CINXE.COM
Dirac delta function - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Dirac delta function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ed6af12f-5a80-4a25-978c-a614c7d3fcc4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dirac_delta_function","wgTitle":"Dirac delta function","wgCurRevisionId":1257959343,"wgRevisionId":1257959343,"wgArticleId":37021,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: numeric names: authors list","Articles with short description","Short description is different from Wikidata","Use American English from January 2019","All Wikipedia articles written in American English","Articles containing Latin-language text","Commons category link from Wikidata","Webarchive template wayback links","Good articles","Fourier analysis","Generalized functions","Measure theory","Digital signal processing","Paul Dirac","Schwartz distributions"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Dirac_delta_function","wgRelevantArticleId":37021,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId" :"Q209675","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready", "jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/1200px-Dirac_distribution_PDF.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/800px-Dirac_distribution_PDF.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/640px-Dirac_distribution_PDF.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Dirac delta function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Dirac_delta_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Dirac_delta_function&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Dirac_delta_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dirac_delta_function rootpage-Dirac_delta_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Dirac+delta+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Dirac+delta+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Dirac+delta+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Dirac+delta+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Motivation_and_overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Motivation_and_overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Motivation and overview</span> </div> </a> <ul id="toc-Motivation_and_overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-As_a_measure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_a_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>As a measure</span> </div> </a> <ul id="toc-As_a_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#As_a_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>As a distribution</span> </div> </a> <ul id="toc-As_a_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Scaling_and_symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scaling_and_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Scaling and symmetry</span> </div> </a> <ul id="toc-Scaling_and_symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Algebraic properties</span> </div> </a> <ul id="toc-Algebraic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Translation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Translation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Translation</span> </div> </a> <ul id="toc-Translation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Composition_with_a_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Composition_with_a_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Composition with a function</span> </div> </a> <ul id="toc-Composition_with_a_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Indefinite_integral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Indefinite_integral"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Indefinite integral</span> </div> </a> <ul id="toc-Indefinite_integral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_in_n_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_in_n_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Properties in <i>n</i> dimensions</span> </div> </a> <ul id="toc-Properties_in_n_dimensions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Fourier_transform" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Fourier transform</span> </div> </a> <ul id="toc-Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivatives" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Derivatives</span> </div> </a> <button aria-controls="toc-Derivatives-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Derivatives subsection</span> </button> <ul id="toc-Derivatives-sublist" class="vector-toc-list"> <li id="toc-Higher_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Higher dimensions</span> </div> </a> <ul id="toc-Higher_dimensions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representations_of_the_delta_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Representations_of_the_delta_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Representations of the delta function</span> </div> </a> <button aria-controls="toc-Representations_of_the_delta_function-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Representations of the delta function subsection</span> </button> <ul id="toc-Representations_of_the_delta_function-sublist" class="vector-toc-list"> <li id="toc-Approximations_to_the_identity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Approximations_to_the_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Approximations to the identity</span> </div> </a> <ul id="toc-Approximations_to_the_identity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probabilistic_considerations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probabilistic_considerations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Probabilistic considerations</span> </div> </a> <ul id="toc-Probabilistic_considerations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semigroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semigroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Semigroups</span> </div> </a> <ul id="toc-Semigroups-sublist" class="vector-toc-list"> <li id="toc-The_heat_kernel" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_heat_kernel"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3.1</span> <span>The heat kernel</span> </div> </a> <ul id="toc-The_heat_kernel-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Poisson_kernel" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_Poisson_kernel"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3.2</span> <span>The Poisson kernel</span> </div> </a> <ul id="toc-The_Poisson_kernel-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Oscillatory_integrals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Oscillatory_integrals"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Oscillatory integrals</span> </div> </a> <ul id="toc-Oscillatory_integrals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Plane_wave_decomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Plane_wave_decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Plane wave decomposition</span> </div> </a> <ul id="toc-Plane_wave_decomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fourier_kernels" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fourier_kernels"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Fourier kernels</span> </div> </a> <ul id="toc-Fourier_kernels-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hilbert_space_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hilbert_space_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Hilbert space theory</span> </div> </a> <ul id="toc-Hilbert_space_theory-sublist" class="vector-toc-list"> <li id="toc-Sobolev_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sobolev_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.1</span> <span>Sobolev spaces</span> </div> </a> <ul id="toc-Sobolev_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spaces_of_holomorphic_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Spaces_of_holomorphic_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.2</span> <span>Spaces of holomorphic functions</span> </div> </a> <ul id="toc-Spaces_of_holomorphic_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Resolutions_of_the_identity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Resolutions_of_the_identity"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7.3</span> <span>Resolutions of the identity</span> </div> </a> <ul id="toc-Resolutions_of_the_identity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Infinitesimal_delta_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Infinitesimal_delta_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.8</span> <span>Infinitesimal delta functions</span> </div> </a> <ul id="toc-Infinitesimal_delta_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dirac_comb" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Dirac_comb"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Dirac comb</span> </div> </a> <ul id="toc-Dirac_comb-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sokhotski–Plemelj_theorem" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sokhotski–Plemelj_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Sokhotski–Plemelj theorem</span> </div> </a> <ul id="toc-Sokhotski–Plemelj_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relationship_to_the_Kronecker_delta" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relationship_to_the_Kronecker_delta"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Relationship to the Kronecker delta</span> </div> </a> <ul id="toc-Relationship_to_the_Kronecker_delta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Probability_theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Probability theory</span> </div> </a> <ul id="toc-Probability_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Quantum mechanics</span> </div> </a> <ul id="toc-Quantum_mechanics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Structural_mechanics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Structural_mechanics"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Structural mechanics</span> </div> </a> <ul id="toc-Structural_mechanics-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Dirac delta function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 45 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-45" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">45 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D8%AF%D9%8A%D8%B1%D8%A7%D9%83" title="دالة ديراك – Arabic" lang="ar" hreflang="ar" data-title="دالة ديراك" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A1%E0%A6%BF%E0%A6%B0%E0%A6%BE%E0%A6%95_%E0%A6%A1%E0%A7%87%E0%A6%B2%E0%A7%8D%E0%A6%9F%E0%A6%BE_%E0%A6%85%E0%A6%AA%E0%A7%87%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95" title="ডিরাক ডেল্টা অপেক্ষক – Bangla" lang="bn" hreflang="bn" data-title="ডিরাক ডেল্টা অপেক্ষক" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D1%8D%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%8B%D1%8F" title="Дэльта-функцыя – Belarusian" lang="be" hreflang="be" data-title="Дэльта-функцыя" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B5%D0%BB%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Делта-функция – Bulgarian" lang="bg" hreflang="bg" data-title="Делта-функция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Delta_de_Dirac" title="Delta de Dirac – Catalan" lang="ca" hreflang="ca" data-title="Delta de Dirac" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Diracovo_delta" title="Diracovo delta – Czech" lang="cs" hreflang="cs" data-title="Diracovo delta" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Diracs_deltafunktion" title="Diracs deltafunktion – Danish" lang="da" hreflang="da" data-title="Diracs deltafunktion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Delta-Distribution" title="Delta-Distribution – German" lang="de" hreflang="de" data-title="Delta-Distribution" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Diraci_deltafunktsioon" title="Diraci deltafunktsioon – Estonian" lang="et" hreflang="et" data-title="Diraci deltafunktsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CF%81%CE%BF%CF%85%CF%83%CF%84%CE%B9%CE%BA%CE%AE_%CF%83%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7" title="Κρουστική συνάρτηση – Greek" lang="el" hreflang="el" data-title="Κρουστική συνάρτηση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Delta_de_Dirac" title="Delta de Dirac – Spanish" lang="es" hreflang="es" data-title="Delta de Dirac" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Diraka_delta_funkcio" title="Diraka delta funkcio – Esperanto" lang="eo" hreflang="eo" data-title="Diraka delta funkcio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D8%AF%D9%84%D8%AA%D8%A7%DB%8C_%D8%AF%DB%8C%D8%B1%D8%A7%DA%A9" title="تابع دلتای دیراک – Persian" lang="fa" hreflang="fa" data-title="تابع دلتای دیراک" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Distribution_de_Dirac" title="Distribution de Dirac – French" lang="fr" hreflang="fr" data-title="Distribution de Dirac" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%94%94%EB%9E%99_%EB%8D%B8%ED%83%80_%ED%95%A8%EC%88%98" title="디랙 델타 함수 – Korean" lang="ko" hreflang="ko" data-title="디랙 델타 함수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A1%E0%A4%BF%E0%A4%B0%E0%A5%88%E0%A4%95_%E0%A4%A1%E0%A5%87%E0%A4%B2%E0%A5%8D%E0%A4%9F%E0%A4%BE_%E0%A4%AB%E0%A4%B2%E0%A4%A8" title="डिरैक डेल्टा फलन – Hindi" lang="hi" hreflang="hi" data-title="डिरैक डेल्टा फलन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_delta_Dirac" title="Fungsi delta Dirac – Indonesian" lang="id" hreflang="id" data-title="Fungsi delta Dirac" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Deltufalli%C3%B0" title="Deltufallið – Icelandic" lang="is" hreflang="is" data-title="Deltufallið" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Delta_di_Dirac" title="Delta di Dirac – Italian" lang="it" hreflang="it" data-title="Delta di Dirac" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%99%D7%AA_%D7%93%D7%9C%D7%AA%D7%90_%D7%A9%D7%9C_%D7%93%D7%99%D7%A8%D7%90%D7%A7" title="פונקציית דלתא של דיראק – Hebrew" lang="he" hreflang="he" data-title="פונקציית דלתא של דיראק" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%93%E1%83%98%E1%83%A0%E1%83%90%E1%83%99%E1%83%98%E1%83%A1_%E1%83%93%E1%83%94%E1%83%9A%E1%83%A2%E1%83%90_%E1%83%A4%E1%83%A3%E1%83%9C%E1%83%A5%E1%83%AA%E1%83%98%E1%83%90" title="დირაკის დელტა ფუნქცია – Georgian" lang="ka" hreflang="ka" data-title="დირაკის დელტა ფუნქცია" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Delta_funkcija" title="Delta funkcija – Latvian" lang="lv" hreflang="lv" data-title="Delta funkcija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Dirac-delta" title="Dirac-delta – Hungarian" lang="hu" hreflang="hu" data-title="Dirac-delta" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Diracdelta" title="Diracdelta – Dutch" lang="nl" hreflang="nl" data-title="Diracdelta" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%A9%E3%83%83%E3%82%AF%E3%81%AE%E3%83%87%E3%83%AB%E3%82%BF%E9%96%A2%E6%95%B0" title="ディラックのデルタ関数 – Japanese" lang="ja" hreflang="ja" data-title="ディラックのデルタ関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Diracs_deltafunksjon" title="Diracs deltafunksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Diracs deltafunksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Delta-funksiya" title="Delta-funksiya – Uzbek" lang="uz" hreflang="uz" data-title="Delta-funksiya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Delta_Diraca" title="Delta Diraca – Polish" lang="pl" hreflang="pl" data-title="Delta Diraca" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Delta_de_Dirac" title="Delta de Dirac – Portuguese" lang="pt" hreflang="pt" data-title="Delta de Dirac" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bia_lui_Dirac" title="Funcția lui Dirac – Romanian" lang="ro" hreflang="ro" data-title="Funcția lui Dirac" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Дельта-функция – Russian" lang="ru" hreflang="ru" data-title="Дельта-функция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksioni_i_delt%C3%ABs_s%C3%AB_Dirakut" title="Funksioni i deltës së Dirakut – Albanian" lang="sq" hreflang="sq" data-title="Funksioni i deltës së Dirakut" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%A9%E0%B7%92%E0%B6%BB%E0%B7%90%E0%B6%9A%E0%B7%8A_%E0%B6%A9%E0%B7%99%E0%B6%BD%E0%B7%8A%E0%B6%A7%E0%B7%8F_%E0%B7%81%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B7%92%E0%B6%AD%E0%B6%BA" title="ඩිරැක් ඩෙල්ටා ශ්රිතය – Sinhala" lang="si" hreflang="si" data-title="ඩිරැක් ඩෙල්ටා ශ්රිතය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Dirac_delta_function" title="Dirac delta function – Simple English" lang="en-simple" hreflang="en-simple" data-title="Dirac delta function" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Porazdelitev_delta" title="Porazdelitev delta – Slovenian" lang="sl" hreflang="sl" data-title="Porazdelitev delta" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Dirakova_delta_funkcija" title="Dirakova delta funkcija – Serbian" lang="sr" hreflang="sr" data-title="Dirakova delta funkcija" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Diracin_deltafunktio" title="Diracin deltafunktio – Finnish" lang="fi" hreflang="fi" data-title="Diracin deltafunktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Diracs_delta-funktion" title="Diracs delta-funktion – Swedish" lang="sv" hreflang="sv" data-title="Diracs delta-funktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%94%D0%B5%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Дельта-функция – Tatar" lang="tt" hreflang="tt" data-title="Дельта-функция" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%94%E0%B8%B4%E0%B9%81%E0%B8%A3%E0%B8%81%E0%B9%80%E0%B8%94%E0%B8%A5%E0%B8%95%E0%B8%B2%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99" title="ดิแรกเดลตาฟังก์ชัน – Thai" lang="th" hreflang="th" data-title="ดิแรกเดลตาฟังก์ชัน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Dirac_delta_fonksiyonu" title="Dirac delta fonksiyonu – Turkish" lang="tr" hreflang="tr" data-title="Dirac delta fonksiyonu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B5%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_%D0%94%D1%96%D1%80%D0%B0%D0%BA%D0%B0" title="Дельта-функція Дірака – Ukrainian" lang="uk" hreflang="uk" data-title="Дельта-функція Дірака" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_delta_Dirac" title="Hàm delta Dirac – Vietnamese" lang="vi" hreflang="vi" data-title="Hàm delta Dirac" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%CE%B4%E5%87%BD%E6%95%B0" title="狄拉克δ函数 – Wu" lang="wuu" hreflang="wuu" data-title="狄拉克δ函数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%CE%B4%E5%87%BD%E6%95%B0" title="狄拉克δ函数 – Chinese" lang="zh" hreflang="zh" data-title="狄拉克δ函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q209675#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dirac_delta_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Dirac_delta_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dirac_delta_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Dirac_delta_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Dirac_delta_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Dirac_delta_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&oldid=1257959343" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Dirac_delta_function&id=1257959343&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDirac_delta_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDirac_delta_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Dirac_delta_function&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Dirac_delta_function&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Dirac_distribution" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Dirac_Delta_Function" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q209675" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-good-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:Good_articles*" title="This is a good article. Click here for more information."