CINXE.COM
Search results for: bilayer
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: bilayer</title> <meta name="description" content="Search results for: bilayer"> <meta name="keywords" content="bilayer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bilayer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bilayer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 62</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bilayer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> A Terahertz Sensor and Dynamic Switch Based on a Bilayer Toroidal Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angana%20Bhattacharya">Angana Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Sarkar"> Rakesh Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagan%20Kumar"> Gagan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toroidal resonances, a new class of electromagnetic excitations, demonstrate exceptional properties as compared to electric and magnetic dipolar resonances. The advantage of narrow linewidth in toroidal resonance is utilized in this proposed work, where a bilayer metamaterial (MM) sensor has been designed in the terahertz frequency regime (THz). A toroidal MM geometry in a single layer is first studied. A second identical MM geometry placed on top of the first layer results in the coupling of toroidal excitations, leading to an increase in the quality factor (Q) of the resonance. The sensing capability of the resonance is studied. Further, the dynamic switching from an 'off' stage to an 'on' stage in the bilayer configuration is explored. The ardent study of such toroidal bilayer MMs could provide significant potential in the development of bio-molecular and chemical sensors, switches, and modulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toroidal%20resonance" title="toroidal resonance">toroidal resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=bilayer" title=" bilayer"> bilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=terahertz" title=" terahertz"> terahertz</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=switching" title=" switching"> switching</a> </p> <a href="https://publications.waset.org/abstracts/142036/a-terahertz-sensor-and-dynamic-switch-based-on-a-bilayer-toroidal-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buti%20Suryabrahmam">Buti Suryabrahmam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Raghunathan"> V. A. Raghunathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alcohols" title="alcohols">alcohols</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rigidity" title=" bending rigidity"> bending rigidity</a>, <a href="https://publications.waset.org/abstracts/search?q=DMPC" title=" DMPC"> DMPC</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20bilayers" title=" lipid bilayers"> lipid bilayers</a> </p> <a href="https://publications.waset.org/abstracts/100295/effect-of-short-chain-alcohols-on-bending-rigidity-of-lipid-bilayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Twisted Bilayer Crescent Chiral Metasurface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semere%20Araya%20Asefa">Semere Araya Asefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> I described twisted bilayer crescent metasurfaces that link optical properties between two layers and enhance circular dichroism. The interactions between the metasurface layers cause circular dichroism. And we evaluated the parameters that affect the chiroptical response of the crescent <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chiroptical%20response" title="chiroptical response">chiroptical response</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20metasurface" title=" chiral metasurface"> chiral metasurface</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20dichroism" title=" circular dichroism"> circular dichroism</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20sensing" title=" chiral sensing"> chiral sensing</a> </p> <a href="https://publications.waset.org/abstracts/164207/twisted-bilayer-crescent-chiral-metasurface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Apostolopoulou">A. Apostolopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sygkridou"> D. Sygkridou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Kalarakis"> A. N. Kalarakis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Stathatos"> E. Stathatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO<sub>2</sub> layer with a layer of In<sub>2</sub>O<sub>3</sub>. CH<sub>3</sub>NH<sub>3</sub>I<sub>3-x</sub>Cl<sub>x</sub> mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO<sub>2</sub>/In<sub>2</sub>O<sub>3 </sub>mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO<sub>2</sub> mesoporous layer, with a current density of 23.86 mA/cm<sup>2</sup>, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO<sub>2</sub> mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20conditions" title="ambient conditions">ambient conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency%20solar%20cells" title=" high efficiency solar cells"> high efficiency solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoscopic%20perovskite%20solar%20cells" title=" mesoscopic perovskite solar cells"> mesoscopic perovskite solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%20%2F%20In%E2%82%82O%E2%82%83%20bilayer" title=" TiO₂ / In₂O₃ bilayer"> TiO₂ / In₂O₃ bilayer</a> </p> <a href="https://publications.waset.org/abstracts/65019/high-efficiency-perovskite-solar-cells-fabricated-under-ambient-conditions-with-mesoporous-tio2in2o3-scaffold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Jeong%20Lee">Su Jeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Il%20Lee"> Tae Il Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Han%20Kim"> Jung Han Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul-Hong%20Kim"> Chul-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gee%20Sung%20Chae"> Gee Sung Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Min%20Myoung"> Jae-Min Myoung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube%20%28SWCNT%29" title="single-walled carbon nanotube (SWCNT)">single-walled carbon nanotube (SWCNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-doped%20ZnO%20%28AZO%29%20nanoparticle" title=" Al-doped ZnO (AZO) nanoparticle"> Al-doped ZnO (AZO) nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title=" contact resistance"> contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20transistor%20%28TFT%29" title=" thin-film transistor (TFT) "> thin-film transistor (TFT) </a> </p> <a href="https://publications.waset.org/abstracts/19325/transparent-and-solution-processable-low-contact-resistance-swcntazonp-bilayer-electrodes-for-sol-gel-metal-oxide-thin-film-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Sadouk">Mustapha Sadouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilayer%20materials" title="bilayer materials">bilayer materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20fluid%20theory" title=" equivalent fluid theory"> equivalent fluid theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20tortuosity." title=" dynamic tortuosity."