CINXE.COM

{"title":"A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis","authors":"Z. \u017d. Lazarevi\u0107, D. L. Sekuli\u0107, V. N. Ivanovski, N. \u017d. Rom\u010devi\u0107","volume":104,"journal":"International Journal of Materials and Metallurgical Engineering","pagesStart":1066,"pagesEnd":1071,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10002863","abstract":"NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and\r\nNi0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by\r\nmechanochemical route in a planetary ball mill starting from mixture\r\nof the appropriate quantities of the Ni(OH)2\/Fe(OH)3,\r\nZn(OH)2\/Fe(OH)3 and Ni(OH)2\/Zn(OH)2\/Fe(OH)3 hydroxide\r\npowders. In order to monitor the progress of chemical reaction and\r\nconfirm phase formation, powder samples obtained after 25 h, 18 h\r\nand 10 h of milling were characterized by X-ray diffraction (XRD),\r\ntransmission electron microscopy (TEM), IR, Raman and M\u00f6ssbauer\r\nspectroscopy. It is shown that the soft mechanochemical method, i.e.\r\nmechanochemical activation of hydroxides, produces high quality\r\nsingle phase ferrite samples in much more efficient way. From the IR\r\nspectroscopy of single phase samples it is obvious that energy of\r\nmodes depends on the ratio of cations. It is obvious that all samples\r\nhave more than 5 Raman active modes predicted by group theory in\r\nthe normal spinel structure. Deconvolution of measured spectra\r\nallows one to conclude that all complex bands in the spectra are made\r\nof individual peaks with the intensities that vary from spectrum to\r\nspectrum. The deconvolution of Raman spectra allows to separate\r\ncontributions of different cations to a particular type of vibration and\r\nto estimate the degree of inversion.","references":"[1] M. Mohapatra, and S. Anand, \u201cSynthesis and applications of nanostructured\r\niron oxides\/hydroxides \u2013 a review,\u201d International Journal of\r\nEngineering, Science and Technology, vol. 2, no. 8, pp. 127\u2013146, Xxx.\r\n2010, www.ijest-ng.com.\r\n[2] A. R. Tanna, and H. H. Joshi, \u201cComputer aided X-ray diffraction\r\nintensity analysis for spinels: hands-on computing experience,\u201d World\r\nAcademy of Science, Engineering and Technology, vol. 7, no.3, pp. 70\u2013\r\n77, 2013.\r\n[3] W. H. Bragg, \u201cThe structure of magnetite and the spinels\u201d Nature, Lond.\r\nvol. 95, pp. 561, 1915.\r\n[4] Q. Liu, L. Lv, J. P. Zhou, X. M. Chen, X. B. Bian, and P. Liu, \u201cInfluence\r\nof nickel-zinc ratio on microstructure, magnetic and dielectric properties\r\nof Ni(1\u2212x)ZnxFe2O4 ferrites,\u201d Journal of Ceramic Processing Research,\r\nvol. 13, no. 2, pp. 110\u2013116, 2012.\r\n[5] \u010c. Jovaleki\u0107, M. Zduji\u0107, A. Radakovi\u0107, and M. Mitri\u0107,\r\n\u201cMechanochemical synthesis of NiFe2O4 ferrite,\u201d Materials Letters, vol.\r\n24, no.6, pp. 365\u2013368, 1995.\r\n[6] C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K.\r\nChattopadhyay, H. Guerault, and J. M. Greneche, \u201cFerrimagnetic\r\nordering in nanostructured zinc ferrite,\u201d Scripta Materialia, vol. 44, no.