><img alt="This is a good article. Click here for more information." src="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/19px-Symbol_support_vote.svg.png" decoding="async" width="19" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/29px-Symbol_support_vote.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/94/Symbol_support_vote.svg/39px-Symbol_support_vote.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span></div></div> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Generalized function whose value is zero everywhere except at zero</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Delta function" redirects here. For other uses, see <a href="/wiki/Delta_function_(disambiguation)" class="mw-disambig" title="Delta function (disambiguation)">Delta function (disambiguation)</a>.</div> <p class="mw-empty-elt"> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Dirac_distribution_PDF.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/325px-Dirac_distribution_PDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/488px-Dirac_distribution_PDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dirac_distribution_PDF.svg/650px-Dirac_distribution_PDF.svg.png 2x" data-file-width="1300" data-file-height="975" /></a><figcaption>Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually meant to specify the value of any multiplicative constant, which will give the area under the function. The other convention is to write the area next to the arrowhead.</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Dirac_function_approximation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/b/b4/Dirac_function_approximation.gif" decoding="async" width="200" height="335" class="mw-file-element" data-file-width="200" data-file-height="335" /></a><figcaption>The Dirac delta as the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad1af22c1cd2d9f30958c076d8e63a44fbb80cd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.006ex; height:2.176ex;" alt="{\displaystyle a\to 0}"></span> (in the sense of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>) of the sequence of zero-centered <a href="/wiki/Normal_distribution" title="Normal distribution">normal distributions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{a}(x)={\frac {1}{\left|a\right|{\sqrt {\pi }}}}e^{-(x/a)^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>π<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{a}(x)={\frac {1}{\left|a\right|{\sqrt {\pi }}}}e^{-(x/a)^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fdc14b952358515e6ee3244cae716023efdea67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.723ex; height:6.176ex;" alt="{\displaystyle \delta _{a}(x)={\frac {1}{\left|a\right|{\sqrt {\pi }}}}e^{-(x/a)^{2}}}"></span> </figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title" style="background:#ccccff;display:block;margin-bottom:0.2em;"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></th></tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Scope</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Fields</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading" style="padding-bottom:0;"> <div class="hlist"><ul><li><a href="/wiki/Natural_science" title="Natural science">Natural sciences</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Astronomy" title="Astronomy">Astronomy</a></li> <li><a href="/wiki/Physics" title="Physics">Physics</a></li> <li><a href="/wiki/Chemistry" title="Chemistry">Chemistry</a></li> <li><br /><a href="/wiki/Biology" title="Biology">Biology</a></li> <li><a href="/wiki/Geology" title="Geology">Geology</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied mathematics</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Chaos_theory" title="Chaos theory">Chaos theory</a></li> <li><a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">Dynamical systems</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Social_science" title="Social science">Social sciences</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;;padding-bottom:0;"> <ul><li><a href="/wiki/Economics" title="Economics">Economics</a></li> <li><a href="/wiki/Population_dynamics" title="Population dynamics">Population dynamics</a></li></ul></td> </tr></tbody></table> <hr /> <a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;;display:block;margin-top:0.1em;"> Classification</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Types</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> By variable type</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Autonomous_differential_equation" class="mw-redirect" title="Autonomous differential equation">Autonomous</a></li> <li>Coupled / Decoupled</li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a> / <a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Features</th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation#Definitions" title="Ordinary differential equation">Order</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Operator</a></li></ul> </div> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Relation to processes</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference <span style="font-size:85%;">(discrete analogue)</span></a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Solution</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Existence and uniqueness</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem </a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory's existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">General topics</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li><a href="/wiki/Initial_condition" title="Initial condition">Initial conditions</a></li> <li><a href="/wiki/Boundary_value_problem" title="Boundary value problem">Boundary values</a> <ul><li><a href="/wiki/Dirichlet_boundary_condition" title="Dirichlet boundary condition">Dirichlet</a></li> <li><a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann</a></li> <li><a href="/wiki/Robin_boundary_condition" title="Robin boundary condition">Robin</a></li> <li><a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy problem</a></li></ul></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov</a> / <a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic</a> / <a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a href="/wiki/Rate_of_convergence" title="Rate of convergence">Rate of convergence</a></li> <li><span class="nowrap"><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series</a> / Integral solutions</span></li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a class="mw-selflink selflink">Dirac delta function</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Solution methods</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li>Inspection</li> <li><a href="/wiki/Method_of_characteristics" title="Method of characteristics">Method of characteristics</a></li> <li><br /><a href="/wiki/Euler_method" title="Euler method">Euler</a></li> <li><a href="/wiki/Exponential_response_formula" title="Exponential response formula">Exponential response formula</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference</a> <span style="font-size:85%;">(<a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson</a>)</span></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element</a> <ul><li><a href="/wiki/Infinite_element_method" title="Infinite element method">Infinite element</a></li></ul></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin</a> <ul><li><a href="/wiki/Petrov%E2%80%93Galerkin_method" title="Petrov–Galerkin method">Petrov–Galerkin</a></li></ul></li> <li><a href="/wiki/Green%27s_function" title="Green's function">Green's function</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta</a></li></ul> </div> <ul><li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> People</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">List</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist" style="padding-top:0.5em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/George_Green_(mathematician)" title="George Green (mathematician)">George Green</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Ernst_Lindel%C3%B6f" class="mw-redirect" title="Ernst Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations" title="Template:Differential equations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations" title="Template talk:Differential equations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations" title="Special:EditPage/Template:Differential equations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, the <b>Dirac delta function</b> (or <b><span class="texhtml mvar" style="font-style:italic;">δ</span> distribution</b>), also known as the <b>unit impulse</b>,<sup id="cite_ref-FOOTNOTEatis2013unit_impulse_1-0" class="reference"><a href="#cite_note-FOOTNOTEatis2013unit_impulse-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> is a <a href="/wiki/Generalized_function" title="Generalized function">generalized function</a> on the <a href="/wiki/Real_numbers" class="mw-redirect" title="Real numbers">real numbers</a>, whose value is zero everywhere except at zero, and whose <a href="/wiki/Integral" title="Integral">integral</a> over the entire real line is equal to one.<sup id="cite_ref-FOOTNOTEArfkenWeber200084_2-0" class="reference"><a href="#cite_note-FOOTNOTEArfkenWeber200084-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEDirac1930§22_The_''δ''_function_3-0" class="reference"><a href="#cite_note-FOOTNOTEDirac1930§22_The_''δ''_function-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1_4-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Thus it can be represented heuristically as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)={\begin{cases}0,&x\neq 0\\{\infty },&x=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)={\begin{cases}0,&x\neq 0\\{\infty },&x=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91e3bc73bcd8fd2d467cf2af7aef0e2e014ae6e2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.664ex; height:6.176ex;" alt="{\displaystyle \delta (x)={\begin{cases}0,&x\neq 0\\{\infty },&x=0\end{cases}}}"></span> </p><p>such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\delta (x)dx=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\delta (x)dx=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/501e41bca83b0b6f5d744ae653c282b2d290bc5a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.475ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\delta (x)dx=1.}"></span> </p><p>Since there is no function having this property, modelling the delta "function" rigorously involves the use of <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limits</a> or, as is common in mathematics, <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a> and the theory of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>. </p><p>The delta function was introduced by physicist <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a>, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> function, which is usually defined on a discrete domain and takes values 0 and 1. The mathematical rigor of the delta function was disputed until <a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Laurent Schwartz</a> developed the theory of distributions, where it is defined as a linear form acting on functions. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Motivation_and_overview">Motivation and overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=1" title="Edit section: Motivation and overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Graph_of_a_function" title="Graph of a function">graph</a> of the Dirac delta is usually thought of as following the whole <i>x</i>-axis and the positive <i>y</i>-axis.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 174">: 174 </span></sup> The Dirac delta is used to model a tall narrow spike function (an <i>impulse</i>), and other similar <a href="/wiki/Abstraction" title="Abstraction">abstractions</a> such as a <a href="/wiki/Point_charge" class="mw-redirect" title="Point charge">point charge</a>, <a href="/wiki/Point_mass" class="mw-redirect" title="Point mass">point mass</a> or <a href="/wiki/Electron" title="Electron">electron</a> point. For example, to calculate the <a href="/wiki/Dynamics_(mechanics)" class="mw-redirect" title="Dynamics (mechanics)">dynamics</a> of a <a href="/wiki/Billiard_ball" title="Billiard ball">billiard ball</a> being struck, one can approximate the <a href="/wiki/Force" title="Force">force</a> of the impact by a Dirac delta. In doing so, one not only simplifies the equations, but one also is able to calculate the <a href="/wiki/Motion_(physics)" class="mw-redirect" title="Motion (physics)">motion</a> of the ball, by only considering the total impulse of the collision, without a detailed model of all of the elastic energy transfer at subatomic levels (for instance). </p><p>To be specific, suppose that a billiard ball is at rest. At time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span> it is struck by another ball, imparting it with a <a href="/wiki/Momentum" title="Momentum">momentum</a> <span class="texhtml mvar" style="font-style:italic;">P</span>, with units kg⋅m⋅s<sup>−1</sup>. The exchange of momentum is not actually instantaneous, being mediated by elastic processes at the molecular and subatomic level, but for practical purposes it is convenient to consider that energy transfer as effectively instantaneous. The <a href="/wiki/Force" title="Force">force</a> therefore is <span class="texhtml"><i>P</i> <i>δ</i>(<i>t</i>)</span>; the units of <span class="texhtml"><i>δ</i>(<i>t</i>)</span> are s<sup>−1</sup>. </p><p>To model this situation more rigorously, suppose that the force instead is uniformly distributed over a small time interval <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t=[0,T]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t=[0,T]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9e2d96fc8758cc490227383eb4eadb234578795" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11ex; height:2.843ex;" alt="{\displaystyle \Delta t=[0,T]}"></span>.</span> That is, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\Delta t}(t)={\begin{cases}P/\Delta t&0<t\leq T,\\0&{\text{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mtd> <mtd> <mn>0</mn> <mo><</mo> <mi>t</mi> <mo>≤<!-- ≤ --></mo> <mi>T</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\Delta t}(t)={\begin{cases}P/\Delta t&0<t\leq T,\\0&{\text{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9659e9a928b5f961fcae78af091c75e42055fa1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.419ex; height:6.176ex;" alt="{\displaystyle F_{\Delta t}(t)={\begin{cases}P/\Delta t&0<t\leq T,\\0&{\text{otherwise}}.\end{cases}}}"></span> </p><p>Then the momentum at any time <span class="texhtml mvar" style="font-style:italic;">t</span> is found by integration: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(t)=\int _{0}^{t}F_{\Delta t}(\tau )\,d\tau ={\begin{cases}P&t\geq T\\P\,t/\Delta t&0\leq t\leq T\\0&{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>τ<!-- τ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>P</mi> </mtd> <mtd> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mi>P</mi> <mspace width="thinmathspace" /> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mtd> <mtd> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>t</mi> <mo>≤<!-- ≤ --></mo> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(t)=\int _{0}^{t}F_{\Delta t}(\tau )\,d\tau ={\begin{cases}P&t\geq T\\P\,t/\Delta t&0\leq t\leq T\\0&{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4773a28889268dcfbd5fbc2476031db8bb527696" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; margin-left: -0.089ex; width:45.562ex; height:8.509ex;" alt="{\displaystyle p(t)=\int _{0}^{t}F_{\Delta t}(\tau )\,d\tau ={\begin{cases}P&t\geq T\\P\,t/\Delta t&0\leq t\leq T\\0&{\text{otherwise.}}\end{cases}}}"></span> </p><p>Now, the model situation of an instantaneous transfer of momentum requires taking the limit as <span class="texhtml">Δ<i>t</i> → 0</span>, giving a result everywhere except at <span class="texhtml">0</span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(t)={\begin{cases}P&t>0\\0&t<0.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>P</mi> </mtd> <mtd> <mi>t</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>t</mi> <mo><</mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(t)={\begin{cases}P&t>0\\0&t<0.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e797a75e81faa6b8e49ec30d1a3ba73a428175b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.089ex; width:19.316ex; height:6.176ex;" alt="{\displaystyle p(t)={\begin{cases}P&t>0\\0&t<0.