CINXE.COM
Search results for: Growth Hormone Gene
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Growth Hormone Gene</title> <meta name="description" content="Search results for: Growth Hormone Gene"> <meta name="keywords" content="Growth Hormone Gene"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Growth Hormone Gene" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Growth Hormone Gene"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7864</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Growth Hormone Gene</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7864</span> Detection of Polymorphism of Growth Hormone Gene in Holstein Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20%C5%9Eahin">Emine Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Soner%20Balc%C4%B1o%C4%9Flu"> Murat Soner Balcıoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the growth hormone (bGH) gene polymorphism in the Holstein cattle growing around Antalya in Turkey. In order to determine the bGH-AluI polymorphism, polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) method was performed. A 891 bp fragment of bGH was amplified and two types of alleles C and D for bGH were observed. In this study, the frequencies of C and D alleles were 0.8438 and 0.1562, respectively. The genotype frequencies for CC, CD and DD were 0.787, 0.191 and 0.022, respectively. According to the results of the chi-square test, a significant deviation from the Hardy-Weinberg equilibrium was not determined for the bGH locus in the population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene" title="Growth Hormone Gene">Growth Hormone Gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Holstein" title=" Holstein "> Holstein </a>, <a href="https://publications.waset.org/abstracts/search?q=Polymorphism" title=" Polymorphism"> Polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=RFLP" title=" RFLP"> RFLP</a> </p> <a href="https://publications.waset.org/abstracts/63845/detection-of-polymorphism-of-growth-hormone-gene-in-holstein-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7863</span> Associations between Polymorphism of Growth Hormone Gene on Milk Production, Fat and Protein Content in Friesian Holstein Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tety%20Hartatik">Tety Hartatik</a>, <a href="https://publications.waset.org/abstracts/search?q=Dian%20Kurniawati"> Dian Kurniawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Adiarto"> Adiarto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to determine the associations between polymorphism of the bovine growth hormone (GH) gene (Leu/Val, L/V) and milk production of Friesian Holstein Cattle. A total of 62 cows which consist of two Friesian Holstein groups (cattle from New Zealand are 19 heads and cattle from Australia are 43 heads). We perform the PCR and RFLP method for analyzing the genotype of the target gene GH 211 bp in the part of intron 4 and exon 5 of GH gene. The frequencies of genotypes LL were higher than genotype LV. The number of genotype LL in New Zealand and Australia groups are 84% and 79%, respectively. The number of genotype LV in New Zealand and Australia groups are 16% and 21%, respectively. The association between Leu/Val polymorphism on milk production, fat and protein content in both groups does not show the significant effect. However base on the groups (cows from New Zealand compare with those from Australia) show the significant effect on fat and protein content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friesian%20Holstein" title="Friesian Holstein">Friesian Holstein</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20content" title=" fat content"> fat content</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20hormone%20gene" title=" growth hormone gene"> growth hormone gene</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-RLFP" title=" PCR-RLFP"> PCR-RLFP</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a> </p> <a href="https://publications.waset.org/abstracts/22526/associations-between-polymorphism-of-growth-hormone-gene-on-milk-production-fat-and-protein-content-in-friesian-holstein-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7862</span> Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mustafa">Hamid Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeela%20Ajmal"> Adeela Ajmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20EuiSoo"> Kim EuiSoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor-ul-Ain"> Noor-ul-Ain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffalo" title="buffalo">buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=FSHR%20gene" title=" FSHR gene"> FSHR gene</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production "> production </a> </p> <a href="https://publications.waset.org/abstracts/22070/bioinformatic-study-of-follicle-stimulating-hormone-receptor-fshr-gene-in-different-buffalo-breeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7861</span> Detection of MspI Polymorphism and SNP of GH Gene in Some Camel Breeds Reared in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sekena%20H.%20Abd%20El-Aziem">Sekena H. Abd El-Aziem</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20M.%20Abd%20El-Kader"> Heba A. M. Abd El-Kader</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20S.%20Alam"> Sally S. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Othman%20E.%20Othman"> Othman E. Othman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth hormone (GH) is an anabolic hormone synthesized and secreted by the somatotroph cells of the anterior lobe of the pituitary gland in a circadian and pulsatile manner, the pattern of which plays an important role in postnatal longitudinal growth and development, tissue growth, lactation, reproduction as well as protein, lipid and carbohydrate metabolism. The aim of this study was to detect the genetic polymorphism of GH gene in five camel breeds reared in Egypt; Sudany, Somali, Mowaled, Maghrabi and Falahy, using PCR-RFLP technique. Also this work aimed to identify the single nucleotide polymorphism between different genotypes detected in these camel breeds. The amplified fragment of camel GH at 613-bp was digested with the restriction enzyme MspI and the result revealed the presence of three different genotypes; CC, CT and TT in tested breeds and significant differences were recorded in the genotype frequencies between these camel breeds. The result showed that the Maghrabi breed that is classified as a dual purpose camels had higher frequency for allele C (0.75) than those in the other tested four breeds. The sequence analysis declared the presence of a SNP (C→T) at position 264 in the amplified fragment which is responsible for the destruction of the restriction site C^CGG and consequently the appearance of two different alleles C and T. The nucleotide sequences of camel GH alleles T and C were submitted to nucleotide sequences database NCBI/Bankit/GenBank and have