CINXE.COM
Search results for: alternating magnetic field
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alternating magnetic field</title> <meta name="description" content="Search results for: alternating magnetic field"> <meta name="keywords" content="alternating magnetic field"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alternating magnetic field" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alternating magnetic field"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9239</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alternating magnetic field</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9239</span> Generating Links That Are Both Quasi-Alternating and Almost Alternating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Abchir">Hamid Abchir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabak2"> Mohammed Sabak2</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We construct an infinite family of links which are both almost alternating and quasi-alternating from a given either almost alternating diagram representing a quasi-alternating link, or connected and reduced alternating tangle diagram. To do that we use what we call a dealternator extension which consists in replacing the dealternator by a rational tangle extending it. We note that all non-alternating and quasi-alternating Montesinos links can be obtained in that way. We check that all the obtained quasi-alternating links satisfy Conjecture 3.1 of Qazaqzeh et al. (JKTR 22 (6), 2013), that is the crossing number of a quasi-alternating link is less than or equal to its determinant. We also prove that the converse of Theorem 3.3 of Qazaqzeh et al. (JKTR 24 (1), 2015) is false. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi-alternating%20links" title="quasi-alternating links">quasi-alternating links</a>, <a href="https://publications.waset.org/abstracts/search?q=almost%20alternating%20links" title=" almost alternating links"> almost alternating links</a>, <a href="https://publications.waset.org/abstracts/search?q=tangles" title=" tangles"> tangles</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants" title=" determinants"> determinants</a> </p> <a href="https://publications.waset.org/abstracts/135689/generating-links-that-are-both-quasi-alternating-and-almost-alternating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9238</span> Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Zheng">Yi Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20718" title=" inconel 718"> inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field" title=" alternating magnetic field"> alternating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=laves%20phase" title=" laves phase"> laves phase</a> </p> <a href="https://publications.waset.org/abstracts/152412/surface-morphology-refinement-and-laves-phase-control-of-inconel-718-during-plasma-arc-additive-manufacturing-by-alternating-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9237</span> The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natheer%20Alatawneh">Natheer Alatawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternating%20core%20losses" title="alternating core losses">alternating core losses</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20machines" title=" electric machines"> electric machines</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20core%20losses" title=" rotational core losses"> rotational core losses</a> </p> <a href="https://publications.waset.org/abstracts/64360/the-influence-of-different-flux-patterns-on-magnetic-losses-in-electric-machine-cores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9236</span> Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Chen">P. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Chang"> C. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Peng"> Y. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Wu"> J. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Jan"> D. J. Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20magnetic%20field" title=" oblique magnetic field"> oblique magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20magnetic%20field" title=" tangential magnetic field"> tangential magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52606/analytical-model-for-vacuum-cathode-arcs-in-an-oblique-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9235</span> Magneto-Electric Behavior a Couple Aluminum / Steel Xc48</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud">A. Mekroud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khemis"> A. Khemis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mecibah"> M. S. Mecibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization%20of%20the%20surfaces" title="structural characterization of the surfaces">structural characterization of the surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20and%20wear%20debris" title=" oxides and wear debris"> oxides and wear debris</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction "> X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/28068/magneto-electric-behavior-a-couple-aluminum-steel-xc48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9234</span> Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20Patil-Sen">Yogita Patil-Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title="drug delivery">drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=superparamagnetic%20iron%20oxide%20nanoparticles%20%28SPIONS%29" title=" superparamagnetic iron oxide nanoparticles (SPIONS)"> superparamagnetic iron oxide nanoparticles (SPIONS)</a> </p> <a href="https://publications.waset.org/abstracts/70301/lipid-coated-magnetic-nanoparticles-for-frequency-triggered-drug-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9233</span> Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao-Li%20Liu">Xiao-Li Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling-Yun%20Zhao"> Ling-Yun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing-Jie%20Liang"> Xing-Jie Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Ming%20Fan"> Hai-Ming Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20hyperthermia" title=" magnetic hyperthermia"> magnetic hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/73963/optimization-of-surface-coating-on-magnetic-nanoparticles-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9232</span> Hybrid Bimodal Magnetic Force Microscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fern%C3%A1ndez-Brito%20David">Fernández-Brito David</a>, <a