CINXE.COM
Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses - CERN Document Server
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if IEMobile 7]><html class="iem7" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if lte IE 6]><html class="ie6 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (IE 7)&(!IEMobile)]><html class="ie7 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if IE 8]><html class="ie8 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (gte IE 9)|(gt IEMobile 7)]><!--><html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><!--<![endif]--> <head> <title>Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses - CERN Document Server</title> <link href='https://framework.web.cern.ch/framework/2.0/fonts/PTSansWeb/PTSansWeb.css' rel='stylesheet' type='text/css' /> <link rel="stylesheet" href="http://cds.cern.ch/img/invenio.css?v=20141127" type="text/css" /> <link rel="stylesheet" href="http://cds.cern.ch/img/cern_theme/css/cern_theme.css?v=20141127" type="text/css" /> <link rel="stylesheet"href="/css/font-awesome.min.css"> <meta http-equiv="X-UA-Compatible" content="IE=Edge"/> <link rel="stylesheet" href="http://cds.cern.ch/img/cern_toolbar/css/toolbar.css" type="text/css" /> <!--[if lt IE 8]> <link href="http://cds.cern.ch/img/cern_toolbar/css/toolbar-ie.css" rel="stylesheet" type="text/css"> <![endif]--> <!--[if lt IE 8]> <link rel="stylesheet" type="text/css" href="http://cds.cern.ch/img/invenio-ie7.css" /> <![endif]--> <!--[if gt IE 8]> <style type="text/css">div.restrictedflag {filter:none;}</style> <![endif]--> <link rel="canonical" href="http://cds.cern.ch/record/2917068" /> <link rel="alternate" hreflang="el" href="http://cds.cern.ch/record/2917068?ln=el" /> <link rel="alternate" hreflang="fr" href="http://cds.cern.ch/record/2917068?ln=fr" /> <link rel="alternate" hreflang="bg" href="http://cds.cern.ch/record/2917068?ln=bg" /> <link rel="alternate" hreflang="zh-TW" href="http://cds.cern.ch/record/2917068?ln=zh_TW" /> <link rel="alternate" hreflang="pt" href="http://cds.cern.ch/record/2917068?ln=pt" /> <link rel="alternate" hreflang="no" href="http://cds.cern.ch/record/2917068?ln=no" /> <link rel="alternate" hreflang="hr" href="http://cds.cern.ch/record/2917068?ln=hr" /> <link rel="alternate" hreflang="ca" href="http://cds.cern.ch/record/2917068?ln=ca" /> <link rel="alternate" hreflang="de" href="http://cds.cern.ch/record/2917068?ln=de" /> <link rel="alternate" hreflang="it" href="http://cds.cern.ch/record/2917068?ln=it" /> <link rel="alternate" hreflang="zh-CN" href="http://cds.cern.ch/record/2917068?ln=zh_CN" /> <link rel="alternate" hreflang="sv" href="http://cds.cern.ch/record/2917068?ln=sv" /> <link rel="alternate" hreflang="sk" href="http://cds.cern.ch/record/2917068?ln=sk" /> <link rel="alternate" hreflang="en" href="http://cds.cern.ch/record/2917068?ln=en" /> <link rel="alternate" hreflang="pl" href="http://cds.cern.ch/record/2917068?ln=pl" /> <link rel="alternate" hreflang="ru" href="http://cds.cern.ch/record/2917068?ln=ru" /> <link rel="alternate" hreflang="ka" href="http://cds.cern.ch/record/2917068?ln=ka" /> <link rel="alternate" hreflang="ja" href="http://cds.cern.ch/record/2917068?ln=ja" /> <link rel="alternate" hreflang="es" href="http://cds.cern.ch/record/2917068?ln=es" /> <link rel="alternate" type="application/rss+xml" title="CERN Document Server RSS" href="/rss?ln=en" /> <link rel="search" type="application/opensearchdescription+xml" href="http://cds.cern.ch/opensearchdescription" title="CERN Document Server" /> <link rel="unapi-server" type="application/xml" title="unAPI" href="http://cds.cern.ch/unapi" /> <link rel="apple-touch-icon" href="/apple-touch-icon.png"/> <link rel="apple-touch-icon-precomposed" href="/apple-touch-icon-precomposed.png"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta http-equiv="Content-Language" content="en" /> <meta name="description" content="The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range. Abstract The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range. Granados, Eduardo; Martinez-Calderon, Miguel; Groussin, Baptiste; Colombier, Jean Philippe; Santiago, Ibon" /> <meta name="keywords" content="laser nanostructuring, plasmonics, silicon, accelerators" /> <script type="text/javascript" src="http://cds.cern.ch/js/jquery.min.js"></script> <!