CINXE.COM

Search results for: capillary steam injectors

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: capillary steam injectors</title> <meta name="description" content="Search results for: capillary steam injectors"> <meta name="keywords" content="capillary steam injectors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="capillary steam injectors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="capillary steam injectors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 547</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: capillary steam injectors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Pulsed Vortex Flow in Low–Temperature Range Heat Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Seryakov">A. V. Seryakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work presents part calculation and part experimental research of the intensification of heat-transfer characteristics of medium-temperature heat pipes. Presented is a vapour jet nozzle, similar to the Laval nozzle, surrounded by a capillary-porous insert along the full length of the heat pipe axial to the direction of heat flow. This increases velocity of the vapour flow, heat-transfer coefficient and pulse rate of two-phase vapour flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medium-temperature%20range%20heat%20pipes" title="medium-temperature range heat pipes">medium-temperature range heat pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary-porous%20insert" title=" capillary-porous insert"> capillary-porous insert</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors" title=" capillary steam injectors"> capillary steam injectors</a>, <a href="https://publications.waset.org/abstracts/search?q=Laval%20nozzle" title=" Laval nozzle"> Laval nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20sensor" title=" condensation sensor"> condensation sensor</a> </p> <a href="https://publications.waset.org/abstracts/7180/pulsed-vortex-flow-in-low-temperature-range-heat-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar">Ravi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kumar%20Dubba"> Santhosh Kumar Dubba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabatic" title="diabatic">diabatic</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title=" capillary tube"> capillary tube</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric" title=" concentric"> concentric</a>, <a href="https://publications.waset.org/abstracts/search?q=R-600a" title=" R-600a"> R-600a</a> </p> <a href="https://publications.waset.org/abstracts/81743/diabatic-flow-of-sub-cooled-r-600a-inside-a-capillary-tube-concentric-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Al-Bazali">Talal Al-Bazali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammad"> S. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thresshold" title=" thresshold"> thresshold</a> </p> <a href="https://publications.waset.org/abstracts/65146/the-impact-of-temperature-on-the-threshold-capillary-pressure-of-fine-grained-shales" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sui%20Yan%20Wong">Sui Yan Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Keat%20Ping%20Yeoh"> Keat Ping Yeoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Wai%20Hui"> Chi Wai Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy" title="exergy">exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch" title=" pinch"> pinch</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle%20power%20plant" title=" combined cycle power plant"> combined cycle power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20steam" title=" supercritical steam"> supercritical steam</a> </p> <a href="https://publications.waset.org/abstracts/132993/pinch-analysis-of-triple-pressure-reheat-supercritical-combined-cycle-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ebru%20Demirci">E. Ebru Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin"> Remzi Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20water%20absorption" title="capillary water absorption">capillary water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20condition" title=" curing condition"> curing condition</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a> </p> <a href="https://publications.waset.org/abstracts/19558/effect-of-strength-class-of-concrete-and-curing-conditions-on-capillary-water-absorption-of-self-compacting-and-conventional-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanpop%20Saion">Kanpop Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakreya%20Chitwong"> Sakreya Chitwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20with%20feed%20forward" title="cascade with feed forward">cascade with feed forward</a>, <a href="https://publications.waset.org/abstracts/search?q=boiler" title=" boiler"> boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=superheated%20steam%20temperature%20control" title=" superheated steam temperature control"> superheated steam temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20balance" title=" enthalpy balance"> enthalpy balance</a> </p> <a href="https://publications.waset.org/abstracts/55760/implemented-cascade-with-feed-forward-by-enthalpy-balance-superheated-steam-temperature-control-for-a-boiler-with-distributed-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh%20J.%20Chen">Jyh J. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20H.%20Yang"> Fu H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20H.%20Liao"> Ming H. Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title="polymerase chain reaction">polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycles" title=" thermal cycles"> thermal cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=TE%20cooler" title=" TE cooler"> TE cooler</a> </p> <a href="https://publications.waset.org/abstracts/7439/ptfe-capillary-based-dna-amplification-within-an-oscillatory-thermal-cycling-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> A Critical Appraisal of CO₂ Entrance Pressure with Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrar%20Al-Mutairi">Abrar Al-Mutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20Al-Bazali"> Talal Al-Bazali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, changes in capillary entry pressure of shale, as it interacts with CO₂, under different temperatures (25 °C to 250 °C) have been investigated. The combined impact of temperature and petrophysical properties (water content, water activity, permeability and porosity) of shale was also addressed. Results showed that the capillary entry pressure of shale when it interacted with CO₂ was highly affected by temperature. In general, increasing the temperature decreased capillary entry pressure of shale. We believe that pore dilation, where pore throat size expands due to the application of heat, may have caused this decrease in capillary entry pressure of shale. However, in some cases we found that at higher temperature some shale samples showed that the temperature activated clay swelling may have caused an apparent decrease in pore throat radii of shale which translates into higher capillary entry pressure of shale. Also, our results showed that there is no distinct relationship between shale’s water content, water activity, permeability, and porosity on the capillary entry pressure of shale samples as it interacted with CO₂ at different temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat" title="heat">heat</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20pressure" title="threshold pressure">threshold pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20sequestration" title=" CO₂ sequestration"> CO₂ sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a> </p> <a href="https://publications.waset.org/abstracts/148151/a-critical-appraisal-of-co2-entrance-pressure-with-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guerrero">A. Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Leon"> A. Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Munoz"> S. Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sandoval"> M. Sandoval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition%20change" title="composition change">composition change</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20steam%20stimulation" title=" cyclic steam stimulation"> cyclic steam stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20mechanism" title=" interaction mechanism"> interaction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a> </p> <a href="https://publications.waset.org/abstracts/111468/effect-of-naphtha-on-the-composition-of-a-heavy-crude-in-addition-to-a-cycle-steam-stimulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Uk%20Ryu">Sung Uk Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Gook%20Jeon"> Byoung Gook Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Jae%20Yi"> Sung-Jae Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20safety%20injection%20systems" title="passive safety injection systems">passive safety injection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20penetration" title=" steam penetration"> steam penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20condensation" title=" direct contact condensation"> direct contact condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a> </p> <a href="https://publications.waset.org/abstracts/62498/study-on-the-thermal-mixing-of-steam-and-coolant-in-the-hybrid-safety-injection-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Nadir">Mahmoud Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ghenaiet"> Adel Ghenaiet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle" title="combined cycle">combined cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=HRSG%20thermodynamic%20modeling" title=" HRSG thermodynamic modeling"> HRSG thermodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20cycle%20specific%20work" title=" steam cycle specific work"> steam cycle specific work</a> </p> <a href="https://publications.waset.org/abstracts/38513/thermodynamic-modeling-of-three-pressure-level-reheat-hrsg-parametric-analysis-and-optimization-using-pso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Effect of Capillary Forces on Wet Granular Avalanches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Jarray">Ahmed Jarray</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Magnanimo"> Vanessa Magnanimo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Luding"> Stefan Luding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granular avalanches are ubiquitous in nature and occur in numerous industrial processes associated with particulate systems. When a small amount of liquid is added to a pile of particles, pendular bridges form and the particles are attracted by capillary forces, creating complex structure and flow behavior. We have performed an extensive series of experiments to investigate the effect of capillary force and particle size on wet granular avalanches, and we established a methodology that ensures the control of the granular flow in a rotating drum. The velocity of the free surface and the angle of repose of the particles in the rotating drum are determined using particle tracking method. The capillary force between the particles is significantly reduced by making the glass beads hydrophobic via chemical silanization. We show that the strength of the capillary forces