CINXE.COM
Search results for: Naive Bayes Classifier
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Naive Bayes Classifier</title> <meta name="description" content="Search results for: Naive Bayes Classifier"> <meta name="keywords" content="Naive Bayes Classifier"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Naive Bayes Classifier" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Naive Bayes Classifier"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 347</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Naive Bayes Classifier</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Comparing SVM and Na茂ve Bayes Classifier for Automatic Microaneurysm Detections </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Sopharak">A. Sopharak</a>, <a href="https://publications.waset.org/search?q=B.%20Uyyanonvara"> B. Uyyanonvara</a>, <a href="https://publications.waset.org/search?q=S.%20Barman"> S. Barman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diabetic%20retinopathy" title="Diabetic retinopathy">Diabetic retinopathy</a>, <a href="https://publications.waset.org/search?q=microaneurysm" title=" microaneurysm"> microaneurysm</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes%20classifier" title=" Na茂ve Bayes classifier"> Na茂ve Bayes classifier</a>, <a href="https://publications.waset.org/search?q=SVM%20classifier." title=" SVM classifier."> SVM classifier.</a> </p> <a href="https://publications.waset.org/9998289/comparing-svm-and-naive-bayes-classifier-for-automatic-microaneurysm-detections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998289/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998289/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998289/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998289/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998289/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998289/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998289/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998289/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998289/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998289/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6106</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Modified Na茂ve Bayes Based Prediction Modeling for Crop Yield Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kefaya%20Qaddoum">Kefaya Qaddoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Tomato%20yields%20prediction" title="Tomato yields prediction">Tomato yields prediction</a>, <a href="https://publications.waset.org/search?q=naive%20Bayes" title=" naive Bayes"> naive Bayes</a>, <a href="https://publications.waset.org/search?q=redundancy" title=" redundancy"> redundancy</a> </p> <a href="https://publications.waset.org/9997276/modified-naive-bayes-based-prediction-modeling-for-crop-yield-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997276/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997276/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997276/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997276/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997276/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997276/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997276/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997276/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997276/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997276/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5109</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Improving Classification in Bayesian Networks using Structural Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hong%20Choon%20Ong">Hong Choon Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Na茂ve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Na茂ve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Na茂ve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20Network" title="Bayesian Network">Bayesian Network</a>, <a href="https://publications.waset.org/search?q=Classification" title=" Classification"> Classification</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes" title=" Na茂ve Bayes"> Na茂ve Bayes</a>, <a href="https://publications.waset.org/search?q=Structural%20Learning." title="Structural Learning.">Structural Learning.</a> </p> <a href="https://publications.waset.org/15047/improving-classification-in-bayesian-networks-using-structural-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15047/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15047/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15047/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15047/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15047/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15047/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15047/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15047/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15047/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15047/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2599</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> DWT Based Image Steganalysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Indradip%20Banerjee">Indradip Banerjee</a>, <a href="https://publications.waset.org/search?q=Souvik%20Bhattacharyya"> Souvik Bhattacharyya</a>, <a href="https://publications.waset.org/search?q=Gautam%20Sanyal"> Gautam Sanyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steganalysis" title="Steganalysis">Steganalysis</a>, <a href="https://publications.waset.org/search?q=Moments" title=" Moments"> Moments</a>, <a href="https://publications.waset.org/search?q=Wavelet%20Domain" title=" Wavelet Domain"> Wavelet Domain</a>, <a href="https://publications.waset.org/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/search?q=K%2A" title=" K*"> K*</a>, <a href="https://publications.waset.org/search?q=LWL" title=" LWL"> LWL</a>, <a href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier" title=" Naive Bayes Classifier"> Naive Bayes Classifier</a>, <a href="https://publications.waset.org/search?q=Neural%20networks" title=" Neural networks"> Neural networks</a>, <a href="https://publications.waset.org/search?q=Decision%20trees" title=" Decision trees"> Decision trees</a>, <a href="https://publications.waset.org/search?q=SVM." title=" SVM. "> SVM. </a> </p> <a