accession numbers: KP143517 and KP143518, respectively. It is concluded that only one SNP C→T was detected in GH gene among the five tested camel breeds reared in Egypt and this nucleotide substitution can be used as a marker for the genetic biodiversity between camel breeds reared in Egypt. Also, due to the possible association between allele C and higher growth rate, we can used it in MAS for camels and enter the camels possess this allele in breeding program as a way for enhancement of growth trait in camel breeds reared in Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20breeds%20in%20Egypt" title="camel breeds in Egypt">camel breeds in Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=GH" title=" GH"> GH</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-RFLP" title=" PCR-RFLP"> PCR-RFLP</a>, <a href="https://publications.waset.org/abstracts/search?q=SNPs" title=" SNPs"> SNPs</a> </p> <a href="https://publications.waset.org/abstracts/25932/detection-of-mspi-polymorphism-and-snp-of-gh-gene-in-some-camel-breeds-reared-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7860</span> The Effect of Blue Lighting on Feeding Behaviour, Growth, and Corticosterone of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Harimurti">Sri Harimurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Diah%20Reni%20Asih"> Diah Reni Asih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designated to investigate the effect of intermittent and continuous blue lighting on the feeding behaviour, growth and corticosterone hormone concentration of broiler. Two thousands and seven hundreds unsexed day-old broiler were divided into three groups of lighting treatment. Each treatment consisted of three replicates of 300 birds. The treatments were ordinary lighting (C), intermittent blue lighting (IBL) and continuous blue lighting (CBL). The data were collected in the study were feeding behaviour such as feeding duration and frequency of feeding, growth rate of birds and corticosterone hormone concentration. Results showed that the CBL have significant effect (P<0,05) on duration and frequency of feeding and growth rate of birds. The CBL have the highest feeding duration, the lowest frequency of feeding that those 290.33±1.52 minutes/day, 35.58±0.50 times/day at 15 to 28 days of age.The concentration of corticosterone hormone of IBL and CBL were a significant (P<0.05) decrease. The conclusion of this study indicated that continuous blue lighting may be a good tool for improving welfare management of broiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title="blue light">blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=corticosterone%20hormone" title=" corticosterone hormone"> corticosterone hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20behaviour" title=" feeding behaviour"> feeding behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title=" growth rate"> growth rate</a> </p> <a href="https://publications.waset.org/abstracts/71273/the-effect-of-blue-lighting-on-feeding-behaviour-growth-and-corticosterone-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7859</span> The Relationship between Level of Anxiety and the Development of Children with Growth Hormone Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Mojs">Ewa Mojs</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Wiechec"> Katarzyna Wiechec</a>, <a href="https://publications.waset.org/abstracts/search?q=Maia%20%20Kubiak"> Maia Kubiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Wlodzimierz%20Samborski"> Wlodzimierz Samborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interactions between mother’s psychological condition and child’s health status are complex and derive from the nature of the mother-child relationship. The aim of the study was to analyze the issue of anxiety amongst mothers of short children in the aspect of growth hormone therapy. The study was based on a group of 101 mothers of originally short-statured children – 70 with growth hormone deficiency (GHD) treated with recombinant human growth hormone (rhGH) and 31 undergoing the diagnostic process, without any treatment. Collected medical data included child's gender, height and weight, chronological age, bone age delay, and rhGH therapy duration. For all children, the height SDS and BMI SDS were calculated. To evaluate anxiety in mothers, the Spielberger State-Trait Anxiety Inventory (STAI) was used. Obtained results revealed low trait anxiety levels, with no statistically significant differences between the groups. State anxiety levels were average when mothers of all children were analyzed together, but when divided into groups, statistical differences appeared. Mothers of children without diagnosis and treatment had significantly higher levels of state anxiety than mothers of children with GHD receiving appropriate therapy. These results show, that the occurrence of growth failure in children is not related to high maternal trait anxiety, but the lack of diagnosis and lack of appropriate treatment generates higher levels of maternal state anxiety than the process of rh GH therapy in the offspring. Commencement of growth hormone therapy induce a substantial reduction of the state anxiety in mothers, and the duration of treatment causes its further decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20hormone%20deficiency" title=" growth hormone deficiency"> growth hormone deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=motherhood" title=" motherhood"> motherhood</a> </p> <a href="https://publications.waset.org/abstracts/55146/the-relationship-between-level-of-anxiety-and-the-development-of-children-with-growth-hormone-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7858</span> Cloning and Functional Analysis of NtPIN1a Promoter Under Various Abiotic Stresses in Nicotiana Tabacum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zia%20Ullah">Zia Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asim"> Muhammad Asim</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Sujuan"> Shi Sujuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayyan%20Khan"> Rayyan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaqib%20Shaheen"> Aaqib Shaheen</a>, <a href="https://publications.waset.org/abstracts/search?q=LIU%20Haobao"> LIU Haobao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant-specific auxin efflux proteins PIN-FORMED (PIN) have been well depicted in many plant species for their essential roles in regulating the transport of auxins in several phases of plant growth. Little is known about the various functions of the PIN family genes in the Nicotiana tabacum (N. tabacum) species during plant growth. To define the expression pattern of the NtPIN1a gene under abiotic stresses and hormone treatment, transgenic tobacco with promoterNtPIN1a::GUS construct was employed. Comprehensive computational analyses of the NtPIN1a promoter confirmed the existence of common core promoter elements including