between two adjacent particles can be deliberately manipulated through surface modification of the glass beads, thus, under the right conditions; we demonstrate that the avalanche dynamics can be controlled. The results show that the avalanche amplitude decreases when increasing the capillary force. We also find that liquid-induced cohesion increases the width of the gliding layer and the dynamic angle of repose, however, it decreases the velocity of the free surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avalanche%20dynamics" title="avalanche dynamics">avalanche dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20force" title=" capillary force"> capillary force</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20material" title=" granular material"> granular material</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20flow" title=" granular flow"> granular flow</a> </p> <a href="https://publications.waset.org/abstracts/69253/effect-of-capillary-forces-on-wet-granular-avalanches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Cable De-Commissioning of Legacy Accelerators at CERN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adya%20Uluwita">Adya Uluwita</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Pedrosa"> Fernando Pedrosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20Georgiev"> Georgi Georgiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Bernard"> Christian Bernard</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoul%20Masterson"> Raoul Masterson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CERN is an international organisation funded by 23 countries that provide the particle physics community with excellence in particle accelerators and other related facilities. Founded in 1954, CERN has a wide range of accelerators that allow groundbreaking science to be conducted. Accelerators bring particles to high levels of energy and make them collide with each other or with fixed targets, creating specific conditions that are of high interest to physicists. A chain of accelerators is used to ramp up the energy of particles and eventually inject them into the largest and most recent one: the Large Hadron Collider (LHC). Among this chain of machines is, for instance the Proton Synchrotron, which was started in 1959 and is still in operation. These machines, called "injectors”, keep evolving over time, as well as the related infrastructure. Massive decommissioning of obsolete cables started in 2015 at CERN in the frame of the so-called "injectors de-cabling project phase 1". Its goal was to replace aging cables and remove unused ones, freeing space for new cables necessary for upgrades and consolidation campaigns. To proceed with the de-cabling, a project co-ordination team was assembled. The start of this project led to the investigation of legacy cables throughout the organisation. The identification of cables stacked over half a century proved to be arduous. Phase 1 of the injectors de-cabling was implemented for 3 years with success after overcoming some difficulties. Phase 2, started 3 years later, focused on improving safety and structure with the introduction of a quality assurance procedure. This paper discusses the implementation of this quality assurance procedure throughout phase 2 of the project and the transition between the two phases. Over hundreds of kilometres of cable were removed in the injectors complex at CERN from 2015 to 2023. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CERN" title="CERN">CERN</a>, <a href="https://publications.waset.org/abstracts/search?q=de-cabling" title=" de-cabling"> de-cabling</a>, <a href="https://publications.waset.org/abstracts/search?q=injectors" title=" injectors"> injectors</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20assurance%20procedure" title=" quality assurance procedure"> quality assurance procedure</a> </p> <a href="https://publications.waset.org/abstracts/187307/cable-de-commissioning-of-legacy-accelerators-at-cern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayakumar%20Kunche">Vijayakumar Kunche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinker%20cooler" title="clinker cooler">clinker cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title=" organic rankine cycle"> organic rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/86064/thermodynamic-cycle-using-cyclopentane-for-waste-heat-recovery-power-generation-from-clinker-cooler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pe%C3%B1a%20A.%20Roland%20R.">Peña A. Roland R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lozano%20P.%20Jean%20P."> Lozano P. Jean P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20compressibility" title=" rock compressibility"> rock compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a> </p> <a href="https://publications.waset.org/abstracts/148309/two-phase-flow-modelling-and-numerical-simulation-for-waterflooding-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Effect of Steam Explosion of Crop Residues on Chemical Compositions and Efficient Energy Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wu">Xin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongfeng%20Zhao"> Yongfeng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingxiang%20Meng"> Qingxiang Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In China, quite low proportion of crop residues were used as feedstuff because of its poor palatability and low digestibility. Steam explosion is a physical and chemical feed processing technology which has great potential to improve sapidity and digestibility of crop residues. To investigate the effect of the steam explosion on chemical compositions