\end{cases}}}"></span> </p><p>Here the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{\Delta t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{\Delta t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066097534d064bf09e1ada80287198283cb082c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.689ex; height:2.509ex;" alt="{\displaystyle F_{\Delta t}}"></span> are thought of as useful approximations to the idea of instantaneous transfer of momentum. </p><p>The delta function allows us to construct an idealized limit of these approximations. Unfortunately, the actual limit of the functions (in the sense of <a href="/wiki/Pointwise_convergence" title="Pointwise convergence">pointwise convergence</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{\Delta t\to 0^{+}}F_{\Delta t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{\Delta t\to 0^{+}}F_{\Delta t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88c4469f9c83b22d4b7d17bb2286baa97a110d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.168ex; height:2.676ex;" alt="{\textstyle \lim _{\Delta t\to 0^{+}}F_{\Delta t}}"></span> is zero everywhere but a single point, where it is infinite. To make proper sense of the Dirac delta, we should instead insist that the property </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }F_{\Delta t}(t)\,dt=P,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>P</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }F_{\Delta t}(t)\,dt=P,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d27685cedc70dbae6103b1c8af44d728e782d8d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.105ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }F_{\Delta t}(t)\,dt=P,}"></span> </p><p>which holds for all <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta t>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta t>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce341dd9e80a38fa8665b0be0ae5e1b42f16e70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.036ex; height:2.176ex;" alt="{\displaystyle \Delta t>0}"></span>,</span> should continue to hold in the limit. So, in the equation <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F(t)=P\,\delta (t)=\lim _{\Delta t\to 0}F_{\Delta t}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F(t)=P\,\delta (t)=\lim _{\Delta t\to 0}F_{\Delta t}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1130a882e8233e8f15ab035dbf67ccde2968bcdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.032ex; height:2.843ex;" alt="{\textstyle F(t)=P\,\delta (t)=\lim _{\Delta t\to 0}F_{\Delta t}(t)}"></span>,</span> it is understood that the limit is always taken <em>outside the integral</em>. </p><p>In applied mathematics, as we have done here, the delta function is often manipulated as a kind of limit (a <a href="/wiki/Weak_limit" class="mw-redirect" title="Weak limit">weak limit</a>) of a <a href="/wiki/Sequence" title="Sequence">sequence</a> of functions, each member of which has a tall spike at the origin: for example, a sequence of <a href="/wiki/Gaussian_distribution" class="mw-redirect" title="Gaussian distribution">Gaussian distributions</a> centered at the origin with <a href="/wiki/Variance" title="Variance">variance</a> tending to zero. </p><p>The Dirac delta is not truly a function, at least not a usual one with domain and range in <a href="/wiki/Real_number" title="Real number">real numbers</a>. For example, the objects <span class="texhtml"><i>f</i>(<i>x</i>) = <i>δ</i>(<i>x</i>)</span> and <span class="texhtml"><i>g</i>(<i>x</i>) = 0</span> are equal everywhere except at <span class="texhtml"><i>x</i> = 0</span> yet have integrals that are different. According to <a href="/wiki/Lebesgue_integral#Basic_theorems_of_the_Lebesgue_integral" title="Lebesgue integral">Lebesgue integration theory</a>, if <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are functions such that <span class="texhtml"><i>f</i> = <i>g</i></span> <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>, then <span class="texhtml mvar" style="font-style:italic;">f</span> is integrable <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> <span class="texhtml mvar" style="font-style:italic;">g</span> is integrable and the integrals of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are identical. A rigorous approach to regarding the Dirac delta function as a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a> in its own right requires <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a> or the theory of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a> presented what is now called the <a href="/wiki/Fourier_integral_theorem" class="mw-redirect" title="Fourier integral theorem">Fourier integral theorem</a> in his treatise <i>Théorie analytique de la chaleur</i> in the form:<sup id="cite_ref-Fourier_6-0" class="reference"><a href="#cite_note-Fourier-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ \ d\alpha \,f(\alpha )\ \int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mtext> </mtext> <mtext> </mtext> <mi>d</mi> <mi>α<!-- α --></mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>d</mi> <mi>p</mi> <mtext> </mtext> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ \ d\alpha \,f(\alpha )\ \int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/becd8ed273bf37371fddee5f994a03acfbbd797f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.193ex; height:6.009ex;" alt="{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ \ d\alpha \,f(\alpha )\ \int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ ,}"></span> </p><p>which is tantamount to the introduction of the <span class="texhtml mvar" style="font-style:italic;">δ</span>-function in the form:<sup id="cite_ref-Kawai_7-0" class="reference"><a href="#cite_note-Kawai-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>d</mi> <mi>p</mi> <mtext> </mtext> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/855cfbd62c5dd8b13927d93d9cfafc3a52600288" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.663ex; height:6.009ex;" alt="{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }dp\ \cos(px-p\alpha )\ .}"></span> </p><p>Later, <a href="/wiki/Augustin_Cauchy" class="mw-redirect" title="Augustin Cauchy">Augustin Cauchy</a> expressed the theorem using exponentials:<sup id="cite_ref-Myint-U_8-0" class="reference"><a href="#cite_note-Myint-U-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Debnath_9-0" class="reference"><a href="#cite_note-Debnath-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> <mi>x</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>p</mi> <mi>α<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>α<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e95846a406cc87f80d3576531863dd2ba6d2b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.453ex; height:6.176ex;" alt="{\displaystyle f(x)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\ e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp.}"></span> </p><p>Cauchy pointed out that in some circumstances the <i>order</i> of integration is significant in this result (contrast <a href="/wiki/Fubini%27s_theorem" title="Fubini's theorem">Fubini's theorem</a>).<sup id="cite_ref-Grattan-Guinness_10-0" class="reference"><a href="#cite_note-Grattan-Guinness-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cauchy_11-0" class="reference"><a href="#cite_note-Cauchy-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p><p>As justified using the <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">theory of distributions</a>, the Cauchy equation can be rearranged to resemble Fourier's original formulation and expose the <i>δ</i>-function as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(x)&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp\\[4pt]&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\left(\int _{-\infty }^{\infty }e^{ipx}e^{-ip\alpha }\,dp\right)f(\alpha )\,d\alpha =\int _{-\infty }^{\infty }\delta (x-\alpha )f(\alpha )\,d\alpha ,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> <mi>x</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>p</mi> <mi>α<!-- α --></mi> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>α<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> <mi>x</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>p</mi> <mi>α<!-- α --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>α<!-- α --></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>α<!-- α --></mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(x)&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp\\[4pt]&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\left(\int _{-\infty }^{\infty }e^{ipx}e^{-ip\alpha }\,dp\right)f(\alpha )\,d\alpha =\int _{-\infty }^{\infty }\delta (x-\alpha )f(\alpha )\,d\alpha ,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656c821d528199232d832d301bbec290a815fe63" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:69.351ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}f(x)&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ipx}\left(\int _{-\infty }^{\infty }e^{-ip\alpha }f(\alpha )\,d\alpha \right)\,dp\\[4pt]&={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\left(\int _{-\infty }^{\infty }e^{ipx}e^{-ip\alpha }\,dp\right)f(\alpha )\,d\alpha =\int _{-\infty }^{\infty }\delta (x-\alpha )f(\alpha )\,d\alpha ,\end{aligned}}}"></span> </p><p>where the <i>δ</i>-function is expressed as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ip(x-\alpha )}\,dp\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ip(x-\alpha )}\,dp\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a17bef7344e179c88573e40d7dc2f10b17b881f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.425ex; height:6.009ex;" alt="{\displaystyle \delta (x-\alpha )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }e^{ip(x-\alpha )}\,dp\ .}"></span> </p><p>A rigorous interpretation of the exponential form and the various limitations upon the function <i>f</i> necessary for its application extended over several centuries. The problems with a classical interpretation are explained as follows:<sup id="cite_ref-Mitrović_12-0" class="reference"><a href="#cite_note-Mitrović-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <dl><dd>The greatest drawback of the classical Fourier transformation is a rather narrow class of functions (originals) for which it can be effectively computed. Namely, it is necessary that these functions <a href="/wiki/Rapidly_decreasing" class="mw-redirect" title="Rapidly decreasing">decrease sufficiently rapidly</a> to zero (in the neighborhood of infinity) to ensure the existence of the Fourier integral. For example, the Fourier transform of such simple functions as polynomials does not exist in the classical sense. The extension of the classical Fourier transformation to distributions considerably enlarged the class of functions that could be transformed and this removed many obstacles.</dd></dl> <p>Further developments included generalization of the Fourier integral, "beginning with <a href="/wiki/Michel_Plancherel" title="Michel Plancherel">Plancherel's</a> pathbreaking <i>L</i><sup>2</sup>-theory (1910), continuing with <a href="/wiki/Norbert_Wiener" title="Norbert Wiener">Wiener's</a> and <a href="/wiki/Salomon_Bochner" title="Salomon Bochner">Bochner's</a> works (around 1930) and culminating with the amalgamation into <a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">L. Schwartz's</a> theory of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a> (1945) ...",<sup id="cite_ref-Kracht_13-0" class="reference"><a href="#cite_note-Kracht-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> and leading to the formal development of the Dirac delta function. </p><p>An <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> formula for an infinitely tall, unit impulse delta function (infinitesimal version of <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy distribution</a>) explicitly appears in an 1827 text of <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a>. <sup id="cite_ref-FOOTNOTELaugwitz1989230_14-0" class="reference"><a href="#cite_note-FOOTNOTELaugwitz1989230-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Siméon Denis Poisson</a> considered the issue in connection with the study of wave propagation as did <a href="/wiki/Gustav_Kirchhoff" title="Gustav Kirchhoff">Gustav Kirchhoff</a> somewhat later. Kirchhoff and <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a> also introduced the unit impulse as a limit of <a href="/wiki/Gaussian_distribution" class="mw-redirect" title="Gaussian distribution">Gaussians</a>, which also corresponded to <a href="/wiki/Lord_Kelvin" title="Lord Kelvin">Lord Kelvin</a>'s notion of a point heat source. At the end of the 19th century, <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a> used formal <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> to manipulate the unit impulse.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> The Dirac delta function as such was introduced by <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> in his 1927 paper <i>The Physical Interpretation of the Quantum Dynamics</i><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> and used in his textbook <i><a href="/wiki/The_Principles_of_Quantum_Mechanics" title="The Principles of Quantum Mechanics">The Principles of Quantum Mechanics</a></i>.<sup id="cite_ref-FOOTNOTEDirac1930§22_The_''δ''_function_3-1" class="reference"><a href="#cite_note-FOOTNOTEDirac1930§22_The_''δ''_function-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> He called it the "delta function" since he used it as a continuous analogue of the discrete <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=3" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Dirac delta function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4457507451c205a7e6adda92d919ee4c4a369cea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.188ex; height:2.843ex;" alt="{\displaystyle \delta (x)}"></span> can be loosely thought of as a function on the real line which is zero everywhere except at the origin, where it is infinite, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)\simeq {\begin{cases}+\infty ,&x=0\\0,&x\neq 0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)\simeq {\begin{cases}+\infty ,&x=0\\0,&x\neq 0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a839e28bf4397d834d571fbe69960e6d7b8d37" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.473ex; height:6.176ex;" alt="{\displaystyle \delta (x)\simeq {\begin{cases}+\infty ,&x=0\\0,&x\neq 0\end{cases}}}"></span> </p><p>and which is also constrained to satisfy the identity<sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1,_p._1_17-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1,_p._1-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\delta (x)\,dx=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\delta (x)\,dx=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/007285dfa02f992dc4148ef7f74c8d461c2ca0b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.862ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\delta (x)\,dx=1.}"></span> </p><p>This is merely a <a href="/wiki/Heuristic" title="Heuristic">heuristic</a> characterization. The Dirac delta is not a function in the traditional sense as no <a href="/wiki/Extended_real_number" class="mw-redirect" title="Extended real number">extended real number</a> valued function defined on the real numbers has these properties.<sup id="cite_ref-FOOTNOTEDirac193063_18-0" class="reference"><a href="#cite_note-FOOTNOTEDirac193063-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="As_a_measure">As a measure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=4" title="Edit section: As a measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One way to rigorously capture the notion of the Dirac delta function is to define a <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure</a>, called <a href="/wiki/Dirac_measure" title="Dirac measure">Dirac measure</a>, which accepts a subset <span class="texhtml mvar" style="font-style:italic;">A</span> of the real line <span class="texhtml"><b>R</b></span> as an argument, and returns <span class="texhtml"><i>δ</i>(<i>A</i>) = 1</span> if <span class="texhtml">0 ∈ <i>A</i></span>, and <span class="texhtml"><i>δ</i>(<i>A</i>) = 0</span> otherwise.<sup id="cite_ref-Rudin_1966_loc=§1.20_19-0" class="reference"><a href="#cite_note-Rudin_1966_loc=§1.20-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> If the delta function is conceptualized as modeling an idealized point mass at 0, then <span class="texhtml"><i>δ</i>(<i>A</i>)</span> represents the mass contained in the set <span class="texhtml mvar" style="font-style:italic;">A</span>. One may then define the integral against <span class="texhtml mvar" style="font-style:italic;">δ</span> as the integral of a function against this mass distribution. Formally, the <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue integral</a> provides the necessary analytic device. The Lebesgue integral with respect to the measure <span class="texhtml mvar" style="font-style:italic;">δ</span> satisfies </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a9b6ffbd48d5e84f6bbba55c16c6384b8b9adc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.391ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=f(0)}"></span> </p><p>for all continuous compactly supported functions <span class="texhtml mvar" style="font-style:italic;">f</span>. The measure <span class="texhtml mvar" style="font-style:italic;">δ</span> is not <a href="/wiki/Absolutely_continuous" class="mw-redirect" title="Absolutely continuous">absolutely continuous</a> with respect to the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>—in fact, it is a <a href="/wiki/Singular_measure" title="Singular measure">singular measure</a>. Consequently, the delta measure has no <a href="/wiki/Radon%E2%80%93Nikodym_derivative" class="mw-redirect" title="Radon–Nikodym derivative">Radon–Nikodym derivative</a> (with respect to Lebesgue measure)—no true function for which the property </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (x)\,dx=f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (x)\,dx=f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76c4fd51ea21ec903e1ca7ea11d48f2d8592ea7d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.107ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (x)\,dx=f(0)}"></span> </p><p>holds.