CINXE.COM

Search results for: photoemission

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photoemission</title> <meta name="description" content="Search results for: photoemission"> <meta name="keywords" content="photoemission"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photoemission" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photoemission"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photoemission</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Kinetic Monte Carlo Simulation of ZnSe Homoepitaxial Growth and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Khachab">Hamid Khachab</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamani%20Abdelkafi"> Yamani Abdelkafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Barhmi"> Mouna Barhmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The epitaxial growth has great important in the fabricate of the new semi-conductors devices and upgrading many factors, such as the quality of crystallization and efficiency with their deferent types and the most effective epitaxial technique is the molecular beam epitaxial. The MBE growth modeling allows to confirm the experiments results out by atomic beam and to analyze the microscopic phenomena. In of our work, we determined the growth processes specially the ZnSe epitaxial technique by Kinetic Monte Carlo method and we also give observations that are made in real time at the growth temperature using reflection high energy electron diffraction (RHEED) and photoemission current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20beam%20epitaxy" title="molecular beam epitaxy">molecular beam epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=II-VI" title=" II-VI"> II-VI</a>, <a href="https://publications.waset.org/abstracts/search?q=morpholy" title=" morpholy"> morpholy</a>, <a href="https://publications.waset.org/abstracts/search?q=photoemission" title=" photoemission"> photoemission</a>, <a href="https://publications.waset.org/abstracts/search?q=RHEED" title=" RHEED"> RHEED</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20Monte%20Carlo" title=" kinetic Monte Carlo"> kinetic Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnSe" title=" ZnSe"> ZnSe</a> </p> <a href="https://publications.waset.org/abstracts/20695/kinetic-monte-carlo-simulation-of-znse-homoepitaxial-growth-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Electronic Properties Study of Ni/MgO Nanoparticles by X-Ray Photoemission Spectroscopy (XPS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouafek%20Nora">Ouafek Nora</a>, <a href="https://publications.waset.org/abstracts/search?q=Keghouche%20Nassira"> Keghouche Nassira</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehdouh%20Heider"> Dehdouh Heider</a>, <a href="https://publications.waset.org/abstracts/search?q=Untidt%20Carlos"> Untidt Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of knowledge has been accumulated on the metal clusters supported on oxide surfaces because of their multiple applications in microelectronics, heterogeneous catalysis, and magnetic devices. In this work, the surface state of Ni / MgO has been studied by XPS (X-ray Photoemission Spectroscopy). The samples were prepared by impregnation with ion exchange Ni²⁺ / MgO, followed by either a thermal treatment in air (T = 100 -350 ° C) or a gamma irradiation (dose 100 kGy, 25 kGy dose rate h -1). The obtained samples are named after impregnation NMI, NMR after irradiation, and finally NMC(T) after calcination at the temperature T (T = 100-600 °C). A structural study by XRD and HRTEM reveals the presence of nanoscaled Ni-Mg intermetallic phases (Mg₂Ni, MgNi₂, and Mg₆Ni) and magnesium hydroxide. Mg(OH)₂ in nanometric range (2- 4 nm). Mg-Ni compounds are of great interest in energy fields (hydrogen storage…). XPS spectra show two Ni2p peaks at energies of about 856.1 and 861.9 eV, indicating that the nickel is primarily in an oxidized state on the surface. The shift of the main peak relative to the pure NiO (856.1 instead of 854.0 eV) suggests that in addition to oxygen, nickel is engaged in another link with magnesium. This is in agreement with the O1s spectra which present an overlap of peaks corresponds to NiO and MgO, at a calcination temperature T ≤ 300 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XPS" title="XPS">XPS</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticules" title=" nanoparticules"> nanoparticules</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-MgO" title=" Ni-MgO"> Ni-MgO</a> </p> <a href="https://publications.waset.org/abstracts/60649/electronic-properties-study-of-nimgo-nanoparticles-by-x-ray-photoemission-spectroscopy-xps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Wa%20Li">Ho-Wa Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai-Wing%20Tsang"> Sai-Wing Tsang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaics" title="organic photovoltaics">organic photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=exciton%20binding%20energy" title=" exciton binding energy"> exciton binding energy</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20physics" title=" device physics"> device physics</a> </p> <a href="https://publications.waset.org/abstracts/90334/study-of-exciton-binding-energy-in-photovoltaic-polymers-and-non-fullerene-acceptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Mu%C3%B1iz%20Cano">Beatriz Muñiz Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ripoll%20Sau"> J. Ripoll Sau</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pacile"> D. Pacile</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Sheverdyaeva"> P. M. Sheverdyaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Moras"> P. Moras</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Camarero"> J. Camarero</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Miranda"> R. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Garnica"> M. Garnica</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Valbuena"> M. A. Valbuena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20resolved%20photoemission%20spectroscopy" title="angle resolved photoemission spectroscopy">angle resolved photoemission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ARPES" title=" ARPES"> ARPES</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbitronics" title=" spin-orbitronics"> spin-orbitronics</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title=" 2D materials"> 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20dichalcogenides" title=" transition metal dichalcogenides"> transition metal dichalcogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDCs" title=" TMDCs"> TMDCs</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDs" title=" TMDs"> TMDs</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=STM" title=" STM"> STM</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20materials" title=" quantum materials"> quantum materials</a> </p> <a href="https://publications.waset.org/abstracts/146640/engineering-a-band-gap-opening-in-dirac-cones-on-graphenetellurium-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Prada">Y. A. Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzman"> Fanny Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Cabanzo"> Rafael Cabanzo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20J.%20Castillo"> John J. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia-Ospino"> Enrique Mejia-Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania" title=" Leishmania"> Leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide-gold%20nanoclusters" title=" peptide-gold nanoclusters"> peptide-gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=proteophosphoglycans" title=" proteophosphoglycans"> proteophosphoglycans</a> </p> <a href="https://publications.waset.org/abstracts/102599/peptide-gold-nanocluster-as-an-optical-biosensor-for-glycoconjugate-secreted-from-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Akbi">Mohamed Akbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aissa%20Bouchou"> Aissa Bouchou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag-Ni%20contact%20materials" title="Ag-Ni contact materials">Ag-Ni contact materials</a>, <a href="https://publications.waset.org/abstracts/search?q=arcing%20effects" title=" arcing effects"> arcing effects</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20work%20function" title=" electron work function"> electron work function</a>, <a href="https://publications.waset.org/abstracts/search?q=Fowler%20methods" title=" Fowler methods"> Fowler methods</a>, <a href="https://publications.waset.org/abstracts/search?q=photoemission" title=" photoemission"> photoemission</a> </p> <a href="https://publications.waset.org/abstracts/13940/effects-of-arcing-in-air-on-the-microstructure-morphology-and-photoelectric-work-function-of-ag-ni-6040-contact-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Polarization Dependent Flexible GaN Film Nanogenerators and Electroluminescence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Min%20Baik">Jeong Min Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present that the electroluminescence (EL) properties and electrical output power of flexible N-face p-type GaN thin films can be tuned by strain-induced piezo-potential generated across the metal-semiconductor-metal structures. Under different staining conditions (convex and concave bending modes), the transport properties of the GaN films can be changed due to the spontaneous polarization of the films. The I-V characteristics with the bending modes show that the convex bending can increase the current across the films by the decrease in the barrier height at the metal-semiconductor contact, increasing the EL intensity of the P-N junction. At convex bending, it is also shown that the flexible p-type GaN films can generate an output voltage of up to 1.0 V, while at concave bending, 0.4 V. The change of the band bending with the crystal polarity of GaN films was investigated using high-resolution photoemission spectroscopy. This study has great significance on the practical applications of GaN in optoelectronic devices and nanogenerators under a working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN" title="GaN">GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20lift-off" title=" laser lift-off"> laser lift-off</a>, <a href="https://publications.waset.org/abstracts/search?q=nanogenerator" title=" nanogenerator"> nanogenerator</a> </p> <a href="https://publications.waset.org/abstracts/13583/polarization-dependent-flexible-gan-film-nanogenerators-and-electroluminescence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Symmetry-Protected Dirac Semi-Metallic Phases in Transition Metal Dichalcogenides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeed%20Bahramy">Mohammad Saeed Bahramy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides have experienced a resurgence of interest in the past few years owing to their rich properties, ranging from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems. In all these cases, the transition metal d-electrons mainly determine the ground state properties. This presentation focuses on the chalcogen-derived states. Combining density-functional theory calculations with spin- and angle-resolved photoemission, it is shown that these states generically host a coexistence of type I and type II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. It will be discussed how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across many compounds. Our finding opens a new route to design topological materials with advanced functionalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology" title="topology">topology</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20semimetals" title=" Dirac semimetals"> Dirac