-- WebNews CSS library --> <link rel="stylesheet" href="http://cds.cern.ch/img/webnews.css" type="text/css" /> <!-- WebNews JS library --> <script type="text/javascript" src="http://cds.cern.ch/js/webnews.js?v=20131009"></script> <meta property="fb:app_id" content="137353533001720"/> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$']], processEscapes: true}, showProcessingMessages: false, messageStyle: "none" }); </script> <script src="/MathJax/MathJax.js?config=TeX-AMS_CHTML" type="text/javascript"> </script> <!-- GoogleScholar --> <meta content="De Gruyter : Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses" name="citation_title" /> <meta content="Granados, Eduardo" name="citation_author" /> <meta content="Groussin, Baptiste" name="citation_author" /> <meta content="Santiago, Ibon" name="citation_author" /> <meta content="Martinez-Calderon, Miguel" name="citation_author" /> <meta content="Colombier, Jean Philippe" name="citation_author" /> <meta content="10.1515/nanoph-2024-0240" name="citation_doi" /> <meta content="Nanophoton." name="citation_journal_title" /> <meta content="13" name="citation_volume" /> <meta content="4079-4089" name="citation_firstpage" /> <meta content="2024" name="citation_publication_date" /> <meta name="citation_online_date" content="2024/11/14"> <meta content="10.1515/nanoph-2024-0240" name="citation_doi" /> <meta name="citation_pdf_url" content="http://cds.cern.ch/record/2917068/files/document.pdf" /> <!-- OpenGraph --> <meta content="Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses" property="og:title" /> <meta content="De Gruyter" property="og:title" /> <meta content="website" property="og:type" /> <meta content="http://cds.cern.ch/record/2917068" property="og:url" /> <meta content="CERN Document Server" property="og:site_name" /> <meta content="submitter" property="og:description" /> <meta content="The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range." property="og:description" /> <meta content="De Gruyter" property="og:description" /> <meta content="Abstract The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range." property="og:description" /> <!-- Twitter Card --> <meta content="summary" name="twitter:card" /> <style></style> </head> <body class="CERN32Document32Server search" lang="en"> <!-- toolbar starts --> <div id="cern-toolbar"> <h1><a href="http://cern.ch" title="CERN">CERN <span>Accelerating science</span></a></h1> <ul> <li class="cern-accountlinks"><a class="cern-account" href="https://cds.cern.ch/youraccount/login?ln=en&referer=http%3A//cds.cern.ch/record/2917068%3Fln%3Den" title="Sign in to your CERN account">Sign in</a></li> <li><a class="cern-directory" href="http://cern.ch/directory" title="Search CERN resources and browse the directory">Directory</a></li> </ul> </div> <!-- toolbar ends --> <!-- Nav header starts--> <div role="banner" class="clearfix" id="header"> <div class="header-inner inner"> <hgroup class="clearfix"> <h2 id="site-name"> <a rel="home" title="Home" href="/"><span>CERN Document Server</span></a> </h2> <h3 id="site-slogan">Access articles, reports and multimedia content in HEP</h3> </hgroup><!-- /#name-and-slogan --> <div role="navigation" id="main-navigation" class="cdsmenu"> <h2 class="element-invisible">Main menu</h2><ul class="links inline clearfix"> <li class="menu-386 first active-trail"><a class="active-trail" href="http://cds.cern.ch/?ln=en">Search</a></li> <li class="menu-444 "><a class="" title="" href="http://cds.cern.ch/submit?ln=en">Submit</a></li> <li class="menu-426 "><a class="" href="http://cds.cern.ch/help/?ln=en">Help</a></li> <li class="leaf hassubcdsmenu"> <a hreflang="en" class="header" href="https://cds.cern.ch/youraccount/display?ln=en">Personalize</a> <ul class="subsubcdsmenu"><li><a href="https://cds.cern.ch/youralerts/list?ln=en">Your alerts</a></li><li><a href="https://cds.cern.ch/yourbaskets/display?ln=en">Your baskets</a></li><li><a href="https://cds.cern.ch/yourcomments?ln=en">Your comments</a></li><li><a href="https://cds.cern.ch/youralerts/display?ln=en">Your searches</a></li></ul></li> </ul> </div> </div> </div> <!