<sup id="cite_ref-FOOTNOTEHewittStromberg1963§19.61_20-0" class="reference"><a href="#cite_note-FOOTNOTEHewittStromberg1963§19.61-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> As a result, the latter notation is a convenient <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a>, and not a standard (<a href="/wiki/Riemann_integral" title="Riemann integral">Riemann</a> or <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue</a>) integral. </p><p>As a <a href="/wiki/Probability_measure" title="Probability measure">probability measure</a> on <span class="texhtml"><b>R</b></span>, the delta measure is characterized by its <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a>, which is the <a href="/wiki/Unit_step_function" class="mw-redirect" title="Unit step function">unit step function</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x)={\begin{cases}1&{\text{if }}x\geq 0\\0&{\text{if }}x<0.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>x</mi> <mo><</mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x)={\begin{cases}1&{\text{if }}x\geq 0\\0&{\text{if }}x<0.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0018ddb859cf54620a6169d5e79c18a45915951e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.457ex; height:6.176ex;" alt="{\displaystyle H(x)={\begin{cases}1&{\text{if }}x\geq 0\\0&{\text{if }}x<0.\end{cases}}}"></span> </p><p>This means that <span class="texhtml"><i>H</i>(<i>x</i>)</span> is the integral of the cumulative <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> <span class="texhtml"><b>1</b><sub>(−∞, <i>x</i>]</sub></span> with respect to the measure <span class="texhtml mvar" style="font-style:italic;">δ</span>; to wit, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(x)=\int _{\mathbf {R} }\mathbf {1} _{(-\infty ,x]}(t)\,\delta (dt)=\delta \!\left((-\infty ,x]\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(x)=\int _{\mathbf {R} }\mathbf {1} _{(-\infty ,x]}(t)\,\delta (dt)=\delta \!\left((-\infty ,x]\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a67b29a323434685200c36791fa963803be0c31" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.602ex; height:5.676ex;" alt="{\displaystyle H(x)=\int _{\mathbf {R} }\mathbf {1} _{(-\infty ,x]}(t)\,\delta (dt)=\delta \!\left((-\infty ,x]\right),}"></span> </p><p>the latter being the measure of this interval. Thus in particular the integration of the delta function against a continuous function can be properly understood as a <a href="/wiki/Riemann%E2%80%93Stieltjes_integral" title="Riemann–Stieltjes integral">Riemann–Stieltjes integral</a>:<sup id="cite_ref-FOOTNOTEHewittStromberg1963§9.19_22-0" class="reference"><a href="#cite_note-FOOTNOTEHewittStromberg1963§9.19-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=\int _{-\infty }^{\infty }f(x)\,dH(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=\int _{-\infty }^{\infty }f(x)\,dH(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61af3e728d5a694eaae1b010f1c718bf1b49f012" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.844ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (dx)=\int _{-\infty }^{\infty }f(x)\,dH(x).}"></span> </p><p>All higher <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> of <span class="texhtml mvar" style="font-style:italic;">δ</span> are zero. In particular, <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> and <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a> are both equal to one. </p> <div class="mw-heading mw-heading3"><h3 id="As_a_distribution">As a distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=5" title="Edit section: As a distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the theory of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>, a generalized function is considered not a function in itself but only through how it affects other functions when "integrated" against them.<sup id="cite_ref-FOOTNOTEHazewinkel2011[httpsbooksgooglecombooksid_YPtCAAAQBAJpgPA41_41]_23-0" class="reference"><a href="#cite_note-FOOTNOTEHazewinkel2011[httpsbooksgooglecombooksid_YPtCAAAQBAJpgPA41_41]-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In keeping with this philosophy, to define the delta function properly, it is enough to say what the "integral" of the delta function is against a sufficiently "good" <b>test function</b> <span class="texhtml mvar" style="font-style:italic;">φ</span>. Test functions are also known as <a href="/wiki/Bump_function" title="Bump function">bump functions</a>. If the delta function is already understood as a measure, then the Lebesgue integral of a test function against that measure supplies the necessary integral. </p><p>A typical space of test functions consists of all <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth functions</a> on <span class="texhtml"><b>R</b></span> with <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a> that have as many derivatives as required. As a distribution, the Dirac delta is a <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functional</a> on the space of test functions and is defined by<sup id="cite_ref-FOOTNOTEStrichartz1994§2.2_24-0" class="reference"><a href="#cite_note-FOOTNOTEStrichartz1994§2.2-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta [\varphi ]=\varphi (0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta [\varphi ]=\varphi (0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df9006764a21dbc1593891d76b94e4a6c13cdd06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.453ex; height:2.843ex;" alt="{\displaystyle \delta [\varphi ]=\varphi (0)}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>for every test function <span class="texhtml mvar" style="font-style:italic;">φ</span>. </p><p>For <span class="texhtml mvar" style="font-style:italic;">δ</span> to be properly a distribution, it must be continuous in a suitable topology on the space of test functions. In general, for a linear functional <span class="texhtml mvar" style="font-style:italic;">S</span> on the space of test functions to define a distribution, it is necessary and sufficient that, for every positive integer <span class="texhtml mvar" style="font-style:italic;">N</span> there is an integer <span class="texhtml"><i>M</i><sub><i>N</i></sub></span> and a constant <span class="texhtml mvar" style="font-style:italic;"><i>C</i><sub><i>N</i></sub></span> such that for every test function <span class="texhtml mvar" style="font-style:italic;">φ</span>, one has the inequality<sup id="cite_ref-FOOTNOTEHörmander1983Theorem_2.1.5_25-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983Theorem_2.1.5-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|S[\varphi ]\right|\leq C_{N}\sum _{k=0}^{M_{N}}\sup _{x\in [-N,N]}\left|\varphi ^{(k)}(x)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>S</mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> </mrow> <mo>|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mrow> </munderover> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <mi>N</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">]</mo> </mrow> </munder> <mrow> <mo>|</mo> <mrow> <msup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|S[\varphi ]\right|\leq C_{N}\sum _{k=0}^{M_{N}}\sup _{x\in [-N,N]}\left|\varphi ^{(k)}(x)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8921d57621545fc5640742ebe3f0a611bfd5998" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.501ex; height:7.676ex;" alt="{\displaystyle \left|S[\varphi ]\right|\leq C_{N}\sum _{k=0}^{M_{N}}\sup _{x\in [-N,N]}\left|\varphi ^{(k)}(x)\right|}"></span> </p><p>where <span class="texhtml">sup</span> represents the <a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">supremum</a>. With the <span class="texhtml mvar" style="font-style:italic;">δ</span> distribution, one has such an inequality (with <span class="texhtml"><i>C</i><sub><i>N</i></sub> = 1)</span> with <span class="texhtml"><i>M</i><sub><i>N</i></sub> = 0</span> for all <span class="texhtml mvar" style="font-style:italic;">N</span>. Thus <span class="texhtml mvar" style="font-style:italic;">δ</span> is a distribution of order zero. It is, furthermore, a distribution with compact support (the <a href="/wiki/Support_(mathematics)" title="Support (mathematics)">support</a> being <span class="texhtml">{0}</span>). </p><p>The delta distribution can also be defined in several equivalent ways. For instance, it is the <a href="/wiki/Distributional_derivative" class="mw-redirect" title="Distributional derivative">distributional derivative</a> of the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside step function</a>. This means that for every test function <span class="texhtml mvar" style="font-style:italic;">φ</span>, one has </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta [\varphi ]=-\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta [\varphi ]=-\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d867f4262298fa1f65e8b5ddc95df0f4d509f4a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.503ex; height:6.009ex;" alt="{\displaystyle \delta [\varphi ]=-\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx.}"></span> </p><p>Intuitively, if <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a> were permitted, then the latter integral should simplify to </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\varphi (x)\,H'(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,\delta (x)\,dx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>H</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\varphi (x)\,H'(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,\delta (x)\,dx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/632d4f66470a99e5399f193ab495214fe43c7dc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.485ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\varphi (x)\,H'(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,\delta (x)\,dx,}"></span> </p><p>and indeed, a form of integration by parts is permitted for the Stieltjes integral, and in that case, one does have </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,dH(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,dH(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4819960dd4de8df289c0599b08ce3aef662343dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.939ex; height:6.009ex;" alt="{\displaystyle -\int _{-\infty }^{\infty }\varphi '(x)\,H(x)\,dx=\int _{-\infty }^{\infty }\varphi (x)\,dH(x).}"></span> </p><p>In the context of measure theory, the Dirac measure gives rise to distribution by integration. Conversely, equation (<b><a href="#math_1">1</a></b>) defines a <a href="/wiki/Daniell_integral" title="Daniell integral">Daniell integral</a> on the space of all compactly supported continuous functions <span class="texhtml mvar" style="font-style:italic;">φ</span> which, by the <a href="/wiki/Riesz%E2%80%93Markov%E2%80%93Kakutani_representation_theorem" title="Riesz–Markov–Kakutani representation theorem">Riesz representation theorem</a>, can be represented as the Lebesgue integral of <span class="texhtml mvar" style="font-style:italic;">φ</span> with respect to some <a href="/wiki/Radon_measure" title="Radon measure">Radon measure</a>. </p><p>Generally, when the term <i>Dirac delta function</i> is used, it is in the sense of distributions rather than measures, the <a href="/wiki/Dirac_measure" title="Dirac measure">Dirac measure</a> being among several terms for the corresponding notion in measure theory. Some sources may also use the term <i>Dirac delta distribution</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Generalizations">Generalizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=6" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function can be defined in <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> as the measure such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbf {R} ^{n}}f(\mathbf {x} )\,\delta (d\mathbf {x} )=f(\mathbf {0} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbf {R} ^{n}}f(\mathbf {x} )\,\delta (d\mathbf {x} )=f(\mathbf {0} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55587e15eb61b3e98fcbf434ec818cdd0b1d3bc1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.187ex; height:5.676ex;" alt="{\displaystyle \int _{\mathbf {R} ^{n}}f(\mathbf {x} )\,\delta (d\mathbf {x} )=f(\mathbf {0} )}"></span> </p><p>for every compactly supported continuous function <span class="texhtml mvar" style="font-style:italic;">f</span>. As a measure, the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional delta function is the <a href="/wiki/Product_measure" title="Product measure">product measure</a> of the 1-dimensional delta functions in each variable separately. Thus, formally, with <span class="texhtml"><b>x</b> = (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>)</span>, one has<sup id="cite_ref-FOOTNOTEBracewell1986Chapter_5_26-0" class="reference"><a href="#cite_note-FOOTNOTEBracewell1986Chapter_5-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (\mathbf {x} )=\delta (x_{1})\,\delta (x_{2})\cdots \delta (x_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (\mathbf {x} )=\delta (x_{1})\,\delta (x_{2})\cdots \delta (x_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a7f32615b53f845fa7acf65d68b37bbdf5dc8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.789ex; height:2.843ex;" alt="{\displaystyle \delta (\mathbf {x} )=\delta (x_{1})\,\delta (x_{2})\cdots \delta (x_{n}).}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>The delta function can also be defined in the sense of distributions exactly as above in the one-dimensional case.<sup id="cite_ref-FOOTNOTEHörmander1983§3.1_27-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983§3.1-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> However, despite widespread use in engineering contexts, (<b><a href="#math_2">2</a></b>) should be manipulated with care, since the product of distributions can only be defined under quite narrow circumstances.<sup id="cite_ref-FOOTNOTEStrichartz1994§2.3_28-0" class="reference"><a href="#cite_note-FOOTNOTEStrichartz1994§2.3-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEHörmander1983§8.2_29-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983§8.2-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>The notion of a <b><a href="/wiki/Dirac_measure" title="Dirac measure">Dirac measure</a></b> makes sense on any set.<sup id="cite_ref-FOOTNOTERudin1966§1.20_30-0" class="reference"><a href="#cite_note-FOOTNOTERudin1966§1.20-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Thus if <span class="texhtml mvar" style="font-style:italic;">X</span> is a set, <span class="texhtml"><i>x</i><sub>0</sub> ∈ <i>X</i></span> is a marked point, and <span class="texhtml">Σ</span> is any <a href="/wiki/Sigma_algebra" class="mw-redirect" title="Sigma algebra">sigma algebra</a> of subsets of <span class="texhtml mvar" style="font-style:italic;">X</span>, then the measure defined on sets <span class="texhtml"><i>A</i> ∈ Σ</span> by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{x_{0}}(A)={\begin{cases}1&{\text{if }}x_{0}\in A\\0&{\text{if }}x_{0}\notin A\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>∉<!-- ∉ --></mo> <mi>A</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{x_{0}}(A)={\begin{cases}1&{\text{if }}x_{0}\in A\\0&{\text{if }}x_{0}\notin A\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc893ea7c4c910b2794fce66bae49200ddca1047" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.574ex; height:6.176ex;" alt="{\displaystyle \delta _{x_{0}}(A)={\begin{cases}1&{\text{if }}x_{0}\in A\\0&{\text{if }}x_{0}\notin A\end{cases}}}"></span> </p><p>is the delta measure or unit mass concentrated at <span class="texhtml"><i>x</i><sub>0</sub></span>. </p><p>Another common generalization of the delta function is to a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a> where most of its properties as a distribution can also be exploited because of the <a href="/wiki/Differentiable_structure" class="mw-redirect" title="Differentiable structure">differentiable structure</a>. The delta function on a manifold <span class="texhtml mvar" style="font-style:italic;">M</span> centered at the point <span class="texhtml"><i>x</i><sub>0</sub> ∈ <i>M</i></span> is defined as the following distribution: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{x_{0}}[\varphi ]=\varphi (x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{x_{0}}[\varphi ]=\varphi (x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9219b75c2a59f85c4a495187a42b9f997c7547a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.662ex; height:3.009ex;" alt="{\displaystyle \delta _{x_{0}}[\varphi ]=\varphi (x_{0})}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span>)</b></td></tr></tbody></table> <p>for all compactly supported smooth real-valued functions <span class="texhtml mvar" style="font-style:italic;">φ</span> on <span class="texhtml mvar" style="font-style:italic;">M</span>.<sup id="cite_ref-FOOTNOTEDieudonné1972§17.3.3_31-0" class="reference"><a href="#cite_note-FOOTNOTEDieudonné1972§17.3.3-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> A common special case of this construction is a case in which <span class="texhtml mvar" style="font-style:italic;">M</span> is an <a href="/wiki/Open_set" title="Open set">open set</a> in the Euclidean space <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>. </p><p>On a <a href="/wiki/Locally_compact_Hausdorff_space" class="mw-redirect" title="Locally compact Hausdorff space">locally compact Hausdorff space</a> <span class="texhtml mvar" style="font-style:italic;">X</span>, the Dirac delta measure concentrated at a point <span class="texhtml mvar" style="font-style:italic;">x</span> is the <a href="/wiki/Radon_measure" title="Radon measure">Radon measure</a> associated with the Daniell integral (<b><a href="#math_3">3</a></b>) on compactly supported continuous functions <span class="texhtml mvar" style="font-style:italic;">φ</span>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> At this level of generality, calculus as such is no longer possible, however a variety of techniques from abstract analysis are available. For instance, the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\mapsto \delta _{x_{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\mapsto \delta _{x_{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/322a24e937ccf433716b71929b01812a46e26a87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.034ex; height:3.009ex;" alt="{\displaystyle x_{0}\mapsto \delta _{x_{0}}}"></span> is a continuous embedding of <span class="texhtml mvar" style="font-style:italic;">X</span> into the space of finite Radon measures on <span class="texhtml mvar" style="font-style:italic;">X</span>, equipped with its <a href="/wiki/Vague_topology" title="Vague topology">vague topology</a>. Moreover, the <a href="/wiki/Convex_hull" title="Convex hull">convex hull</a> of the image of <span class="texhtml mvar" style="font-style:italic;">X</span> under this embedding is <a href="/wiki/Dense_set" title="Dense set">dense</a> in the space of probability measures on <span class="texhtml mvar" style="font-style:italic;">X</span>.