semimetals</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20dichalcogenides" title=" transition metal dichalcogenides"> transition metal dichalcogenides</a> </p> <a href="https://publications.waset.org/abstracts/94166/symmetry-protected-dirac-semi-metallic-phases-in-transition-metal-dichalcogenides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Zkria">Abdelrahman Zkria</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yoshitake"> Tsuyoshi Yoshitake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction%20diodes" title="heterojunction diodes">heterojunction diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20conduction%20mechanism" title=" hopping conduction mechanism"> hopping conduction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-doping" title=" nitrogen-doping"> nitrogen-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-nanocrystalline%20diamond" title=" ultra-nanocrystalline diamond"> ultra-nanocrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/44205/nitrogen-doped-ultrananocrystalline-diamondhydrogenated-amorphous-carbon-composite-films-prepared-by-coaxial-arc-plasma-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20R.%20Horrocks"> Benjamin R. Horrocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+ (Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11-SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium-mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title="photoluminescence">photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20nanocrystals" title=" silicon nanocrystals"> silicon nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=erbium" title=" erbium"> erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/22122/photoluminescence-study-of-erbium-mixed-alkylated-silicon-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Physical Theory for One-Dimensional Correlated Electron Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Nenuwe">Nelson Nenuwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20exponents" title="critical exponents">critical exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20field%20theory" title=" conformal field theory"> conformal field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubbard%20model" title=" Hubbard model"> Hubbard model</a>, <a href="https://publications.waset.org/abstracts/search?q=t-J%20model" title=" t-J model "> t-J model </a> </p> <a href="https://publications.waset.org/abstracts/44309/physical-theory-for-one-dimensional-correlated-electron-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Enhancing the Luminescence of Alkyl-Capped Silicon Quantum Dots by Using Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khamael%20M.%20Abualnaja">Khamael M. Abualnaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20%C5%A0iller"> Lidija Šiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20R.%20Horrocks"> Ben R. Horrocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal enhanced luminescence of alkyl-capped silicon quantum dots (C11-SiQDs) was obtained by mixing C11-SiQDs with silver nanoparticles (AgNPs). C11-SiQDs have been synthesized by galvanostatic method of p-Si (100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract alkyl-capped silicon quantum dots from porous Si. The chemical characterization of C11-SiQDs was carried out using X-ray photoemission spectroscopy (XPS). C11-SiQDs have a crystalline structure with a diameter of 5 nm. Silver nanoparticles (AgNPs) of two different sizes were synthesized also using photochemical reduction of silver nitrate with sodium dodecyl sulphate. The synthesized Ag nanoparticles have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement up to 10 and 4 times in the luminescence intensities was observed for AgNPs100/C11-SiQDs and AgNPs30/C11-SiQDs mixtures, respectively using 488 nm as an excitation source. The enhancement in luminescence intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of Ag nanoparticles; thus this intense field at Ag nanoparticles surface couples strongly to C11-SiQDs. The results suggest that the larger Ag nanoparticles i.e.100 nm caused an optimum enhancement in the luminescence intensity of C11-SiQDs which reflect the strong interaction between the localized surface plasmon resonance of AgNPs and the electric field forming a strong polarization near C11-SiQDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicon%20quantum%20dots" title="silicon quantum dots">silicon quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles%20%28AgNPs%29" title=" silver nanoparticles (AgNPs)"> silver nanoparticles (AgNPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a> </p> <a href="https://publications.waset.org/abstracts/34663/enhancing-the-luminescence-of-alkyl-capped-silicon-quantum-dots-by-using-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Photoemission Study of Dye Molecules Deposited by Electrospray on rutile TiO2 (110)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alharbi">Nouf Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20O%27shea"> James O&#039;shea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For decades, renewable energy sources have received considerable global interest due to the increase in fossil fuel consumption. The abundant energy produced by sunlight makes dye-sensitised solar cells (DSSCs) a promising alternative compared to conventional silicon and thin film solar cells due to their transparency and tunable colours, which make them suitable for applications such as windows and glass facades. The transfer of an excited electron onto the surface is an important procedure in the DSSC system, so different groups of dye molecules were studied on the rutile TiO2 (110) surface. Currently, the study of organic dyes has become an interest of researchers due to ruthenium being a rare and expensive metal, and metal-free organic dyes have many features, such as high molar extinction coefficients, low manufacturing costs, and ease of structural