CAAT-box, TATA-box, hormone, and abiotic stress-responsive elements such as ABRE, P-box, MYC, MYB, ARE, and GC-motifs. The transgenic plants with the promoter of NtPIN1a displayed a promising expression of β-glucuronidase (GUS) in germinating seeds, root tips, shoot-apex, and developing leaves under optimal conditions. While the differential expression of GUS in moderate salt, drought, low potassium stresses, and externally high auxin level at two different time points, suggested NtPIN1a played a key role in growth processes and the plants’ response to abiotic stresses. This analysis provides a foundation for more in-depth discoveries of the biological functions of NtPIN1a in Nicotiana species and this promoter may be employed in genetic engineering of other crops for enhanced stress tolerance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tobacco" title="tobacco">tobacco</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotiana%20tabacum" title=" nicotiana tabacum"> nicotiana tabacum</a>, <a href="https://publications.waset.org/abstracts/search?q=pin" title=" pin"> pin</a>, <a href="https://publications.waset.org/abstracts/search?q=promoter" title=" promoter"> promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=GUS" title=" GUS"> GUS</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stresses" title=" abiotic stresses"> abiotic stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=auxin" title=" auxin"> auxin</a> </p> <a href="https://publications.waset.org/abstracts/156941/cloning-and-functional-analysis-of-ntpin1a-promoter-under-various-abiotic-stresses-in-nicotiana-tabacum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7857</span> Polymorphism in Myostatin Gene and Its Association with Growth Traits in Kurdi Sheep of Northern Khorasan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Alipanah">Masoud Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sekineh%20Akbari"> Sekineh Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Dashab"> Gholamreza Dashab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myostatin genes or factor 8 affecting on growth and making differentiation works (GDF8) as a moderator in the development of skeletal muscle inhibitor. If mutations occurs in the coding region of myostatin, alter its inhibitory role and the muscle growth is increased. In this study, blood samples were collected randomly from 60 Kurdish sheep in northern Khorasan and DNA extraction was performed using a modified salt. A fragment 337 bp from exon 3 myostatin gene and-specific primers by using a polymerase chain reaction (PCR) were amplified. In order to detect different forms of an allele at this locus HaeΙΙΙ restriction enzymes and PCR-RFLP analysis were used. Band patterns clarification was performed using agarose gel electrophoresis. The frequency of genotypes mm, Mm, and MM, were respectively detected, 0, 0.15 and 0.85. The allele frequency for alleles m and M, were respectively, 0.07 and 0.93. The statistical analyses indicated that m allele was significantly associated with body weight. The results of this study suggest that the Myostatin gene possibly is a candidate gene that affects growth traits in Kurdish sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GDF8%20gene" title="GDF8 gene">GDF8 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurdi%20Sheep%20of%20Northern%20Khorasan" title=" Kurdi Sheep of Northern Khorasan"> Kurdi Sheep of Northern Khorasan</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20traits" title=" weight traits"> weight traits</a> </p> <a href="https://publications.waset.org/abstracts/25104/polymorphism-in-myostatin-gene-and-its-association-with-growth-traits-in-kurdi-sheep-of-northern-khorasan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7856</span> Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Heydari">Mona Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Motamedian"> Ehsan Motamedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Shojaosadati"> Seyed Abbas Shojaosadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolic%20network" title="metabolic network">metabolic network</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20knockout" title=" gene knockout"> gene knockout</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20balance%20analysis" title=" flux balance analysis"> flux balance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray%20data" title=" microarray data"> microarray data</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/15750/integration-of-microarray-data-into-a-genome-scale-metabolic-model-to-study-flux-distribution-after-gene-knockout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7855</span> Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiancheng%20Lan">Tiancheng Lan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E10A" title="E10A">E10A</a>, <a href="https://publications.waset.org/abstracts/search?q=Kringle%205" title=" Kringle 5"> Kringle 5</a>, <a href="https://publications.waset.org/abstracts/search?q=2A%20peptide" title=" 2A peptide"> 2A peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap%20extension%20PCR" title=" overlap extension PCR"> overlap extension PCR</a> </p> <a href="https://publications.waset.org/abstracts/132643/construction-of-a-fusion-gene-carrying-e10a-and-k5-with-2a-peptide-linked-by-using-overlap-extension-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7854</span> Effect of Deer Antler Extract on Osteogenic Gene Expression and Longitudinal Bone Growth of Adolescent Male Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem">Kang-Hyun Leem</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim"> Hye Kyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deer antler, traditionally used as a tonic and valuable drug in oriental medicine, has been considered to possess bone-strengthening activity. The upper section, mid section, and base of the antler has been known to exhibit different biological properties. Present study was performed to examine the effects of different parts of deer antler extract (DH) on osteogenic gene expressions in MG-63 cells and longitudinal bone growth in adolescent male rats. The expressions of osteogenic genes, collagen, alkaline phosphatase, osteocalcin, and osteopontin, were measured by quantitative real-time PCR. Longitudinal bone growth was measured in 3-week-old male Sprague-Dawley rats using fluorescence microscopy. To examine the effects on the growth plate metabolism, the total height of growth plate and bone morphogenetic protein-2 (BMP-2) were measured. Collagen and osteocalcin mRNA expressions were increased by all three parts of the DH treatment while osteopontin gene expression was not affected by any of the DH treatment. Alkaline phosphatase gene expression was increased by upper and mid part of DH while base part of DH fails to affect alkaline phosphatase gene expression. The upper and mid parts of the DH treatment enhanced longitudinal bone growth and total height of growth