<sup id="cite_ref-FOOTNOTEFederer1969§2.5.19_33-0" class="reference"><a href="#cite_note-FOOTNOTEFederer1969§2.5.19-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=7" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Scaling_and_symmetry">Scaling and symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=8" title="Edit section: Scaling and symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function satisfies the following scaling property for a non-zero scalar <span class="texhtml mvar" style="font-style:italic;">α</span>:<sup id="cite_ref-FOOTNOTEStrichartz1994Problem_2.6.2_34-0" class="reference"><a href="#cite_note-FOOTNOTEStrichartz1994Problem_2.6.2-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\delta (\alpha x)\,dx=\int _{-\infty }^{\infty }\delta (u)\,{\frac {du}{|\alpha |}}={\frac {1}{|\alpha |}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>u</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\delta (\alpha x)\,dx=\int _{-\infty }^{\infty }\delta (u)\,{\frac {du}{|\alpha |}}={\frac {1}{|\alpha |}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8a19ea564a084622f5d05a399acd6904f70fd9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.282ex; height:6.176ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\delta (\alpha x)\,dx=\int _{-\infty }^{\infty }\delta (u)\,{\frac {du}{|\alpha |}}={\frac {1}{|\alpha |}}}"></span> </p><p>and so </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (\alpha x)={\frac {\delta (x)}{|\alpha |}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (\alpha x)={\frac {\delta (x)}{|\alpha |}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42c78ef0c2838ded4ffb5b247102b512fd7c8781" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.444ex; height:6.509ex;" alt="{\displaystyle \delta (\alpha x)={\frac {\delta (x)}{|\alpha |}}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span>)</b></td></tr></tbody></table> <p>Scaling property proof: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{a}}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{a}}g(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>d</mi> <mi>x</mi> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mtext> </mtext> <mi>g</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{a}}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{a}}g(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9bf5cf309d766be8c809990237a1c206c230a3a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.447ex; width:52.052ex; height:8.843ex;" alt="{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{a}}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{a}}g(0).}"></span> where a change of variable <span class="texhtml"><i>x′</i> = <i>ax</i></span> is used. If <span class="texhtml mvar" style="font-style:italic;">a</span> is negative, i.e., <span class="texhtml"><i>a</i> = −|<i>a</i>|</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{-\left\vert a\right\vert }}\int \limits _{\infty }^{-\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}g(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>d</mi> <mi>x</mi> <mtext> </mtext> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>−<!-- − --></mo> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mtext> </mtext> <mi>g</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> </mfrac> </mrow> <munderover> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>d</mi> <msup> <mi>x</mi> <mo>′</mo> </msup> <mtext> </mtext> <mi>g</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> </mfrac> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{-\left\vert a\right\vert }}\int \limits _{\infty }^{-\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}g(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c4cd3eeba378f5ddca010a88235df9b78eed96a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; margin-left: -0.447ex; width:84.42ex; height:9.009ex;" alt="{\displaystyle \int \limits _{-\infty }^{\infty }dx\ g(x)\delta (ax)={\frac {1}{-\left\vert a\right\vert }}\int \limits _{\infty }^{-\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}\int \limits _{-\infty }^{\infty }dx'\ g\left({\frac {x'}{a}}\right)\delta (x')={\frac {1}{\left\vert a\right\vert }}g(0).}"></span> Thus, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (ax)={\frac {1}{\left\vert a\right\vert }}\delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (ax)={\frac {1}{\left\vert a\right\vert }}\delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e395eba4c27b0eff920f28a102bc3913aa246fe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.063ex; height:6.009ex;" alt="{\displaystyle \delta (ax)={\frac {1}{\left\vert a\right\vert }}\delta (x)}"></span>.</span> </p><p>In particular, the delta function is an <a href="/wiki/Even_function" class="mw-redirect" title="Even function">even</a> distribution (symmetry), in the sense that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (-x)=\delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (-x)=\delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e752769739457a7e50d324333e4a00910897939" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.282ex; height:2.843ex;" alt="{\displaystyle \delta (-x)=\delta (x)}"></span> </p><p>which is <a href="/wiki/Homogeneous_function" title="Homogeneous function">homogeneous</a> of degree <span class="texhtml">−1</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Algebraic_properties">Algebraic properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=9" title="Edit section: Algebraic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributional product</a> of <span class="texhtml mvar" style="font-style:italic;">δ</span> with <span class="texhtml mvar" style="font-style:italic;">x</span> is equal to zero: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,\delta (x)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,\delta (x)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c287bd4ab765b64000d550f2964b1c604995e665" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.812ex; height:2.843ex;" alt="{\displaystyle x\,\delta (x)=0.}"></span> </p><p>More generally, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x-a)^{n}\delta (x-a)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x-a)^{n}\delta (x-a)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64ffa5f7a6558522cbab7558d901ac24f4d74e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.946ex; height:2.843ex;" alt="{\displaystyle (x-a)^{n}\delta (x-a)=0}"></span> for all positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p><p>Conversely, if <span class="texhtml"><i>xf</i>(<i>x</i>) = <i>xg</i>(<i>x</i>)</span>, where <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are distributions, then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=g(x)+c\delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=g(x)+c\delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67fc4393093fe1c79bb617199052e16b8d52a143" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.806ex; height:2.843ex;" alt="{\displaystyle f(x)=g(x)+c\delta (x)}"></span> </p><p>for some constant <span class="texhtml mvar" style="font-style:italic;">c</span>.<sup id="cite_ref-FOOTNOTEVladimirov1971Chapter_2,_Example_3(d)_35-0" class="reference"><a href="#cite_note-FOOTNOTEVladimirov1971Chapter_2,_Example_3(d)-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Translation">Translation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=10" title="Edit section: Translation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The integral of any function multiplied by the time-delayed Dirac delta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{T}(t){=}\delta (t{-}T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{T}(t){=}\delta (t{-}T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05146f5397723a6f0b4ecf6d19b9e84f54bff989" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.021ex; height:2.843ex;" alt="{\displaystyle \delta _{T}(t){=}\delta (t{-}T)}"></span> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(t)\,\delta (t-T)\,dt=f(T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(t)\,\delta (t-T)\,dt=f(T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84e51894f16a15b62a4098ddee9ffc3f09499433" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.234ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(t)\,\delta (t-T)\,dt=f(T).}"></span> </p><p>This is sometimes referred to as the <i>sifting property</i><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> or the <i>sampling property</i>.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> The delta function is said to "sift out" the value of <i>f(t)</i> at <i>t</i> = <i>T</i>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>It follows that the effect of <a href="/wiki/Convolution" title="Convolution">convolving</a> a function <span class="texhtml"><i>f</i>(<i>t</i>)</span> with the time-delayed Dirac delta is to time-delay <span class="texhtml"><i>f</i>(<i>t</i>)</span> by the same amount:<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(f*\delta _{T})(t)\ &{\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }f(\tau )\,\delta (t-T-\tau )\,d\tau \\&=\int _{-\infty }^{\infty }f(\tau )\,\delta (\tau -(t-T))\,d\tau \qquad {\text{since}}~\delta (-x)=\delta (x)~~{\text{by (4)}}\\&=f(t-T).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mo>−<!-- − --></mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>τ<!-- τ --></mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>τ<!-- τ --></mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>τ<!-- τ --></mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>since</mtext> </mrow> <mtext> </mtext> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>by (4)</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(f*\delta _{T})(t)\ &{\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }f(\tau )\,\delta (t-T-\tau )\,d\tau \\&=\int _{-\infty }^{\infty }f(\tau )\,\delta (\tau -(t-T))\,d\tau \qquad {\text{since}}~\delta (-x)=\delta (x)~~{\text{by (4)}}\\&=f(t-T).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b307f70df02c313ac7b4b07c85a49976ab92b93f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.816ex; margin-bottom: -0.188ex; width:71.787ex; height:15.176ex;" alt="{\displaystyle {\begin{aligned}(f*\delta _{T})(t)\ &{\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }f(\tau )\,\delta (t-T-\tau )\,d\tau \\&=\int _{-\infty }^{\infty }f(\tau )\,\delta (\tau -(t-T))\,d\tau \qquad {\text{since}}~\delta (-x)=\delta (x)~~{\text{by (4)}}\\&=f(t-T).\end{aligned}}}"></span> </p><p>The sifting property holds under the precise condition that <span class="texhtml mvar" style="font-style:italic;">f</span> be a <a href="/wiki/Distribution_(mathematics)#Tempered_distributions_and_Fourier_transform" title="Distribution (mathematics)">tempered distribution</a> (see the discussion of the Fourier transform <a href="#Fourier_transform">below</a>). As a special case, for instance, we have the identity (understood in the distribution sense) </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\delta (\xi -x)\delta (x-\eta )\,dx=\delta (\eta -\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>η<!-- η --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>η<!-- η --></mi> <mo>−<!-- − --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\delta (\xi -x)\delta (x-\eta )\,dx=\delta (\eta -\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8005bef6fb0e68024199c59f725f4ec9aae542" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.665ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\delta (\xi -x)\delta (x-\eta )\,dx=\delta (\eta -\xi ).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Composition_with_a_function">Composition with a function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=11" title="Edit section: Composition with a function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>More generally, the delta distribution may be <a href="/wiki/Distribution_(mathematics)#Composition_with_a_smooth_function" title="Distribution (mathematics)">composed</a> with a smooth function <span class="texhtml"><i>g</i>(<i>x</i>)</span> in such a way that the familiar change of variables formula holds (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=g(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=g(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54c52880c0cf28150ff774cb45cddcd2a027674f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.683ex; height:2.843ex;" alt="{\displaystyle u=g(x)}"></span>), that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} }\delta {\bigl (}g(x){\bigr )}f{\bigl (}g(x){\bigr )}\left|g'(x)\right|dx=\int _{g(\mathbb {R} )}\delta (u)\,f(u)\,du}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msub> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} }\delta {\bigl (}g(x){\bigr )}f{\bigl (}g(x){\bigr )}\left|g'(x)\right|dx=\int _{g(\mathbb {R} )}\delta (u)\,f(u)\,du}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74e6840f652b0f33f41c7a02d53bb7064c87c8d7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.941ex; height:6.009ex;" alt="{\displaystyle \int _{\mathbb {R} }\delta {\bigl (}g(x){\bigr )}f{\bigl (}g(x){\bigr )}\left|g'(x)\right|dx=\int _{g(\mathbb {R} )}\delta (u)\,f(u)\,du}"></span> </p><p>provided that <span class="texhtml mvar" style="font-style:italic;">g</span> is a <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a> function with <span class="texhtml"><i>g′</i></span> nowhere zero.<sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968Vol._1,_§II.2.5_40-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968Vol._1,_§II.2.5-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> That is, there is a unique way to assign meaning to the distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \circ g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>∘<!-- ∘ --></mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \circ g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829e8b07791706c3efa4cd9a1cfaf72218b374a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.359ex; height:2.676ex;" alt="{\displaystyle \delta \circ g}"></span> so that this identity holds for all compactly supported test functions <span class="texhtml mvar" style="font-style:italic;">f</span>. Therefore, the domain must be broken up to exclude the <span class="texhtml"><i>g′</i> = 0</span> point. This distribution satisfies <span class="texhtml"><i>δ</i>(<i>g</i>(<i>x</i>)) = 0</span> if <span class="texhtml mvar" style="font-style:italic;">g</span> is nowhere zero, and otherwise if <span class="texhtml mvar" style="font-style:italic;">g</span> has a real <a href="/wiki/Root_of_a_function" class="mw-redirect" title="Root of a function">root</a> at <span class="texhtml"><i>x</i><sub>0</sub></span>, then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (g(x))={\frac {\delta (x-x_{0})}{|g'(x_{0})|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (g(x))={\frac {\delta (x-x_{0})}{|g'(x_{0})|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/399637e6ed9ab64795c248fad3113272473072f1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.106ex; height:6.509ex;" alt="{\displaystyle \delta (g(x))={\frac {\delta (x-x_{0})}{|g'(x_{0})|}}.}"></span> </p><p>It is natural therefore to <em>define</em> the composition <span class="texhtml"><i>δ</i>(<i>g</i>(<i>x</i>))</span> for continuously differentiable functions <span class="texhtml mvar" style="font-style:italic;">g</span> by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (g(x))=\sum _{i}{\frac {\delta (x-x_{i})}{|g'(x_{i})|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (g(x))=\sum _{i}{\frac {\delta (x-x_{i})}{|g'(x_{i})|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4709614d6a0e04b2750e81ada233882b67b55c96" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.947ex; height:6.843ex;" alt="{\displaystyle \delta (g(x))=\sum _{i}{\frac {\delta (x-x_{i})}{|g'(x_{i})|}}}"></span> </p><p>where the sum extends over all roots of <span class="texhtml mvar" style="font-style:italic;"><i>g</i>(<i>x</i>)</span>, which are assumed to be <a href="/wiki/Simple_root" class="mw-redirect" title="Simple root">simple</a>. Thus, for example </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \left(x^{2}-\alpha ^{2}\right)={\frac {1}{2|\alpha |}}{\Big [}\delta \left(x+\alpha \right)+\delta \left(x-\alpha \right){\Big ]}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">[</mo> </mrow> </mrow> <mi>δ<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>α<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>δ<!-- δ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>α<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \left(x^{2}-\alpha ^{2}\right)={\frac {1}{2|\alpha |}}{\Big [}\delta \left(x+\alpha \right)+\delta \left(x-\alpha \right){\Big ]}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6570a1d3ae92889f1cb92ad03121ad1ef10acd1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.085ex; height:6.009ex;" alt="{\displaystyle \delta \left(x^{2}-\alpha ^{2}\right)={\frac {1}{2|\alpha |}}{\Big [}\delta \left(x+\alpha \right)+\delta \left(x-\alpha \right){\Big ]}.}"></span> </p><p>In the integral form, the generalized scaling property may be written as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (g(x))\,dx=\sum _{i}{\frac {f(x_{i})}{|g'(x_{i})|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (g(x))\,dx=\sum _{i}{\frac {f(x_{i})}{|g'(x_{i})|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77cade6c64311d29dcb37fada19d5dd2ca101ee8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.043ex; height:6.843ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(x)\,\delta (g(x))\,dx=\sum _{i}{\frac {f(x_{i})}{|g'(x_{i})|}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Indefinite_integral">Indefinite integral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=12" title="Edit section: Indefinite integral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b044c60e01b54c7116ee355431f37ed846badc53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.749ex; height:2.176ex;" alt="{\displaystyle a\in \mathbb {R} }"></span> and a "well-behaved" arbitrary real-valued function <span class="texhtml"><i>y</i>(<i>x</i>)</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\int }y(x)\delta (x-a)dx=y(a)H(x-a)+c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo>∫<!