> dynamic tortuosity.</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title=" porous material"> porous material</a> </p> <a href="https://publications.waset.org/abstracts/168056/exploring-the-influence-of-high-frequency-acoustic-parameters-on-wave-behavior-in-porous-bilayer-materials-an-equivalent-fluid-theory-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Effect of Multilayered MnBi Films on Magnetic and Microstructural Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Sook%20Lee">Hyun-Sook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongjae%20Moon"> Hongjae Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwaebong%20Jung"> Hwaebong Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumin%20Kim"> Sumin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wooyoung%20Lee"> Wooyoung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-temperature phase (LTP) of MnBi has attracted much attention because it has a larger coercivity than that of Nd-Fe-B at high temperature, which gives high potential as a permanent magnet material that can be used at such high temperature. We present variation in magnetic properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized condition of 350 °C and 1.5 hours. The composition ratio of Bi/Mn was adjusted by varying the thickness of Bi and Mn layers. The highest value of (BH)max ~ 8.6 MGOe at room temperature was obtained in one Bi/Mn bilayer with 34 nm Bi and 16 nm Mn. To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn bilayer up to five at which the total film thicknesses of Bi and Mn were fixed with 34 nm and 16 nm. The increase of coercivity was observed up to three layers from 4.8 kOe to 15.3 kOe and then suppression was appeared. A reversed behavior was exhibited in the magnetization. We found that these were closely related to a microstructural change of LTP-MnBi and a reduction of growth rate of LTP-MnBi by analyzing XRD and TEM results. We will discuss how the multilayered MnBi affects the magnetic properties in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coercivity" title="coercivity">coercivity</a>, <a href="https://publications.waset.org/abstracts/search?q=MnBi" title=" MnBi"> MnBi</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20film" title=" multilayer film"> multilayer film</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a> </p> <a href="https://publications.waset.org/abstracts/51229/effect-of-multilayered-mnbi-films-on-magnetic-and-microstructural-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Anonymous Gel-Fluid Transition of Solid Supported Lipids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Poursoroush">Asma Poursoroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-supported lipid bilayers are often used as a simple model for studies of biological membranes. The presence of a solid substrate that interacts attractively with lipid head-groups is expected to affect the phase behavior of the supported bilayer. Molecular dynamics simulations of a coarse-grained model are thus performed to investigate the phase behavior of supported one-component lipid bilayer membranes. Our results show that the attraction of the lipid head groups to the substrate leads to a phase behavior that is different from that of a free standing lipid bilayer. In particular, we found that the phase behaviors of the two leaflets are decoupled in the presence of a substrate. The proximal leaflet undergoes a clear gel-to-fluid phase transition at a temperature lower than that of a free standing bilayer, and that decreases with increasing strength of the substrate-lipid attraction. The distal leaflet, however, undergoes a change from a homogeneous liquid phase at high temperatures to a heterogeneous state consisting of small liquid and gel domains, with the average size of the gel domains that increases with decreasing temperature. While the chain order parameter of the proximal leaflet clearly shows a gel-fluid phase transition, the chain order parameter of the distal leaflet does not exhibit a clear phase transition. The decoupling in the phase behavior of the two leaflets is due to a non-symmteric lipid distribution in the two leaflets resulting from the presence of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/78473/anonymous-gel-fluid-transition-of-solid-supported-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Uniform Porous Multilayer-Junction Thin Film for Enhanced Gas-Sensing Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping-Ping%20Zhang">Ping-Ping Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Zhang"> Hui-Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu-Hui%20Sun"> Xu-Hui Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using self-assembled soft template and simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at the lower working temperature, compared to single layer counterpart sensors. The response of In2O3/CuO bilayer sensors exhibits nearly 3 and 5 times higher than those of the single layer In2O3 and CuO porous film sensors over the same ethanol concentration, respectively. The sensing mechanism based on p-n hetero-junction, which contributed to the enhanced sensing performance was also experimentally confirmed by a control experiment which the SiO2 insulation layer was inserted between the In2O3 and CuO layers to break the p-n junction. In addition, the sensing performance can be further enhanced by increasing the number of In2O3/CuO junction layers. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors for practical sensing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title="gas sensor">gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20porous%20thin%20films" title=" multilayer porous thin films"> multilayer porous thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=In2O3%2FCuO" title=" In2O3/CuO"> In2O3/CuO</a>, <a href="https://publications.waset.org/abstracts/search?q=p-n%20junction" title=" p-n junction"> p-n junction</a> </p> <a href="https://publications.waset.org/abstracts/43275/uniform-porous-multilayer-junction-thin-film-for-enhanced-gas-sensing-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Photocatalytic Removal of Methylene Blue Dye: Fabrication and Optimization of Adsorbant Material and a Photocatlyst in Unilayer and Bilayer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Mahmood">M. Z. Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ismail"> S. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reusable immobilized unilayer thin coating of adsorbent material bentonite and photocatalyst (TiO₂) was fabricated on the glass beaker to remove aqueous methylene blue solution. The dye removal efficiency of photocatalyst was much lower with pure titanium dioxide. In the preliminary experiments, different compositions of TiO₂ – bentonite were tested on unilayer and bilayer system, and it was observed that 0.50:0.50 ratios are best for maximum photocatalytic degradation of methylene blue in aqueous medium when applied on unilayer coating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a> </p> <a href="https://publications.waset.org/abstracts/116815/photocatalytic-removal-of-methylene-blue-dye-fabrication-and-optimization-of-adsorbant-material-and-a-photocatlyst-in-unilayer-and-bilayer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Pal">Preeti Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20Pal"> Anjali Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsolubilisation" title="adsolubilisation">adsolubilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactant" title=" anionic surfactant"> anionic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=bilayer" title=" bilayer"> bilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb%C2%B2%E2%81%BA" title=" Pb²⁺"> Pb²⁺</a> </p> <a href="https://publications.waset.org/abstracts/70265/surfactant-modified-chitosan-beads-an-efficient-and-cost-effective-material-for-adsorptive-removal-of-lead-from-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Influence of UV/Ozone Treatment on the Electrical Performance of Polystyrene Buffered Pentacene-Based OFETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Gong">Lin Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20G%C3%B6bel"> Holger Göbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we have investigated the influence of UV/ozone treatment on pentacene-based organic field effect transistors (OFETs) with a bilayer gate dielectric. The OFETs for this study were fabricated on heavily n-doped Si substrates with a thermally deposited SiO2 dielectric layer (300nm). On the SiO2 dielectric a very thin (≈ 15nm) buffer layer of polystyrene (PS) was first spin-coated and then treated by UV/ozone to modify the surface prior to the deposition of pentacene. We found out that by extending the UV/ozone treatment time the threshold voltage of the OFETs was monotonically shifted towards positive values, whereas the field effect mobility first decreased but eventually reached a stable value after a treatment time of approximately thirty seconds. Since the field effect mobility of the UV/ozone treated bilayer OFETs was found to be higher than the value of a comparable transistor with a single layer dielectric, we propose that the bilayer (SiO2/PS) structure can be used to shift the threshold voltage to a desired value without sacrificing field effect mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer%20layer" title="buffer layer">buffer layer</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20field%20effect%20transistors" title=" organic field effect transistors"> organic field effect transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20voltage" title=" threshold voltage"> threshold voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%2Fozone%20treatment" title=" UV/ozone treatment"> UV/ozone treatment</a> </p> <a href="https://publications.waset.org/abstracts/41415/influence-of-uvozone-treatment-on-the-electrical-performance-of-polystyrene-buffered-pentacene-based-ofets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Stacking-dependent ferroicity of reversed bilayer: altermagnetism or ferroelectricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wencong%20Sun">Wencong Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuai%20Dong"> Shuai Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Altermagnetism, as a new branch of magnetism independent of traditional ferromagnetism and antiferromagnetism, has attracted extensive attention recently. At present, researchers have proved several kinds of three-dimensional altermagnets, but research on two-dimensional (2D) altermagnets remains elusive. Here, we propose a method for designing altermagnetism in 2D lattices: bilayer reversed stacking. This method could enable altermagnetism-type spin splitting to occur intrinsically and the spin-splitting can be controlled by crystal chirality. We also demonstrate it through a real material of bilayer PtBr3 with AB' stacking order. Additionally, the combination of stacking order and slidetronics offers new opportunities for electrical writing and magnetic reading of electronic devices. In the case of AC' stacking, interlayer sliding results in reversible spontaneous polarization. This unique combination of antiferromagnetism and sliding ferroelectricity leads to polarization-controlled spin-splitting, thus enabling magnetoelectric coupling, which can be detected by magneto-optical Kerr effect even without net magnetization. Our research highlights that reversed stacking provides a platform to explore rich physical properties of magnetism, ferroelectricity, and spin-splitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Two-dimensional%20material" title="Two-dimensional material">Two-dimensional material</a>, <a