href="https://publications.waset.org/abstracts/search?q=Lopez-Medina%20Javier%20Alonso"> Lopez-Medina Javier Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Murillo-Bracamontes%20Eduardo%20Antonio"> Murillo-Bracamontes Eduardo Antonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Palomino-Ovando%20Martha%20Alicia"> Palomino-Ovando Martha Alicia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gervacio-Arciniega%20Jos%C3%A9%20Juan"> Gervacio-Arciniega José Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Force Microscopy (MFM) is an Atomic Force Microscopy (AFM) technique that characterizes, at a nanometric scale, the magnetic properties of ferromagnetic materials. Conventional MFM works by scanning in two different AFM modes. The first one is tapping mode, in which the cantilever has short-range force interactions with the sample, with the purpose to obtain the topography. Then, the lift AFM mode starts, raising the cantilever to maintain a fixed distance between the tip and the surface of the sample, only interacting with the magnetic field forces of the sample, which are long-ranged. In recent years, there have been attempts to improve the MFM technique. Bimodal MFM was first theoretically developed and later experimentally proven. In bimodal MFM, the AFM internal piezoelectric is used to cause the cantilever oscillations in two resonance modes simultaneously, the first mode detects the topography, while the second is more sensitive to the magnetic forces between the tip and the sample. However, it has been proven that the cantilever vibrations induced by the internal AFM piezoelectric ceramic are not optimal, affecting the bimodal MFM characterizations. Moreover, the Secondary Resonance Magnetic Force Microscopy (SR-MFM) was developed. In this technique, a coil located below the sample generates an external magnetic field. This alternating magnetic field excites the cantilever at a second frequency to apply the Bimodal MFM mode. Nonetheless, for ferromagnetic materials with a low coercive field, the external field used in SR-MFM technique can modify the magnetic domains of the sample. In this work, a Hybrid Bimodal MFM (HB-MFM) technique is proposed. In HB-MFM, the bimodal MFM is used, but the first resonance frequency of the cantilever is induced by the magnetic field of the ferromagnetic sample due to its vibrations caused by a piezoelectric element placed under the sample. The advantages of this new technique are demonstrated through the preliminary results obtained by HB-MFM on a hard disk sample. Additionally, traditional two pass MFM and HB-MFM measurements were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20force%20microscopy" title="magnetic force microscopy">magnetic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetism" title=" magnetism"> magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=bimodal%20MFM" title=" bimodal MFM"> bimodal MFM</a> </p> <a href="https://publications.waset.org/abstracts/172742/hybrid-bimodal-magnetic-force-microscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9231</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9230</span> Mass Transfer in Reactor with Magnetic Field Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20magnetic%20field" title=" oscillating magnetic field"> oscillating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title=" static magnetic field"> static magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/140936/mass-transfer-in-reactor-with-magnetic-field-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9229</span> Magnetic Field Induced Tribological Properties of Magnetic Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Trivedi">Kinjal Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20V.%20Upadhyay"> Ramesh V. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20ball%20tester" title="four ball tester">four ball tester</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid" title=" magnetic fluid"> magnetic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolubricant" title=" nanolubricant"> nanolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/88005/magnetic-field-induced-tribological-properties-of-magnetic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9228</span> Effects of Magnetic Field Strength on Fluid Flow Behavior in a Constricted Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Javadzadegan">Ashkan Javadzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitak%20Javadzadegan"> Aitak Javadzadegan</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Fakhim"> Babak Fakhim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of possible ways to retard movement of fluid is through applying an external magnetic field. In this regard, this study is focused on the effect of a uniform transverse magnetic field on fluid flow behavior inside a channel with a local symmetric constriction. Also, Ellis Non-Newtonian model is implemented to address the effects of shear-dependent viscosity. According to the results, the flow separation downstream of the constriction can be controlled by applying an external magnetic field and/or manipulating the shear-thinning degree of fluid. It is also demonstrated that pressure drop increases by an increase in the strength of the magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian" title=" non-Newtonian"> non-Newtonian</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a> </p> <a href="https://publications.waset.org/abstracts/3080/effects-of-magnetic-field-strength-on-fluid-flow-behavior-in-a-constricted-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9227</span> Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Roy">Arnab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20hall%20effect" title="planar hall effect">planar hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=permalloy" title=" permalloy"> permalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=NiFe" title=" NiFe"> NiFe</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20ablation" title=" pulsed laser ablation"> pulsed laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20magnetic%20field%20sensor" title=" low magnetic field sensor"> low magnetic field sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20sensitivity%20magnetic%20field%20sensor" title=" high sensitivity magnetic field sensor"> high sensitivity magnetic field sensor</a> </p> <a