CINXE.COM
coequalizer in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> coequalizer in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> coequalizer </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/7071/#Item_7" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="limits_and_colimits">Limits and colimits</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/limit">limits and colimits</a></strong></p> <h2 id="1categorical">1-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit and colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limits+and+colimits+by+example">limits and colimits by example</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutativity+of+limits+and+colimits">commutativity of limits and colimits</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+limit">small limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filtered+colimit">filtered colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/directed+colimit">directed colimit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/sequential+colimit">sequential colimit</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sifted+colimit">sifted colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+limit">connected limit</a>, <a class="existingWikiWord" href="/nlab/show/wide+pullback">wide pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/preserved+limit">preserved limit</a>, <a class="existingWikiWord" href="/nlab/show/reflected+limit">reflected limit</a>, <a class="existingWikiWord" href="/nlab/show/created+limit">created limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product">product</a>, <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a>, <a class="existingWikiWord" href="/nlab/show/base+change">base change</a>, <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a>, <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>, <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a>, <a class="existingWikiWord" href="/nlab/show/cobase+change">cobase change</a>, <a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a>, <a class="existingWikiWord" href="/nlab/show/coequalizer">coequalizer</a>, <a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a>, <a class="existingWikiWord" href="/nlab/show/initial+object">initial object</a>, <a class="existingWikiWord" href="/nlab/show/direct+product">direct product</a>, <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+limit">finite limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/exact+functor">exact functor</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Yoneda+extension">Yoneda extension</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end and coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibered+limit">fibered limit</a></p> </li> </ul> <h2 id="2categorical">2-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/isoinserter">isoinserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PIE-limit">PIE-limit</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a>, <a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> </ul> <h2 id="1categorical_2">(∞,1)-Categorical</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-limit">(∞,1)-limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullback">(∞,1)-pullback</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a></li> </ul> </li> </ul> </li> </ul> <h3 id="modelcategorical">Model-categorical</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+Kan+extension">homotopy Kan extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+product">homotopy product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equalizer">homotopy equalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+fiber">homotopy fiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+totalization">homotopy totalization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+end">homotopy end</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coproduct">homotopy coproduct</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coequalizer">homotopy coequalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+cofiber">homotopy cofiber</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+pushout">homotopy pushout</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+realization">homotopy realization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coend">homotopy coend</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/infinity-limits+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#RelationToKernelPairs'>Relation to kernel pairs</a></li> <li><a href='#RelationToPushout'>Relation to pushouts</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The concept of <em>coequalizer</em> in a general <a class="existingWikiWord" href="/nlab/show/category">category</a> is the generalization of the construction where for two <a class="existingWikiWord" href="/nlab/show/functions">functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f,g</annotation></semantics></math> between <a