CINXE.COM
Search results for: elastic modulus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: elastic modulus</title> <meta name="description" content="Search results for: elastic modulus"> <meta name="keywords" content="elastic modulus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="elastic modulus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="elastic modulus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1321</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: elastic modulus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1321</span> Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klara%20Krizova">Klara Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela"> Rudolf Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20%0D%0Aof%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=EuroCode%202" title=" EuroCode 2"> EuroCode 2</a> </p> <a href="https://publications.waset.org/abstracts/30167/evaluation-of-static-modulus-of-elasticity-depending-on-concrete-compressive-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1320</span> Comparison for Some Elastic and Mechanical Properties of Plutonium Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Guler">M. Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Guler"> E. Guler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report some elastic parameters of cubic fluorite type neptunium dioxide (NpO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other relevant elastic parameters were also calculated during research. After calculations, we have compared our results with the available theoretical data. Our results agree well with the previous theoretical findings of the considered quantities of NpO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NpO2" title="NpO2">NpO2</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20modulus" title=" bulk modulus"> bulk modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/35281/comparison-for-some-elastic-and-mechanical-properties-of-plutonium-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1319</span> First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Madigoe">M. Madigoe</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Modiba"> R. Modiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title="elastic modulus">elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20proportion%20diagram" title=" phase proportion diagram"> phase proportion diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-calc" title=" thermo-calc"> thermo-calc</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/141420/first-principles-calculations-and-thermo-calc-study-of-the-elastic-and-thermodynamic-properties-of-ti-nb-zr-ta-alloy-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1318</span> Numerical Study on Ultimate Capacity of Bi-Modulus Beam-Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiming%20Ye">Zhiming Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejiang%20Wang"> Dejiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiling%20Zhao"> Huiling Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of the technology demands a higher-level research on the mechanical behavior of materials. Structural members made of bi-modulus materials have different elastic modulus when they are under tension and compression. The stress and strain states of the point effect on the elastic modulus and Poisson ratio of every point in the bi-modulus material body. Accompanied by the uncertainty and nonlinearity of the elastic constitutive relation is the complicated nonlinear problem of the bi-modulus members. In this paper, the small displacement and large displacement finite element method for the bi-modulus members have been proposed. Displacement nonlinearity is considered in the elastic constitutive equation. Mechanical behavior of slender bi-modulus beam-column under different boundary conditions and loading patterns has been simulated by the proposed method. The influence factors on the ultimate bearing capacity of slender beam and columns have been studied. The results show that as the ratio of tensile modulus to compressive modulus increases, the error of the simulation employing the same elastic modulus theory exceeds the engineering permissible error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-modulus" title="bi-modulus">bi-modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20capacity" title=" ultimate capacity"> ultimate capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column" title=" beam-column"> beam-column</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title=" nonlinearity"> nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/66426/numerical-study-on-ultimate-capacity-of-bi-modulus-beam-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1317</span> A Benchmark for Some Elastic and Mechanical Properties of Uranium Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCler">E. Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%BCler"> M. Güler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present some elastic parameters of cubic fluorite type uranium dioxide (UO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic parameters were calculated during research. After calculations, we compared our results not only with the available theoretical data but also with previous experimental results. Our results are consistent with experiments and compare well the former theoretical results of the considered parameters of UO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UO2" title="UO2">UO2</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20modulus" title=" bulk modulus"> bulk modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/35108/a-benchmark-for-some-elastic-and-mechanical-properties-of-uranium-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1316</span> A Comparison for Some Elastic and Mechanical Properties of Neptunium Dioxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G%C3%BCler">E. Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%BCler"> M. Güler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report some elastic quantities of cubic fluorite type plutonium dioxide (PuO2) with a recent EAM type interatomic potential through geometry optimization calculations. Typical cubic elastic constants, bulk modulus, shear modulus, young modulus and other related elastic quantities were calculated during present research. After present calculations, we have compared our results with the existing theoretical data of literature. Our results are consistent with previous theoretical findings of the considered parameters of PuO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PuO2" title="PuO2">PuO2</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20modulus" title=" bulk modulus"> bulk modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/35323/a-comparison-for-some-elastic-and-mechanical-properties-of-neptunium-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1315</span> Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Shamsi%20Soosahab"> Javad Shamsi Soosahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title="helical piles">helical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20anisotropy" title=" soil anisotropy"> soil anisotropy</a> </p> <a href="https://publications.waset.org/abstracts/126818/effect-of-elastic-modulus-anisotropy-on-helical-piles-behavior-in-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1314</span> Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Mog%20Choi">Won Mog Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Kyeong%20Hong"> Seong Kyeong Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Young%20Jeong"> Seok Young Jeong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20soil" title=" elastic modulus of soil"> elastic modulus of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/44795/estimation-of-elastic-modulus-of-soil-surrounding-buried-pipeline-using-multi-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1313</span> Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Aghamiri%20Esfahani">Mojtaba Aghamiri Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Karkon"> Mohammad Karkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Majid%20Hosseini%20Nezhad"> Seyed Majid Hosseini Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hosseini-Ara"> Reza Hosseini-Ara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20finite%20elements" title="stochastic finite elements">stochastic finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20bending" title=" plate bending"> plate bending</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann%20expansion%20method." title=" Neumann expansion method. "> Neumann expansion method. </a> </p> <a href="https://publications.waset.org/abstracts/45285/formulating-the-stochastic-finite-elements-for-free-vibration-analysis-of-plates-with-variable-elastic-modulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1312</span> Tensile strength and Elastic Modulus of Nanocomposites Based on Polypropylene/Linear Low Density Polyethylene/Titanium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Ashenai%20Ghasemi">Faramarz Ashenai Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ghasemi"> Ismail Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Daneshpayeh"> Sajad Daneshpayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tensile strength and elastic modulus of nanocomposites based on polypropylene/ linear low density polyethylene/ nano titanium dioxide (PP/LLDPE/TiO2) were studied. The samples were produced using a co-rotating twin screw extruder including 0, 2, 4 Wt .% of nano particles, and 20, 40, 60 Wt.% of LLDPE. The styrene-ethylene-butylene-styrene (SEBS) was used as comptabiliser. Tensile strength and elastic modulus were evaluated. The results showed that modulus was increased by 7% with addition of nano particles in comparison to PP/LLDPE. In addition, tensile strength was decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PP%2FLLDPE%2FTiO2" title="PP/LLDPE/TiO2">PP/LLDPE/TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/35267/tensile-strength-and-elastic-modulus-of-nanocomposites-based-on-polypropylenelinear-low-density-polyethylenetitanium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1311</span> First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdennour%20Benmakhlouf">Abdennour Benmakhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahab%20Bentabet"> Abdelouahab Bentabet </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-potential%20method" title="pseudo-potential method">pseudo-potential method</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20elastic%20properties" title=" structural and elastic properties"> structural and elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=scheelite%20BaWO4%20phase" title=" scheelite BaWO4 phase "> scheelite BaWO4 phase </a> </p> <a href="https://publications.waset.org/abstracts/31495/first-principles-study-of-structural-and-elastic-properties-of-bawo4-scheelite-phase-structure-under-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1310</span> Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Shamsi%20Soosahab">Javad Shamsi Soosahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed"> Reza Ziaie Moayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20piles" title="helical piles">helical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=Optum%20G2" title=" Optum G2"> Optum G2</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20and%20various%20elastic%20modulus" title=" constant and various elastic modulus"> constant and various elastic modulus</a> </p> <a href="https://publications.waset.org/abstracts/126420/effect-of-elastic-modulus-varieties-on-helical-pile-behavior-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1309</span> Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Khanafer">Khalil Khanafer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title="elastic modulus">elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=MMPs%2FTIMPs%20levels" title=" MMPs/TIMPs levels"> MMPs/TIMPs levels</a>, <a href="https://publications.waset.org/abstracts/search?q=Ascending%20Thoracic%20Aortic%20Aneurysm" title=" Ascending Thoracic Aortic Aneurysm"> Ascending Thoracic Aortic Aneurysm</a> </p> <a href="https://publications.waset.org/abstracts/91310/relationship-between-matrix-metalloproteases-and-tissue-inhibitor-of-matrix-metalloproteinase-levels-and-elastic-moduli-of-ascending-aneurysms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1308</span> The Effect of Crack Size, Orientation and Number on the Elastic Modulus of a Cracked Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20T.