-- Nav header ends--> <table class="navtrailbox"> <tr> <td class="navtrailboxbody"> <a href="/?ln=en" class="navtrail">Home</a> > Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses </td> </tr> </table> </div> <div class="pagebody"><div class="pagebodystripemiddle"> <div class="detailedrecordbox"> <div class="detailedrecordtabs"> <div> <ul class="detailedrecordtabs"><li class="on first"><a href="/record/2917068/?ln=en">Information </a></li><li class=""><a href="/record/2917068/files?ln=en">Files </a></li></ul> <div id="tabsSpacer" style="clear:both;height:0px"> </div></div> </div> <div class="detailedrecordboxcontent"> <div class="top-left-folded"></div> <div class="top-right-folded"></div> <div class="inside"> <!--<div style="height:0.1em;"> </div> <p class="notopgap"> </p>--> <abbr class="unapi-id" title="2917068"></abbr> <style type="text/css"> <!-- ul.detailedrecordtabs li.on a{background-color:#4D94CC;color:#fff !important;border-bottom:1px solid #4D94CC!important;} div.detailedrecordboxcontent {padding-top:0px !important;} --> </style> <table class="formatRecordTableFullWidth" > <tr> <td class="formatRecordHeader" style="background-image: url('http://cds.cern.ch/img/journals.jpg');" colspan="2"> <!--YTD: record may have more than one 690C.a tag--> Article </td> </tr> <script type="text/javascript"> $( document ).ready(function() { $('.showAuthor').on('click', function() { var author = '<p>' + $(this).data('name') + '</p>'; var affiliation = $(this).data('affiliation') + '</br>'; var contribution = $(this).data('contribution') + '</br>'; $.magnificPopup.open({ items: { src: '<div id="ovelary-mathjax" class="overlay-white oc-content overlay-white-500">' + author + affiliation + contribution + '</div>', type: 'inline' }, callbacks: { open: function() { var div = document.getElementById("overlay-mathjax") MathJax.Hub.Queue(["Typeset", MathJax.Hub, div]); }, } }) }) }); </script> <tr><td class="formatRecordLabel"> Title </td><td style="padding-left:5px;"><b>Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses</b></td></tr> <tr><td class="formatRecordLabel"><span style="white-space:nowrap;"> Author(s) </span> </td><td style="padding-left:5px;"><a href="http://cds.cern.ch/search?f=author&p=Granados%2C%20Eduardo&ln=en">Granados, Eduardo</a> (CERN) ; <a href="http://cds.cern.ch/search?f=author&p=Martinez-Calderon%2C%20Miguel&ln=en">Martinez-Calderon, Miguel</a> (CERN) ; <a href="http://cds.cern.ch/search?f=author&p=Groussin%2C%20Baptiste&ln=en">Groussin, Baptiste</a> (CERN) ; <a href="http://cds.cern.ch/search?f=author&p=Colombier%2C%20Jean%20Philippe&ln=en">Colombier, Jean Philippe</a> (Lab. Hubert Curien, St. Etienne) ; <a href="http://cds.cern.ch/search?f=author&p=Santiago%2C%20Ibon&ln=en">Santiago, Ibon</a></td></tr> <tr><td class="formatRecordLabel"> Publication </td><td style="padding-left:5px;">2024</td></tr> <tr><td class="formatRecordLabel"> Number of pages </td><td style="padding-left:5px;">11</td></tr> <tr><td class="formatRecordLabel"> In: </td><td style="padding-left:5px;"><a href="http://dx.doi.org/10.1515/nanoph-2024-0240"><i>Nanophoton.</i> 13 (2024) 4079-4089</a> </a></td></tr> <tr><td class="formatRecordLabel"> DOI </td><td style="padding-left:5px;"><a href="http://dx.doi.org/10.1515/nanoph-2024-0240" title="DOI" target="_blank">10.1515/nanoph-2024-0240</a> <tr><td class="formatRecordLabel"> Subject category </td><td style="padding-left:5px;">Accelerators and Storage Rings</td></tr> <tr><td class="formatRecordLabel"> Abstract </td><td style="padding-left:5px;">Abstract The prospect of employing nanophotonic methods for controlling photon–electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100 nm- for a nanostructure periodicity of 250 nm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200–300 nm range.</td></tr> <tr><td class="formatRecordLabel"> Copyright/License </td><td style="padding-left:5px;">© 2024 The author(s) (License: <a href="https://creativecommons.org/licenses/by/4.0/">CC-BY-4.0</a>)</td></tr> </table> <br/>Corresponding record in: <a href="http://inspirehep.net/record/2842068">Inspire</a> <small> </small> <br/> <br/><br/><div align="right"><div style="padding-bottom:2px;padding-top:30px;"><span class="moreinfo" style="margin-right:10px;"> <a href="" class="moreinfo">Back to search</a> </span></div></div> <div class="bottom-left-folded"><div class="recordlastmodifiedbox" style="position:relative;margin-left:1px"> Record created 2024-11-14, last modified 2024-11-14</div></div> <div