-- ∫ --></mo> </mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle {\int }y(x)\delta (x-a)dx=y(a)H(x-a)+c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/241892b8bae88ecaf266ca884269b825ff2edee1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.351ex; height:5.676ex;" alt="{\displaystyle \displaystyle {\int }y(x)\delta (x-a)dx=y(a)H(x-a)+c,}"></span> where <span class="texhtml"><i>H</i>(<i>x</i>)</span> is the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside step function</a> and <span class="texhtml"><i>c</i></span> is an integration constant. </p> <div class="mw-heading mw-heading3"><h3 id="Properties_in_n_dimensions">Properties in <i>n</i> dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=13" title="Edit section: Properties in n dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta distribution in an <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional space satisfies the following scaling property instead, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (\alpha {\boldsymbol {x}})=|\alpha |^{-n}\delta ({\boldsymbol {x}})~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (\alpha {\boldsymbol {x}})=|\alpha |^{-n}\delta ({\boldsymbol {x}})~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee82d520c682d697e00e4a9434169d1124d8eef7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.871ex; height:3.176ex;" alt="{\displaystyle \delta (\alpha {\boldsymbol {x}})=|\alpha |^{-n}\delta ({\boldsymbol {x}})~,}"></span> so that <span class="texhtml mvar" style="font-style:italic;">δ</span> is a <a href="/wiki/Homogeneous_function" title="Homogeneous function">homogeneous</a> distribution of degree <span class="texhtml">−<i>n</i></span>. </p><p>Under any <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a> or <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotation</a> <span class="texhtml mvar" style="font-style:italic;">ρ</span>, the delta function is invariant, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (\rho {\boldsymbol {x}})=\delta ({\boldsymbol {x}})~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (\rho {\boldsymbol {x}})=\delta ({\boldsymbol {x}})~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/372d91c7d8c67e39b7c5095bedcb7f04ab721e43" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.307ex; height:2.843ex;" alt="{\displaystyle \delta (\rho {\boldsymbol {x}})=\delta ({\boldsymbol {x}})~.}"></span> </p><p>As in the one-variable case, it is possible to define the composition of <span class="texhtml mvar" style="font-style:italic;">δ</span> with a <a href="/wiki/Lipschitz_function" class="mw-redirect" title="Lipschitz function">bi-Lipschitz function</a><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> <span class="texhtml"><i>g</i>: <b>R</b><sup><i>n</i></sup> → <b>R</b><sup><i>n</i></sup></span> uniquely so that the following holds <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} ^{n}}\delta (g({\boldsymbol {x}}))\,f(g({\boldsymbol {x}}))\left|\det g'({\boldsymbol {x}})\right|d{\boldsymbol {x}}=\int _{g(\mathbb {R} ^{n})}\delta ({\boldsymbol {u}})f({\boldsymbol {u}})\,d{\boldsymbol {u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow> <mo>|</mo> <mrow> <mo movablelimits="true" form="prefix">det</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </msub> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} ^{n}}\delta (g({\boldsymbol {x}}))\,f(g({\boldsymbol {x}}))\left|\det g'({\boldsymbol {x}})\right|d{\boldsymbol {x}}=\int _{g(\mathbb {R} ^{n})}\delta ({\boldsymbol {u}})f({\boldsymbol {u}})\,d{\boldsymbol {u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c717f0462bb512f8a0384bb13dc1a552cbdd3cf1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:54.414ex; height:6.009ex;" alt="{\displaystyle \int _{\mathbb {R} ^{n}}\delta (g({\boldsymbol {x}}))\,f(g({\boldsymbol {x}}))\left|\det g'({\boldsymbol {x}})\right|d{\boldsymbol {x}}=\int _{g(\mathbb {R} ^{n})}\delta ({\boldsymbol {u}})f({\boldsymbol {u}})\,d{\boldsymbol {u}}}"></span> for all compactly supported functions <span class="texhtml mvar" style="font-style:italic;">f</span>. </p><p>Using the <a href="/wiki/Coarea_formula" title="Coarea formula">coarea formula</a> from <a href="/wiki/Geometric_measure_theory" title="Geometric measure theory">geometric measure theory</a>, one can also define the composition of the delta function with a <a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">submersion</a> from one Euclidean space to another one of different dimension; the result is a type of <a href="/wiki/Current_(mathematics)" title="Current (mathematics)">current</a>. In the special case of a continuously differentiable function <span class="texhtml"><i>g</i> : <b>R</b><sup><i>n</i></sup> → <b>R</b></span> such that the <a href="/wiki/Gradient" title="Gradient">gradient</a> of <span class="texhtml mvar" style="font-style:italic;">g</span> is nowhere zero, the following identity holds<sup id="cite_ref-FOOTNOTEHörmander1983§6.1_42-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983§6.1-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{\mathbb {R} ^{n}}f({\boldsymbol {x}})\,\delta (g({\boldsymbol {x}}))\,d{\boldsymbol {x}}=\int _{g^{-1}(0)}{\frac {f({\boldsymbol {x}})}{|{\boldsymbol {\nabla }}g|}}\,d\sigma ({\boldsymbol {x}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">∇<!-- ∇ --></mi> </mrow> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{\mathbb {R} ^{n}}f({\boldsymbol {x}})\,\delta (g({\boldsymbol {x}}))\,d{\boldsymbol {x}}=\int _{g^{-1}(0)}{\frac {f({\boldsymbol {x}})}{|{\boldsymbol {\nabla }}g|}}\,d\sigma ({\boldsymbol {x}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ffc41e0f3fc237ea448743b157dd21a2e78b312" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.037ex; height:6.509ex;" alt="{\displaystyle \int _{\mathbb {R} ^{n}}f({\boldsymbol {x}})\,\delta (g({\boldsymbol {x}}))\,d{\boldsymbol {x}}=\int _{g^{-1}(0)}{\frac {f({\boldsymbol {x}})}{|{\boldsymbol {\nabla }}g|}}\,d\sigma ({\boldsymbol {x}})}"></span> where the integral on the right is over <span class="texhtml"><i>g</i><sup>−1</sup>(0)</span>, the <span class="texhtml">(<i>n</i> − 1)</span>-dimensional surface defined by <span class="texhtml"><i>g</i>(<b>x</b>) = 0</span> with respect to the <a href="/wiki/Minkowski_content" title="Minkowski content">Minkowski content</a> measure. This is known as a <i>simple layer</i> integral. </p><p>More generally, if <span class="texhtml mvar" style="font-style:italic;">S</span> is a smooth hypersurface of <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, then we can associate to <span class="texhtml mvar" style="font-style:italic;">S</span> the distribution that integrates any compactly supported smooth function <span class="texhtml mvar" style="font-style:italic;">g</span> over <span class="texhtml mvar" style="font-style:italic;">S</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{S}[g]=\int _{S}g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>g</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{S}[g]=\int _{S}g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d0759b7b4d698e108b006b83385cb19a2048002" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.941ex; height:5.676ex;" alt="{\displaystyle \delta _{S}[g]=\int _{S}g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}})}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">σ</span> is the hypersurface measure associated to <span class="texhtml mvar" style="font-style:italic;">S</span>. This generalization is associated with the <a href="/wiki/Potential_theory" title="Potential theory">potential theory</a> of <a href="/wiki/Simple_layer_potential" class="mw-redirect" title="Simple layer potential">simple layer potentials</a> on <span class="texhtml mvar" style="font-style:italic;">S</span>. If <span class="texhtml mvar" style="font-style:italic;">D</span> is a <a href="/wiki/Domain_(mathematical_analysis)" title="Domain (mathematical analysis)">domain</a> in <span class="texhtml"><b>R</b><sup><i>n</i></sup></span> with smooth boundary <span class="texhtml mvar" style="font-style:italic;">S</span>, then <span class="texhtml"><i>δ</i><sub><i>S</i></sub></span> is equal to the <a href="/wiki/Normal_derivative" class="mw-redirect" title="Normal derivative">normal derivative</a> of the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> of <span class="texhtml mvar" style="font-style:italic;">D</span> in the distribution sense, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\int _{\mathbb {R} ^{n}}g({\boldsymbol {x}})\,{\frac {\partial 1_{D}({\boldsymbol {x}})}{\partial n}}\,d{\boldsymbol {x}}=\int _{S}\,g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>n</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">x</mi> </mrow> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>σ<!-- σ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">s</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\int _{\mathbb {R} ^{n}}g({\boldsymbol {x}})\,{\frac {\partial 1_{D}({\boldsymbol {x}})}{\partial n}}\,d{\boldsymbol {x}}=\int _{S}\,g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83c918c2f93baf4d616cc9672aa163e1f0fda1cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.729ex; height:6.176ex;" alt="{\displaystyle -\int _{\mathbb {R} ^{n}}g({\boldsymbol {x}})\,{\frac {\partial 1_{D}({\boldsymbol {x}})}{\partial n}}\,d{\boldsymbol {x}}=\int _{S}\,g({\boldsymbol {s}})\,d\sigma ({\boldsymbol {s}}),}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">n</span> is the outward normal.<sup id="cite_ref-FOOTNOTELange2012pp.29–30_43-0" class="reference"><a href="#cite_note-FOOTNOTELange2012pp.29–30-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968212_44-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968212-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> For a proof, see e.g. the article on the <a href="/wiki/Laplacian_of_the_indicator#Dirac_surface_delta_function" title="Laplacian of the indicator">surface delta function</a>. </p><p>In three dimensions, the delta function is represented in spherical coordinates by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ({\boldsymbol {r}}-{\boldsymbol {r}}_{0})={\begin{cases}\displaystyle {\frac {1}{r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})\delta (\phi -\phi _{0})&x_{0},y_{0},z_{0}\neq 0\\\displaystyle {\frac {1}{2\pi r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})&x_{0}=y_{0}=0,\ z_{0}\neq 0\\\displaystyle {\frac {1}{4\pi r^{2}}}\delta (r-r_{0})&x_{0}=y_{0}=z_{0}=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>−<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>−<!-- − --></mo> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo>−<!-- − --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>−<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>−<!-- − --></mo> <msub> <mi>θ<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext> </mtext> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>−<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mtd> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ({\boldsymbol {r}}-{\boldsymbol {r}}_{0})={\begin{cases}\displaystyle {\frac {1}{r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})\delta (\phi -\phi _{0})&x_{0},y_{0},z_{0}\neq 0\\\displaystyle {\frac {1}{2\pi r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})&x_{0}=y_{0}=0,\ z_{0}\neq 0\\\displaystyle {\frac {1}{4\pi r^{2}}}\delta (r-r_{0})&x_{0}=y_{0}=z_{0}=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a6694f7e920490a87d787c81ae222e313a8e587" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:72.364ex; height:16.176ex;" alt="{\displaystyle \delta ({\boldsymbol {r}}-{\boldsymbol {r}}_{0})={\begin{cases}\displaystyle {\frac {1}{r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})\delta (\phi -\phi _{0})&x_{0},y_{0},z_{0}\neq 0\\\displaystyle {\frac {1}{2\pi r^{2}\sin \theta }}\delta (r-r_{0})\delta (\theta -\theta _{0})&x_{0}=y_{0}=0,\ z_{0}\neq 0\\\displaystyle {\frac {1}{4\pi r^{2}}}\delta (r-r_{0})&x_{0}=y_{0}=z_{0}=0\end{cases}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Fourier_transform">Fourier transform</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=14" title="Edit section: Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function is a <a href="/wiki/Distribution_(mathematics)#Tempered_distributions_and_Fourier_transform" title="Distribution (mathematics)">tempered distribution</a>, and therefore it has a well-defined <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a>. Formally, one finds<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\delta }}(\xi )=\int _{-\infty }^{\infty }e^{-2\pi ix\xi }\,\delta (x)dx=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>δ<!-- δ --></mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>x</mi> <mi>ξ<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\delta }}(\xi )=\int _{-\infty }^{\infty }e^{-2\pi ix\xi }\,\delta (x)dx=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dfbad139241ac1c73461dfcd7b4b1bf731f0838" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.696ex; height:6.009ex;" alt="{\displaystyle {\widehat {\delta }}(\xi )=\int _{-\infty }^{\infty }e^{-2\pi ix\xi }\,\delta (x)dx=1.}"></span> </p><p>Properly speaking, the Fourier transform of a distribution is defined by imposing <a href="/wiki/Self-adjoint" title="Self-adjoint">self-adjointness</a> of the Fourier transform under the duality pairing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> of tempered distributions with <a href="/wiki/Schwartz_functions" class="mw-redirect" title="Schwartz functions">Schwartz functions</a>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\delta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>δ<!-- δ --></mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\delta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe290e363518844fff77a2cae1caf27e69dea68c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.302ex; height:2.843ex;" alt="{\displaystyle {\widehat {\delta }}}"></span> is defined as the unique tempered distribution satisfying </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle {\widehat {\delta }},\varphi \rangle =\langle \delta ,{\widehat {\varphi }}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>δ<!-- δ --></mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>φ<!-- φ --></mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle {\widehat {\delta }},\varphi \rangle =\langle \delta ,{\widehat {\varphi }}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4ce5a2a69cc27a322c3b95775d6dbc6362b18d7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.256ex; height:3.343ex;" alt="{\displaystyle \langle {\widehat {\delta }},\varphi \rangle =\langle \delta ,{\widehat {\varphi }}\rangle }"></span> </p><p>for all Schwartz functions <span class="texhtml mvar" style="font-style:italic;">φ</span>. And indeed it follows from this that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\delta }}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>δ<!-- δ --></mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\delta }}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26a00e5358ae06e196278c0e8abc3420220a0315" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.21ex; height:2.843ex;" alt="{\displaystyle {\widehat {\delta }}=1.}"></span> </p><p>As a result of this identity, the <a href="/wiki/Convolution" title="Convolution">convolution</a> of the delta function with any other tempered distribution <span class="texhtml mvar" style="font-style:italic;">S</span> is simply <span class="texhtml mvar" style="font-style:italic;">S</span>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S*\delta =S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>∗<!-- ∗ --></mo> <mi>δ<!-- δ --></mi> <mo>=</mo> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S*\delta =S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6154a7cf81ad1158072fb3a7667efe234369dc28" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.987ex; height:2.343ex;" alt="{\displaystyle S*\delta =S.}"></span> </p><p>That is to say that <span class="texhtml mvar" style="font-style:italic;">δ</span> is an <a href="/wiki/Identity_element" title="Identity element">identity element</a> for the convolution on tempered distributions, and in fact, the space of compactly supported distributions under convolution is an <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a> with identity the delta function. This property is fundamental in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, as convolution with a tempered distribution is a <a href="/wiki/Linear_time-invariant_system" title="Linear time-invariant system">linear time-invariant system</a>, and applying the linear time-invariant system measures its <a href="/wiki/Impulse_response" title="Impulse response">impulse response</a>. The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for <span class="texhtml mvar" style="font-style:italic;">δ</span>, and once it is known, it characterizes the system completely. See <a href="/wiki/LTI_system_theory#Impulse_response_and_convolution" class="mw-redirect" title="LTI system theory">LTI system theory § Impulse response and convolution</a>. </p><p>The inverse Fourier transform of the tempered distribution <span class="texhtml"><i>f</i>(<i>ξ</i>) = 1</span> is the delta function. Formally, this is expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }1\cdot e^{2\pi ix\xi }\,d\xi =\delta (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mn>1</mn> <mo>⋅<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <mi>x</mi> <mi>ξ<!-- ξ --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ξ<!