href="https://publications.waset.org/abstracts/17435/development-of-a-very-high-sensitivity-magnetic-field-sensor-based-on-planar-hall-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9226</span> A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aminfar">H. Aminfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadpourfard"> M. Mohammadpourfard</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khajeh"> K. Khajeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDL%20surface%20concentration%20%28LSC%29" title="LDL surface concentration (LSC)">LDL surface concentration (LSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20wall" title=" porous wall"> porous wall</a> </p> <a href="https://publications.waset.org/abstracts/38292/a-numerical-simulation-of-arterial-mass-transport-in-presence-of-magnetic-field-links-to-atherosclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9225</span> The Effect of Extremely Low Frequency Magnetic Field on Rats Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Abdalla">Omar Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfatah%20Ahmed"> Abdelfatah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mustafa"> Ahmed Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazem%20Eldouma"> Abdelazem Eldouma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonionizing%20radiation" title="nonionizing radiation">nonionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysics" title=" biophysics"> biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/6126/the-effect-of-extremely-low-frequency-magnetic-field-on-rats-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9224</span> Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Goshayeshi">H. R. Goshayeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansori"> M. Mansori</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmady"> M. Ahmady</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhaloyi"> M. Zhaloyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oscillating%20heat%20pipe" title="copper oscillating heat pipe">copper oscillating heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe2O3" title=" Fe2O3"> Fe2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angles" title=" inclination angles"> inclination angles</a> </p> <a href="https://publications.waset.org/abstracts/34708/experimental-investigation-with-different-inclination-angles-on-copper-oscillating-heat-pipes-performance-using-fe2o3-kerosene-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9223</span> Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Su">Chao-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Sheng%20Wu"> Pei-Sheng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Kuo"> Yu-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin-Chou%20Huang"> Yin-Chou Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan-Yueh%20Chen"> Tan-Yueh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jefunnie%20Matahum"> Jefunnie Matahum</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Rong%20Ger"> Tzong-Rong Ger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particles" title="magnetic particles">magnetic particles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoresistive%20sensors" title=" magnetoresistive sensors"> magnetoresistive sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%EF%AC%82uidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/abstracts/65704/integration-of-magnetoresistance-sensor-in-microfluidic-chip-for-magnetic-particles-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9222</span> Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud">Brahim Mahfoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20melt" title=" silicon melt"> silicon melt</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocapillary" title=" thermocapillary"> thermocapillary</a> </p> <a href="https://publications.waset.org/abstracts/174986/three-dimensional-steady-flow-in-thin-annular-pools-of-silicon-melt-under-a-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9221</span> Design and Analysis of Shielding Magnetic Field for Active Space Radiation Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaoyan%20Huang">Chaoyan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongxia%20Zheng"> Hongxia Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For deep space exploration and long duration interplanetary manned missions, protection of astronauts from cosmic radiation is an unavoidable problem. However, passive shielding can be little effective for protecting particles which energies are greater than 1GeV/nucleon. In this study, active magnetic protection method is adopted. Taking into account the structure and size of the end-cap, eight shielding magnetic field configurations are designed based on the Hoffman configuration. The shielding effect of shielding magnetic field structure, intensity B and thickness L on H particles with 2GeV energy is compared by test particle simulation. The result shows that the shielding effect is better with the linear type magnetic field structure in the end-cap region. Furthermore, two magnetic field configurations with better shielding effect are investigated through H and He galactic cosmic spectra. And the shielding effect of the linear type configuration adopted in the barrel and end-cap regions is best. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galactic%20cosmic%20rays" title="galactic cosmic rays">galactic cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20protection" title=" active protection"> active protection</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20magnetic%20field%20configuration" title=" shielding magnetic field configuration"> shielding magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20effect" title=" shielding effect"> shielding effect</a> </p> <a href="https://publications.waset.org/abstracts/108740/design-and-analysis-of-shielding-magnetic-field-for-active-space-radiation-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9220</span> Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeparna%20Majee">Sreeparna Majee</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Shit"> G. C. Shit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics" title="magnetohydrodynamics">magnetohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20flow" title=" blood flow"> blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/54085/numerical-simulation-of-magnetohydrodynamic-mhd-blood-flow-in-a-stenosed-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9219</span> Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Fallah">Hooman Fallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title="simulation