href="https://publications.waset.org/9999449/dwt-based-image-steganalysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999449/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999449/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999449/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999449/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999449/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999449/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999449/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999449/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999449/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999449/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2572</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Thanh%20Nguyen">Thanh Nguyen</a>, <a href="https://publications.waset.org/search?q=Andrei%20Doncescu"> Andrei Doncescu</a>, <a href="https://publications.waset.org/search?q=Pierre%20Siegel"> Pierre Siegel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=spam%20filtering" title=" spam filtering"> spam filtering</a>, <a href="https://publications.waset.org/search?q=naive%0D%0ABayes" title=" naive Bayes"> naive Bayes</a>, <a href="https://publications.waset.org/search?q=decision%20tree." title=" decision tree."> decision tree.</a> </p> <a href="https://publications.waset.org/10004544/performance-comparison-of-adtree-and-naive-bayes-algorithms-for-spam-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004544/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004544/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004544/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004544/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004544/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004544/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004544/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004544/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004544/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004544/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1500</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Utilizing Innovative Techniques to Improve Email Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amany%20M.%20Alshawi">Amany M. Alshawi</a>, <a href="https://publications.waset.org/search?q=Khaled%20Alduhaiman"> Khaled Alduhaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a technique to protect against email bombing. The technique employs a statistical approach, Na茂ve Bayes (NB), and Neural Networks to show that it is possible to differentiate between good and bad traffic to protect against email bombing attacks. Neural networks and Na茂ve Bayes can be trained by utilizing many email messages that include both input and output data for legitimate and non-legitimate emails. The input to the model includes the contents of the body of the messages, the subject, and the headers. This information will be used to determine if the email is normal or an attack email. Preliminary tests suggest that Na茂ve Bayes can be trained to produce an accurate response to confirm which email represents an attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Email%20bombing" title="Email bombing">Email bombing</a>, <a href="https://publications.waset.org/search?q=Legitimate%20email" title=" Legitimate email"> Legitimate email</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes" title=" Na茂ve Bayes"> Na茂ve Bayes</a>, <a href="https://publications.waset.org/search?q=Neural%20networks" title=" Neural networks"> Neural networks</a>, <a href="https://publications.waset.org/search?q=Non-legitimate%20email." title=" Non-legitimate email."> Non-legitimate email.</a> </p> <a href="https://publications.waset.org/4554/utilizing-innovative-techniques-to-improve-email-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4554/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4554/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4554/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4554/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4554/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4554/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4554/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4554/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4554/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4554/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1420</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Danielle%20Shackley">Danielle Shackley</a>, <a href="https://publications.waset.org/search?q=Yetunde%20Folajimi"> Yetunde Folajimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Sentiment%20analysis" title="Sentiment analysis">Sentiment analysis</a>, <a href="https://publications.waset.org/search?q=Naive%20Bayes%20model" title=" Naive Bayes model"> Naive Bayes model</a>, <a href="https://publications.waset.org/search?q=natural%0D%0Alanguage%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/search?q=topic%20analysis" title=" topic analysis"> topic analysis</a>, <a href="https://publications.waset.org/search?q=fake%20health%20news%20classification%0D%0Amodel." title=" fake health news classification model."> fake health news classification model.</a> </p> <a href="https://publications.waset.org/10012995/sentiment-analysis-of-fake-health-news-using-naive-bayes-classification-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012995/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012995/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012995/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012995/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012995/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012995/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012995/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012995/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012995/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012995/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Umarani">S. Umarani</a>, <a href="https://publications.waset.org/search?q=D.