-- ξ --></mi> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }1\cdot e^{2\pi ix\xi }\,d\xi =\delta (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7843266b55738b0876e4a6fd663d40245c7c39b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.91ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }1\cdot e^{2\pi ix\xi }\,d\xi =\delta (x)}"></span> and more rigorously, it follows since <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle 1,{\widehat {f}}\rangle =f(0)=\langle \delta ,f\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle 1,{\widehat {f}}\rangle =f(0)=\langle \delta ,f\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec113c338091a28e4216c677858bf588021e556c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.394ex; height:3.509ex;" alt="{\displaystyle \langle 1,{\widehat {f}}\rangle =f(0)=\langle \delta ,f\rangle }"></span> for all Schwartz functions <span class="texhtml mvar" style="font-style:italic;"><i>f</i></span>. </p><p>In these terms, the delta function provides a suggestive statement of the orthogonality property of the Fourier kernel on <span class="texhtml"><b>R</b></span>. Formally, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }e^{i2\pi \xi _{1}t}\left[e^{i2\pi \xi _{2}t}\right]^{*}\,dt=\int _{-\infty }^{\infty }e^{-i2\pi (\xi _{2}-\xi _{1})t}\,dt=\delta (\xi _{2}-\xi _{1}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>t</mi> </mrow> </msup> <msup> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }e^{i2\pi \xi _{1}t}\left[e^{i2\pi \xi _{2}t}\right]^{*}\,dt=\int _{-\infty }^{\infty }e^{-i2\pi (\xi _{2}-\xi _{1})t}\,dt=\delta (\xi _{2}-\xi _{1}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8007cb6fa52a213211396ce15fa16d836540ab0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.999ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }e^{i2\pi \xi _{1}t}\left[e^{i2\pi \xi _{2}t}\right]^{*}\,dt=\int _{-\infty }^{\infty }e^{-i2\pi (\xi _{2}-\xi _{1})t}\,dt=\delta (\xi _{2}-\xi _{1}).}"></span> </p><p>This is, of course, shorthand for the assertion that the Fourier transform of the tempered distribution <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t)=e^{i2\pi \xi _{1}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mn>2</mn> <mi>π<!-- π --></mi> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t)=e^{i2\pi \xi _{1}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bc510eb081b63ba18e57bca2cc67ca42d92de1e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.818ex; height:3.176ex;" alt="{\displaystyle f(t)=e^{i2\pi \xi _{1}t}}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}(\xi _{2})=\delta (\xi _{1}-\xi _{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}(\xi _{2})=\delta (\xi _{1}-\xi _{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21343f7b814a9771832d1b64f89708e453516470" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.595ex; height:3.509ex;" alt="{\displaystyle {\widehat {f}}(\xi _{2})=\delta (\xi _{1}-\xi _{2})}"></span> which again follows by imposing self-adjointness of the Fourier transform. </p><p>By <a href="/wiki/Analytic_continuation" title="Analytic continuation">analytic continuation</a> of the Fourier transform, the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a> of the delta function is found to be<sup id="cite_ref-FOOTNOTEBracewell1986_46-0" class="reference"><a href="#cite_note-FOOTNOTEBracewell1986-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\infty }\delta (t-a)\,e^{-st}\,dt=e^{-sa}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>s</mi> <mi>a</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{\infty }\delta (t-a)\,e^{-st}\,dt=e^{-sa}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95682e8e05a00ef8f98b574538d46a7275359522" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.263ex; height:5.843ex;" alt="{\displaystyle \int _{0}^{\infty }\delta (t-a)\,e^{-st}\,dt=e^{-sa}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Derivatives">Derivatives</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=15" title="Edit section: Derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The derivative of the Dirac delta distribution, denoted <span class="texhtml"><i>δ′</i></span> and also called the <i>Dirac delta prime</i> or <i>Dirac delta derivative</i> as described in <a href="/wiki/Laplacian_of_the_indicator" title="Laplacian of the indicator">Laplacian of the indicator</a>, is defined on compactly supported smooth test functions <span class="texhtml mvar" style="font-style:italic;">φ</span> by<sup id="cite_ref-FOOTNOTEGelfandShilov1966–196826_47-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–196826-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '[\varphi ]=-\delta [\varphi ']=-\varphi '(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">[</mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '[\varphi ]=-\delta [\varphi ']=-\varphi '(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dcbd7eb8726c02cb50a897f5d3ae2fdc88ad3d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.736ex; height:3.009ex;" alt="{\displaystyle \delta '[\varphi ]=-\delta [\varphi ']=-\varphi '(0).}"></span> </p><p>The first equality here is a kind of <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a>, for if <span class="texhtml mvar" style="font-style:italic;">δ</span> were a true function then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\delta '(x)\varphi (x)\,dx=\delta (x)\varphi (x)|_{-\infty }^{\infty }-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\varphi '(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\delta '(x)\varphi (x)\,dx=\delta (x)\varphi (x)|_{-\infty }^{\infty }-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\varphi '(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/214057d1d2496656b0ff40f2af4490dadd898e6c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:86.508ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\delta '(x)\varphi (x)\,dx=\delta (x)\varphi (x)|_{-\infty }^{\infty }-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\int _{-\infty }^{\infty }\delta (x)\varphi '(x)\,dx=-\varphi '(0).}"></span> </p><p>By <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a>, the <span class="texhtml mvar" style="font-style:italic;">k</span>-th derivative of <span class="texhtml mvar" style="font-style:italic;">δ</span> is defined similarly as the distribution given on test functions by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{(k)}[\varphi ]=(-1)^{k}\varphi ^{(k)}(0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{(k)}[\varphi ]=(-1)^{k}\varphi ^{(k)}(0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92b8ca88b17041c8f71580ab9779320dfddadb28" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.709ex; height:3.343ex;" alt="{\displaystyle \delta ^{(k)}[\varphi ]=(-1)^{k}\varphi ^{(k)}(0).}"></span> </p><p>In particular, <span class="texhtml mvar" style="font-style:italic;">δ</span> is an infinitely differentiable distribution. </p><p>The first derivative of the delta function is the distributional limit of the difference quotients:<sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968§2.1_48-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968§2.1-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '(x)=\lim _{h\to 0}{\frac {\delta (x+h)-\delta (x)}{h}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '(x)=\lim _{h\to 0}{\frac {\delta (x+h)-\delta (x)}{h}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2feea26296fae6af229e60653729135b5dcfba3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.653ex; height:5.843ex;" alt="{\displaystyle \delta '(x)=\lim _{h\to 0}{\frac {\delta (x+h)-\delta (x)}{h}}.}"></span> </p><p>More properly, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '=\lim _{h\to 0}{\frac {1}{h}}(\tau _{h}\delta -\delta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>h</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>δ<!-- δ --></mi> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '=\lim _{h\to 0}{\frac {1}{h}}(\tau _{h}\delta -\delta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/633b74fd7a6feaaa89038160c091901eece9938b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.753ex; height:5.343ex;" alt="{\displaystyle \delta '=\lim _{h\to 0}{\frac {1}{h}}(\tau _{h}\delta -\delta )}"></span> where <span class="texhtml mvar" style="font-style:italic;">τ<sub>h</sub></span> is the translation operator, defined on functions by <span class="texhtml"><i>τ<sub>h</sub>φ</i>(<i>x</i>) = <i>φ</i>(<i>x</i> + <i>h</i>)</span>, and on a distribution <span class="texhtml mvar" style="font-style:italic;">S</span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\tau _{h}S)[\varphi ]=S[\tau _{-h}\varphi ].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>S</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">[</mo> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>h</mi> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\tau _{h}S)[\varphi ]=S[\tau _{-h}\varphi ].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da7641428f61e4c1de41526c105208eccffd83eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.85ex; height:2.843ex;" alt="{\displaystyle (\tau _{h}S)[\varphi ]=S[\tau _{-h}\varphi ].}"></span> </p><p>In the theory of <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a>, the first derivative of the delta function represents a point magnetic <a href="/wiki/Dipole" title="Dipole">dipole</a> situated at the origin. Accordingly, it is referred to as a dipole or the <a href="/wiki/Unit_doublet" title="Unit doublet">doublet function</a>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>The derivative of the delta function satisfies a number of basic properties, including:<sup id="cite_ref-FOOTNOTEBracewell200086_50-0" class="reference"><a href="#cite_note-FOOTNOTEBracewell200086-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\delta '(-x)&=-\delta '(x)\\x\delta '(x)&=-\delta (x)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\delta '(-x)&=-\delta '(x)\\x\delta '(x)&=-\delta (x)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aa01b29401817e34c4431c7d3b121d10616a63a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.221ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\delta '(-x)&=-\delta '(x)\\x\delta '(x)&=-\delta (x)\end{aligned}}}"></span> which can be shown by applying a test function and integrating by parts. </p><p>The latter of these properties can also be demonstrated by applying distributional derivative definition, Leibniz 's theorem and linearity of inner product:<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\langle x\delta ',\varphi \rangle \,&=\,\langle \delta ',x\varphi \rangle \,=\,-\langle \delta ,(x\varphi )'\rangle \,=\,-\langle \delta ,x'\varphi +x\varphi '\rangle \,=\,-\langle \delta ,x'\varphi \rangle -\langle \delta ,x\varphi '\rangle \,=\,-x'(0)\varphi (0)-x(0)\varphi '(0)\\&=\,-x'(0)\langle \delta ,\varphi \rangle -x(0)\langle \delta ,\varphi '\rangle \,=\,-x'(0)\langle \delta ,\varphi \rangle +x(0)\langle \delta ',\varphi \rangle \,=\,\langle x(0)\delta '-x'(0)\delta ,\varphi \rangle \\\Longrightarrow x(t)\delta '(t)&=x(0)\delta '(t)-x'(0)\delta (t)=-x'(0)\delta (t)=-\delta (t)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> </mtd> <mtd> <mi></mi> <mo>=</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>,</mo> <mi>x</mi> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>φ<!-- φ --></mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>φ<!-- φ --></mi> <mo>+</mo> <mi>x</mi> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mi>x</mi> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <msup> <mi>φ<!-- φ --></mi> <mo>′</mo> </msup> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\langle x\delta ',\varphi \rangle \,&=\,\langle \delta ',x\varphi \rangle \,=\,-\langle \delta ,(x\varphi )'\rangle \,=\,-\langle \delta ,x'\varphi +x\varphi '\rangle \,=\,-\langle \delta ,x'\varphi \rangle -\langle \delta ,x\varphi '\rangle \,=\,-x'(0)\varphi (0)-x(0)\varphi '(0)\\&=\,-x'(0)\langle \delta ,\varphi \rangle -x(0)\langle \delta ,\varphi '\rangle \,=\,-x'(0)\langle \delta ,\varphi \rangle +x(0)\langle \delta ',\varphi \rangle \,=\,\langle x(0)\delta '-x'(0)\delta ,\varphi \rangle \\\Longrightarrow x(t)\delta '(t)&=x(0)\delta '(t)-x'(0)\delta (t)=-x'(0)\delta (t)=-\delta (t)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae4ee2f2fd560e4e4e83d426a090e49198f04faf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:109.735ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\langle x\delta ',\varphi \rangle \,&=\,\langle \delta ',x\varphi \rangle \,=\,-\langle \delta ,(x\varphi )'\rangle \,=\,-\langle \delta ,x'\varphi +x\varphi '\rangle \,=\,-\langle \delta ,x'\varphi \rangle -\langle \delta ,x\varphi '\rangle \,=\,-x'(0)\varphi (0)-x(0)\varphi '(0)\\&=\,-x'(0)\langle \delta ,\varphi \rangle -x(0)\langle \delta ,\varphi '\rangle \,=\,-x'(0)\langle \delta ,\varphi \rangle +x(0)\langle \delta ',\varphi \rangle \,=\,\langle x(0)\delta '-x'(0)\delta ,\varphi \rangle \\\Longrightarrow x(t)\delta '(t)&=x(0)\delta '(t)-x'(0)\delta (t)=-x'(0)\delta (t)=-\delta (t)\end{aligned}}}"></span> </p><p>Furthermore, the convolution of <span class="texhtml mvar" style="font-style:italic;">δ′</span> with a compactly-supported, smooth function <span class="texhtml mvar" style="font-style:italic;">f</span> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta '*f=\delta *f'=f',}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo>∗<!-- ∗ --></mo> <mi>f</mi> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo>∗<!-- ∗ --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta '*f=\delta *f'=f',}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/144c0e65bbe33d5d01a3e16c247d03cd8522ada5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.309ex; height:2.843ex;" alt="{\displaystyle \delta '*f=\delta *f'=f',}"></span> </p><p>which follows from the properties of the distributional derivative of a convolution. </p> <div class="mw-heading mw-heading3"><h3 id="Higher_dimensions">Higher dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=16" title="Edit section: Higher dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>More generally, on an <a href="/wiki/Open_set" title="Open set">open set</a> <span class="texhtml mvar" style="font-style:italic;">U</span> in the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, the Dirac delta distribution centered at a point <span class="texhtml"><i>a</i> ∈ <i>U</i></span> is defined by<sup id="cite_ref-FOOTNOTEHörmander198356_52-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander198356-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{a}[\varphi ]=\varphi (a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{a}[\varphi ]=\varphi (a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae820065c43b667f4247c78672dcd2f83fa79316" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.606ex; height:2.843ex;" alt="{\displaystyle \delta _{a}[\varphi ]=\varphi (a)}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \in C_{c}^{\infty }(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \in C_{c}^{\infty }(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569727d93f2c193d42deb512ccf7e1e3d95da6fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.626ex; height:2.843ex;" alt="{\displaystyle \varphi \in C_{c}^{\infty }(U)}"></span>, the space of all smooth functions with compact support on <span class="texhtml mvar" style="font-style:italic;">U</span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94e85af78356a1f61786ae37197b9db2a163b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.822ex; height:2.843ex;" alt="{\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})}"></span> is any <a href="/wiki/Multi-index" class="mw-redirect" title="Multi-index">multi-index</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\alpha |=\alpha _{1}+\cdots +\alpha _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\alpha |=\alpha _{1}+\cdots +\alpha _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/759fe9b27dc3715026baf55cde1ecd4395edbab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.532ex; height:2.843ex;" alt="{\displaystyle |\alpha |=\alpha _{1}+\cdots +\alpha _{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/456c1354f357e40cdb9f5ee48e919b408d3171bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.343ex;" alt="{\displaystyle \partial ^{\alpha }}"></span> denotes the associated mixed <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivative</a> operator, then the <span class="texhtml mvar" style="font-style:italic;">α</span>-th derivative <span class="texhtml mvar" style="font-style:italic;">∂<sup>α</sup>δ<sub>a</sub></span> of <span class="texhtml mvar" style="font-style:italic;">δ<sub>a</sub></span> is given by<sup id="cite_ref-FOOTNOTEHörmander198356_52-1" class="reference"><a href="#cite_note-FOOTNOTEHörmander198356-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \partial ^{\alpha }\delta _{a},\,\varphi \right\rangle =(-1)^{|\alpha |}\left\langle \delta _{a},\partial ^{\alpha }\varphi \right\rangle =(-1)^{|\alpha |}\partial ^{\alpha }\varphi (x){\Big |}_{x=a}\quad {\text{ for all }}\varphi \in C_{c}^{\infty }(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mi>φ<!-- φ --></mi> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mrow> <mo>⟨</mo> <mrow> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>,</mo> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <mi>φ<!-- φ --></mi> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </mrow> </msub> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext> for all </mtext> </mrow> <mi>φ<!-- φ --></mi> <mo>∈<!-- ∈ --></mo> <msubsup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \partial ^{\alpha }\delta _{a},\,\varphi \right\rangle =(-1)^{|\alpha |}\left\langle \delta _{a},\partial ^{\alpha }\varphi \right\rangle =(-1)^{|\alpha |}\partial ^{\alpha }\varphi (x){\Big |}_{x=a}\quad {\text{ for all }}\varphi \in C_{c}^{\infty }(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9bf2328c5d9ef8c00251245ffd77c682378cfb5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:72.012ex; height:4.343ex;" alt="{\displaystyle \left\langle \partial ^{\alpha }\delta _{a},\,\varphi \right\rangle =(-1)^{|\alpha |}\left\langle \delta _{a},\partial ^{\alpha }\varphi \right\rangle =(-1)^{|\alpha |}\partial ^{\alpha }\varphi (x){\Big |}_{x=a}\quad {\text{ for all }}\varphi \in C_{c}^{\infty }(U).