study">simulation study</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20alternating%20gas%20injection" title=" water alternating gas injection"> water alternating gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured%20reservoirs" title=" fractured reservoirs"> fractured reservoirs</a> </p> <a href="https://publications.waset.org/abstracts/27168/field-scale-simulation-study-of-miscible-water-alternating-co2-injection-process-in-fractured-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9218</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9217</span> QI Wireless Charging a Scope of Magnetic Inductive Coupling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreenesh%20Shashidharan">Sreenesh Shashidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Gaikwad"> Umesh Gaikwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductive%20electric%20power" title="inductive electric power">inductive electric power</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title=" electromagnetic induction"> electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20flux" title=" magnetic flux"> magnetic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/20622/qi-wireless-charging-a-scope-of-magnetic-inductive-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9216</span> Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Kumar%20Reddy">Siva Kumar Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwesha%20Mukherjee"> Anwesha Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Abha%20Misra"> Abha Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption%20capability%20and%20viscosity" title=" energy absorption capability and viscosity"> energy absorption capability and viscosity</a> </p> <a href="https://publications.waset.org/abstracts/13613/magnetic-field-induced-mechanical-behavior-of-fluid-filled-carbon-nanotube-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9215</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9214</span> Functionalized SPIO Conjugated with Doxorubicin for Tumor Diagnosis and Chemotherapy Enhanced by Applying Magnetic Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Chin%20Liang">Po-Chin Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chu%20Chen"> Yung-Chu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Feng%20Chiang"> Chi-Feng Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ping%20Lin"> Yun-Ping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Yuan%20Hsieh"> Wen-Yuan Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Li%20Lin"> Win-Li Lin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to develop super paramagnetic iron oxide (SPIO) nano-particles comprised of a magnetic Fe3O4 core and a shell of aqueous stable self-doped polyethylene glycol (PEG) with a high loading of doxorubicin (SPIO-PEG-D) for tumor theranostics. The in-vivo MRI study showed that there was a stronger T2-weighted signal enhancement for the group under a magnetic field, and hence it indicated that this group had a better accumulation of SPIO-PEG than the group without a magnetic field. In the anticancer evaluation of SPIO-PEG-D, the group with a magnetic field displayed a significantly smaller tumor size than the group without. The overall results show that SPIO-PEG-D nanoparticles have the potential for the application of MRI/monitoring chemotherapy and the therapy can be locally enhanced by applying an external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20paramagnetic%20iron%20oxide%20nano%20particles" title="super paramagnetic iron oxide nano particles">super paramagnetic iron oxide nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title=" chemotherapy"> chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fields" title=" magnetic fields"> magnetic fields</a> </p> <a href="https://publications.waset.org/abstracts/22716/functionalized-spio-conjugated-with-doxorubicin-for-tumor-diagnosis-and-chemotherapy-enhanced-by-applying-magnetic-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9213</span> Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajahat%20Hussain%20Khan">Wajahat Hussain Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zubair%20Akbar%20Qureshi"> M. Zubair Akbar Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the F <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20ferrofluid" title="hybrid ferrofluid">hybrid ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a> </p> <a href="https://publications.waset.org/abstracts/129946/numerical-investigation-of-hybrid-ferrofluid-unsteady-flow-through-porous-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9212</span> Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huai-Cong%20Liu%EF%BC%8CTae%20Chul%20Jeong%EF%BC%8CJu%20Lee">Huai-Cong Liu,Tae Chul Jeong,Ju Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SynRM" title="SynRM">SynRM</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic-saturation" title=" magnetic-saturation"> magnetic-saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20circuit" title=" magnetic circuit"> magnetic circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title=" analytical modeling"> analytical modeling</a> </p> <a href="https://publications.waset.org/abstracts/25307/analytical-modeling-of-equivalent-magnetic-circuit-in-multi-segment-and-multi-barrier-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9211</span> Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Oduwole">Olayinka Oduwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Sheard"> Steve Sheard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20separation" title=" magnetic separation"> magnetic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=super-paramagnetic%20bead" title=" super-paramagnetic bead"> super-paramagnetic bead</a> </p> <a href="https://publications.waset.org/abstracts/40063/comparison-between-simulation-and-experimentally-observed-interactions-between-two-different-sized-magnetic-beads-in-a-fluidic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9210</span> Intensification of Heat Transfer in Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=undetermined%20heat%20transfer" title=" undetermined heat transfer"> undetermined heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a> </p> <a href="https://publications.waset.org/abstracts/140931/intensification-of-heat-transfer-in-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=307">307</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternating%20magnetic%20field&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>