%20Sharmila"> D. Sharmila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Distributed%20Denial%20of%20Service%20%28DDoS%29%20attack" title="Distributed Denial of Service (DDoS) attack">Distributed Denial of Service (DDoS) attack</a>, <a href="https://publications.waset.org/search?q=Application%20layer%20DDoS" title=" Application layer DDoS"> Application layer DDoS</a>, <a href="https://publications.waset.org/search?q=DDoS%20Detection" title=" DDoS Detection"> DDoS Detection</a>, <a href="https://publications.waset.org/search?q=K-%20Nearest%20neighborhood%0D%0Aclassifier" title=" K- Nearest neighborhood classifier"> K- Nearest neighborhood classifier</a>, <a href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier" title=" Naive Bayes Classifier"> Naive Bayes Classifier</a>, <a href="https://publications.waset.org/search?q=Principle%20Component%20Analysis." title=" Principle Component Analysis."> Principle Component Analysis.</a> </p> <a href="https://publications.waset.org/10000388/predicting-application-layer-ddos-attacks-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000388/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000388/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000388/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000388/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000388/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000388/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000388/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000388/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000388/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000388/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5279</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dewan%20Md.%20Farid">Dewan Md. Farid</a>, <a href="https://publications.waset.org/search?q=Nguyen%20Huu%20Hoa"> Nguyen Huu Hoa</a>, <a href="https://publications.waset.org/search?q=Jerome%20Darmont"> Jerome Darmont</a>, <a href="https://publications.waset.org/search?q=Nouria%20Harbi"> Nouria Harbi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Zahidur%20Rahman"> Mohammad Zahidur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive na茂ve Bayesian tree (NBTree), which induces a hybrid of decision tree and na茂ve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of na茂ve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that na茂ve Bayesian tree improves the classification rates in large dataset. In na茂ve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain na茂ve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Detection%20rates" title="Detection rates">Detection rates</a>, <a href="https://publications.waset.org/search?q=false%20positives" title=" false positives"> false positives</a>, <a href="https://publications.waset.org/search?q=network%20intrusiondetection" title=" network intrusiondetection"> network intrusiondetection</a>, <a href="https://publications.waset.org/search?q=na%C3%AFve%20Bayesian%20tree." title=" na茂ve Bayesian tree."> na茂ve Bayesian tree.</a> </p> <a href="https://publications.waset.org/1750/scaling-up-detection-rates-and-reducing-false-positives-in-intrusion-detection-using-nbtree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1750/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1750/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1750/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1750/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1750/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1750/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1750/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1750/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1750/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1750/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2281</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Random Access in IoT Using Na茂ve Bayes Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alhusein%20Almahjoub">Alhusein Almahjoub</a>, <a href="https://publications.waset.org/search?q=Dongyu%20Qiu"> Dongyu Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Random%20access" title="Random access">Random access</a>, <a href="https://publications.waset.org/search?q=LTE%2FLTE-A" title=" LTE/LTE-A"> LTE/LTE-A</a>, <a href="https://publications.waset.org/search?q=5G" title=" 5G"> 5G</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes%20estimation." title=" Na茂ve Bayes estimation."> Na茂ve Bayes estimation.</a> </p> <a href="https://publications.waset.org/10012016/random-access-in-iot-using-naive-bayes-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012016/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012016/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012016/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012016/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012016/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012016/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012016/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012016/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012016/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012016/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> An Experimental Study of a Self-Supervised Classifier Ensemble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Neamat%20El%20Gayar">Neamat El Gayar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiple%20Classifier%20Systems" title="Multiple Classifier Systems">Multiple Classifier Systems</a>, <a href="https://publications.waset.org/search?q=classifier%20ensembles" title=" classifier ensembles"> classifier ensembles</a>, <a href="https://publications.waset.org/search?q=learning%20using%20labeled%20and%20unlabelled%20data" title=" learning using labeled and unlabelled data"> learning using labeled and unlabelled data</a>, <a href="https://publications.waset.org/search?q=K-nearest%20neighbor%0Aclassifier" title=" K-nearest neighbor classifier"> K-nearest neighbor classifier</a>, <a href="https://publications.waset.org/search?q=Bayes%20classifier." title=" Bayes classifier."> Bayes classifier.</a> </p> <a href="https://publications.waset.org/15503/an-experimental-study-of-a-self-supervised-classifier-ensemble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15503/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15503/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15503/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15503/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15503/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15503/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15503/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15503/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15503/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15503/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1644</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Adaptive Na茂ve Bayesian Anti-Spam Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wojciech%20P.