\r\n8\u20139, pp. 1407\u20131410, 2001.\r\n[7] M. Jalaly, M. H. Enayati, and F. Karimzadeh, \u201cInvestigation of\r\nstructural and magnetic properties of nanocrystalline Ni0.3Zn0.7Fe2O4\r\nprepared by high energy ball milling,\u201d Journal of Alloys and\r\nCompounds, vol. 480, pp. 737\u2013740, 2009.\r\n[8] K. Maaz, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, \u201cTemperature\r\ndependent coercivity and magnetization of nickel ferrite nanoparticles,\u201d\r\nJournal of Magnetism and Magnetic Materials, vol. 322, no.15, pp.\r\n2199\u20132202, 2010.\r\n[9] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C.\r\nMuthamizhchelvan, \u201cSynthesis and characterization of NiFe2O4\r\nnanosheet via polymer assisted co-precipitation method,\u201d Materials\r\nLetters, vol. 65, no. 3, pp. 483\u2013485, 2011. [10] E. Manova, D. Paneva, B. Kunev, E. Rivi\u00e8re, C. Estourn\u00e8s, and I. Mitov,\r\n\u201cCharacterization of nanodimensional Ni-Zn ferrite prepared by\r\nmechanochemical and thermal methods,\u201d Journal of Physics:\r\nConference Series, vol. 217, no. 1, pp. 012102, 2010, doi:10.1088\/1742-\r\n6596\/217\/1\/012102.\r\n[11] K. Suresh, and K. C. Patil, \u201cPreparation and properties of fine particle\r\nnickel-zinc ferrites: A comparative study of combustion and precursor\r\nmethods,\u201d Journal of Solid State Chemistry, vol. 99, no. 1, pp. 12\u201317,\r\n1992.\r\n[12] A. Verma, T. C. Goel, and R. G. Mendiratta, \u201cLow temperature\r\nprocessing of NiZn ferrite by citrate precursor method and study of\r\nproperties,\u201d Materials Science and Technology, vol. 16, pp. 712\u2013715,\r\n2000.\r\n[13] K. R. Krishna, K. V. Kumar, C. Ravindernath Gupta, and D. Ravinder,\r\n\u201cMagnetic properties of Ni-Zn ferrites by citrate gel method,\u201d Advances\r\nin Materials Physics and Chemistry, vol. 2, no. 3, pp. 149\u2013154, 2012,\r\nhttp:\/\/dx.doi.org\/10.4236\/ampc.2012.23022.\r\n[14] A. T. Raghavender, K. Zadro, D. Pajic, Z. Skoko, and N. Biliskov,\r\n\u201cEffect of grain size on the N\u00e9el temperature of nanocrystalline nickel\r\nferrite,\u201d Materials Letters, vol. 64, no. 10, pp. 1144\u20131146, 2010.\r\n[15] H. E. Zhang, B. F. Zhang, G. F. Wang, X. H. Dong, and Y. Gao, \u201cThe\r\nstructure and magnetic properties of Zn1-xNixFe2O4 ferrite nanoparticles\r\nprepared by sol\u2013gel auto-combustion,\u201d Journal of Magnetism and\r\nMagnetic Materials, vol. 312, pp. 126\u2013130, 2007.\r\n[16] A. T. Raghavender, N. Bili\u0161kov, and \u017d. Skoko, \u201cXRD and IR analysis of\r\nnanocrystalline Ni\u2013Zn ferrite synthesized by the sol\u2013gel method,\u201d\r\nMaterials Letters, vol. 65, pp. 677\u2013680, 2011.\r\n[17] E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical\r\nSynthesis: A Basis for New Chemical Technologies, Kluwer Academic\r\nPublishers, Boston, 2001.\r\n[18] Z. \u017d. Lazarevi\u0107, \u010c. Jovaleki\u0107, A. Re\u010dnik, V. N. Ivanovski, A.\r\nMilutinovi\u0107, M. Rom\u010devi\u0107, M. B. Pavlovi\u0107, B. Ceki\u0107, and N. \u017d.