modification and synthesis. There are, of course, some groups that have developed organic dyes and exhibited lower light-harvesting efficiency ranging between 4% and 8%. Since most dye molecules are complicated or fragile to be deposited by thermal evaporation or sublimation in the ultra-high vacuum (UHV), all dyes (i.e, D5, SC4, and R6) in this study were deposited in situ using the electrospray deposition technique combined with X-ray photoelectron spectroscopy (XPS) as an alternative method to obtain high-quality monolayers of titanium dioxide. These organic molecules adsorbed onto rutile TiO2 (110) are explored by XPS, which can be used to obtain element-specific information on the chemical structure and study bonding and interaction sites on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=molecules" title=" molecules"> molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=organic" title=" organic"> organic</a>, <a href="https://publications.waset.org/abstracts/search?q=rutile" title=" rutile"> rutile</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitised" title=" sensitised"> sensitised</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a> </p> <a href="https://publications.waset.org/abstracts/164476/a-photoemission-study-of-dye-molecules-deposited-by-electrospray-on-rutile-tio2-110" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Super-Exchange Coupling in Oxygen Rich Rare-Earth Based Sm₂MnRuO₆₊δ Double Perovskite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nqayi">S. Nqayi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sondezi"> B. Sondezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A rare-earth-based Sm₂MnRuO₆₊δ (SMRO) double perovskite was prepared using a high-temperature solid-state reaction. The structural, morphological, chemical, thermodynamic, and magnetic properties were measured with X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoemission spectroscopy (XPS), and vibrating sample magnetometer (VSM), respectively. The XRD revealed a tetragonal structure belonging to the I4/mmm space group, number 139, with linear Mn−O−Ru bonds. Replacing the well-studied alkaline earth metal with a rare-earth element increased the Mn-O bond length difference between the shorter equatorial (Mn-Oab) and the axial (Mn-Oc) bonds by approximately 6.3%. The elemental composition showed an O-rich double perovskite with a Ru deficit, which encourages the formation of a Ru⁶⁺ (d²) state. XPS spectra of Sm-3d, Ru-3d, and Mn-2p revealed the coexistence of a double oxidation state for each cation; Sm²⁺, Sm³⁺, Ru³⁺, Ru⁶⁺, Mn²⁺ , and Mn³⁺, in varying proportions. Entropy studies showed drastic ordering of spins at low temperatures (up to 12.4 K), whilst increasing temperatures above this point resulted in a drastic increase of disorder of the spins (up to 43.26 K), beyond which a constant slope of entropy is observed. Magnetic measurements revealed two magnetic ground states at TN = 12.4 K and TC = 43.3 K ordering antiferromagnetically (AFM) and ferromagnetically (FM), respectively. Kneller fit further showed that the materials become completely paramagnetic at TB = 88.1 K, (the blocking temperature). The existence of ferromagnetic (FM) super-exchange coupling in this work originating from Mn³⁺ (t³₂𝓰e¹𝓰)−O−Ru³⁺ (t⁵₂𝓰e⁰𝓰) and Mn²⁺ (t³₂𝓰e²𝓰−O−Ru⁶⁺ (t²₂𝓰e⁰𝓰) which plays an important role in suppressing the Mn/Ru−O−Mn/Ru antiferromagnetic (AFM) interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid-state%20reaction" title="solid-state reaction">solid-state reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=super-exchange%20coupling" title=" super-exchange coupling"> super-exchange coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Kneller%E2%80%99s%20law" title=" Kneller’s law"> Kneller’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a> </p> <a href="https://publications.waset.org/abstracts/191534/super-exchange-coupling-in-oxygen-rich-rare-earth-based-sm2mnruo6d-double-perovskite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Concepcion">Omar Concepcion</a>, <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20De%20Melo"> Osvaldo De Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Escobosa"> Arturo Escobosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bismuth%20telluride" title="Bismuth telluride">Bismuth telluride</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20beam%20epitaxy" title=" molecular beam epitaxy"> molecular beam epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vapor%20transport" title=" physical vapor transport"> physical vapor transport</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title=" topological insulator"> topological insulator</a> </p> <a href="https://publications.waset.org/abstracts/90278/bismuth-telluride-topological-insulator-physical-vapor-transport-vs-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchou%20A%C3%AFssa">Bouchou Aïssa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Akbi"> Mohamed Akbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K  813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K  823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K  813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photoemission" title="Photoemission">Photoemission</a>, <a href="https://publications.waset.org/abstracts/search?q=Electron%20work%20function" title=" Electron work function"> Electron work function</a>, <a href="https://publications.waset.org/abstracts/search?q=Fowler%20methods" title=" Fowler methods"> Fowler methods</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-ZnO%20contact%20materials" title=" Ag-ZnO contact materials"> Ag-ZnO contact materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Vacuum%20heat%20treatment" title=" Vacuum heat treatment"> Vacuum heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/25862/effect-of-annealing-temperature-on-the-photoelectric-work-function-of-silver-zinc-oxide-contact-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Tzoka">I. Tzoka</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Chirayath"> V. A. Chirayath</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Brandt"> A. Brandt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Asaadi"> J. Asaadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Melvin%20J.