class="existingWikiWord" href="/nlab/show/sets">sets</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><munder><mo>⟶</mo><mi>g</mi></munder><mover><mo>⟶</mo><mi>f</mi></mover></mover><mi>Y</mi></mrow><annotation encoding="application/x-tex">X \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} Y</annotation></semantics></math></div> <p>one forms the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi><msub><mo stretchy="false">/</mo> <mo>∼</mo></msub></mrow><annotation encoding="application/x-tex">Y/_\sim</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/equivalence+classes">equivalence classes</a> induced by the <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> generated by the relation</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∼</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x)\sim g(x)</annotation></semantics></math></div> <p>for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x \in X</annotation></semantics></math>. This means that the <a class="existingWikiWord" href="/nlab/show/quotient">quotient</a> function <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>Y</mi><mo>⟶</mo><mi>Y</mi><msub><mo stretchy="false">/</mo> <mo>∼</mo></msub></mrow><annotation encoding="application/x-tex">p \colon Y \longrightarrow Y/_\sim</annotation></semantics></math> satisfies</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∘</mo><mi>f</mi><mo>=</mo><mi>p</mi><mo>∘</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">p \circ f = p \circ g</annotation></semantics></math></div> <p>(a map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> satisfying this equation is said to “co-equalize” <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math>) and moreover <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/universal+property">universal</a> with this property.</p> <p>In this form this may be phrased generally in any <a class="existingWikiWord" href="/nlab/show/category">category</a>.</p> <h2 id="definition">Definition</h2> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>In some <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, the <strong>coequalizer</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>coeq</mi><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">coeq(f,g)</annotation></semantics></math> of two <a class="existingWikiWord" href="/nlab/show/parallel+morphisms">parallel morphisms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> between two <a class="existingWikiWord" href="/nlab/show/objects">objects</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> is (if it exists), the <em><a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></em> under the <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> formed by these two morphisms</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd><mover><munder><mo>⟶</mo><mi>g</mi></munder><mover><mo>⟶</mo><mi>f</mi></mover></mover></mtd> <mtd></mtd> <mtd><mi>Y</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>↘</mo></mtd> <mtd></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mi>p</mi></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>coeq</mi><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mo>.</mo></mrow><annotation encoding="application/x-tex">\array{ X && \stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}} && Y \\ & \searrow && \swarrow_{\mathrlap{p}} \\ && coeq(f,g) }. </annotation></semantics></math></div></div> <p>Equivalently:</p> <div class="num_defn" id="CoequalizerDiagram"> <h6 id="definition_3">Definition</h6> <p>In a <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><munderover><mo>⇉</mo><mi>g</mi><mi>f</mi></munderover><mi>Y</mi><mover><mo>→</mo><mi>p</mi></mover><mi>Z</mi></mrow><annotation encoding="application/x-tex">X \underoverset{g}{f}{\rightrightarrows} Y \overset{p}{\rightarrow} Z</annotation></semantics></math></div> <p>is called a <strong>coequalizer</strong> diagram if</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∘</mo><mi>f</mi><mo>=</mo><mi>p</mi><mo>∘</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">p \circ f = p \circ g</annotation></semantics></math>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/universal+property">universal</a> for this property: i.e. if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo lspace="verythinmathspace">:</mo><mi>Y</mi><mo>→</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">q \colon Y \to W</annotation></semantics></math> is a morphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>∘</mo><mi>f</mi><mo>=</mo><mi>q</mi><mo>∘</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">q \circ f = q \circ g</annotation></semantics></math>, then there is a unique morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>′</mo><mo lspace="verythinmathspace">:</mo><mi>Z</mi><mo>→</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">q' \colon Z \to W</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>′</mo><mo>∘</mo><mi>p</mi><mo>=</mo><mi>q</mi></mrow><annotation encoding="application/x-tex">q' \circ p = q</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd><mover><munder><mo>⟶</mo><mi>g</mi></munder><mover><mo>⟶</mo><mi>f</mi></mover></mover></mtd> <mtd><mi>Y</mi></mtd> <mtd><mover><mo>⟶</mo><mi>p</mi></mover></mtd> <mtd><mi>Z</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>q</mi></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mrow><mo>∃</mo><mo>!