%20%20Hanson">Mark T. Hanson</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20T.%20%20Varughese"> Alan T. Varughese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is a disease affecting bone quality which in turn can increase the risk of low energy fractures. Treatment of osteoporosis using Bisphosphonates has the beneficial effect of increasing bone mass while at the same time has been linked to the formation of atypical femoral fractures. This has led to the increased study of micro-fractures in bones of patients using Bisphosphonate treatment. One of the mechanics related issues which have been identified in this regard is the loss in stiffness of bones containing one or many micro-fractures. Different theories have been put forth using fracture mechanics to determine the effect of crack presence on elastic properties such as modulus. However, validation of these results in a deterministic way has not been forthcoming. The present analysis seeks to provide this deterministic evaluation of fracture’s effect on the elastic modulus. In particular, the effect of crack size, crack orientation and crack number on elastic modulus is investigated. In particular, the Finite Element method is used to explicitly determine the elastic modulus reduction caused by the presence of cracks in a representative volume element. Single cracks of various lengths and orientations are examined as well as cases of multiple cracks. Cracks in tension as well as under shear stress are considered. Although the focus is predominantly two-dimensional, some three-dimensional results are also presented. The results obtained show the explicit reduction in modulus caused by the parameters of crack size, orientation and number noted above. The present results allow the interpretation of the various theories which currently exist in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus" title=" modulus"> modulus</a> </p> <a href="https://publications.waset.org/abstracts/107007/the-effect-of-crack-size-orientation-and-number-on-the-elastic-modulus-of-a-cracked-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1307</span> First-Principles Study of Xnmg3 (X=P, As, Sb, Bi) Antiperovskite Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadda%20Amara">Kadda Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Elkeurti"> Mohammed Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Zemouli"> Mostefa Zemouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Benallou"> Yassine Benallou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a study of the structural, elastic and electronic properties of the cubic antiperovskites XNMg3 (X=P, As, Sb and Bi) using the full-potential augmented plane wave plus local orbital (FP-LAPW+lo) within the Generalized Gradient Approximation based on PBEsol, Perdew 2008 functional. We determined the lattice parameters, the bulk modulus B and their pressure derivative B'. In addition, the elastic properties such as elastic constants (C11, C12 and C44), the shear modulus G, the Young modulus E, the Poisson's ratio ν and the B/G ratio are also given. For the band structure, density of states and charge density the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XNMg3%20compounds" title="XNMg3 compounds">XNMg3 compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA-PBEsol" title=" GGA-PBEsol"> GGA-PBEsol</a>, <a href="https://publications.waset.org/abstracts/search?q=TB-mBJ" title=" TB-mBJ"> TB-mBJ</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a> </p> <a href="https://publications.waset.org/abstracts/18857/first-principles-study-of-xnmg3-xp-as-sb-bi-antiperovskite-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1306</span> Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongyang%20Ye">Chongyang Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Liu"> Rong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20compression%20stockings" title="elastic compression stockings">elastic compression stockings</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%E2%80%99s%20ratio" title=" Poisson’s ratio"> Poisson’s ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20analysis" title=" mechanical analysis"> mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/152509/determination-of-poissons-ratio-and-elastic-modulus-of-compression-textile-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1305</span> Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianjia%20Meng">Xianjia Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanyong%20Qu"> Chuanyong Qu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title="fatigue damage">fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20modulus" title=" microscopic modulus"> microscopic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-identation" title=" nano-identation"> nano-identation</a> </p> <a href="https://publications.waset.org/abstracts/107066/experimental-research-on-the-elastic-modulus-of-bones-at-the-lamellar-level-under-fatigue-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1304</span> Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Scots%20pine" title=" Scots pine"> Scots pine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50083/determination-of-elastic-constants-for-scots-pine-grown-in-turkey-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Effect of Elastic Modulus Anisotropy on Foundation Behavior Reinforced with Geogrid in Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Shamsi%20Soosahab"> Javad Shamsi Soosahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bearing capacity of shallow foundations is one of the interesting subjects in geotechnical engineering. Soil improvement by geosynthetic reinforcements is a modern method used in different projects to improve the