href="https://publications.waset.org/abstracts/search?q=Altermagnetism" title=" Altermagnetism"> Altermagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20and%20ferroelectric" title=" Magnetic and ferroelectric"> Magnetic and ferroelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=Condensed%20matter%20physics%20and%20Materials%20Science" title=" Condensed matter physics and Materials Science"> Condensed matter physics and Materials Science</a> </p> <a href="https://publications.waset.org/abstracts/198372/stacking-dependent-ferroicity-of-reversed-bilayer-altermagnetism-or-ferroelectricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Synthesis and Characterization of Novel Hollow Silica Particle through DODAB Vesicle Templating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ju%20Park">Eun Ju Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Wendy%20Rusli"> Wendy Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Tao"> He Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Van%20Herk"> Alexander M. Van Herk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggu%20Kim"> Sanggu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hollow micro-/nano- structured materials have proven to be promising in wide range of applications, such as catalysis, drug delivery and controlled release, biotechnology, and personal and consumer care. Hollow sphere structures can be obtained through various templating approaches; colloid templates, emulsion templates, multi-surfactant templates, and single crystal templates. Vesicles are generally the self-directed assemblies of amphiphilic molecules including cationic, anionic, and cationic surfactants in aqueous solutions. The directed silica capsule formations were performed at the surface of dioctadecyldimethylammoniumbromide(DODAB) bilayer vesicles as soft template. The size of DODAB bilayer vesicles could be tuned by extrusion of a preheated dispersion of DODAB. The synthesized hollow silica particles were characterized by conventional TEM, cryo-TEM and SEM to determine the morphology and structure of particles and dynamic light scattering (DLS) method to measure the particle size and particle size distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=DODAB" title=" DODAB"> DODAB</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20silica%20particle" title=" hollow silica particle"> hollow silica particle</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=vesicle" title=" vesicle"> vesicle</a> </p> <a href="https://publications.waset.org/abstracts/35402/synthesis-and-characterization-of-novel-hollow-silica-particle-through-dodab-vesicle-templating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Nonlinear Optics of Dirac Fermion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar">Vipin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20S.%20Setlur"> Girish S. Setlur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilayer%20graphene" title=" Bilayer graphene"> Bilayer graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabi%20oscillations" title=" Rabi oscillations"> Rabi oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20fermion%20systems" title=" Dirac fermion systems"> Dirac fermion systems</a> </p> <a href="https://publications.waset.org/abstracts/15507/nonlinear-optics-of-dirac-fermion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Fabric Softener Deposition on Cellulose Nanocrystals and Cotton Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evdokia%20K.%20Oikonomou">Evdokia K. Oikonomou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Christov"> Nikolay Christov</a>, <a href="https://publications.waset.org/abstracts/search?q=Galder%20Cristobal"> Galder Cristobal</a>, <a href="https://publications.waset.org/abstracts/search?q=Graziana%20Messina"> Graziana Messina</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovani%20Marletta"> Giovani Marletta</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Heux"> Laurent Heux</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Berret"> Jean-Francois Berret</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric softeners are aqueous formulations that contain ~10 wt. % double tailed cationic surfactants. Here, a formulation in which 50% surfactant was replaced with low quantities of natural guar polymers was developed. Thanks to the reduced surfactant quantity this product has less environmental impact while the guars presence was found to maintain the product’s performance. The objective of this work is to elucidate the effect of the guar polymers on the softener deposition and the adsorption mechanism on the cotton surface. The surfactants in these formulations are assembled into large distributed (0.1 – 1 µm) vesicles that are stable in the presence of guars and upon dilution. The effect of guars on the vesicles adsorption on cotton was first estimated by using cellulose nanocrystals (CNC) as a stand-in for cotton. The dispersion of CNC in water permits to follow the interaction between the vesicles, guars, and CNC in the bulk. It was found that guars enhance the deposition on CNC and that the vesicles are deposited intactly on the fibers driven by electrostatics. The mechanism of the vesicles/guars adsorption on cellulose fibers was identified by quartz crystal microbalance with dissipation monitoring. It was found that the guars increase the surfactant deposited quantity, in agreement with the results in the bulk. Also, the structure of the adsorbed surfactant on the fibers' surfaces (vesicle or bilayer) was influenced by the guars presence. Deposition studies on cotton fabrics were also conducted. Attenuated total reflection and scanning electron microscopy were used to study the effect of the polymers on this deposition. Finally, fluorescent microscopy was used to follow the adsorption of surfactant vesicles, labeled with a fluorescent dye, on cotton fabrics in water. It was found that, in the presence or not of polymers, the surfactant vesicles are adsorbed on fiber maintaining their vesicular structure in water (supported vesicular bilayer structure). The guars influence this process. However, upon drying the vesicles are transformed into bilayers and eventually wrap the fibers (supported lipid bilayer structure). This mechanism is proposed for the adsorption of vesicular conditioner on cotton fiber