</mo><mspace width="thinmathspace"></mspace><mi>q</mi><mo>′</mo></mrow></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mi>W</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ X &\stackrel{\overset{f}{\longrightarrow}}{\underset{g}{\longrightarrow}}& Y &\overset{p}{\longrightarrow}& Z \\ && {}^{\mathllap{q}}\downarrow & \swarrow_{\mathrlap{\exists ! \, q'}} \\ && W } </annotation></semantics></math></div></li> </ol> </div> <p> <div class='num_remark'> <h6>Remark</h6> <p>By <a class="existingWikiWord" href="/nlab/show/formal+duality">formal duality</a>, a coequalizer in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> is equivalently an <a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a> in the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝒞</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\mathcal{C}^{op}</annotation></semantics></math>.</p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>Morphisms that coequalize some pair of <a class="existingWikiWord" href="/nlab/show/parallel+morphisms">parallel morphisms</a> are called <em><a class="existingWikiWord" href="/nlab/show/regular+epimorphisms">regular epimorphisms</a></em>.</p> </div> </p> <h2 id="properties">Properties</h2> <h3 id="RelationToKernelPairs">Relation to kernel pairs</h3> <p> <div class='num_prop'> <h6>Proposition</h6> <p>In any category:</p> <ul> <li> <p>If a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a></p> <ol> <li> <p>is the <a class="existingWikiWord" href="/nlab/show/coequalizer">coequalizer</a> of some pair of <a class="existingWikiWord" href="/nlab/show/parallel+morphisms">parallel morphisms</a> (hence: is a <a class="existingWikiWord" href="/nlab/show/regular+epimorphism">regular epimorphism</a>)</p> </li> <li> <p>has a <a class="existingWikiWord" href="/nlab/show/kernel+pair">kernel pair</a>,</p> </li> </ol> <p>then it is also the coequalizer of its kernel pair.</p> </li> <li> <p>If a <a class="existingWikiWord" href="/nlab/show/kernel+pair">kernel pair</a> has a coequalizer, then it is the kernel pair of its coequalizer.</p> </li> </ul> <p></p> </div> (e.g. <a href="#Borceux94">Borceux 1994, Prop. 2.5.7, 2.5.8</a>, <a href="#Taylor99">Taylor 1999, Lemma 5.6.6</a></p> <h3 id="RelationToPushout">Relation to pushouts</h3> <p>Coequalizers are closely related to <a class="existingWikiWord" href="/nlab/show/pushouts">pushouts</a>:</p> <p> <div class='num_prop' id='CoequalizedAsAPushout'> <h6>Proposition</h6> <p>A diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>X</mi><munderover><mo>⇉</mo><mi>f</mi><mi>g</mi></munderover><mi>Y</mi><mover><mo>⟶</mo><mi>p</mi></mover><mi>Z</mi></mrow><annotation encoding="application/x-tex"> X \underoverset {f} {g} {\rightrightarrows} Y \overset{p}{\longrightarrow} Z </annotation></semantics></math></div> <p>is a coequalizer diagram, def. <a class="maruku-ref" href="#CoequalizerDiagram"></a>, precisely if</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi><mo>⊔</mo><mi>X</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>Y</mi></mtd></mtr> <mtr><mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mrow><msup><mo></mo><mpadded width="0"><mi>p</mi></mpadded></msup></mrow></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><munder><mo>⟶</mo><mrow></mrow></munder></mtd> <mtd><mi>Z</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ X \sqcup X &\overset{(f,g)}{\longrightarrow}& Y \\ \big\downarrow && \big\downarrow{^\mathrlap{p}} \\ X &\underset{}{\longrightarrow}& Z } </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a> diagram.</p> </div> </p> <p>Conversely:</p> <p> <div class='num_prop' id='PushoutAsACoequalizer'> <h6>Proposition</h6> <p></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><msub><mi>f</mi> <mn>1</mn></msub></mrow></mover></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><mpadded width="0" lspace="-100%width"><mrow><msup><mrow></mrow> <mrow><msub><mi>f</mi> <mn>2</mn></msub></mrow></msup></mrow></mpadded><mo maxsize="1.8em" minsize="1.8em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.8em" minsize="1.8em">↓</mo><mrow><msup><mrow></mrow> <mpadded width="0"><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow></mpadded></msup></mrow></mtd></mtr> <mtr><mtd><mi>C</mi></mtd> <mtd><munder><mo>⟶</mo><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow></munder></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ A &\overset{f_1}{\longrightarrow}& B \\ {\mathllap{{}^{f_2}}}\Big\downarrow && \Big\downarrow{{}^\mathrlap{p_1}} \\ C &\underset{p_2}{\longrightarrow}& D } </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a> square, precisely if</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>A</mi><munderover><mo>⇉</mo><mrow><msub><mi>q</mi> <mn>2</mn></msub><mo>∘</mo><msub><mi>f</mi> <mn>2</mn></msub></mrow><mrow><msub><mi>q</mi> <mn>1</mn></msub><mo>∘</mo><msub><mi>f</mi> <mn>1</mn></msub></mrow></munderover><mi>B</mi><mo>⊔</mo><mi>C</mi><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>p</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mover><mi>D</mi></mrow><annotation encoding="application/x-tex"> A \underoverset { q_2 \circ f_2 } { q_1 \circ f_1 } {\rightrightarrows} B \sqcup C \overset{(p_1,p_2)}{\longrightarrow} D </annotation></semantics></math></div> <p>is a coequalizer diagram.