class="bottom-right-folded" style="text-align:right;padding-bottom:2px;"> <span class="moreinfo" style="margin-right:10px;"><a href="/search?ln=en&p=recid%3A2917068&rm=wrd" class="moreinfo">Similar records</a></span></div> </div> </div> </div> <br/> <br /> <div class="detailedrecordminipanel"> <div class="top-left"></div><div class="top-right"></div> <div class="inside"> <div id="detailedrecordminipanelfile" style="width:33%;float:left;text-align:center;margin-top:0"> <div><small class="detailedRecordActions">Fulltext:</small> <br /><a href="/record/2917068/files/document.pdf"><img style="border:none" src="/img/file-icon-text-34x48.gif" alt="Download fulltext" /><br />PDF</a><br /></div> </div> <div id="detailedrecordminipanelreview" style="width:30%;float:left;text-align:center"> </div> <div id="detailedrecordminipanelactions" style="width:36%;float:right;text-align:right;"> <ul class="detailedrecordactions"> <li><a href="/yourbaskets/add?ln=en&recid=2917068">Add to personal basket</a></li> <li>Export as <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/hx?ln=en">BibTeX</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/hm?ln=en">MARC</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xm?ln=en">MARCXML</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xd?ln=en">DC</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xe?ln=en">EndNote</a>, <!-- <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xe8x?ln=en">EndNote (8-X)</a>,--> <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xn?ln=en">NLM</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2917068/export/xw?ln=en">RefWorks</a> </li> </ul> <div style='padding-left: 13px;'> <!-- JQuery Bookmark Button BEGIN --> <div id="bookmark"></div> <div id="bookmark_sciencewise"></div> <style type="text/css"> #bookmark_sciencewise, #bookmark {float: left;} #bookmark_sciencewise li {padding: 2px; width: 25px;} #bookmark_sciencewise ul, #bookmark ul {list-style-image: none;} </style> <script type="text/javascript" src="/js/jquery.bookmark.min.js"></script> <style type="text/css">@import "/css/jquery.bookmark.css";</style> <script type="text/javascript">// <![CDATA[ $.bookmark.addSite('sciencewise', 'ScienceWise.info', 'http://cds.cern.ch/img/sciencewise.png', 'en', 'bookmark', 'http://sciencewise.info/bookmarks/cds:2917068/add'); $('#bookmark_sciencewise').bookmark({sites: ['sciencewise']}); $('#bookmark').bookmark({ sites: ['facebook', 'twitter', 'linkedin', 'google_plusone'], icons: '/img/bookmarks.png', url: 'http://cds.cern.ch/record/2917068', addEmail: true, title: "Highly uniform silicon nanopatterning with deep-ultraviolet femtosecond pulses", description: "The prospect of employing nanophotonic methods for controlling photon\u2013electron interactions has ignited substantial interest within the particle accelerator community. Silicon-based integrated dielectric laser acceleration (DLA) has emerged as a viable option by leveraging localized photonic effects to emit, accelerate, and measure electron bunches using exclusively light. Here, using highly regular nanopatterning over large areas while preserving the crystalline structure of silicon is imperative to enhance the efficiency and yield of photon-electron effects. While several established fabrication techniques may be used to produce the required silicon nanostructures, alternative techniques are beneficial to enhance scalability, simplicity and cost-efficiency. In this study, we demonstrate the nano-synthesis of silicon structures over arbitrarily large areas utilizing exclusively deep ultraviolet (DUV) ultrafast laser excitation. This approach delivers highly concentrated electromagnetic energy to the material, thus producing nanostructures with features well beyond the diffraction limit. At the core of our demonstration is the production of silicon laser-induced surface structures with an exceptionally high aspect-ratio -reaching a height of more than 100\u202fnm- for a nanostructure periodicity of 250\u202fnm. This result is attained by exploiting a positive feedback effect on the locally enhanced laser electric field as the surface morphology dynamically emerges, in combination with the material properties at DUV wavelengths. We also observe strong nanopattern hybridization yielding intricate 2D structural features as the onset of amorphization takes place at high laser pulse fluence. This technique offers a simple, yet efficient and attractive approach to produce highly uniform and high aspect ratio silicon nanostructures in the 200\u2013300\u202fnm range." }); // ]]> </script> <!