%20Gajewski">Wojciech P. Gajewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag Of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without affecting the classifier precision as it happens when only the NBC based on single words is retrained.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Text%20classification" title="Text classification">Text classification</a>, <a href="https://publications.waset.org/search?q=na%C3%AFve%20Bayesian%20classification" title=" na茂ve Bayesian classification"> na茂ve Bayesian classification</a>, <a href="https://publications.waset.org/search?q=spam" title="spam">spam</a>, <a href="https://publications.waset.org/search?q=email." title=" email."> email.</a> </p> <a href="https://publications.waset.org/5866/adaptive-naive-bayesian-anti-spam-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5866/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5866/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5866/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5866/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5866/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5866/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5866/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5866/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5866/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5866/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4415</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Gunavathi">C. Gunavathi</a>, <a href="https://publications.waset.org/search?q=K.%20Premalatha"> K. Premalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microarray" title="Microarray">Microarray</a>, <a href="https://publications.waset.org/search?q=T-Statistics" title=" T-Statistics"> T-Statistics</a>, <a href="https://publications.waset.org/search?q=Signal-to-Noise%20Ratio" title=" Signal-to-Noise Ratio"> Signal-to-Noise Ratio</a>, <a href="https://publications.waset.org/search?q=FStatistics" title=" FStatistics"> FStatistics</a>, <a href="https://publications.waset.org/search?q=Particle%20Swarm%20Optimization" title=" Particle Swarm Optimization"> Particle Swarm Optimization</a>, <a href="https://publications.waset.org/search?q=Shuffled%20Frog%20Leaping" title=" Shuffled Frog Leaping"> Shuffled Frog Leaping</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes%20Classifier." title=" Na茂ve Bayes Classifier."> Na茂ve Bayes Classifier.</a> </p> <a href="https://publications.waset.org/9999853/statistical-measures-and-optimization-algorithms-for-gene-selection-in-lung-and-ovarian-tumor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999853/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999853/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999853/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999853/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999853/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999853/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999853/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999853/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999853/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999853/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1945</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Breast Cancer Survivability Prediction via Classifier Ensemble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Al-Badrashiny">Mohamed Al-Badrashiny</a>, <a href="https://publications.waset.org/search?q=Abdelghani%20Bellaachia"> Abdelghani Bellaachia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨谋ve Bayes algorithms for the underlying classifiers and Na¨谋ve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classifier%20ensemble" title="Classifier ensemble">Classifier ensemble</a>, <a href="https://publications.waset.org/search?q=breast%20cancer%20survivability" title=" breast cancer survivability"> breast cancer survivability</a>, <a href="https://publications.waset.org/search?q=data%0D%0Amining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/search?q=SEER." title=" SEER."> SEER.</a> </p> <a href="https://publications.waset.org/10004262/breast-cancer-survivability-prediction-via-classifier-ensemble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004262/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004262/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004262/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004262/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004262/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004262/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004262/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004262/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004262/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004262/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1671</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Analysis of a Population of Diabetic Patients Databases with Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Murat%20Koklu">Murat Koklu</a>, <a href="https://publications.waset.org/search?q=Yavuz%20Unal"> Yavuz Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20Intelligence" title="Artificial Intelligence">Artificial Intelligence</a>, <a href="https://publications.waset.org/search?q=Classifiers" title=" Classifiers"> Classifiers</a>, <a href="https://publications.waset.org/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/search?q=Diabetic%20Patients." title=" Diabetic Patients."> Diabetic Patients.