CINXE.COM

Search results for: magnetic proton recoil spectrometer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic proton recoil spectrometer</title> <meta name="description" content="Search results for: magnetic proton recoil spectrometer"> <meta name="keywords" content="magnetic proton recoil spectrometer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic proton recoil spectrometer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic proton recoil spectrometer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1819</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic proton recoil spectrometer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xingyu%20Peng">Xingyu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyuan%20Hu"> Qingyuan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan"> Xi Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectrometry" title="neutron spectrometry">neutron spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer" title=" magnetic proton recoil spectrometer"> magnetic proton recoil spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20spectra" title=" neutron spectra"> neutron spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a> </p> <a href="https://publications.waset.org/abstracts/92156/simulation-and-characterization-of-compact-magnetic-proton-recoil-spectrometer-for-fast-neutron-spectra-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20P.%20Efimov">Sergei P. Efimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20magnetic%20moment%20of%20electron" title="anomalous magnetic moment of electron">anomalous magnetic moment of electron</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20with%20quantum%20electrodynamics.%20effective%20%20mass" title=" comparison with quantum electrodynamics. effective mass"> comparison with quantum electrodynamics. effective mass</a>, <a href="https://publications.waset.org/abstracts/search?q=fifteen%20significant%20figures" title=" fifteen significant figures"> fifteen significant figures</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20and%20neutron%20masses" title=" proton and neutron masses"> proton and neutron masses</a> </p> <a href="https://publications.waset.org/abstracts/131423/relation-of-the-anomalous-magnetic-moment-of-electron-with-the-proton-and-neutron-masses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Traini">G. Traini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Giacometti"> V. Giacometti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mirabelli"> R. Mirabelli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Patera"> V. Patera</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pinci"> D. Pinci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarti"> A. Sarti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sciubba"> A. Sciubba</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marafini"> M. Marafini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20neutrons" title="secondary neutrons">secondary neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20therapy" title=" particle therapy"> particle therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering" title=" elastic scattering"> elastic scattering</a> </p> <a href="https://publications.waset.org/abstracts/73773/mondo-neutron-tracker-characterisation-by-means-of-proton-therapeutical-beams-and-montecarlo-simulation-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> E-Survey: Cancer Treatment with Proton Beam Therapy in USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auj-E%20Taqaddas">Auj-E Taqaddas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of proton beam therapy is increasing globally. It seems to offer dosimetric advantages, especially in paediatric central nervous system (CNS) and brain tumours. A short E-survey was conducted to assess the clinical, technical, and educational resources and strategies employed in the state of the art proton beam therapy (PBT) centres in the USA to determine the current status of proton beam therapy. The study also aimed at finding out which PBT skills are in demand as well as what improvements are needed to ensure efficient treatment planning, delivery, and dosimetry. The study resulted in identifying areas for future research and development and in identifying cancers for which PBT is most suitable compared to other modalities to facilitate the implementation and use of PBT in clinical settings for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity%20modulated%20proton%20therapy" title=" intensity modulated proton therapy"> intensity modulated proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20beam%20therapy" title=" proton beam therapy"> proton beam therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20field%20uniform%20scanning" title=" single field uniform scanning"> single field uniform scanning</a> </p> <a href="https://publications.waset.org/abstracts/136847/e-survey-cancer-treatment-with-proton-beam-therapy-in-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Depth to Basement Determination Sculpting of a Magnetic Mineral Using Magnetic Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ikusika">A. Ikusika</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Poppola"> O. I. Poppola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to delineate possible structures that may favour the accumulation of tantalite, a magnetic mineral. A ground based technique was employed using proton precision magnetometer G-856 AX. A total of ten geophysical traverses were established in the study area. The acquired magnetic field data were corrected for drift. The trend analysis was adopted to remove the regional gradient from the observed data and the resulting results were presented as profiles. Quantitative interpretation only was adopted to obtain the depth to basement using Peter half slope method. From the geological setting of the area and the information obtained from the magnetic survey, a conclusion can be made that the study area is underlain by a rock unit of accumulated minerals. It is therefore suspected that the overburden is relatively thin within the study area and the metallic minerals are in disseminated quantity and at a shallow depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basement" title="basement">basement</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20data" title=" magnetic field data"> magnetic field data</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalite" title=" tantalite"> tantalite</a>, <a href="https://publications.waset.org/abstracts/search?q=traverses" title=" traverses "> traverses </a> </p> <a href="https://publications.waset.org/abstracts/35895/depth-to-basement-determination-sculpting-of-a-magnetic-mineral-using-magnetic-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses%20C.