plate. The induction of BMP-2 protein expression in growth plate assessed by immunostaining was also promoted by upper and mid parts of the DH treatment. These results suggest that DH, especially upper and mid parts, stimulate osteogenic gene expressions and have the effect on bone growth in adolescent rats and might be used for the growth delayed adolescent and inherent growth failure patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20morphogenetic%20protein-2" title="bone morphogenetic protein-2">bone morphogenetic protein-2</a>, <a href="https://publications.waset.org/abstracts/search?q=deer%20antler" title=" deer antler"> deer antler</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20bone%20growth" title=" longitudinal bone growth"> longitudinal bone growth</a>, <a href="https://publications.waset.org/abstracts/search?q=osteogenic%20genes" title=" osteogenic genes"> osteogenic genes</a> </p> <a href="https://publications.waset.org/abstracts/24281/effect-of-deer-antler-extract-on-osteogenic-gene-expression-and-longitudinal-bone-growth-of-adolescent-male-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7853</span> Characterization of (GRAS37) Gibberellin Acid Insensitive (GAI), Repressor (RGA), and Scarecrow (SCR) Gene by Using Bioinformatics Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusra%20Tariq">Yusra Tariq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Grass 37 gene is presently known in tomatoes, which are the source of healthy substances such as ascorbic acid, polyphenols, carotenoids and nutrients. It has a significant impact on the growth and development of humans. The GRASS 37 gene is a plant Transcription factor group assuming significant parts in various reactions of different Abiotic stresses such as (drought, salinity, thermal stresses, temperature, and bright waves) which could highly affect the growth. Tomatoes are very sensitive to temperature, and their growth or production occurs optimally in a temperature range from 21 C to 29.5 C during the daytime and from 18.5 C to 21 C during the night. This protein acts as a positive regulator of salt stress response and abscisic acid signaling. This study summarizes the structure characterized by molecular formula and protein-binding domains by different bioinformatics tools such as Expasy translate tool, Expasy Portparam, Swiss Prot and Inter Pro Scan, Clustal W tool regulatory procedure of GRASS gene components, also their reactions to both biotic and Abiotic stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRAS37" title="GRAS37">GRAS37</a>, <a href="https://publications.waset.org/abstracts/search?q=gene" title=" gene"> gene</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a> </p> <a href="https://publications.waset.org/abstracts/185944/characterization-of-gras37-gibberellin-acid-insensitive-gai-repressor-rga-and-scarecrow-scr-gene-by-using-bioinformatics-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7852</span> Effect of Aerobic Exercise on Estrogen Hormone and Bone Mineral Density in Osteoporotic Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Mohamed%20Abdelhafez%20Dahy">Noha Mohamed Abdelhafez Dahy</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20Abd%20El-Aziz"> Azza Abd El-Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Ahmed"> Eman Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20El-Sayed"> Marwa El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is a metabolic bone disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture, which leads to compromised bone strength and an increased risk of fracture, commonly it occurs in women 10-15 years after menopause, the mean age of menopause is 51 years. Menopause is natural physiological changes primary because of decline of ovaries function with age which leads to decrease of estrogen hormone production which is the main hormone for bone continuous remodeling for bone density maintenance. Exercise increase stimulation of bone growth to keep bone mass by the effect of the mechanical stimulation, antigravity loading and stress exerted on musculoskeletal muscles. Purpose: This study aimed to determine the effect of aerobic exercise on estrogen hormone and bone mineral density (BMD) in osteoporotic women and the correlation between the estrogen and BMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osteoporosis" title="Osteoporosis">Osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Postmenopause" title=" Postmenopause"> Postmenopause</a>, <a href="https://publications.waset.org/abstracts/search?q=Aerobic%20exercise" title=" Aerobic exercise"> Aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=DEXA" title=" DEXA"> DEXA</a>, <a href="https://publications.waset.org/abstracts/search?q=Serum%20Estrogen" title=" Serum Estrogen"> Serum Estrogen</a> </p> <a href="https://publications.waset.org/abstracts/166825/effect-of-aerobic-exercise-on-estrogen-hormone-and-bone-mineral-density-in-osteoporotic-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7851</span> Polymorphisms of Calpastatin Gene and Its Association with Growth Traits in Indonesian Thin Tail Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ihsan%20Andi%20Dagong">Muhammad Ihsan Andi Dagong</a>, <a href="https://publications.waset.org/abstracts/search?q=Cece%20Sumantri"> Cece Sumantri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Rachman%20Noor"> Ronny Rachman Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachmat%20Herman"> Rachmat Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Yamin"> Mohamad Yamin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calpastatin involved in various physiological processes in the body such as the protein turnover, growth, fusion and mioblast migration. Thus, allegedly Calpastatin gene diversity (CAST) have an association with growth and potential use as candidate genes for growth trait. This study aims to identify the association between the genetic diversity of CAST gene with some growth properties such as body dimention (morphometric), body weight and daily weight gain in sheep. A total of 157 heads of Thin Tail Sheep (TTS) reared intensively for fattening purposes in the uniform environmental conditions. Overall sheep used were male, and maintained for 3 months. The parameters of growth properties were measured among others: body weight gain (ADG) (g/head / day), body weight (kg), body length (cm), chest circumference (cm), height (cm). All the sheep were genotyped by using PCR-SSCP (single strand conformational polymorphism) methods. CAST gene in locus fragment intron 5 - exon 6 were amplified with a predicted length of about 254 bp PCR products. Then the sheep were stratified based on their CAST genotypes. The result of this research showed that no association were found between the CAST gene variations with morphometric body weight, but there was a significant association with daily body weight gain (ADG) in sheep observed. CAST-23 and CAST-33 genotypes has higher average daily gain