</a> </p> <a href="https://publications.waset.org/16219/analysis-of-a-population-of-diabetic-patients-databases-with-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16219/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16219/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16219/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16219/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16219/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16219/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16219/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16219/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16219/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16219/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5431</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jiakai%20Li">Jiakai Li</a>, <a href="https://publications.waset.org/search?q=Gursel%20Serpen"> Gursel Serpen</a>, <a href="https://publications.waset.org/search?q=Steven%20Selman"> Steven Selman</a>, <a href="https://publications.waset.org/search?q=Matt%20Franchetti"> Matt Franchetti</a>, <a href="https://publications.waset.org/search?q=Mike%20Riesen"> Mike Riesen</a>, <a href="https://publications.waset.org/search?q=Cynthia%20Schneider"> Cynthia Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20network%20classifier" title="Bayesian network classifier">Bayesian network classifier</a>, <a href="https://publications.waset.org/search?q=renal%20transplantation" title=" renal transplantation"> renal transplantation</a>, <a href="https://publications.waset.org/search?q=graft%20survival%20period" title="graft survival period">graft survival period</a>, <a href="https://publications.waset.org/search?q=United%20Network%20for%20Organ%20Sharing" title=" United Network for Organ Sharing"> United Network for Organ Sharing</a> </p> <a href="https://publications.waset.org/13501/bayes-net-classifiers-for-prediction-of-renal-graft-status-and-survival-period" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13501/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13501/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13501/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13501/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13501/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13501/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13501/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13501/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13501/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13501/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2109</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Mining Network Data for Intrusion Detection through Na茂ve Bayesian with Clustering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dewan%20Md.%20Farid">Dewan Md. Farid</a>, <a href="https://publications.waset.org/search?q=Nouria%20Harbi"> Nouria Harbi</a>, <a href="https://publications.waset.org/search?q=Suman%20Ahmmed"> Suman Ahmmed</a>, <a href="https://publications.waset.org/search?q=Md.%20Zahidur%20Rahman"> Md. Zahidur Rahman</a>, <a href="https://publications.waset.org/search?q=Chowdhury%20Mofizur%20Rahman"> Chowdhury Mofizur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Na茂ve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through na茂ve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=detection%20rate" title=" detection rate"> detection rate</a>, <a href="https://publications.waset.org/search?q=false%20positive" title=" false positive"> false positive</a>, <a href="https://publications.waset.org/search?q=na%C3%AFveBayesian%20classifier" title=" na茂veBayesian classifier"> na茂veBayesian classifier</a>, <a href="https://publications.waset.org/search?q=network%20intrusion%20detection." title=" network intrusion detection."> network intrusion detection.</a> </p> <a href="https://publications.waset.org/13376/mining-network-data-for-intrusion-detection-through-naive-bayesian-with-clustering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13376/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13376/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13376/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13376/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13376/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13376/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13376/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13376/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13376/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13376/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5536</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Contextual Sentiment Analysis with Untrained Annotators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lucas%20A.%20Silva">Lucas A. Silva</a>, <a href="https://publications.waset.org/search?q=Carla%20R.%20Aguiar"> Carla R. Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contextualized%20classifier" title="Contextualized classifier">Contextualized classifier</a>, <a href="https://publications.waset.org/search?q=na%C3%AFve%20Bayes" title=" na茂ve Bayes"> na茂ve Bayes</a>, <a href="https://publications.waset.org/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/search?q=untrained%20annotators." title=" untrained annotators. "> untrained annotators. </a> </p> <a href="https://publications.waset.org/9997689/contextual-sentiment-analysis-with-untrained-annotators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997689/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997689/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997689/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997689/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997689/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997689/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997689/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997689/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997689/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997689/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4703</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> A Content Vector Model for Text Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eric%20Jiang">Eric Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and na茂ve Bayes algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20Selection" title="Feature Selection">Feature Selection</a>, <a href="https://publications.waset.org/search?q=Latent%20Semantic%20Indexing" title=" Latent Semantic Indexing"> Latent Semantic Indexing</a>, <a href="https://publications.waset.org/search?q=Text%20Classification" title="Text Classification">Text Classification</a>, <a href="https://publications.waset.org/search?q=Vector%20Space%20Model." title=" Vector Space Model."> Vector Space Model.