\r\nRom\u010devi\u0107, \u201cPreparation and characterization of spinel nickel ferrite\r\nobtained by the soft mechanochemically assisted synthesis,\u201d Materials\r\nResearch Bulletin, vol. 48, pp. 404\u2013415 , 2013.\r\n[19] R. A. Brand, WinNormos M\u00f6ssbauer fitting program, Universit\u00e4t\r\nDuisburg, 2008.\r\n[20] Ivanov, M. V. Abrashev, M. N. Iliev, M. M. Gospodinov, J. Meen, and\r\nM. I. Aroyo, \u201cShort-range B-site ordering in the inverse spinel ferrite\r\nNiFe2O4,\u201d Physical Review B, vol. 82, pp. 024104, 2010,\r\nhttp:\/\/dx.doi.org\/10.1103\/PhysRevB.82.024104.\r\n[21] Z. \u017d. Lazarevi\u0107, \u010c. Jovaleki\u0107, A. Milutinovi\u0107, D. Sekuli\u0107, V. N.\r\nIvanovski, A. Re\u010dnik, B. Ceki\u0107, and N. Z. Rom\u010devi\u0107, \u201cNanodimensional\r\nspinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical\r\nsynthesis,\u201d Journal of Applied Physics, vol. 113, pp. 187221, 2013.\r\n[22] Z. W. Wang, P. Lazor, S. K. Saxena, and G. Artioli, \u201cHigh-pressure\r\nRaman spectroscopic study of spinel (ZnCr2O4),\u201d Journal of Solid State\r\nChemistry, vol. 165, 165\u2013170, 2002.\r\n[23] M. Maletin, E. G. Moshopoulou, A. G. Kontos, E. Devlin, A. Delimitis,\r\nV. T. Zaspalis, L. Nalbandian, and V. V. Srdi\u0107, \u201cSynthesis and structural\r\ncharacterization of In-doped ZnFe2O4 nanoparticles,\u201d Journal of the\r\nEuropean Ceramic Society, vol. 27, pp. 4391\u20134394, 2007.\r\n[24] A. Milutinovi\u0107, Z. \u017d. Lazarevi\u0107, \u010c. Jovaleki\u0107, I. Kuryliszyn-Kudelska,\r\nM. Rom\u010devi\u0107, S. Kostic, and N. \u017d. Rom\u010devi\u0107, \u201cThe cation inversion and\r\nmagnetization in nanopowder zinc ferrite obtained by soft\r\nmechanochemical processing,\u201d Materials Research Bulletin, vol. 48, pp.\r\n4759\u20134768, 2013.\r\n[25] O. N. Shebanova, and P. Lazor, \u201cRaman study of magnetite (Fe3O4):\r\nlaser-induced thermal effects and oxidation,\u201d Journal of Raman\r\nSpectroscopy, vol. 34, pp. 845\u2013852, 2003.\r\n[26] A. Ahlawat, and V. G. Sathe, \u201cRaman study of NiFe2O4 nanoparticles,\r\nbulk and films: effect of laser power,\u201d Journal of Raman Spectroscopy,\r\nvol. 42, pp. 1087\u20131094, 2011.\r\n[27] \u017d. Cveji\u0107, S. Raki\u0107, A. Kremenovi\u0107, B. Anti\u0107, \u010c. Jovaleki\u0107, and P.\r\nColomban, \u201cNanosize ferrites obtained by ball milling: crystal structure,\r\ncation distribution, size-strain analysis and Raman investigations,\u201d Solid\r\nState Sciences, vol. 8, no. 8, pp. 908\u2013915, 2006.\r\n[28] N. N. Greenwood, and T. C. Gibb, M\u00f6ssbauer Spectroscopy, Chapman\r\nand Hall Ltd., London, pp. 266\u2013267, 1971.\r\n[29] V. \u0160epel\u00e1k, D. Baabe, and K. D. Becker, \u201cMechanically induced cation\r\nredistribution and spin canting in nickel ferrite,\u201d Journal of Materials\r\nSynthesis and Processing, vol. 8, no. 5-6, pp. 333\u2013337 (2000).\r\n[30] G. A. Sawatzky, F. Van der Woude, and A. H. Morrish, \u201cM\u00f6ssbauer\r\nstudy of several ferrimagnetic spinel,\u201d Physical Review, vol. 187, no.2,\r\n747\u2013757, 1969.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 104, 2015"}