and efficient energy values, crop residues (rice straw, wheat straw and maize stover) were processed by steam explosion (steam temperature 120-230°C, steam pressure 2-26kg/cm², 40min). Steam-exploded crop residues were regarded as treatment groups and untreated ones as control groups, nutritive compositions were analyzed and effective energy values were calculated by prediction model in INRA (1988, 2010) for both groups. Results indicated that the interaction between treatment and variety has a significant effect on chemical compositions of crop residues. Steam explosion treatment of crop residues decreased neutral detergent fiber (NDF) significantly (P < 0.01), and compared with untreated material, NDF content of rice straw, wheat straw, and maize stover lowered 21.46%, 32.11%, 28.34% respectively. Acid detergent lignin (ADL) of crop residues increased significantly after the steam explosion (P < 0.05). The content of crude protein (CP), ether extract (EE) and Ash increased significantly after steam explosion (P < 0.05). Moreover, predicted effective energy values of each steam-exploded residue were higher than that of untreated ones. The digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for gain (NEg)of steam-exploded rice straw were 3.06, 2.48, 1.48and 0.29 MJ/kg respectively and increased 46.21%, 46.25%, 49.56% and 110.92% compared with untreated ones(P < 0.05). Correspondingly, the energy values of steam-exploded wheat straw were 2.18, 1.76, 1.03 and 0.15 MJ/kg, which were 261.78%, 261.29%, 274.59% and 1014.69% greater than that of wheat straw (P < 0.05). The above predicted energy values of steam exploded maize stover were 5.28, 4.30, 2.67 and 0.82 MJ/kg and raised 109.58%, 107.71%, 122.57% and 332.64% compared with the raw material(P < 0.05). In conclusion, steam explosion treatment could significantly decrease NDF content, increase ADL, CP, EE, Ash content and effective energy values of crop residues. The effect of steam explosion was much more obvious for wheat straw than the other two kinds of residues under the same condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20compositions" title="chemical compositions">chemical compositions</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20residues" title=" crop residues"> crop residues</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20energy%20values" title=" efficient energy values"> efficient energy values</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20explosion" title=" steam explosion"> steam explosion</a> </p> <a href="https://publications.waset.org/abstracts/72506/effect-of-steam-explosion-of-crop-residues-on-chemical-compositions-and-efficient-energy-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Steady State Modeling and Simulation of an Industrial Steam Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Lyria%20Deghal%20Cheridi">Amina Lyria Deghal Cheridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abla%20Chaker"> Abla Chaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahcene%20Loubar"> Ahcene Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relap5 system code is one among powerful tools, which is used in the area of design and safety evaluation. This work aims to simulate the behavior of a radiant steam boiler at the steady-state conditions using Relap5 code system. To perform this study, a detailed Relap5 model is built including all the parts of the steam boiler. The control and regulation systems are also considered. To reproduce the most important parameters and phenomena with an acceptable accuracy and fidelity, a strong qualification work is undertaken concerning the facility nodalization. It consists of making a comparison between the code results and the plant available data in steady-state operation mode. Therefore, the model qualification results at the steady-state are in good agreement with the steam boiler experimental data. The steam boiler Relap5 model has proved satisfactory; and the model was capable of predicting the main thermal-hydraulic steady-state conditions of the steam boiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20steam%20boiler" title="industrial steam boiler">industrial steam boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20qualification" title=" model qualification"> model qualification</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20circulation" title=" natural circulation"> natural circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=relap5%2Fmod3.2" title=" relap5/mod3.2"> relap5/mod3.2</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20simulation" title=" steady state simulation"> steady state simulation</a> </p> <a href="https://publications.waset.org/abstracts/51311/steady-state-modeling-and-simulation-of-an-industrial-steam-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Lo">S. W. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Lu"> S.-H. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Guo"> Y. H. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Hsu"> L. C. Hsu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerostatic" title="aerostatic">aerostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomer" title=" elastomer"> elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20stiffness" title=" static stiffness"> static stiffness</a> </p> <a href="https://publications.waset.org/abstracts/7954/numerical-study-on-the-static-characteristics-of-novel-aerostatic-thrust-bearings-possessing-elastomer-capillary-restrictor-and-bearing-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarakorn%20Sukaviriya">Sarakorn Sukaviriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam-pipe%20leakage" title="steam-pipe leakage">steam-pipe leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20leakage" title=" steam leakage"> steam leakage</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20crack%20analysis" title=" weld crack analysis"> weld crack analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weld%20defect" title=" weld defect"> weld defect</a> </p> <a href="https://publications.waset.org/abstracts/116436/analysis-of-weld-crack-of-main-steam-governing-valve-steam-turbine-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Scaling Analysis of the Contact Line and Capillary Interaction Induced by a Floating Tilted Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShiQing%20Gao">ShiQing Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=XingYi%20Zhang"> XingYi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=YouHe%20Zhou"> YouHe Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a floating tilted cylinder pierces a fluid interface, the fulfilment of constant-contact-angle condition along the cylinder results in shift, stretch and distortion of the contact line, thus leading to a capillary interaction. We perform an investigation of the scaling dependence of tilt angle, contact angle, and cylinder radius on the contact line profile and the corresponding capillary interaction by numerical simulation and experiment. Characterized by three characteristic parameters respectively, the dependences for each deformation mode are systematically analyzed. Both the experiment and simulation reveals an invariant structure that is independent of contact angle and radius to characterize the stretch of the contact line for every tilted case. Based on this observation, we then propose a general capillary force scaling law to incredibly grasp all the simulated results, by simply approximating the contact line profile as tilted ellipse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%2Fliquid-fluid%20interface" title="gas-liquid/liquid-fluid interface">gas-liquid/liquid-fluid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20particle" title=" colloidal particle"> colloidal particle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20shape" title=" contact line shape"> contact line shape</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20interaction" title=" capillary interaction"> capillary interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20evolver%20%28SE%29" title=" surface evolver (SE)"> surface evolver (SE)</a> </p> <a href="https://publications.waset.org/abstracts/53570/scaling-analysis-of-the-contact-line-and-capillary-interaction-induced-by-a-floating-tilted-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hafdhi">F. Hafdhi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Khir"> T. Khir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Yahia"> A. Ben Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ben%20Brahim"> A. Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20generator" title="steam turbine generator">steam turbine generator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid%20plant" title=" phosphoric acid plant"> phosphoric acid plant</a> </p> <a href="https://publications.waset.org/abstracts/39804/exergetic-analysis-of-steam-turbine-power-plant-operated-in-chemical-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Effect of Strength Class of Concrete and Curing Conditions on Capillary Absorption of Self-Compacting and Conventional Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ebru%20Demirci">Emine Ebru Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin"> Remzi Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC), which are used in beams with dense reinforcement, in terms of their capillary absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. Beam dimensions were determined to be 200 x 250 x 3000 mm. Reinforcements of the beams were calculated and placed as 2ø12 for the top and 3ø12 for the bottom. Stirrups with dimension 8 mm were used as lateral rebar and stirrup distances were chosen as 10 cm in the confinement zone and 15 cm at the central zone. In this manner, densification of rebars in lateral cross-sections of beams and handling of SCC in real conditions were aimed. Concrete covers of the rebars were chosen to be equal in all directions as 25 mm. The capillary absorption measurements were performed on core samples taken from the beams. Core samples of ø8x16 cm were taken from the beginning (0-100 cm), middle (100-200 cm) and end (200-300 cm) region of the beams according to the casting direction of SCC. However core samples were taken from lateral surface of the beams. In the study, capillary absorption experiments were performed according to Turkish Standard TS EN 13057. It was observed that, for both curing environments and all strength classes of concrete, SCC’s had lower capillary absorption values than that of CC’s. The capillary absorption values of C25 class of SCC are 11% and 16% lower than that of C25 class of CC for air and moisture conditions, respectively. For C50 class, these decreases were 6% and 18%, while for C70 class, they were 16% and 9%, respectively. It was also detected that, for both SCC and CC, capillary absorption values of samples kept in moisture curing are significantly lower than that of samples stored in air curing. For CC’s; C25, C50 and C70 class moisture-cured samples were found to have 26%, 12% and 31% lower capillary absorption values, respectively, when compared to the air-cured ones. For SCC’s; these values were 30%, 23% and 24%, respectively. Apart from that, it was determined that capillary absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. It was found that, for air cured CC, C50 and