</a> </p> <a href="https://publications.waset.org/11975/a-content-vector-model-for-text-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11975/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11975/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11975/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11975/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11975/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11975/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11975/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11975/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11975/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11975/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1885</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Evaluation of Classifiers Based On I2C Distance for Action Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Lei%20Zhang">Lei Zhang</a>, <a href="https://publications.waset.org/search?q=Tao%20Wang"> Tao Wang</a>, <a href="https://publications.waset.org/search?q=Xiantong%20Zhen"> Xiantong Zhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Instance-to-class%20distance" title="Instance-to-class distance">Instance-to-class distance</a>, <a href="https://publications.waset.org/search?q=NBNN" title=" NBNN"> NBNN</a>, <a href="https://publications.waset.org/search?q=Local%20NBNN" title=" Local NBNN"> Local NBNN</a>, <a href="https://publications.waset.org/search?q=NBNN%20kernel." title=" NBNN kernel."> NBNN kernel.</a> </p> <a href="https://publications.waset.org/12474/evaluation-of-classifiers-based-on-i2c-distance-for-action-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12474/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12474/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12474/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12474/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12474/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12474/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12474/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12474/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12474/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12474/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1659</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Sopharak">A. Sopharak</a>, <a href="https://publications.waset.org/search?q=B.%20Uyyanonvara"> B. Uyyanonvara</a>, <a href="https://publications.waset.org/search?q=S.%20Barman"> S. Barman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Diabetic%20retinopathy" title="Diabetic retinopathy">Diabetic retinopathy</a>, <a href="https://publications.waset.org/search?q=microaneurysm" title=" microaneurysm"> microaneurysm</a>, <a href="https://publications.waset.org/search?q=naive%20Bayes%20classifier" title=" naive Bayes classifier"> naive Bayes classifier</a> </p> <a href="https://publications.waset.org/15211/automatic-microaneurysm-quantification-for-diabetic-retinopathy-screening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15211/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15211/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15211/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15211/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15211/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15211/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15211/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15211/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15211/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15211/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2190</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> Optimizing Mobile Agents Migration Based on Decision Tree Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yasser%20k.%20Ali">Yasser k. Ali</a>, <a href="https://publications.waset.org/search?q=Hesham%20N.%20Elmahdy"> Hesham N. Elmahdy</a>, <a href="https://publications.waset.org/search?q=Sanaa%20El%20Olla%20Hanfy%20Ahmed"> Sanaa El Olla Hanfy Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Agent%20Migration" title="Agent Migration">Agent Migration</a>, <a href="https://publications.waset.org/search?q=Decision%20Tree%20learning" title=" Decision Tree learning"> Decision Tree learning</a>, <a href="https://publications.waset.org/search?q=ID3%0D%0Aalgorithm" title=" ID3 algorithm"> ID3 algorithm</a>, <a href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier" title=" Naive Bayes Classifier"> Naive Bayes Classifier</a> </p> <a href="https://publications.waset.org/14719/optimizing-mobile-agents-migration-based-on-decision-tree-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14719/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14719/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14719/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14719/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14719/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14719/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14719/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14719/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14719/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14719/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1991</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aref%20Aasi">Aref Aasi</a>, <a href="https://publications.waset.org/search?q=Sahar%20Ebrahimi%20Bajgani"> Sahar Ebrahimi Bajgani</a>, <a href="https://publications.waset.org/search?q=Erfan%20Aasi"> Erfan Aasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Breast%20cancer" title="Breast cancer">Breast cancer</a>, <a href="https://publications.waset.org/search?q=health%20diagnosis" title=" health diagnosis"> health diagnosis</a>, <a href="https://publications.waset.org/search?q=Machine%20Learning" title=" Machine Learning"> Machine Learning</a>, <a href="https://publications.waset.org/search?q=biomarker%20classification" title=" biomarker classification"> biomarker classification</a>, <a href="https://publications.waset.org/search?q=Neural%20Network." title=" Neural Network."> Neural Network.