%20Siame">Moses C. Siame</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazutoshi%20Haga"> Kazutoshi Haga</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Shibayama"> Atsushi Shibayama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe<sub>2</sub>O<sub>3</sub>) with 34.18 mass% as an iron grade. The ore also contains silica (SiO<sub>2</sub>) and alumina (Al<sub>2</sub>O<sub>3</sub>) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 &mu;m and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 &micro;m and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanje%20iron%20ore" title="Sanje iron ore">Sanje iron ore</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20separation" title=" magnetic separation"> magnetic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/80176/treatment-of-low-grade-iron-ore-using-two-stage-wet-high-intensity-magnetic-separation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Teotia">Vikas Teotia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Malhotra"> Sanjay Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Elina%20Mishra"> Elina Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Kumar"> Prashant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Singh"> R. R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Ukarde"> Priti Ukarde</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20P.%20Marathe"> P. P. Marathe</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Mayya"> Y. S. Mayya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DTL" title="DTL">DTL</a>, <a href="https://publications.waset.org/abstracts/search?q=focusing" title=" focusing"> focusing</a>, <a href="https://publications.waset.org/abstracts/search?q=PMQ" title=" PMQ"> PMQ</a>, <a href="https://publications.waset.org/abstracts/search?q=proton" title=" proton"> proton</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20earth%20magnets" title=" rate earth magnets"> rate earth magnets</a> </p> <a href="https://publications.waset.org/abstracts/35560/design-and-development-of-permanent-magnet-quadrupoles-for-low-energy-high-intensity-proton-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Tuning of Indirect Exchange Coupling in FePt/Al₂O₃/Fe₃Pt System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Goyal">Rajan Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lamba"> S. Lamba</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Annapoorni"> S. Annapoorni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indirect exchange coupled system consists of two ferromagnetic layers separated by non-magnetic spacer layer. The type of exchange coupling may be either ferro or anti-ferro depending on the thickness of the spacer layer. In the present work, the strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt has been investigated by varying the thickness of the spacer layer Al₂O₃. The FePt/Al₂O₃/Fe₃Pt trilayer structure is fabricated on Si <100> single crystal substrate using sputtering technique. The thickness of FePt and Fe₃Pt is fixed at 60 nm and 2 nm respectively. The thickness of spacer layer Al₂O₃ was varied from 0 to 16 nm. The normalized hysteresis loops recorded at room temperature both in the in-plane and out of plane configuration reveals that the orientation of easy axis lies along the plane of the film. It is observed that the hysteresis loop for ts=0 nm does not exhibit any knee around H=0 indicating that the hard FePt layer and soft Fe₃Pt layer are strongly exchange coupled. However, the insertion of Al₂O₃ spacer layer of thickness ts = 0.7 nm results in appearance of a minor knee around H=0 suggesting the weakening of exchange coupling between FePt and Fe₃Pt. The disappearance of knee in hysteresis loop with further increase in thickness of the spacer layer up to 8 nm predicts the co-existence of ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction between FePt and Fe₃Pt. In addition to this, the out of plane hysteresis loop also shows an asymmetry around H=0. The exchange field Hex = (Hc↑-HC↓)/2, where Hc↑ and Hc↓ are the coercivity estimated from lower and upper branch of hysteresis loop, increases from ~ 150 Oe to ~ 700 Oe respectively. This behavior may be attributed to the uncompensated moments in the hard FePt layer and soft Fe₃Pt layer at the interface. A better insight into the variation in indirect exchange coupling has been investigated using recoil curves. It is observed that the almost closed recoil curves are obtained for ts= 0 nm up to a reverse field of ~ 5 kOe. On the other hand, the appearance of appreciable open recoil curves at lower reverse field ~ 4 kOe for ts = 0.7 nm indicates that uncoupled soft phase undergoes irreversible magnetization reversal at lower reverse field suggesting the weakening of exchange coupling. The openness of recoil curves decreases with increase in thickness of the spacer layer up to 8 nm. This behavior may be attributed to the competition between FM and AFM exchange interactions. The FM exchange coupling between FePt and Fe₃Pt due to porous nature of Al₂O₃ decreases much slower than the weak AFM coupling due to interaction between Fe ions of FePt and Fe₃Pt via O ions of Al₂O₃. The