C70 class of concretes had 39% and 63% lower capillary absorption values compared to the C25 class of concrete. For the same type of concrete samples cured in the moisture environment, these values were found to be 27% and 66%. It was found that for SCC samples, capillary absorption value of C50 and C70 concretes, which were kept in air curing, were 35% and 65% lower than that of C25, while for moisture-cured samples these values were 29% and 63%, respectively. When standard deviations of the capillary absorption values are compared for core samples obtained from the beginning, middle and end of the CC and SCC beams, it was found that, in all three strength classes of concrete, the variation is much smaller for SCC than CC. This demonstrated that SCC’s had more uniform character than CC’s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title="self compacting concrete">self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20absorption" title=" capillary absorption"> capillary absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20class" title=" strength class"> strength class</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20condition" title=" curing condition"> curing condition</a> </p> <a href="https://publications.waset.org/abstracts/14709/effect-of-strength-class-of-concrete-and-curing-conditions-on-capillary-absorption-of-self-compacting-and-conventional-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> The Effect of Mineral Addition (Natural Pozzolana) on the Capillary Absorption and Compressive Strength of Environmental Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Deboucha">W. Deboucha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Oudjit"> M. N. Oudjit</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouzid"> A. Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Belagraa"> L. Belagraa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Noui"> A.Noui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement manufacturing is the one of the factors that pollutes the atmosphere in the industrial sector. The common way to reduce this pollution is using mineral additions as partial replacement of Portland cement. Particularly, natural pozzolana (NP) is component in which they can be used to decrease the rate of pollution. The main objective of this experimental work is the study of the effect of mineral addition (natural pozzolana) on the capillary water absorption and compressive-flexural strength of cement mortar. The results obtained in the present research showed that the higher dosages of natural pozzolana added could be the principal parameter of such decrease in strength at early and medium term. Further, this increase of incorporated addition has been believed to reduce the capillary water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natural%20pozzolana" title="Natural pozzolana">Natural pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20absorption" title=" capillary absorption"> capillary absorption</a> </p> <a href="https://publications.waset.org/abstracts/18222/the-effect-of-mineral-addition-natural-pozzolana-on-the-capillary-absorption-and-compressive-strength-of-environmental-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Sabbagh">Reza Sabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Hasanovich"> Linda Hasanovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Baldygin"> Aleksey Baldygin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20S.%20Nobes"> David S. Nobes</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20R.%20Waghmare"> Prashant R. Waghmare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary" title="capillary">capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20flow" title=" non-Newtonian flow"> non-Newtonian flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shadowgraphy" title=" shadowgraphy"> shadowgraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20velocity" title=" rising velocity"> rising velocity</a> </p> <a href="https://publications.waset.org/abstracts/59636/rising-velocity-of-a-non-newtonian-liquids-in-capillary-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Te%20Chang">Wen-Te Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hsin%20Pai"> Yun-Hsin Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STEAM" title="STEAM">STEAM</a>, <a href="https://publications.waset.org/abstracts/search?q=toy%20design" title=" toy design"> toy design</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy%20plans" title=" pedagogy plans"> pedagogy plans</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/141355/a-study-of-the-steam-toy-pedagogy-plan-evaluation-for-elementary-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Experimental Study on a Solar Heat Concentrating Steam Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiangqiang%20Xu">Qiangqiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Ji"> Xu Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingyang%20Han"> Jingyang Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Changchun%20Yang"> Changchun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Li"> Ming Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacing of complex solar concentrating unit, this paper designs a solar heat-concentrating medium-temperature steam-generating system. Solar radiation is collected by using a large solar collecting and heat concentrating plate and is converged to the metal evaporating pipe with high efficient heat transfer. In the meantime, the heat loss is reduced by employing a double-glazed cover and other heat insulating structures. Thus, a high temperature is reached in the metal evaporating pipe. The influences of the system&#39;s