</a> </p> <a href="https://publications.waset.org/10013232/classification-of-potential-biomarkers-in-breast-cancer-using-artificial-intelligence-algorithms-and-anthropometric-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013232/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013232/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013232/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013232/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013232/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013232/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013232/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013232/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013232/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013232/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Suresh%20S.%20Salankar">Suresh S. Salankar</a>, <a href="https://publications.waset.org/search?q=Balasaheb%20M.%20Patre"> Balasaheb M. Patre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=MLP%20NN" title=" MLP NN"> MLP NN</a>, <a href="https://publications.waset.org/search?q=backpropagation%20algorithm" title=" backpropagation algorithm"> backpropagation algorithm</a>, <a href="https://publications.waset.org/search?q=SVM" title="SVM">SVM</a>, <a href="https://publications.waset.org/search?q=Receiver%20Operating%20Characteristics." title=" Receiver Operating Characteristics."> Receiver Operating Characteristics.</a> </p> <a href="https://publications.waset.org/3745/svm-based-model-as-an-optimal-classifier-for-the-classification-of-sonar-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3745/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3745/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3745/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3745/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3745/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3745/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3745/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3745/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3745/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3745/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1820</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> On Best Estimation for Parameter Weibull Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hadeel%20Salim%20Alkutubi">Hadeel Salim Alkutubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of this study is to introduce estimators to the parameters and survival function for Weibull distribution using three different methods, Maximum Likelihood estimation, Standard Bayes estimation and Modified Bayes estimation. We will then compared the three methods using simulation study to find the best one base on MPE and MSE.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Maximum%20Likelihood%20estimation" title="Maximum Likelihood estimation ">Maximum Likelihood estimation </a>, <a href="https://publications.waset.org/search?q=Bayes%20estimation" title=" Bayes estimation"> Bayes estimation</a>, <a href="https://publications.waset.org/search?q=Jeffery%20prior%20information" title=" Jeffery prior information"> Jeffery prior information</a>, <a href="https://publications.waset.org/search?q=Simulation%20study" title=" Simulation study"> Simulation study</a> </p> <a href="https://publications.waset.org/6372/on-best-estimation-for-parameter-weibull-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6372/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6372/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6372/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6372/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6372/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6372/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6372/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6372/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6372/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6372/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1266</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Inferences on Compound Rayleigh Parameters with Progressively Type-II Censored Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdullah%20Y.%20Al-Hossain">Abdullah Y. Al-Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper considers inference under progressive type II censoring with a compound Rayleigh failure time distribution. The maximum likelihood (ML), and Bayes methods are used for estimating the unknown parameters as well as some lifetime parameters, namely reliability and hazard functions. We obtained Bayes estimators using the conjugate priors for two shape and scale parameters. When the two parameters are unknown, the closed-form expressions of the Bayes estimators cannot be obtained. We use Lindley.s approximation to compute the Bayes estimates. Another Bayes estimator has been obtained based on continuous-discrete joint prior for the unknown parameters. An example with the real data is discussed to illustrate the proposed method. Finally, we made comparisons between these estimators and the maximum likelihood estimators using a Monte Carlo simulation study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Progressive%20type%20II%20censoring" title="Progressive type II censoring">Progressive type II censoring</a>, <a href="https://publications.waset.org/search?q=compound%20Rayleigh%20failure%20time%20distribution" title=" compound Rayleigh failure time distribution"> compound Rayleigh failure time distribution</a>, <a href="https://publications.waset.org/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/search?q=Bayes%20estimation" title=" Bayes estimation"> Bayes estimation</a>, <a href="https://publications.waset.org/search?q=Lindley%27s%20approximation%20method" title=" Lindley's approximation method"> Lindley's approximation method</a>, <a href="https://publications.waset.org/search?q=Monte%20Carlo%20simulation." title=" Monte Carlo simulation."> Monte Carlo simulation.