hysteresis loop has been simulated using Monte Carlo based on Metropolis algorithm to investigate the variation in strength of exchange coupling in FePt/Al₂O₃/Fe₃Pt trilayer system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indirect%20exchange%20coupling" title="indirect exchange coupling">indirect exchange coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=MH%20loop" title=" MH loop"> MH loop</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=recoil%20curve" title=" recoil curve"> recoil curve</a> </p> <a href="https://publications.waset.org/abstracts/75877/tuning-of-indirect-exchange-coupling-in-feptal2o3fe3pt-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Feng">Junhong Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyu%20Lu"> Wenyu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhong%20Cheng"> Xinhong Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Zheng"> Li Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehui%20Yu"> Yuehui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20VDMOS" title="SiC VDMOS">SiC VDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20radiation" title=" proton radiation"> proton radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20time" title=" Miller time"> Miller time</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20oxide" title=" gate oxide"> gate oxide</a> </p> <a href="https://publications.waset.org/abstracts/168374/dynamic-degradation-mechanism-of-sic-vdmos-under-proton-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmoids" title="plasmoids">plasmoids</a>, <a href="https://publications.waset.org/abstracts/search?q=p11B%20fuel" title=" p11B fuel"> p11B fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20viscous%20heating" title=" ion viscous heating"> ion viscous heating</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20magnetic%20field" title=" quantum magnetic field"> quantum magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/26776/quantom-magnetic-effects-of-p-b-fusion-in-plasma-focus-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Development of Partial Sulphonated Poly(Vinylidene Fluoride - Hexafluoro Propylene)–Montmorillonite Nano-Composites as Proton Exchange Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Selvakumar">K. Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kalaiselvimary"> J. Kalaiselvimary</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jansirani"> B. Jansirani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramesh%20Prabhu"> M. Ramesh Prabhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton conducting sulphonated poly (vinylidene fluoride- hexafluoro propylene) PVdF-HFP membranes were modified with nano – sized montmorillonite (MMT) through homogeneous dispersive mixing and solution casting technique for fuel cell applications. The prepared composite membranes were characterized using Fourier Transform Infrared Spectroscopy and 1HNMR technique. The suitability of the composite membranes for fuel cell application was evaluated in terms of water uptake, swelling behavior, and proton conductivity. These composites showed good conductivities and durability and expected to be used in the development of proton exchange membrane for fuel cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conduction" title=" proton conduction"> proton conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphonation" title=" sulphonation"> sulphonation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20uptake" title=" water uptake"> water uptake</a> </p> <a href="https://publications.waset.org/abstracts/45891/development-of-partial-sulphonated-polyvinylidene-fluoride-hexafluoro-propylene-montmorillonite-nano-composites-as-proton-exchange-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> Ground State Properties of Neutron Magic Isotones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Saxena">G. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaushik"> M. Kaushik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mean%20field%20theory" title="relativistic mean field theory">relativistic mean field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20magic%20nuclei" title=" neutron magic nuclei"> neutron magic nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20closure" title=" shell closure"> shell closure</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20energy" title=" separation energy"> separation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/13497/ground-state-properties-of-neutron-magic-isotones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1806</span> Cadmium Adsorption by Modified Magnetic Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chompoonut%20Chaiyaraksa">Chompoonut Chaiyaraksa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Singbubpha"> Chanida Singbubpha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kliaothong%20Angkabkingkaew"> Kliaothong Angkabkingkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Thitikorn%20Boonyasawin"> Thitikorn Boonyasawin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eichhornia%20crassipes" title="Eichhornia crassipes">Eichhornia crassipes</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20biochar" title=" magnetic biochar"> magnetic biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20dodecyl%20sulfate" title=" sodium dodecyl sulfate"> sodium dodecyl sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/90337/cadmium-adsorption-by-modified-magnetic-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1805</span> Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abid">A. A. Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMIC%20waves" title="EMIC waves">EMIC waves</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20anisotropy%20of%20hot%20protons" title=" temperature anisotropy of hot protons"> temperature anisotropy of hot protons</a>, <a href="https://publications.waset.org/abstracts/search?q=energization%20of%20the%20cold%20proton" title=" energization of the cold proton"> energization of the cold proton</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20multiscale%20%28MMS%29%20satellite%20observations" title=" magnetospheric multiscale (MMS) satellite observations"> magnetospheric multiscale (MMS) satellite observations</a> </p> <a href="https://publications.waset.org/abstracts/161623/heating-of-the-ions-by-electromagnetic-ion-cyclotron-emic-waves-using-magnetospheric-multiscale-mms-satellite-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1804</span> Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysun%20Sezer">Aysun Sezer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=YOLOv8" title="YOLOv8">YOLOv8</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=humerus" title=" humerus"> humerus</a>, <a href="https://publications.waset.org/abstracts/search?q=scapula" title=" scapula"> scapula</a>, <a href="https://publications.waset.org/abstracts/search?q=IRM" title=" IRM"> IRM</a> </p> <a href="https://publications.waset.org/abstracts/175663/humeral-head-and-scapula-detection-in-proton-density-weighted-magnetic-resonance-images-using-yolov8" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1803</span> Researches Concerning Photons as Corpuscles with Mass and Negative Electrostatic Charge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Rusu">Ioan Rusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let us consider that the entire universe is composed of a single hydrogen atom within which the electron is moving around the proton. In this case, according to classical theories of physics, radiation and photons, respectively, should be absorbed by the electron. Depending on the number of photons absorbed, the electron radius of rotation around the proton is established. Until now, the principle of photon absorption by electrons and the electron transition to a new energy level, namely to a higher radius of rotation around the proton, is not clarified in physics. This paper aims to demonstrate that photons have mass and negative electrostatic charge similar to electrons but infinitely smaller. The experiments which demonstrate this theory are simple: thermal expansion, photoelectric effect and thermonuclear reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title="electrostatic">electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=electron" title=" electron"> electron</a>, <a href="https://publications.waset.org/abstracts/search?q=photon" title=" photon"> photon</a>, <a href="https://publications.waset.org/abstracts/search?q=proton" title=" proton"> proton</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation "> radiation </a> </p> <a href="https://publications.waset.org/abstracts/24883/researches-concerning-photons-as-corpuscles-with-mass-and-negative-electrostatic-charge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1802</span> Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasad%20Pokkunuri">Prasad Pokkunuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burgers%20Equation" title="Burgers Equation">Burgers Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Impulse%20Response" title=" Impulse Response"> Impulse Response</a>, <a href="https://publications.waset.org/abstracts/search?q=Recoil%20Damping%20Systems" title=" Recoil Damping Systems"> Recoil Damping Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Visco-elastic%20Fluids" title=" Visco-elastic Fluids"> Visco-elastic Fluids</a> </p> <a href="https://publications.waset.org/abstracts/68315/simplified-modelling-of-visco-elastic-fluids-for-use-in-recoil-damping-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1801</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1800</span> Correlating Musical Subject and Dialectical Subject to Develop a Critical Approach to Ideology in Musical Analysis and Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Waide">James Waide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In music, subject typically denotes the initial idea to which the entire composition refers—a concept congruous with Aristotle's notion of subject as primary substance, in the sense of an irreducible this particular. Gioseffo Zarlino, who established subject (soggetto) as a musical term, insisted the composer as “rediscovering” the subject within their music in order to “[bring] it to perfection” and, furthermore, that if the composer had not rediscovered the subject already, then one would simply take the first part of the composition to be the subject. Meanwhile, Žižek reads the Hegelian subject (as negativity set against positive object) through Lacanian Psychoanalysis (in which the subject is a kind of fictive entity of the clinic: a mere appearance which sits atop the objects of analysis) in the concept of Absolute Recoil. For Žižek, subject exists retroactively in Absolute Recoil from object, meaning subject is a void which only has meaning because of the object it is seen through. Following the work of theorists such as Adorno and Althusser, one can understand the ideological construction of such a subject. It may be argued that in Zarlino, musical subject can be similarly read as retroactively constructed, either by the composer or the listener. Furthermore, in recent work, Samuel Wilson identifies different kinds of subjects in music which can be psychoanalytically examined, including the fictive subject: a purely musical entity raised to the level of psychoanalytic subject. On which basis if, as Adorno insisted, 'authentic' music constitutes 'cognition without concepts', where and what is this subject without concept?. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20recoil" title="absolute recoil">absolute recoil</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20theory" title=" critical theory"> critical theory</a>, <a href="https://publications.waset.org/abstracts/search?q=ideology" title=" ideology"> ideology</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20analysis" title=" music analysis"> music analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoanalysis" title=" psychoanalysis"> psychoanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=retroactivity" title=" retroactivity"> retroactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=subject" title=" subject"> subject</a> </p> <a href="https://publications.waset.org/abstracts/176756/correlating-musical-subject-and-dialectical-subject-to-develop-a-critical-approach-to-ideology-in-musical-analysis-and-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1799</span> Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sadeghi"> M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Faghihi"> R. Faghihi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mosleh-Shirazi"> M. A. Mosleh-Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Khorrami-Moghadam"> A. R. Khorrami-Moghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLUKA%20code" title="FLUKA code">FLUKA code</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20dose%20equivalent" title=" neutron dose equivalent"> neutron dose equivalent</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20gland" title=" thyroid gland"> thyroid gland</a> </p> <a href="https://publications.waset.org/abstracts/11492/calculation-of-secondary-neutron-dose-equivalent-in-proton-therapy-of-thyroid-gland-using-fluka-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1798</span> Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Yuan">Xi Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuebin%20Zhu"> Xuebin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojun%20Li"> Bojun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=picosecond%20laser%20driven" title="picosecond laser driven">picosecond laser driven</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20neutron" title=" fast neutron"> fast neutron</a>, <a href="https://publications.waset.org/abstracts/search?q=time-of-flight%20spectrometry" title=" time-of-flight spectrometry"> time-of-flight spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=XinggungIII" title=" XinggungIII"> XinggungIII</a> </p> <a href="https://publications.waset.org/abstracts/92159/production-of-neutrons-by-high-intensity-picosecond-laser-interacting-with-thick-solid-target-at-xingguangiii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1797</span> Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf%20Ansari">M. Yusuf Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20Abbas"> Asad Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20Membrane" title="PEM Membrane">PEM Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fumes%20%28SiO2%29" title=" silica fumes (SiO2)"> silica fumes (SiO2)</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol%20%28PVA%29" title=" polyvinyl alcohol (PVA)"> polyvinyl alcohol (PVA)</a> </p> <a href="https://publications.waset.org/abstracts/88749/synthesis-and-characterization-of-sio2pva-speek-composite-membrane-for-proton-exchange-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1796</span> Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Chen">P. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Chang"> C. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Peng"> Y. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Wu"> J. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Jan"> D. J. Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20magnetic%20field" title=" oblique magnetic field"> oblique magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20magnetic%20field" title=" tangential magnetic field"> tangential magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52606/analytical-model-for-vacuum-cathode-arcs-in-an-oblique-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1795</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1794</span> Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Mirrezaei"> E. Mirrezaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20equivalent%20ratio" title="water equivalent ratio">water equivalent ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetric%20materials" title=" dosimetric materials"> dosimetric materials</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulations" title=" Monte Carlo simulations"> Monte Carlo simulations</a> </p> <a href="https://publications.waset.org/abstracts/7211/comparison-of-water-equivalent-ratio-of-several-dosimetric-materials-in-proton-therapy-using-monte-carlo-simulations-and-experimental-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1793</span> A Geophysical Study for Delineating the Subsurface Minerals at El Qusier Area, Central Eastern Desert, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalil">Ahmed Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhamy%20Tarabees"> Elhamy Tarabees</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Kovacikova"> Svetlana Kovacikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Red Sea Mountains have been famous for their ore deposits since ancient times. Also, petrographic analysis and previous potential field surveys indicated large unexplored accumulations of ore minerals in the area. Therefore, the main goal of the presented study is to contribute to the discovery of hitherto unknown ore mineral deposits in the Red Sea region. To achieve this goal, we used two geophysical techniques: land magnetic survey and magnetotelluric data. A high-resolution land magnetic survey has been acquired using two proton magnetometers, one instrument used as a base station for the diurnal correction and the other used to measure the magnetic field along the study area. Two hundred eighty land magnetic stations were measured over a mesh-like area with a 500m spacing interval. The necessary reductions concerning daily variation, regional gradient and time observation were applied. Then, the total intensity anomaly map was constructed and transformed into the reduced magnetic pole (RTP). The magnetic interpretation was carried out using the analytical signal as well as regional–residual separation is carried out using the power spectrum. Also, the tilt derivative method (TDR) technique is applied to delineate the structure and hidden anomalies. Data analysis has been performed using trend analysis and Euler deconvolution. The results indicate that magnetic contacts are not the dominant geological feature of the study area. The magnetotleruric survey consisted of two profiles with a total of 8 broadband measurement points with a duration of about 24 hours crossing a wadi um Gheig approximately 50 km south of El Quseir. Collected data have been inverted to the electrical resistivity model using the 3D modular 3D inversion technique ModEM. The model revealed a non-conductive body in its central part, probably corresponding to a dolerite dyke, with which possible ore mineralization could be related. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20survey" title="magnetic survey">magnetic survey</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetotelluric" title=" magnetotelluric"> magnetotelluric</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20modeling" title=" 3d modeling"> 3d modeling</a> </p> <a href="https://publications.waset.org/abstracts/190179/a-geophysical-study-for-delineating-the-subsurface-minerals-at-el-qusier-area-central-eastern-desert-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1792</span> Magnetic and Optical Properties of GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Abbad">A.Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.Bentounes"> H.A.Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title="FP-LAPW">FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=LSDA" title=" LSDA"> LSDA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20moment" title=" magnetic moment"> magnetic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity "> reflectivity </a> </p> <a href="https://publications.waset.org/abstracts/26313/magnetic-and-optical-properties-of-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1791</span> Formation of Nanochannels by Heavy Ions in Graphene Oxide Reinforced Carboxymethylcellulose Membranes for Proton Exchange Membrane Fuel Cells Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kurbanova">B. Kurbanova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karibayev"> M. Karibayev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Almas"> N. Almas</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ospanov"> K. Ospanov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Aimaganbetov"> K. Aimaganbetov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kuanyshbekov"> T. Kuanyshbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Akatan"> K. Akatan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kabdrakhmanova"> S. Kabdrakhmanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proton exchange membranes (PEMs) operating at high temperatures above 100 °C with the excellent mechanical, chemical and thermochemical stability have been received much attention, because of their practical application of proton exchange membrane fuel cells (PEMFCs). Nowadays, a huge number of polymers and polymer-mixed various membranes have been investigated for this application, all of which offer both pros and cons. However, PEMFCs are still lack of ideal membranes with unique properties. In this work, carboxymethylcellulose (CMC) based membranes with dispersive graphene oxide (GO) sheets were fabricated and investigated for PEMFCs application. These membranes and pristine GO were studied by a combination of XRD, XPS, Raman, Brillouin, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while substantial studies on the proton transport properties were provided by Electrochemical Impedance Spectroscopy (EIS) measurements. It was revealed that the addition of CMC to the GO boosts proton conductivity of the whole membrane, while GO provides good mechanical and thermomechanical stability to the membrane. Further, the continuous and ordered nanochannels with well-tailored chemical structures were obtained by irradiation of heavy ions Kr⁺¹⁷ with an energy of 1.75 MeV/nucleon on the heavy ion accelerator. The formation of these nanochannels led to the significant increase of proton conductivity at 50% Relative Humidity. Also, FTIR and XPS measurement results show that ion irradiation eliminated the GO’s surface oxygen chemical bonds (C=O, C-O), and led to the formation of C = C, C – C bonds, whereas these changes connected with an increase in conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membranes" title="proton exchange membranes">proton exchange membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxymethylcellulose" title=" carboxymethylcellulose"> carboxymethylcellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20irradiation" title=" ion irradiation"> ion irradiation</a> </p> <a href="https://publications.waset.org/abstracts/162499/formation-of-nanochannels-by-heavy-ions-in-graphene-oxide-reinforced-carboxymethylcellulose-membranes-for-proton-exchange-membrane-fuel-cells-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1790</span> Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Maji">Rinku Maji</a>, <a href="https://publications.waset.org/abstracts/search?q=Joydeep%20Chakrabortty"> Joydeep Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20F.%20King"> Stephen F. King</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grand%20unified%20theories" title="grand unified theories">grand unified theories</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20decay" title=" proton decay"> proton decay</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20correction" title=" threshold correction"> threshold correction</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/109130/effect-of-threshold-corrections-on-proton-lifetime-and-emergence-of-topological-defects-in-grand-unified-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20proton%20recoil%20spectrometer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10