than other genotypes. CAST-23 and CAST-33 genotypes that carrying the CAST-2 and CAST-3 alleles potential to be used in the selection of the nature of the growth trait of the TTS sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title="body weight">body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=calpastatin" title=" calpastatin"> calpastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20trait" title=" growth trait"> growth trait</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20tail%20sheep" title=" thin tail sheep"> thin tail sheep</a> </p> <a href="https://publications.waset.org/abstracts/48500/polymorphisms-of-calpastatin-gene-and-its-association-with-growth-traits-in-indonesian-thin-tail-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7850</span> THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Chabchoub">Ghazi Chabchoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Feki"> Mouna Feki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abid"> Mohamed Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Ayadi"> Hammadi Ayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoimmunity" title="autoimmunity">autoimmunity</a>, <a href="https://publications.waset.org/abstracts/search?q=autoimmune%20disease" title=" autoimmune disease"> autoimmune disease</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic" title=" genetic"> genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage%20analysis" title=" linkage analysis"> linkage analysis</a> </p> <a href="https://publications.waset.org/abstracts/113119/thrap2-gene-identified-as-a-candidate-susceptibility-gene-of-thyroid-autoimmune-diseases-pedigree-in-tunisian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7849</span> The Expression of Lipoprotein Lipase Gene with Fat Accumulations and Serum Biochemical Levels in Betong (KU Line) and Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Loongyai">W. Loongyai</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saengsawang"> N. Saengsawang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Danvilai"> W. Danvilai</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kridtayopas"> C. Kridtayopas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sopannarath"> P. Sopannarath</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bunchasak"> C. Bunchasak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Betong chicken is a slow growing and a lean strain of chicken, while the rapid growth of broiler is accompanied by increased fat. We investigated the growth performance, fat accumulations, lipid serum biochemical levels and lipoprotein lipase (LPL) gene expression of female Betong (KU line) at the age of 4 and 6 weeks. A total of 80 female Betong chickens (KU line) and 80 female broiler chickens were reared under open system (each group had 4 replicates of 20 chicks per pen). The results showed that feed intake and average daily gain (ADG) of broiler chicken were significantly higher than Betong (KU line) (P < 0.01), while feed conversion ratio (FCR) of Betong (KU line) at week 6 were significantly lower than broiler chicken (P < 0.01) at 6 weeks. At 4 and 6 weeks, two birds per replicate were randomly selected and slaughtered. Carcass weight did not significantly differ between treatments; the percentage of abdominal fat and subcutaneous fat yield was higher in the broiler (P < 0.01) at 4 and 6 week. Total cholesterol and LDL level of broiler were higher than Betong (KU line) at 4 and 6 weeks (P < 0.05). Abdominal fat samples were collected for total RNA extraction. The cDNA was amplified using primers specific for LPL gene expression and analysed using real-time PCR. The results showed that the expression of LPL gene was not different when compared between Betong (KU line) and broiler chickens at the age of 4 and 6 weeks (P > 0.05). Our results indicated that broiler chickens had high growth rate and fat accumulation when compared with Betong (KU line) chickens, whereas LPL gene expression did not differ between breeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipoprotein%20lipase%20gene" title="lipoprotein lipase gene">lipoprotein lipase gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Betong%20%28KU%20line%29" title=" Betong (KU line)"> Betong (KU line)</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20fat" title=" abdominal fat"> abdominal fat</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/96914/the-expression-of-lipoprotein-lipase-gene-with-fat-accumulations-and-serum-biochemical-levels-in-betong-ku-line-and-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7848</span> Acute Effects of Local Vibration on Muscle Activation, Metabolic and Hormone Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zong%20Yan%20Cai">Zong Yan Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Chyuan%20Chen"> Wen-Chyuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Min%20Wu"> Chih-Min Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate the acute effects of local vibration on muscle activation, metabolic and hormone responses. Totally 12 healthy, physically inactive, male adults participated in this study and completed LV exercise session. During LV exercise session, four custom-made vibrations (diameter: 20 mm; thickness: 8 mm; weight: 0.022 g) were locally placed over the belly of the thigh of each subject’s non-dominant leg in supine lying position, and subjects received 10 sets for 1 min at the frequency of 35-40Hz, with 1–2 min of rest between sets. The surface electromyography (EMG) were obtained from the vastus medialis and rectus femoris, and the subjects’ rating of perceived exertion (RPE) and heart rate (HR) were measured. EMG data, RPE values as well as HR were obtained by averaging the results of 10 sets of each exercise session. Blood samples were drawn before exercise, immediately after exercise, and 15min and 30min after exercise in each session for analysis of lactic acid (LA), growth hormone (GH), testosterone (T) and cortisol (C). The results indicated that the HR did not increase after LV (63.18±3.5 to 63.25±2.58 beat/min, p > 0.05). The average RPE values during the LV exposure were at 2.86±0.39. The root mean square % EMG values from the vastus medialis and rectus femoris were 19.02±2.19 and 8.25±2.20 respectively. There were no significant differences after acute LV exercise among LA, GH and T values as compared with baseline values (LA: 0.68±0.11 to 0.7±0.1 mmol/L; GH: 0.06±0.05 to 0.57±0.27 ng/mL; T: 551.33±46.62 to 520.42±43.78 ng/dL, p>0.05). However, the LV treatment caused a significant decrease in C values after exercise (16.56±1.05 to 11.64±1.85 nmol/L, p<0.05). In conclusion, acute LV exercise only slightly increase muscle activation which may not cause effective exercise response. However, acute LV exercise reduces C level, which may reduce the catabolic response. The probable reason might partly due to the vibration rhythmically which massage on