and can be affected by the presence of polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title="cellulose nanocrystals">cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fibers" title=" cotton fibers"> cotton fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20softeners" title=" fabric softeners"> fabric softeners</a>, <a href="https://publications.waset.org/abstracts/search?q=guar%20polymers" title=" guar polymers"> guar polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20vesicles" title=" surfactant vesicles"> surfactant vesicles</a> </p> <a href="https://publications.waset.org/abstracts/92386/fabric-softener-deposition-on-cellulose-nanocrystals-and-cotton-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Simulation of the Flow in Bilayer Coextrusion Dies with Gradually Changing Calibrator Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Gupta">Mahesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal in the design of a die for extrusion of a complex profile is to obtain a uniform velocity at the die exit. If the velocity at the exit of an extrusion die is not uniform, the shape of the extrudate profile can change significantly after the polymer exits the die. To rectify the extrudate distortion caused by non-uniform exit velocity, calibrators and sizers are often installed along the extrudate cooling system. Furthermore, the profile shape in calibrators and sizers is sometimes gradually changed to intentionally deform the extrudate to the required final product shape. This is exploited to simplify extrusion die design, because a relatively simple profile at the die exit can be modified to obtain a more complex profile by deforming it in calibrators or sizers. The gradual change in the shape of calibrator or sizer profiles can also be used to extrude slightly different profiles from the same die. In the present work, a combined flow, thermal and structural analysis is used to accurately predict distortion of extrudate profile after the polymer leaves a die. Simulations of the flow and extrudate deformation in two different bilayer coextrusion dies with gradually changing profile shape in successive calibrators and sizers will be presented. The effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coextrusion" title="coextrusion">coextrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion%20die%20design" title=" extrusion die design"> extrusion die design</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/185818/simulation-of-the-flow-in-bilayer-coextrusion-dies-with-gradually-changing-calibrator-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Honarvar">Z. Honarvar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhoodi"> M. Farhoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khani"> M. R. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shojaee-Aliabadi"> S. Shojaee-Aliabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose%20film" title="carboxymethyl cellulose film">carboxymethyl cellulose film</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title=" cold plasma"> cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a> </p> <a href="https://publications.waset.org/abstracts/74884/carboxymethyl-cellulose-coating-onto-polypropylene-film-using-cold-atmospheric-plasma-treatment-as-food-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Bi-Layer Electro-Conductive Nanofibrous Conduits for Peripheral Nerve Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Nazeri">Niloofar Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Derakhshan"> Mohammad Ali Derakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Faridi%20Majidi"> Reza Faridi Majidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghanbari"> Hossein Ghanbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injury of peripheral nervous system (PNS) can lead to loss of sensation or movement. To date, one of the challenges for surgeons is repairing large gaps in PNS. To solve this problem, nerve conduits have been developed. Conduits produced by means of electrospinning can mimic extracellular matrix and provide enough surface for further functionalization. In this research, a conductive bilayer nerve conduit with poly caprolactone (PCL), poly (lactic acid co glycolic acid) (PLGA) and MWCNT for promoting peripheral nerve regeneration was fabricated. The conduit was made of longitudinally aligned PLGA nanofibrous sheets in the lumen to promote nerve regeneration and randomly oriented PCL nanofibers on the outer surface for mechanical support. The intra-luminal guidance channel was made out of conductive aligned nanofibrous rolled sheets which are coated with laminin via dopamine. Different properties of electrospun scaffolds were investigated by using contact angle, mechanical strength, degradation time, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM analysis was shown that size range of nanofibrous mat were about 600-750 nm and MWCNTs deposited between nanofibers. The XPS result was shown that laminin attached to the nanofibers surface successfully. The contact-angle and tensile tests analysis revealed that scaffolds have good hydrophilicity and enough mechanical strength. In vitro studies demonstrated that this conductive surface was able to enhance the attachment and proliferation of PC12 and Schwann cells. We concluded that this bilayer composite conduit has good potential for nerve regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive" title="conductive">conductive</a>, <a href="https://publications.waset.org/abstracts/search?q=conduit" title=" conduit"> conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=laminin" title=" laminin"> laminin</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/76928/bi-layer-electro-conductive-nanofibrous-conduits-for-peripheral-nerve-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Two-Dimensional Van-Der Waals Heterostructure for Highly Energy-Efficient Field-Free Deterministic Spin-Orbit Torque Switching at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Raj%20Sharma">Pradeep Raj Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogeun%20Jang"> Bogeun Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongill%20Hong"> Jongill Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spin-orbit torque (SOT) is an efficient approach for manipulating