</p> </div> (Here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mover><mo>→</mo><mrow><msub><mi>q</mi> <mn>1</mn></msub></mrow></mover><mi>B</mi><mo>⊔</mo><mi>C</mi><mover><mo>←</mo><mrow><msub><mi>q</mi> <mn>2</mn></msub></mrow></mover><mi>C</mi></mrow><annotation encoding="application/x-tex">B \overset{q_1}{\to} B \sqcup C \overset{q_2}{\leftarrow} C</annotation></semantics></math> denotes the two <a class="existingWikiWord" href="/nlab/show/coprojections">coprojections</a> into the <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a>.)</p> <h2 id="examples">Examples</h2> <div class="num_example" id="QuotientSet"> <h6 id="example">Example</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">\mathcal{C} =</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, the coequalizer of two <a class="existingWikiWord" href="/nlab/show/functions">functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/quotient+set">quotient set</a> by the <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> generated by the <a class="existingWikiWord" href="/nlab/show/relation">relation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∼</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x) \sim g(x)</annotation></semantics></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x \in X</annotation></semantics></math>.</p> </div> <div class="num_example"> <h6 id="example_2">Example</h6> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">\mathcal{C} =</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Top">Top</a>, the coequalizer of two <a class="existingWikiWord" href="/nlab/show/continuous+functions">continuous functions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> whose underlying set is the <a class="existingWikiWord" href="/nlab/show/quotient+set">quotient set</a> from example <a class="maruku-ref" href="#QuotientSet"></a>, and whose topology is the corresponding <a class="existingWikiWord" href="/nlab/show/quotient+topology">quotient topology</a>.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equalizer">equalizer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+epimorphism">regular epimorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/propositional+truncation+object">propositional truncation object</a></p> </li> </ul> <h2 id="references">References</h2> <p>Coequalizers were defined in the paper</p> <ul> <li id="EH"><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+J.+Hilton">Peter J. Hilton</a>, <em>Group-like structures in general categories II. Equalizers, limits, lengths</em>. Mathematische Annalen 151:2 (1963), 150–186. <a href="https://doi.org/10.1007/bf01344176">doi:10.1007/bf01344176</a>.</li> </ul> <p>for any finite collection of parallel morphisms. The paper refers to them as <em>right equalizers</em>, whereas <a class="existingWikiWord" href="/nlab/show/equalizers">equalizers</a> are referred to as <em>left equalizers</em>.</p> <p>Textbook accounts:</p> <ul> <li id="Borceux94"> <p><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Section 2.4 in Vol. 1: <em>Basic Category Theory</em> of: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em>, Encyclopedia of Mathematics and its Applications <strong>50</strong> Cambridge University Press (1994) (<a href="https://doi.org/10.1017/CBO9780511525858">doi:10.1017/CBO9780511525858</a>)</p> </li> <li id="Taylor99"> <p><a class="existingWikiWord" href="/nlab/show/Paul+Taylor">Paul Taylor</a>, <em><a class="existingWikiWord" href="/nlab/show/Practical+Foundations+of+Mathematics">Practical Foundations of Mathematics</a></em>, Cambridge Studies in Advanced Mathematics 59, Cambridge University Press 1999 (<a href="http://www.paultaylor.eu/~pt/prafm/index.html">webpage</a>)</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 1, 2023 at 08:39:10. See the <a href="/nlab/history/coequalizer" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/coequalizer" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/7071/#Item_7">Discuss</a><span class="backintime"><a href="/nlab/revision/coequalizer/19" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/coequalizer" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/coequalizer" accesskey="S" class="navlink" id="history" rel="nofollow">History (19 revisions)</a> <a href="/nlab/show/coequalizer/cite" style="color: black">Cite</a> <a href="/nlab/print/coequalizer" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/coequalizer" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>