%20Aviles"> Melvin J. Aviles</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Clarke"> Stephen Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Cwik"> Stefan Cwik</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20R.%20Foley"> Michael R. Foley</a>, <a href="https://publications.waset.org/abstracts/search?q=Cole%20J.%20Hamel"> Cole J. Hamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Lyashenko"> Alexey Lyashenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Minot"> Michael J. Minot</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20A.%20Popecki"> Mark A. Popecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20E.%20Stochaj"> Michael E. Stochaj</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shin"> S. Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20multipliers%20%28vacuum%29" title="electron multipliers (vacuum)">electron multipliers (vacuum)</a>, <a href="https://publications.waset.org/abstracts/search?q=LAPPD" title=" LAPPD"> LAPPD</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-channel%20plate%20photo-multipliers%20tubes" title=" micro-channel plate photo-multipliers tubes"> micro-channel plate photo-multipliers tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=photoemission" title=" photoemission"> photoemission</a>, <a href="https://publications.waset.org/abstracts/search?q=time-of-flight" title=" time-of-flight"> time-of-flight</a> </p> <a href="https://publications.waset.org/abstracts/163367/investigation-for-pixel-based-accelerated-aging-of-large-area-picosecond-photo-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Li">Zhe Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Ju"> Tao Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Liguo%20Zhang"> Liguo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zehong%20Zhang"> Zehong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoshun%20Zhang"> Baoshun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodoluminescence" title="cathodoluminescence">cathodoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=defect-selected-etching" title=" defect-selected-etching"> defect-selected-etching</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20Shockley%20stacking%20fault" title=" double Shockley stacking fault"> double Shockley stacking fault</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20photoluminescence" title=" low-temperature photoluminescence"> low-temperature photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation%20model" title=" nucleation model"> nucleation model</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/51238/characterization-of-double-shockley-stacking-fault-in-4h-sic-epilayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Photoemission Momentum Microscopy of Graphene on Ir (111)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20V.%20Zaporozhchenko">Anna V. Zaporozhchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Kutnyakhov"> Dmytro Kutnyakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Katherina%20Medjanik"> Katherina Medjanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Tusche"> Christian Tusche</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Joachim%20Elmers"> Hans-Joachim Elmers</a>, <a href="https://publications.waset.org/abstracts/search?q=Olena%20Fedchenko"> Olena Fedchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Chernov"> Sergey Chernov</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Ellguth"> Martin Ellguth</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergej%20A.%20Nepijko"> Sergej A. Nepijko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerd%20Schoenhense"> Gerd Schoenhense</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20structure" title="band structure">band structure</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20microscopy" title=" momentum microscopy"> momentum microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LDAD" title=" LDAD"> LDAD</a> </p> <a href="https://publications.waset.org/abstracts/57277/photoemission-momentum-microscopy-of-graphene-on-ir-111" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Garg">Vivek Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Brajendra%20S.%20Sengar"> Brajendra S. Sengar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Siddharth"> Gaurav Siddharth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisheka%20Anadkat"> Nisheka Anadkat</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitesh%20Kumar"> Amitesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Kumar"> Shailendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaibal%20Mukherjee"> Shaibal Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CIGSe" title="CIGSe">CIGSe</a>, <a href="https://publications.waset.org/abstracts/search?q=DIBS" title=" DIBS"> DIBS</a>, <a href="https://publications.waset.org/abstracts/search?q=GMZO" title=" GMZO"> GMZO</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=UPS" title=" UPS"> UPS</a> </p> <a href="https://publications.waset.org/abstracts/90982/an-investigation-on-the-suitability-of-dual-ion-beam-sputtered-gmzo-thin-films-for-all-sputtered-buffer-less-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahani%20Mashikhi">Tahani Mashikhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deposit" title="deposit">deposit</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a> </p> <a href="https://publications.waset.org/abstracts/187075/the-study-of-adsorption-of-rup-onto-tio2-110-surface-using-photoemission-deposited-by-electrospray" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10