the magnetization of ferromagnetic materials (FMs), providing improved device performance, better compatibility, and ultra-fast switching with lower power consumption compared to spin-transfer torque (STT). Among the various materials and structural designs, two-dimensional (2D) van-der Waals (vdW) layered materials and their heterostructures have been demonstrated as highly scalable and promising device architecture for SOT. In particular, a bilayer heterostructure consisting of fully 2D-vdW-FM, non-magnetic material (NM) offers a potential platform for controlling the magnetization using SOT because of the advantages of being easy to scale and less energy to switch. Here, we report filed-free deterministic switching driven by SOT at room temperature, integrating perpendicularly magnetized 2D-vdW material Fe₃GaTe₂ (FGaT) and NM WTe₂. Pulse current-induced magnetization switching with an ultra-low current density of about 6.5×10⁵ A/cm², yielding a SOT efficiency close to double-digits at 300 K, is reported. These values are two orders of magnitude higher than those observed in conventional heavy metal (HM) based SOT and exceed those reported with 2D-vdW layered materials. WTe₂, a topological semimetal possessing strong SOC and high spin Hall angle, can induce significant spin accumulation with negligible spin loss across the transparent 2D bilayer heterointerface. This promising device architecture enables highly compatible, energy-efficient, non-volatile memory and lays the foundation for designing efficient, flexible, and miniaturized spintronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spintronics" title="spintronics">spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbit%20torque" title=" spin-orbit torque"> spin-orbit torque</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20Hall%20effect" title=" spin Hall effect"> spin Hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20Hall%20angle" title=" spin Hall angle"> spin Hall angle</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20semimetal" title=" topological semimetal"> topological semimetal</a>, <a href="https://publications.waset.org/abstracts/search?q=perpendicular%20magnetic%20anisotropy" title=" perpendicular magnetic anisotropy"> perpendicular magnetic anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/194481/two-dimensional-van-der-waals-heterostructure-for-highly-energy-efficient-field-free-deterministic-spin-orbit-torque-switching-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> On the Thermodynamics of Biological Cell Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler">Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20membrane" title=" cell membrane"> cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor-ligand%20interaction" title=" receptor-ligand interaction"> receptor-ligand interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20diffusion" title=" receptor diffusion"> receptor diffusion</a> </p> <a href="https://publications.waset.org/abstracts/37546/on-the-thermodynamics-of-biological-cell-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Nanoparticles-Protein Hybrid-Based Magnetic Liposome </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amlan%20Kumar%20Das">Amlan Kumar Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Marwal"> Avinash Marwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Pareek"> Vikram Pareek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles-protein%20hybrid" title="nanoparticles-protein hybrid">nanoparticles-protein hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20liposome" title=" magnetic liposome"> magnetic liposome</a>, <a href="https://publications.waset.org/abstracts/search?q=medical" title=" medical"> medical</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20science" title=" pharmaceutical science"> pharmaceutical science</a> </p> <a href="https://publications.waset.org/abstracts/15000/nanoparticles-protein-hybrid-based-magnetic-liposome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Composition Dependence of Exchange Anisotropy in PtₓMn₁₋ₓ/Co₇₀Fe₃₀ Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Ranjbar">Sina Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakiyo%20Tsunoda"> Masakiyo Tsunoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikihiko%20Oogane"> Mikihiko Oogane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuo%20Ando"> Yasuo Ando</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We systematically investigated the exchange anisotropy for ferromagnetic Co70Fe30 and antiferromagnetic PtMn bilayer films. We focused on the relevance between the exchange bias and the composition of the Ptₓ Mn₁₋ₓ (14 < x < 22 and 45 < x < 56 at %) films, and we successfully optimized the composition. The crystal structure of the Ptₓ Mn₁₋ₓ films was FCC for 14 < x < 22 at % and FCT for 45 < x < 56 at % after annealing at 370 ◦C for 6 hours. The unidirectional anisotropy constant (Jₖ) for fcc-Pt₁₅Mn₈₅ (20 nm) and fct-Pt₄₈Mn₅₂ (20 nm) prepared under optimum conditions in composition were 0.16 and 0.20 erg/cm², respectively. Both Pt₁₅Mn₈₅ and Pt₄₈Mn₅₂ films showed a larger unidirectional anisotropy constant (Jₖ) than in other reports. They also showed a flatter surface than that of other antiferromagnetic materials. The obtained PtMn films with a large exchange anisotropy and slight roughness are useful as an antiferromagnetic layer in spintronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiferromagnetic%20material" title="antiferromagnetic material">antiferromagnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=PtMn%20thin%20film" title=" PtMn thin film"> PtMn thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20anisotropy" title=" exchange anisotropy"> exchange anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=composition%20dependence" title=" composition dependence"> composition dependence</a> </p> <a href="https://publications.waset.org/abstracts/101129/composition-dependence-of-exchange-anisotropy-in-ptmn1co70fe30-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Li">Zhe Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Ju"> Tao Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Liguo%20Zhang"> Liguo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zehong%20Zhang"> Zehong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoshun%20Zhang"> Baoshun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodoluminescence" title="cathodoluminescence">cathodoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=defect-selected-etching" title=" defect-selected-etching"> defect-selected-etching</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20Shockley%20stacking%20fault" title=" double