muscles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cortisol" title="cortisol">cortisol</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20hormone" title=" growth hormone"> growth hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=testosterone" title=" testosterone"> testosterone</a> </p> <a href="https://publications.waset.org/abstracts/63080/acute-effects-of-local-vibration-on-muscle-activation-metabolic-and-hormone-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7847</span> Intelligent CRISPR Design for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Hu">Yu-Chen Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title="gene therapy">gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR" title=" CRISPR"> CRISPR</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a> </p> <a href="https://publications.waset.org/abstracts/168750/intelligent-crispr-design-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7846</span> Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhang">Feng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashin-Beck%20disease" title="Kashin-Beck disease">Kashin-Beck disease</a>, <a href="https://publications.waset.org/abstracts/search?q=genome-wide%20association%20study" title=" genome-wide association study"> genome-wide association study</a>, <a href="https://publications.waset.org/abstracts/search?q=COL2A1" title=" COL2A1"> COL2A1</a>, <a href="https://publications.waset.org/abstracts/search?q=hand" title=" hand"> hand</a> </p> <a href="https://publications.waset.org/abstracts/52866/genome-wide-association-study-identify-col2a1-as-a-susceptibility-gene-for-the-hand-development-failure-of-kashin-beck-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7845</span> The Effect of Strength Training and Consumption of Glutamine Supplement on GH/IGF1 Axis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Barari">Alireza Barari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity and diet are factors that influence the body's structure. The purpose of this study was to compare the effects of four weeks of resistance training, and glutamine supplement consumption on growth hormone (GH), and Insulin-like growth factor 1 (IGF-1) Axis. 40 amateur male bodybuilders, participated in this study. They were randomly divided into four equal groups, Resistance (R), Glutamine (G), Resistance with Glutamine (RG), and Control (C). The R group was assigned to a four week resistance training program, three times/week, three sets of 10 exercises with 6-10 repetitions, at the 80-95% 1RM (One <em>Repetition Maximum</em>), with 120 seconds rest between sets), G group is consuming l-glutamine (0.1 g/kg<sup>-1</sup>/day<sup>-1</sup>), RG group resistance training with consuming L-glutamine, and C group continued their normal lifestyle without exercise training. GH, IGF1, IGFBP-III plasma levels were measured before and after the protocol. One-way ANOVA indicated significant change in GH, IGF, and IGFBP-III between the four groups, and the Tukey test demonstrated significant increase in GH, IGF1, IGFBP-III plasma levels in R, and RG group. Based upon these findings, we concluded that resistance training at 80-95% 1RM intensity, and resistance training along with oral glutamine shows significantly increase secretion of GH, IGF-1, and IGFBP-III in amateur males, but the addition of oral glutamine to the exercise program did not show significant difference in GH, IGF-1, and IGFBP-III. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strength" title="strength">strength</a>, <a href="https://publications.waset.org/abstracts/search?q=glutamine" title=" glutamine"> glutamine</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20hormone" title=" growth hormone"> growth hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin-like%20growth%20factor%201" title=" insulin-like growth factor 1"> insulin-like growth factor 1</a> </p> <a href="https://publications.waset.org/abstracts/61283/the-effect-of-strength-training-and-consumption-of-glutamine-supplement-on-ghigf1-axis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7844</span> Effects of Aerobic, Resistance, and Concurrent Training on Secretion of Growth Hormone and Insulin-Like Growth Factor-1 in Elderly Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kh%20Jalali%20Dehkordi">Kh Jalali Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jalali%20Dehkordi"> A. Jalali Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tofighi"> A. Tofighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The purpose of this study was to investigate the effects of 8 weeks of aerobic, resistance, and concurrent training on secretion of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in elderly women. Methods: A total number of 60 elderly women were randomly allocated to four groups of aerobic training (n = 15), resistance training (n = 15), concurrent training (n = 15), and control (n = 15). Blood samples were taken before and 4 weeks after the initiation of exercise training and also at the end of the 8-week course of training. Maximal oxygen consumption (VO2Peak) was measured after 48 hours using Rockport walk test. Inferential analysis of the collected data was performed by repeated measures analysis of variance (ANOVA). Significant differences were further evaluated by the least significant difference (LSD) test. The relation between VO2Peak and secretion of GH and IGF-1 was assessed by Pearson's correlation coefficient. The significance level was considered as P ≤ 0.05 in all tests. Findings: The results showed that 8 weeks of regular exercise significantly increased levels of GH and IGF-1. A significant increase was also observed in VO2Peak values after 8 weeks of regular exercise (P < 0.05). VO2Peak was directly correlated with GH and IGF (P < 0.001, r = 0.72). Conclusion: In conclusion, regular exercise significantly increased levels of anabolic hormones. Moreover, the combined-exercise training better enhanced GH and IGF-1. VO2Peak increased with increases in GH and IGF-1 levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=women" title="women">women</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=GH" title=" GH"> GH</a>, <a href="https://publications.waset.org/abstracts/search?q=IGF-1" title=" IGF-1"> IGF-1</a> </p> <a href="https://publications.waset.org/abstracts/34942/effects-of-aerobic-resistance-and-concurrent-training-on-secretion-of-growth-hormone-and-insulin-like-growth-factor-1-in-elderly-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7843</span> Construction of the Large Scale Biological Networks from Microarrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadhl%20Alakwaa">Fadhl Alakwaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20regulatory%20network" title="gene regulatory network">gene regulatory network</a>, <a href="https://publications.waset.org/abstracts/search?q=biclustering" title=" biclustering"> biclustering</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20biology" title=" system biology"> system biology</a> </p> <a href="https://publications.waset.org/abstracts/74607/construction-of-the-large-scale-biological-networks-from-microarrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7842</span> Quantitative Structure-Activity Relationship Modeling of Detoxication Properties of Some 1,2-Dithiole-3-Thione Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Melkemi">Nadjib Melkemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Belaidi"> Salah Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative Structure-Activity Relationship (QSAR) studies have been performed on nineteen molecules of 1,2-dithiole-3-thione analogues. The compounds used are the potent inducers of enzymes involved in the maintenance of reduced glutathione pools as well as phase-2 enzymes important to electrophile detoxication. A multiple linear regression (MLR) procedure was used to design the relationships between molecular descriptor and detoxication properties of the 1,2-dithiole-3-thione derivatives. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based of the following descriptors: qS2, qC3, qC5, qS6, DM, Pol, log P, MV, SAG, HE and EHOMO for the specific activity of quinone reductase; qS1, qS2, qC3, qC4, qC5, qS6, DM, Pol, logP, MV, SAG, HE and EHOMO for the production of growth hormone. To confirm the predictive power of the models, an external set of molecules was used. High correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QSAR" title="QSAR">QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=quinone%20reductase%20activity" title=" quinone reductase activity"> quinone reductase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20of%20growth%20hormone" title=" production of growth hormone"> production of growth hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=MLR" title=" MLR"> MLR</a> </p> <a href="https://publications.waset.org/abstracts/7137/quantitative-structure-activity-relationship-modeling-of-detoxication-properties-of-some-12-dithiole-3-thione-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7841</span> Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Restu%20Misrianti">Restu Misrianti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duck" title="duck">duck</a>, <a href="https://publications.waset.org/abstracts/search?q=Mx%20gene" title=" Mx gene"> Mx gene</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=RFLP" title=" RFLP"> RFLP</a> </p> <a href="https://publications.waset.org/abstracts/37764/identification-of-mx-gene-polymorphism-in-indragiri-hulu-duck-by-pcr-rflp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7840</span> Comparison between Effects of Free Curcumin and Curcumin Loaded NIPAAm-MAA Nanoparticles on Telomerase and Pinx1 Gene Expression in Lung Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Pilehvar-Soltanahmadi">Y. Pilehvar-Soltanahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Badrzadeh"> F. Badrzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zarghami"> N. Zarghami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Jalilzadeh-Tabrizi"> S. Jalilzadeh-Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zamani"> R. Zamani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. The results showed that curcumin loaded NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be the good carrier for such kinds of hydrophobic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=NIPAAm-MAA" title=" NIPAAm-MAA"> NIPAAm-MAA</a>, <a href="https://publications.waset.org/abstracts/search?q=PinX1" title=" PinX1"> PinX1</a>, <a href="https://publications.waset.org/abstracts/search?q=telomerase" title=" telomerase"> telomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer%20cells" title=" lung cancer cells"> lung cancer cells</a> </p> <a href="https://publications.waset.org/abstracts/37740/comparison-between-effects-of-free-curcumin-and-curcumin-loaded-nipaam-maa-nanoparticles-on-telomerase-and-pinx1-gene-expression-in-lung-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7839</span> The Utilization of Salicylic Acid of the Extract from Avocado Skin as an Inhibitor of Ethylene Production to Keep the Quality of Banana in Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adira%20Nofeadri%20Ryofi">Adira Nofeadri Ryofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Andrianus"> Alvin Andrianus</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Khairunnisa"> Anna Khairunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anugrah%20Cahyo%20Widodo"> Anugrah Cahyo Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbhyando%20Tri%20Putrananda"> Arbhyando Tri Putrananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsy%20Imanda%20N.%20Raswati"> Arsy Imanda N. Raswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Gita%20Rahmaningsih"> Gita Rahmaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Agustina"> Ina Agustina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption level of fresh bananas from 2005 until 2010, increased from 8.2 to 10 kg/capita/year. The commercial scale of banana generally harvested when it still green to make the banana avoid physical damage, chemical, and disease after harvest and ripe fruit. That first metabolism activity can be used as a synthesis reaction. Ripening fruit was influenced by ethylene hormone that synthesized in fruit which is experiencing ripe and including hormone in the ripening fruit process in klimaterik phase. This ethylene hormone is affected by the respiration level that would speed up the restructuring of carbohydrates inside the fruit, so the weighting of fruit will be decreased. Compared to other klimaterik fruit, banana is a fruit that has a medium ethylene production rate and the rate of respiration is low. The salicylic acid can regulate the result number of the growth process or the development of fruits and plants. Salicylic acid serves to hinder biosynthesis ethylene and delay senses. The research aims to understand the influence of salicylic acid concentration that derived from the waste of avocado skin in inhibition process to ethylene production that the maturation can be controlled, so it can keep the quality of banana for storage. It is also to increase the potential value of the waste of avocado skin that were still used in industrial cosmetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20hormone" title="ethylene hormone">ethylene hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=extract%20avocado%20skin" title=" extract avocado skin"> extract avocado skin</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a> </p> <a href="https://publications.waset.org/abstracts/48712/the-utilization-of-salicylic-acid-of-the-extract-from-avocado-skin-as-an-inhibitor-of-ethylene-production-to-keep-the-quality-of-banana-in-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7838</span> Macronutrients and the FTO Gene Expression in Hypothalamus: A Systematic Review of Experimental Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Doaei">Saeid Doaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of the existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In conclusion, the level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=FTO" title=" FTO"> FTO</a>, <a href="https://publications.waset.org/abstracts/search?q=macronutrients" title=" macronutrients"> macronutrients</a> </p> <a href="https://publications.waset.org/abstracts/71018/macronutrients-and-the-fto-gene-expression-in-hypothalamus-a-systematic-review-of-experimental-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7837</span> Disruption of MoNUC1 Gene Mediates Conidiation in Magnaporthe oryzae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irshad%20Ali%20Khan">Irshad Ali Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Ping%20Lu"> Jian-Ping Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Hong%20Liu"> Xiao-Hong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu-Cheng%20Lin"> Fu-Cheng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the functional analysis of a gene MoNUC1 in M. oryzae, which is homologous to the Saccharomyces cerevisiae NUC1 encoding a mitochondrial nuclease protein. The MoNUC1 having a gene locus MGG_05324 is 1002-bp in length and encodes an identical protein of 333 amino acids. We disrupted the gene through gene disruption strategy and isolated two mutants confirmed by southern blotting. The deleted mutants were then used for phenotypic studies and their phenotypes were compared to those of the Guy-11 strain. The mutants were first grown on CM medium to find the effect of MoNUC1 gene disruption on colony growth and the mutants were found to show normal culture colony growth similar to that of the Guy-11 strain. Conidial germination and appressorial formation were also similar in both the mutants and Guy-11 strains showing that this gene plays no significant role in these phenotypes. For pathogenicity, the mutants and Guy-11 mycelium blocks were inoculated on blast susceptible barley seedlings and it was found that both the strains exhibited full pathogenicity showing coalesced and necrotic blast lesions suggesting that this gene is not involved in pathogenicity. Mating of the mutants with 2539 strain formed numerous perithecia showing that MoNUC1 is not essential for sexual reproduction in M. oryzae. However, the mutants were found to form reduced conidia (1.06±8.03B and 1.08±9.80B) than those of the Guy-11 strain (1.46±10.61A) and we conclude that this protein is not required for the blast fungus to cause pathogenicity but plays significant role in conidiation. Proteins of signal transduction pathways that could be disrupted/ intervened genetically or chemically could lead to antifungal products of important fungal cereal diseases and reduce rice yield losses. Tipping the balance toward understanding the whole of pathogenesis, rather than simply conidiation will take some time, but clearly presents the most exciting challenge of all. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appressorium%20formation" title="appressorium formation">appressorium formation</a>, <a href="https://publications.waset.org/abstracts/search?q=conidiation" title=" conidiation"> conidiation</a>, <a href="https://publications.waset.org/abstracts/search?q=NUC1" title=" NUC1"> NUC1</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnaporthe%20oryzae" title=" Magnaporthe oryzae"> Magnaporthe oryzae</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenicity" title=" pathogenicity"> pathogenicity</a> </p> <a href="https://publications.waset.org/abstracts/35700/disruption-of-monuc1-gene-mediates-conidiation-in-magnaporthe-oryzae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7836</span> Sense Environmental Hormones in Elementary School Teachers and Their in Service Learning Motivation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Chi%20Chuang">Fu-Chi Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Liang"> Yu-Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang"> Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Der%20Wang"> Wen-Der Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our environment has been contaminated by many artificial chemicals, such as plastics, pesticides. Many of them have hormone-like activity and are classified as 'environmental hormone (also named endocrine disruptors)'. These chemicals interfere with or mimic hormones have adverse effects that persist into adulthood. Environmental education is an important way to teach students to become engaged in real-world issues that transcend classroom walls. Elementary education is the first stage to perform environmental education and it is an important component to help students develop adequate environmental knowledge, attitudes, and behavior. However, elementary teachers' knowledge plays a critical role in this mission. Therefore, we use a questionnaire to survey the knowledge of environmental hormone of elementary school teachers and their learning motivation of the environmental hormone-regarding knowledge. We collected 218 questionnaires from Taiwanese elementary teachers and the results indicate around 73% of elementary teachers do not have enough knowledge about environmental hormones. Our results also reveal the in-service elementary teachers’ learning motivation of environmental hormones knowledge is positively enhanced once they realized their insufficient cognitive ability of environmental hormones. We believe our study will provide the powerful reference for Ministry of Education to set up the policy of environmental education to enrich all citizens sufficient knowledge of the effects of the environmental hormone on organisms, and further to enhance our correct environmental behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elementary%20teacher" title="elementary teacher">elementary teacher</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20hormones" title=" environmental hormones"> environmental hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20motivation" title=" learning motivation"> learning motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/104093/sense-environmental-hormones-in-elementary-school-teachers-and-their-in-service-learning-motivation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7835</span> Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Singh">Jyoti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Dubey"> Swati Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukta%20Singh"> Mukta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Singh"> R. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=gene" title=" gene"> gene</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/74923/time-course-lipid-accumulation-and-transcript-analyses-of-lipid-biosynthesis-gene-of-chlorella-sp3-under-nitrogen-limited-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=262">262</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=263">263</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>