</a> </p> <a href="https://publications.waset.org/12659/inferences-on-compound-rayleigh-parameters-with-progressively-type-ii-censored-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12659/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12659/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12659/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12659/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12659/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12659/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12659/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12659/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12659/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12659/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2390</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Autcha%20Araveeporn">Autcha Araveeporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayes%20method" title="Bayes method">Bayes method</a>, <a href="https://publications.waset.org/search?q=Markov%20Chain%20Monte%20Carlo%20method" title=" Markov Chain Monte Carlo method"> Markov Chain Monte Carlo method</a>, <a href="https://publications.waset.org/search?q=Maximum%20Likelihood%20method" title=" Maximum Likelihood method"> Maximum Likelihood method</a>, <a href="https://publications.waset.org/search?q=normal%20distribution." title=" normal distribution."> normal distribution.</a> </p> <a href="https://publications.waset.org/10005322/an-estimating-parameter-of-the-mean-in-normal-distribution-by-maximum-likelihood-bayes-and-markov-chain-monte-carlo-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005322/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005322/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005322/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005322/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005322/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005322/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005322/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005322/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005322/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005322/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1435</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Speaker Recognition Using LIRA Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nestor%20A.%20Garcia%20Fragoso">Nestor A. Garcia Fragoso</a>, <a href="https://publications.waset.org/search?q=Tetyana%20Baydyk"> Tetyana Baydyk</a>, <a href="https://publications.waset.org/search?q=Ernst%20Kussul"> Ernst Kussul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Extreme%20learning" title="Extreme learning">Extreme learning</a>, <a href="https://publications.waset.org/search?q=LIRA%20neural%20classifier" title=" LIRA neural classifier"> LIRA neural classifier</a>, <a href="https://publications.waset.org/search?q=speaker%20identification" title=" speaker identification"> speaker identification</a>, <a href="https://publications.waset.org/search?q=voice%20recognition." title=" voice recognition. "> voice recognition. </a> </p> <a href="https://publications.waset.org/10010982/speaker-recognition-using-lira-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010982/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010982/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010982/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010982/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010982/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010982/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010982/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010982/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010982/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010982/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">764</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Elimination Noise by Adaptive Wavelet Threshold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Iman%20Elyasi">Iman Elyasi</a>, <a href="https://publications.waset.org/search?q=Sadegh%20Zarmehi"> Sadegh Zarmehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20denoising" title="Image denoising">Image denoising</a>, <a href="https://publications.waset.org/search?q=Bayes%20Shrink" title=" Bayes Shrink"> Bayes Shrink</a>, <a href="https://publications.waset.org/search?q=Modified%20Bayes%20Shrink" title=" Modified Bayes Shrink"> Modified Bayes Shrink</a>, <a href="https://publications.waset.org/search?q=Normal%20Shrink." title=" Normal Shrink."> Normal Shrink.</a> </p> <a href="https://publications.waset.org/8882/elimination-noise-by-adaptive-wavelet-threshold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8882/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8882/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8882/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8882/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8882/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8882/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8882/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8882/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8882/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8882/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2473</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Relational Representation in XCSF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Ali%20Tabarzad">Mohammad Ali Tabarzad</a>, <a href="https://publications.waset.org/search?q=Caro%20Lucas"> Caro Lucas</a>, <a href="https://publications.waset.org/search?q=Ali%20Hamzeh"> Ali Hamzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classifier%20Systems" title="Classifier Systems">Classifier Systems</a>, <a href="https://publications.waset.org/search?q=Reinforcement%20Learning" title=" Reinforcement Learning"> Reinforcement Learning</a>, <a href="https://publications.waset.org/search?q=Relational%20Representation" title="Relational Representation">Relational Representation</a>, <a href="https://publications.waset.org/search?q=XCSF." title=" XCSF."> XCSF.</a> </p> <a href="https://publications.waset.org/15667/relational-representation-in-xcsf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15667/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15667/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15667/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15667/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15667/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15667/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15667/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15667/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15667/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15667/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1324</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Naive%20Bayes%20Classifier&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>