bearing capacity of foundations. In this paper, numerical study is adopted to investigate the effect of geogrid soil reinforcement on shallow foundation behavior resting on anisotropic sand with using a finite element limit analysis software. The effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) investigates on bearing capacity of foundations. The results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of shallow foundations. Also, based on the results of this study, it was concluded that geogrid could be used as soil reinforcement elements to improve the bearing of sandy soils and reduce its settlement possible remarkably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundations" title="shallow foundations">shallow foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20anisotropy" title=" soil anisotropy"> soil anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a> </p> <a href="https://publications.waset.org/abstracts/126795/effect-of-elastic-modulus-anisotropy-on-foundation-behavior-reinforced-with-geogrid-in-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Effects of Heat Treatment on the Elastic Constants of Cedar Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Yilmaz%20Aydin">Tugba Yilmaz Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin"> Ergun Guntekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Aydin"> Murat Aydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of heat treatment on the elastic constants of cedar wood (Cedrus libani) were investigated. Specimens were exposed to heat under atmospheric pressure at four different temperatures (120, 150, 180, 210 °C) and three different time levels (2, 5, 8 hours). Three Young’s modulus (EL, ER, ET) and six Poisson ratios (μLR, μLT, μRL, μRT, μTL, μTR) were determined from compression test using bi-axial extensometer at constant moisture content (12 %). Three shear modulus were determined using ultrasound. Six shear wave velocities propagating along the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector with 1 MHz transverse transducers. The properties of the samples tested were significantly affected by heat treatment by different degree. As a result, softer treatments yielded some amount of increase in Young modulus and shear modulus values, but increase of time and temperature resulted in significant decrease for both values. Poisson ratios seemed insensitive to heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cedar%20wood" title="cedar wood">cedar wood</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50445/effects-of-heat-treatment-on-the-elastic-constants-of-cedar-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Elastic and Thermal Behaviour of LaX (X= Cd, Hg) Intermetallics: A DFT Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gitanjali%20Pagare">Gitanjali Pagare</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansa%20Devi"> Hansa Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Sanyal"> S. P. Sanyal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full-potential linearized augmented plane wave (FLAPW) method has been employed within the generalized gradient approximation (GGA) and local spin density approximation (LSDA) as the exchange correlation potential to investigate elastic properties of LaX (X = Cd and Hg) in their B2-type (CsCl) crystal structure. The calculated ground state properties such as lattice constant (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') agree well with the available experimental results. The second order elastic constants (C11, C12 and C44) have been calculated. The ductility or brittleness of these intermetallic compounds is predicted by using Pugh’s rule B/GH and Cauchy’s pressure (C12-C44). The calculated results indicate that LaHg is the ductile whereas LaCd is brittle in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility%2Fbrittleness" title="ductility/brittleness">ductility/brittleness</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20states" title=" equation of states"> equation of states</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW%20method" title=" FP-LAPW method"> FP-LAPW method</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics "> intermetallics </a> </p> <a href="https://publications.waset.org/abstracts/6401/elastic-and-thermal-behaviour-of-lax-x-cd-hg-intermetallics-a-dft-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eldessouki">Mohamed Eldessouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebraheem%20Shady"> Ebraheem Shady</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Gowayed"> Yasser Gowayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20functionalization" title="carbon nanotubes functionalization">carbon nanotubes functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20nanocomposites" title=" epoxy nanocomposites"> epoxy nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/7896/surface-activation-of-carbon-nanotubes-generating-a-chemical-interaction-in-epoxy-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Krarcha">H. Krarcha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafnium" title="Hafnium">Hafnium</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20propreties" title=" elastic propreties"> elastic propreties</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20principles%20calculation" title=" first principles calculation"> first principles calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a> </p> <a href="https://publications.waset.org/abstracts/32692/structural-elastic-vibrational-and-thermal-properties-of-perovskites-ahfo3-abasreu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jipeng%20Yan">Jipeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingchen%20Yang"> Xingchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhou"> Xiaowei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxing%20Tang"> Mengxing Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghai%20Liu"> Honghai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20modulus" title="shear elastic modulus">shear elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20human-machine%20interface" title=" wearable human-machine interface"> wearable human-machine interface</a> </p> <a href="https://publications.waset.org/abstracts/127469/achieving-shear-wave-elastography-by-a-three-element-probe-for-wearable-human-machine-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.Karabutov"> Alexander A.Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Mironova"> Elena A. Mironova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20A.%20Shibaev"> Ivan A. Shibaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasonic%20testing" title="laser ultrasonic testing ">laser ultrasonic testing </a>, <a href="https://publications.waset.org/abstracts/search?q=local%20elastic%20moduli" title=" local elastic moduli"> local elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=shungit" title=" shungit"> shungit</a> </p> <a href="https://publications.waset.org/abstracts/54585/determination-of-the-local-elastic-moduli-of-shungite-by-laser-ultrasonic-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Srivastava">V. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelet" title=" graphene nanoplatelet"> graphene nanoplatelet</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20modulus" title=" loss modulus"> loss modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohardness" title=" nanohardness"> nanohardness</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a> </p> <a href="https://publications.waset.org/abstracts/36868/elastic-behaviour-of-graphene-nanoplatelets-reinforced-epoxy-resin-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> Prediction Study of the Structural, Elastic and Electronic Properties of the Parent and Martensitic Phases of Nonferrous Ti, Zr, and Hf Pure Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayeb%20Chihi">Tayeb Chihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Fatmi"> Messaoud Fatmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present calculations of the structural, elastic and electronic properties of nonferrous Ti, Zr, and Hf pure metals in both parent and martensite phases in bcc and hcp structures respectively. They are based on the generalized gradient approximation (GGA) within the density functional theory (DFT). The shear modulus, Young's modulus and Poisson's ratio for Ti, Zr, and Hf metals have were calculated and compared with the corresponding experimental values. Using elastic constants obtained from calculations GGA, the bulk modulus along the crystallographic axes of single crystals was calculated. This is in good agreement with experiment for Ti and Zr, whereas the hcp structure for Hf is a prediction. At zero temperature and zero pressure, the bcc crystal structure is found to be mechanically unstable for Ti, Zr, and Hf. In our calculations the hcp structures is correctly found to be stable at the equilibrium volume. In the electronic density of states (DOS), the smaller n(EF) is, the more stable the compound is. Therefore, in agreement with the results obtained from the total energy minimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti" title="Ti">Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=Zr" title=" Zr"> Zr</a>, <a href="https://publications.waset.org/abstracts/search?q=Hf" title=" Hf"> Hf</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20metals" title=" pure metals"> pure metals</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/13815/prediction-study-of-the-structural-elastic-and-electronic-properties-of-the-parent-and-martensitic-phases-of-nonferrous-ti-zr-and-hf-pure-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen">Xin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Moxiao%20Li"> Moxiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuechao%20Sun"> Xuechao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Ti"> Fei Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaobao%20Liu"> Shaobao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Jian%20Lu"> Tian Jian Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20mechanics" title="composite mechanics">composite mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-inhomogeneity" title=" nano-inhomogeneity"> nano-inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-pores" title=" nano-pores"> nano-pores</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20effect" title=" scale effect"> scale effect</a> </p> <a href="https://publications.waset.org/abstracts/109464/the-elastic-field-of-a-nano-pore-and-the-effective-modulus-of-composites-with-nano-pores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Response of Pavement under Temperature and Vehicle Coupled Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Jie%20Xu"> Mei-Jie Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title="asphalt pavement">asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title=" dynamic modulus"> dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transformation" title=" integral transformation"> integral transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix" title=" transfer matrix"> transfer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/31808/response-of-pavement-under-temperature-and-vehicle-coupled-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ghebouli">M. A. Ghebouli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouhemadou"> A. Bouhemadou</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Choutri"> H. Choutri</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Louaila"> L. Louaila </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite" title="perovskite">perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=PP-PW%20method" title=" PP-PW method"> PP-PW method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20band%20structure" title=" electronic band structure "> electronic band structure </a> </p> <a href="https://publications.waset.org/abstracts/1794/theoretical-prediction-of-the-structural-elastic-electronic-optical-and-thermal-properties-of-cubic-perovskites-csxf3-x-ca-sr-and-hg-under-pressure-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=45">45</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=elastic%20modulus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>