Shockley stacking fault"> double Shockley stacking fault</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20photoluminescence" title=" low-temperature photoluminescence"> low-temperature photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation%20model" title=" nucleation model"> nucleation model</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/51238/characterization-of-double-shockley-stacking-fault-in-4h-sic-epilayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Two-Dimensional WO₃ and TiO₂ Semiconductor Oxides Developed by Atomic Layer Deposition with Controllable Nano-Thickness on Wafer-Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zhuiykov">S. Zhuiykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Wei"> Z. Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conformal defect-free two-dimensional (2D) WO₃ and TiO₂ semiconductors have been developed by the atomic layer deposition (ALD) technique on wafer scale with unique approach to the thickness control with precision of ± 10% from the monolayer of nanomaterial (less than 1.0 nm thick) to the nano-layered 2D structures with thickness of ~3.0-7.0 nm. Developed 2D nanostructures exhibited unique, distinguishable properties at nanoscale compare to their thicker counterparts. Specifically, 2D TiO₂-Au bilayer demonstrated improved photocatalytic degradation of palmitic acid under UV and visible light illumination. Improved functional capabilities of 2D semiconductors would be advantageous to various environmental, nano-energy and bio-sensing applications. The ALD-enabled approach is proven to be versatile, scalable and applicable to the broader range of 2D semiconductors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20%282D%29%20semiconductors" title="two-dimensional (2D) semiconductors">two-dimensional (2D) semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=ALD" title=" ALD"> ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=WO%E2%82%83" title=" WO₃"> WO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=wafer%20scale" title=" wafer scale"> wafer scale</a> </p> <a href="https://publications.waset.org/abstracts/78749/two-dimensional-wo3-and-tio2-semiconductor-oxides-developed-by-atomic-layer-deposition-with-controllable-nano-thickness-on-wafer-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Garnet-based Bilayer Hybrid Solid Electrolyte for High-Voltage Cathode Material Modified with Composite Interface Enabler on Lithium-Metal Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumlachew%20Zelalem%20Walle">Kumlachew Zelalem Walle</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chen%20Yang"> Chun-Chen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state lithium metal batteries (SSLMBs) are considered promising candidates for next-generation energy storage devices due to their superior energy density and excellent safety. However, recent findings have shown that the formation of lithium (Li) dendrites in SSLMBs still exhibits a terrible growth ability, which makes the development of SSLMBs have to face the challenges posed by the Li dendrite problem. In this work, an inorganic/organic mixture coating material (g-C3N4/ZIF-8/PVDF) was used to modify the surface of lithium metal anode (LMA). Then the modified LMA (denoted as g-C₃N₄@Li) was assembled with lithium nafion (LiNf) coated commercial NCM811 (LiNf@NCM811) using a bilayer hybrid solid electrolyte (Bi-HSE) that incorporated 20 wt.% (vs. polymer) LiNf coated Li6.05Ga0.25La3Zr2O11.8F0.2 (<a href="/cdn-cgi/l/email-protection" class="__cf_email__" data-cfemail="5c1035123a1c101b6c726e691006131a">[email protected]</a>) filler faced to the positive electrode and the other layer with 80 wt.% (vs. polymer) filler content faced to the g-C₃N₄@Li. The garnet-type Li6.05Ga0.25La3Zr2O11.8F0.2 (LG0.25LZOF) solid electrolyte was prepared via co-precipitation reaction process from Taylor flow reactor and modified using lithium nafion (LiNf), a Li-ion conducting polymer. The Bi-HSE exhibited high ionic conductivity of 6.8 10–4 S cm–1 at room temperature, and a wide electrochemical window (0–5.0 V vs. Li/Li+). The coin cell was charged between 2.8 to 4.5 V at 0.2C and delivered an initial specific discharge capacity of 194.3 mAh g–1 and after 100 cycles it maintained 81.8% of its initial capacity at room temperature. The presence of a nano-sheet g-C3N4/ZIF-8/PVDF as a composite coating material on the LMA surface suppress the dendrite growth and enhance the compatibility as well as the interfacial contact between anode/electrolyte membrane. The g-C3N4@Li symmetrical cells incorporating this hybrid electrolyte possessed excellent interfacial stability over 1000 h at 0.1 mA cm–2 and a high critical current density (1 mA cm–2). Moreover, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer as depicted from the XPS result also improves the ionic conductivity and interface contact during the charge/discharge process. Therefore, these novel multi-layered fabrication strategies of hybrid/composite solid electrolyte membranes and modification of the LMA surface using mixed coating materials have potential applications in the preparation of highly safe high-voltage cathodes for SSLMBs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20cathodes" title="high-voltage cathodes">high-voltage cathodes</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solid%20electrolytes" title=" hybrid solid electrolytes"> hybrid solid electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=garnet" title=" garnet"> garnet</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic-carbon%20nitride%20%28g-C3N4%29" title=" graphitic-carbon nitride (g-C3N4)"> graphitic-carbon nitride (g-C3N4)</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF-8%20MOF" title=" ZIF-8 MOF"> ZIF-8 MOF</a> </p> <a