structure parameters on system performance are analyzed. The steam production rate and the steam production under different solar irradiance, solar collecting and heat concentrating plate area, solar collecting and heat concentrating plate temperature and heat loss are obtained. The results show that when solar irradiance is higher than 600 W/m<sup>2</sup>, the effective heat collecting area is 7.6 m<sup>2</sup> and the double-glazing cover is adopted, the system heat loss amount is lower than the solar irradiance value. The stable steam is produced in the metal evaporating pipe at 100 ℃, 110 ℃, and 120 ℃, respectively. When the average solar irradiance is about 896 W/m<sup>2</sup>, and the steaming cumulative time is about 5 hours, the daily steam production of the system is about 6.174 kg. In a single day, the solar irradiance is larger at noon, thus the steam production rate is large at that time. Before 9:00 and after 16:00, the solar irradiance is smaller, and the steam production rate is almost 0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20concentrating" title="heat concentrating">heat concentrating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a>, <a href="https://publications.waset.org/abstracts/search?q=medium%20temperature" title=" medium temperature"> medium temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20steam%20production" title=" solar steam production"> solar steam production</a> </p> <a href="https://publications.waset.org/abstracts/88257/experimental-study-on-a-solar-heat-concentrating-steam-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%C5%9Fim%20Tosun">Yeşim Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin"> Remzi Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20water%20absorption" title="capillary water absorption">capillary water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates "> recycled concrete aggregates </a> </p> <a href="https://publications.waset.org/abstracts/29454/compressive-strength-and-capillary-water-absorption-of-concrete-containing-recycled-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaing%20Yadana%20Swe">Khaing Yadana Swe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model-free%20adaptive%20control" title="model-free adaptive control">model-free adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title=" cascade control"> cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/19926/application-of-model-free-adaptive-control-in-main-steam-temperature-system-of-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Estimation of Relative Permeabilities and Capillary Pressures in Shale Using Simulation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Amadi">F. C. Amadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Enyi"> G. C. Enyi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nasr"> G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relative permeabilities are practical factors that are used to correct the single phase Darcy&rsquo;s law for application to multiphase flow. For effective characterisation of large-scale multiphase flow in hydrocarbon recovery, relative permeability and capillary pressures are used. These parameters are acquired via special core flooding experiments. Special core analysis (SCAL) module of reservoir simulation is applied by engineers for the evaluation of these parameters. But, core flooding experiments in shale core sample are expensive and time consuming before various flow assumptions are achieved for instance Darcy&rsquo;s law. This makes it imperative for the application of coreflooding simulations in which various analysis of relative permeabilities and capillary pressures of multiphase flow can be carried out efficiently and effectively at a relative pace. This paper presents a Sendra software simulation of core flooding to achieve to relative permeabilities and capillary pressures using different correlations. The approach used in this study was three steps. The first step, the basic petrophysical parameters of Marcellus shale sample such as porosity was determined using laboratory techniques. Secondly, core flooding was simulated for particular scenario of injection using different correlations. And thirdly the best fit correlations for the estimation of relative permeability and capillary pressure was obtained. This research approach saves cost and time and very reliable in the computation of relative permeability and capillary pressures at steady or unsteady state, drainage or imbibition processes in oil and gas industry when compared to other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20permeabilty" title="relative permeabilty">relative permeabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=1-D%20black%20oil%20simulator" title=" 1-D black oil simulator"> 1-D black oil simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressures" title=" capillary pressures"> capillary pressures</a> </p> <a href="https://publications.waset.org/abstracts/32600/estimation-of-relative-permeabilities-and-capillary-pressures-in-shale-using-simulation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20Pratama%20Herman">Angga Pratama Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20steam%20gasification" title=" biomass steam gasification"> biomass steam gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20scale" title=" lab scale"> lab scale</a> </p> <a href="https://publications.waset.org/abstracts/43272/utilization-of-bottom-ash-as-catalyst-in-biomass-steam-gasification-for-hydrogen-and-syngas-production-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=capillary%20steam%20injectors&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10