-- JQuery Bookmark Button END --> </div> </div> <div style="clear:both;margin-bottom: 0;"></div> </div> <div class="bottom-left"></div><div class="bottom-right"></div> </div> </div></div> <footer id="footer" class="pagefooter clearfix"> <!-- replaced page footer --> <div class="pagefooterstripeleft"> CERN Document Server :: <a class="footer" href="http://cds.cern.ch/?ln=en">Search</a> :: <a class="footer" href="http://cds.cern.ch/submit?ln=en">Submit</a> :: <a class="footer" href="https://cds.cern.ch/youraccount/display?ln=en">Personalize</a> :: <a class="footer" href="http://cds.cern.ch/help/?ln=en">Help</a> :: <a class="footer" href="https://cern.service-now.com/service-portal?id=privacy_policy&se=CDS-Service" target="_blank">Privacy Notice</a> <br /> Powered by <a class="footer" href="http://invenio-software.org/">Invenio</a> <br /> Maintained by <a class="footer" href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Service</a> - Need help? Contact <a href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Support</a>. <br /> </div> <div class="pagefooterstriperight"> <div class="cern-logo"> <a id="logo" href="http://cern.ch" title="CERN" rel="CERN" ><img src="http://cds.cern.ch/img/cern_theme/img/cern-logo-large.png" alt="CERN" /></a> </div> <div class="cern-languagebox"> This site is also available in the following languages:<br /><a href="/record/2917068?ln=bg" class="langinfo">Български</a> <a href="/record/2917068?ln=ca" class="langinfo">Català</a> <a href="/record/2917068?ln=de" class="langinfo">Deutsch</a> <a href="/record/2917068?ln=el" class="langinfo">Ελληνικά</a> <span class="langinfo">English</span> <a href="/record/2917068?ln=es" class="langinfo">Español</a> <a href="/record/2917068?ln=fr" class="langinfo">Français</a> <a href="/record/2917068?ln=hr" class="langinfo">Hrvatski</a> <a href="/record/2917068?ln=it" class="langinfo">Italiano</a> <a href="/record/2917068?ln=ja" class="langinfo">日本語</a> <a href="/record/2917068?ln=ka" class="langinfo">ქართული</a> <a href="/record/2917068?ln=no" class="langinfo">Norsk/Bokmål</a> <a href="/record/2917068?ln=pl" class="langinfo">Polski</a> <a href="/record/2917068?ln=pt" class="langinfo">Português</a> <a href="/record/2917068?ln=ru" class="langinfo">Русский</a> <a href="/record/2917068?ln=sk" class="langinfo">Slovensky</a> <a href="/record/2917068?ln=sv" class="langinfo">Svenska</a> <a href="/record/2917068?ln=zh_CN" class="langinfo">中文(简)</a> <a href="/record/2917068?ln=zh_TW" class="langinfo">中文(繁)</a> </div> </div> <!-- replaced page footer --> </footer> <script type="text/javascript"> var SyndeticsBookCovers = (function() { var SMALL_SIZE = "sc.gif", MEDIUM_SIZE = "mc.gif", RAW_URL = "https://secure.syndetics.com/index.aspx?isbn=THEISBN/THESIZE&client=cernlibrary"; replaceCover = function(imgElement, isbns, hdFormat) { var img = new Image(), size = hdFormat ? MEDIUM_SIZE : SMALL_SIZE; var _isbns = isbns.sort(function(a, b) { // sort from shortest to longest ISBN (more modern) return a.length > b.length ? 1 : -1; }); function next() { var isbn = _isbns.pop(); if (isbn) { var url = RAW_URL.replace("THEISBN", isbn).replace("THESIZE", size); img.src = url; } } function done() { imgElement.src = img.src; } img.onload = function() { if (this.width > 1) { done(); } else { next(); } }; next(); }; return { replaceCover: replaceCover }; })(); $(document).ready(function() { // get book covers $("img.book-cover").each(function() { var $this = $(this), strIsbns = $this.data("isbns") || "", isbnsArray = String(strIsbns).split(","), hdFormat = $this.hasClass("hd"); SyndeticsBookCovers.replaceCover(this, isbnsArray, hdFormat); }); // WebNews tooltips $.ajax({ url: "/news/tooltips", success: function(data) { create_tooltips(data); }, dataType: "json", cache: false }); }); </script> <!-- Feedback script --> <script src="//cds.cern.ch/js/feedback.js"></script> <!-- Feedback script --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://webanalytics.web.cern.ch/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '756']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </body> </html>