href="https://publications.waset.org/abstracts/175160/garnet-based-bilayer-hybrid-solid-electrolyte-for-high-voltage-cathode-material-modified-with-composite-interface-enabler-on-lithium-metal-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Diaz">Cristina Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Perez-Gandarillas"> Lucia Perez-Gandarillas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Garcia-Fuentes"> Gonzalo Garcia-Fuentes</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Visigalli"> Simone Visigalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Canziani"> Roberto Canziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Di%20Florio"> Giuseppe Di Florio</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Gronchi"> Paolo Gronchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/91023/a-comparative-study-of-the-tribological-behavior-of-bilayer-coatings-for-machine-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Development of Bilayer Coating System for Mitigating Corrosion of Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adamantini%20Loukodimou">Adamantini Loukodimou</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Weston"> David Weston</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiladitya%20Paul"> Shiladitya Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore structures are subjected to harsh environments. It is documented that carbon steel needs protection from corrosion. The combined effect of UV radiation, seawater splash, and fluctuating temperatures diminish the integrity of these structures. In addition, the possibility of damage caused by floating ice, seaborne debris, and maintenance boats make them even more vulnerable. Their inspection and maintenance when far out in the sea are difficult, risky, and expensive. The most known method of mitigating corrosion of offshore structures is the use of cathodic protection. There are several zones in an offshore wind turbine. In the atmospheric zone, due to the lack of a continuous electrolyte (seawater) layer between the structure and the anode at all times, this method proves inefficient. Thus, the use of protective coatings becomes indispensable. This research focuses on the atmospheric zone. The conversion of commercially available and conventional paint (epoxy) system to an autonomous self-healing paint system via the addition of suitable encapsulated healing agents and catalyst is investigated in this work. These coating systems, which can self-heal when damaged, can provide a cost-effective engineering solution to corrosion and related problems. When the damage of the paint coating occurs, the microcapsules are designed to rupture and release the self-healing liquid (monomer), which then will react in the presence of the catalyst and solidify (polymerization), resulting in healing. The catalyst should be compatible with the system because otherwise, the self-healing process will not occur. The carbon steel substrate will be exposed to a corrosive environment, so the use of a sacrificial layer of Zn is also investigated. More specifically, the first layer of this new coating system will be TSZA (Thermally Sprayed Zn85/Al15) and will be applied on carbon steel samples with dimensions 100 x 150 mm after being blasted with alumina (size F24) as part of the surface preparation. Based on the literature, it corrodes readily, so one additional paint layer enriched with microcapsules will be added. Also, the reaction and the curing time are of high importance in order for this bilayer system of coating to work successfully. For the first experiments, polystyrene microcapsules loaded with 3-octanoyltio-1-propyltriethoxysilane were conducted. Electrochemical experiments such as Electrochemical Impedance Spectroscopy (EIS) confirmed the corrosion inhibiting properties of the silane. The diameter of the microcapsules was about 150-200 microns. Further experiments were conducted with different reagents and methods in order to obtain diameters of about 50 microns, and their self-healing properties were tested in synthetic seawater using electrochemical techniques. The use of combined paint/electrodeposited coatings allows for further novel development of composite coating systems. The potential for the application of these coatings in offshore structures will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20mitigation" title="corrosion mitigation">corrosion mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsules" title=" microcapsules"> microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbines" title=" offshore wind turbines"> offshore wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing" title=" self-healing"> self-healing</a> </p> <a href="https://publications.waset.org/abstracts/121243/development-of-bilayer-coating-system-for-mitigating-corrosion-of-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeanne%20Leblond">Jeanne Leblond</a>, <a href="https://publications.waset.org/abstracts/search?q=Warren%20Viricel"> Warren Viricel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Mbarek"> Amira Mbarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liposomes" title="liposomes">liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA" title=" siRNA"> siRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=pH-sensitive" title=" pH-sensitive"> pH-sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20switch" title=" molecular switch"> molecular switch</a> </p> <a href="https://publications.waset.org/abstracts/46460/switchable-lipids-from-a-molecular-switch-to-a-ph-sensitive-system-for-the-drug-and-gene-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Naghdi">Samira Naghdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Yop%20Rhee"> Kyong Yop Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antireflection%20coating" title="antireflection coating">antireflection coating</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20sheet%20resistance" title=" the sheet resistance"> the sheet resistance</a> </p> <a href="https://publications.waset.org/abstracts/92381/antireflection-performance-of-graphene-directly-deposited-on-silicon-substrate-by-the-atmospheric-pressure-chemical-vapor-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bilayer&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bilayer&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bilayer&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>