work trips"> work trips</a> </p> <a href="https://publications.waset.org/abstracts/89469/factors-that-influence-choice-of-walking-mode-in-work-trips-case-study-of-rasht-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> The Relationship between Walking and Sleep Quality among Taiwanese High School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Ruei%20Tsen">Lu Ruei Tsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among Taiwanese high school students today, as academic stress increases during adolescence, it has become a major factor contributing to poor sleep, resulting in adverse impacts on mental health and academic performance. This study investigates the relationship between walking and sleep quality among Taiwanese high school students by utilizing Apple Watches for data collection. Addressing concerns over adolescents' sleep patterns due to academic stress and digital distractions, this research fills a gap in understanding the specific demographic within the Taiwanese context. Employing a quantitative approach, data were collected from 23 participants aged 15 to 18, focusing on their walking habits tracked by Apple Watches and sleep quality measured by the Pittsburgh Sleep Quality Index (PSQI). The findings suggest a positive correlation between walking and sleep quality, particularly among females. However, unexpected results, such as disparities in sleep quality among different age groups, highlight the complexity of factors influencing sleep patterns. While limitations exist, including potential confounding variables and sample size, this study provides valuable insights for future research. Recommendations for further research include exploring gender differences and conducting longitudinal studies across diverse demographics. Overall, this research indicates that encouraging adolescents to be more physically active, like walking, can enhance sleep quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep%20quality" title="sleep quality">sleep quality</a>, <a href="https://publications.waset.org/abstracts/search?q=PSQI" title=" PSQI"> PSQI</a>, <a href="https://publications.waset.org/abstracts/search?q=walking" title=" walking"> walking</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title=" wearable device"> wearable device</a> </p> <a href="https://publications.waset.org/abstracts/191305/the-relationship-between-walking-and-sleep-quality-among-taiwanese-high-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Systematic Review and Meta-analysis Investigating the Efficacy of Walking-based Aerobic Exercise Interventions to Treat Postpartum Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Pentland">V. Pentland</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Spilsbury"> S. Spilsbury</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Biswas"> A. Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Mottola"> M. F. Mottola</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Paplinskie"> S. Paplinskie</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mitchell"> M. S. Mitchell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postpartum depression (PPD) is a form of major depressive disorder that afflicts 10–22% of mothers worldwide. Rising demands for traditional PPD treatment options (e.g., psychiatry), especially in the context of the COVID-19 pandemic, are increasingly difficult to meet. More accessible treatment options (e.g., walking) are needed. The objective of this review is to determine the impact of walking on PPD severity. A structured search of seven electronic databases for randomised controlled trials published between 2000 and July 29, 2021, was completed. Studies were included if walking was the sole or primary aerobic exercise modality. A random-effects meta-analysis was conducted for studies reporting PPD symptoms measured using a clinically validated tool. A simple count of positive/null effect studies was undertaken as part of a narrative summary. Five studies involving 242 participants were included (mean age=~28.9 years; 100% with mild-to-moderate depression). Interventions were 12 (n=4) and 24 (n=1) weeks long. Each assessed PPD severity using the Edinburgh Postnatal Depression Scale (EPDS) and was included in the meta-analysis. The pooled effect estimate suggests that relative to controls, walking yielded clinically significant decreases in mean EPDS scores from baseline to intervention end (pooled MD=-4.01; 95% CI:-7.18 to -0.84, I2=86%). The narrative summary provides preliminary evidence that walking-only, supervised, and group-based interventions, including 90-120+ minutes/week of moderate-intensity walking, may produce greater EPDS reductions. While limited by a relatively small number of included studies, pooled effect estimates suggest walking may help mothers manage PPD. This is the first time walking as a treatment for PPD, an exercise modality that uniquely addresses many barriers faced by mothers has been summarized in a systematic way. Trial registration: PROSPERO (CRD42020197521) on August 16th, 2020 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postpartum" title="postpartum">postpartum</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=walking" title=" walking"> walking</a> </p> <a href="https://publications.waset.org/abstracts/142003/systematic-review-and-meta-analysis-investigating-the-efficacy-of-walking-based-aerobic-exercise-interventions-to-treat-postpartum-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=walking%20and%20cycling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10