}"></span> </p><p>That is, the <span class="texhtml mvar" style="font-style:italic;">α</span>-th derivative of <span class="texhtml mvar" style="font-style:italic;">δ<sub>a</sub></span> is the distribution whose value on any test function <span class="texhtml mvar" style="font-style:italic;">φ</span> is the <span class="texhtml mvar" style="font-style:italic;">α</span>-th derivative of <span class="texhtml mvar" style="font-style:italic;">φ</span> at <span class="texhtml mvar" style="font-style:italic;">a</span> (with the appropriate positive or negative sign). </p><p>The first partial derivatives of the delta function are thought of as <a href="/wiki/Double_layer_potential" title="Double layer potential">double layers</a> along the coordinate planes. More generally, the <a href="/wiki/Normal_derivative" class="mw-redirect" title="Normal derivative">normal derivative</a> of a simple layer supported on a surface is a double layer supported on that surface and represents a laminar magnetic monopole. Higher derivatives of the delta function are known in physics as <a href="/wiki/Multipole" class="mw-redirect" title="Multipole">multipoles</a>. </p><p>Higher derivatives enter into mathematics naturally as the building blocks for the complete structure of distributions with point support. If <span class="texhtml mvar" style="font-style:italic;">S</span> is any distribution on <span class="texhtml mvar" style="font-style:italic;">U</span> supported on the set <span class="texhtml">{<i>a</i>}</span> consisting of a single point, then there is an integer <span class="texhtml mvar" style="font-style:italic;">m</span> and coefficients <span class="texhtml mvar" style="font-style:italic;">c<sub>α</sub></span> such that<sup id="cite_ref-FOOTNOTEHörmander198356_52-2" class="reference"><a href="#cite_note-FOOTNOTEHörmander198356-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTERudin1991Theorem_6.25_53-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991Theorem_6.25-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\sum _{|\alpha |\leq m}c_{\alpha }\partial ^{\alpha }\delta _{a}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mi>m</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\sum _{|\alpha |\leq m}c_{\alpha }\partial ^{\alpha }\delta _{a}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b83a092f07ddf8d7de3c96752264e6a7c6f5466b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:17.372ex; height:6.009ex;" alt="{\displaystyle S=\sum _{|\alpha |\leq m}c_{\alpha }\partial ^{\alpha }\delta _{a}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Representations_of_the_delta_function">Representations of the delta function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=17" title="Edit section: Representations of the delta function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function can be viewed as the limit of a sequence of functions </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)=\lim _{\varepsilon \to 0^{+}}\eta _{\varepsilon }(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)=\lim _{\varepsilon \to 0^{+}}\eta _{\varepsilon }(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ebbbabf87bff1978d2d29f9cdf844b7453551ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.046ex; height:4.343ex;" alt="{\displaystyle \delta (x)=\lim _{\varepsilon \to 0^{+}}\eta _{\varepsilon }(x),}"></span> </p><p>where <span class="texhtml"><i>η<sub>ε</sub></i>(<i>x</i>)</span> is sometimes called a <b>nascent delta function</b><span class="anchor" id="nascent_delta_function"></span>. This limit is meant in a weak sense: either that </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\infty }^{\infty }\eta _{\varepsilon }(x)f(x)\,dx=f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\infty }^{\infty }\eta _{\varepsilon }(x)f(x)\,dx=f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae9b54c787d074467e9daffc7931e3ef5ec29959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.646ex; height:6.009ex;" alt="{\displaystyle \lim _{\varepsilon \to 0^{+}}\int _{-\infty }^{\infty }\eta _{\varepsilon }(x)f(x)\,dx=f(0)}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span>)</b></td></tr></tbody></table> <p>for all <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> functions <span class="texhtml mvar" style="font-style:italic;">f</span> having <a href="/wiki/Compact_support" class="mw-redirect" title="Compact support">compact support</a>, or that this limit holds for all <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth</a> functions <span class="texhtml mvar" style="font-style:italic;">f</span> with compact support. The difference between these two slightly different modes of weak convergence is often subtle: the former is convergence in the <a href="/wiki/Vague_topology" title="Vague topology">vague topology</a> of measures, and the latter is convergence in the sense of <a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">distributions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Approximations_to_the_identity">Approximations to the identity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=18" title="Edit section: Approximations to the identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Typically a nascent delta function <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> can be constructed in the following manner. Let <span class="texhtml mvar" style="font-style:italic;">η</span> be an absolutely integrable function on <span class="texhtml"><b>R</b></span> of total integral <span class="texhtml">1</span>, and define <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\eta \left({\frac {x}{\varepsilon }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>η<!-- η --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\eta \left({\frac {x}{\varepsilon }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae344b05b1fa5b018b8884edc8356cb0f3504233" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.339ex; height:4.843ex;" alt="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\eta \left({\frac {x}{\varepsilon }}\right).}"></span> </p><p>In <span class="texhtml mvar" style="font-style:italic;">n</span> dimensions, one uses instead the scaling <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-n}\eta \left({\frac {x}{\varepsilon }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mi>η<!-- η --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-n}\eta \left({\frac {x}{\varepsilon }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3032ed8f57dfe1e8f8f1b2b1f7732bf02553f1d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.504ex; height:4.843ex;" alt="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-n}\eta \left({\frac {x}{\varepsilon }}\right).}"></span> </p><p>Then a simple change of variables shows that <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> also has integral <span class="texhtml">1</span>. One may show that (<b><a href="#math_5">5</a></b>) holds for all continuous compactly supported functions <span class="texhtml mvar" style="font-style:italic;">f</span>,<sup id="cite_ref-FOOTNOTESteinWeiss1971Theorem_1.18_54-0" class="reference"><a href="#cite_note-FOOTNOTESteinWeiss1971Theorem_1.18-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> and so <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> converges weakly to <span class="texhtml mvar" style="font-style:italic;">δ</span> in the sense of measures. </p><p>The <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> constructed in this way are known as an <b>approximation to the identity</b>.<sup id="cite_ref-FOOTNOTERudin1991§II.6.31_55-0" class="reference"><a href="#cite_note-FOOTNOTERudin1991§II.6.31-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> This terminology is because the space <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>)</span> of absolutely integrable functions is closed under the operation of <a href="/wiki/Convolution" title="Convolution">convolution</a> of functions: <span class="texhtml"><i>f</i> ∗ <i>g</i> ∈ <i>L</i><sup>1</sup>(<b>R</b>)</span> whenever <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are in <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>)</span>. However, there is no identity in <span class="texhtml"><i>L</i><sup>1</sup>(<b>R</b>)</span> for the convolution product: no element <span class="texhtml mvar" style="font-style:italic;">h</span> such that <span class="texhtml"><i>f</i> ∗ <i>h</i> = <i>f</i></span> for all <span class="texhtml mvar" style="font-style:italic;">f</span>. Nevertheless, the sequence <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> does approximate such an identity in the sense that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f*\eta _{\varepsilon }\to f\quad {\text{as }}\varepsilon \to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mi>f</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>as </mtext> </mrow> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f*\eta _{\varepsilon }\to f\quad {\text{as }}\varepsilon \to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2244dfb0ca15bdedacc07a679fa469f0664378a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.009ex; height:2.676ex;" alt="{\displaystyle f*\eta _{\varepsilon }\to f\quad {\text{as }}\varepsilon \to 0.}"></span> </p><p>This limit holds in the sense of <a href="/wiki/Mean_convergence" class="mw-redirect" title="Mean convergence">mean convergence</a> (convergence in <span class="texhtml"><i>L</i><sup>1</sup></span>). Further conditions on the <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span>, for instance that it be a mollifier associated to a compactly supported function,<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> are needed to ensure pointwise convergence <a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>. </p><p>If the initial <span class="texhtml"><i>η</i> = <i>η</i><sub>1</sub></span> is itself smooth and compactly supported then the sequence is called a <a href="/wiki/Mollifier" title="Mollifier">mollifier</a>. The standard mollifier is obtained by choosing <span class="texhtml mvar" style="font-style:italic;">η</span> to be a suitably normalized <a href="/wiki/Bump_function" title="Bump function">bump function</a>, for instance </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta (x)={\begin{cases}{\frac {1}{I_{n}}}\exp {\Big (}-{\frac {1}{1-|x|^{2}}}{\Big )}&{\text{if }}|x|<1\\0&{\text{if }}|x|\geq 1.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>η<!-- η --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≥<!-- ≥ --></mo> <mn>1.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta (x)={\begin{cases}{\frac {1}{I_{n}}}\exp {\Big (}-{\frac {1}{1-|x|^{2}}}{\Big )}&{\text{if }}|x|<1\\0&{\text{if }}|x|\geq 1.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e467429bae56f6ad7dddb8b13117cddf3e6a8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.152ex; margin-bottom: -0.186ex; width:39.915ex; height:7.843ex;" alt="{\displaystyle \eta (x)={\begin{cases}{\frac {1}{I_{n}}}\exp {\Big (}-{\frac {1}{1-|x|^{2}}}{\Big )}&{\text{if }}|x|<1\\0&{\text{if }}|x|\geq 1.\end{cases}}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aba34f081d776e30204f3458e4f50b403b09e5c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.242ex; height:2.509ex;" alt="{\displaystyle I_{n}}"></span> ensuring that the total integral is 1). </p><p>In some situations such as <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, a <a href="/wiki/Piecewise_linear_function" title="Piecewise linear function">piecewise linear</a> approximation to the identity is desirable. This can be obtained by taking <span class="texhtml"><i>η</i><sub>1</sub></span> to be a <a href="/wiki/Hat_function" class="mw-redirect" title="Hat function">hat function</a>. With this choice of <span class="texhtml"><i>η</i><sub>1</sub></span>, one has </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\max \left(1-\left|{\frac {x}{\varepsilon }}\right|,0\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>,</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\max \left(1-\left|{\frac {x}{\varepsilon }}\right|,0\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fb1127306c60bcda672ad8ccc1032e1b1d5c7e6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.729ex; height:4.843ex;" alt="{\displaystyle \eta _{\varepsilon }(x)=\varepsilon ^{-1}\max \left(1-\left|{\frac {x}{\varepsilon }}\right|,0\right)}"></span> </p><p>which are all continuous and compactly supported, although not smooth and so not a mollifier. </p> <div class="mw-heading mw-heading3"><h3 id="Probabilistic_considerations">Probabilistic considerations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=19" title="Edit section: Probabilistic considerations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the context of <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, it is natural to impose the additional condition that the initial <span class="texhtml"><i>η</i><sub>1</sub></span> in an approximation to the identity should be positive, as such a function then represents a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a>. Convolution with a probability distribution is sometimes favorable because it does not result in <a href="/wiki/Overshoot_(signal)" title="Overshoot (signal)">overshoot</a> or undershoot, as the output is a <a href="/wiki/Convex_combination" title="Convex combination">convex combination</a> of the input values, and thus falls between the maximum and minimum of the input function. Taking <span class="texhtml"><i>η</i><sub>1</sub></span> to be any probability distribution at all, and letting <span class="texhtml"><i>η<sub>ε</sub></i>(<i>x</i>) = <i>η</i><sub>1</sub>(<i>x</i>/<i>ε</i>)/<i>ε</i></span> as above will give rise to an approximation to the identity. In general this converges more rapidly to a delta function if, in addition, <span class="texhtml mvar" style="font-style:italic;">η</span> has mean <span class="texhtml">0</span> and has small higher moments. For instance, if <span class="texhtml"><i>η</i><sub>1</sub></span> is the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> on <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left[-{\frac {1}{2}},{\frac {1}{2}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left[-{\frac {1}{2}},{\frac {1}{2}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19b64dd6fad3e022e8b3d9f606a2a42292c6181e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.098ex; height:3.509ex;" alt="{\textstyle \left[-{\frac {1}{2}},{\frac {1}{2}}\right]}"></span>,</span> also known as the <a href="/wiki/Rectangular_function" title="Rectangular function">rectangular function</a>, then:<sup id="cite_ref-FOOTNOTESaichevWoyczyński1997§1.1_The_"delta_function"_as_viewed_by_a_physicist_and_an_engineer,_p._3_57-0" class="reference"><a href="#cite_note-FOOTNOTESaichevWoyczyński1997§1.1_The_"delta_function"_as_viewed_by_a_physicist_and_an_engineer,_p._3-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}\operatorname {rect} \left({\frac {x}{\varepsilon }}\right)={\begin{cases}{\frac {1}{\varepsilon }},&-{\frac {\varepsilon }{2}}<x<{\frac {\varepsilon }{2}},\\0,&{\text{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mi>rect</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ε<!-- ε --></mi> <mn>2</mn> </mfrac> </mrow> <mo><</mo> <mi>x</mi> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ε<!-- ε --></mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}\operatorname {rect} \left({\frac {x}{\varepsilon }}\right)={\begin{cases}{\frac {1}{\varepsilon }},&-{\frac {\varepsilon }{2}}<x<{\frac {\varepsilon }{2}},\\0,&{\text{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1d2d3f6535136448cbf26861b5594b25e46fe34" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.118ex; height:6.509ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}\operatorname {rect} \left({\frac {x}{\varepsilon }}\right)={\begin{cases}{\frac {1}{\varepsilon }},&-{\frac {\varepsilon }{2}}<x<{\frac {\varepsilon }{2}},\\0,&{\text{otherwise}}.\end{cases}}}"></span> </p><p>Another example is with the <a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle distribution</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\begin{cases}{\frac {2}{\pi \varepsilon ^{2}}}{\sqrt {\varepsilon ^{2}-x^{2}}},&-\varepsilon <x<\varepsilon ,\\0,&{\text{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>π<!-- π --></mi> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>,</mo> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <mo><</mo> <mi>x</mi> <mo><</mo> <mi>ε<!-- ε --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\begin{cases}{\frac {2}{\pi \varepsilon ^{2}}}{\sqrt {\varepsilon ^{2}-x^{2}}},&-\varepsilon <x<\varepsilon ,\\0,&{\text{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb57d399440e570d8ad80967e0081cc9abe592d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.195ex; height:7.509ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\begin{cases}{\frac {2}{\pi \varepsilon ^{2}}}{\sqrt {\varepsilon ^{2}-x^{2}}},&-\varepsilon <x<\varepsilon ,\\0,&{\text{otherwise}}.\end{cases}}}"></span> </p><p>This is continuous and compactly supported, but not a mollifier because it is not smooth. </p> <div class="mw-heading mw-heading3"><h3 id="Semigroups">Semigroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=20" title="Edit section: Semigroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nascent delta functions often arise as convolution <a href="/wiki/Semigroup" title="Semigroup">semigroups</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> This amounts to the further constraint that the convolution of <span class="texhtml mvar" style="font-style:italic;">η<sub>ε</sub></span> with <span class="texhtml mvar" style="font-style:italic;">η<sub>δ</sub></span> must satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }*\eta _{\delta }=\eta _{\varepsilon +\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo>∗<!-- ∗ --></mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>δ<!-- δ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo>+</mo> <mi>δ<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }*\eta _{\delta }=\eta _{\varepsilon +\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69552683fb85c78cf470cf055fa060b6cd788101" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.75ex; height:2.176ex;" alt="{\displaystyle \eta _{\varepsilon }*\eta _{\delta }=\eta _{\varepsilon +\delta }}"></span> </p><p>for all <span class="texhtml"><i>ε</i>, <i>δ</i> > 0</span>. Convolution semigroups in <span class="texhtml"><i>L</i><sup>1</sup></span> that form a nascent delta function are always an approximation to the identity in the above sense, however the semigroup condition is quite a strong restriction. </p><p>In practice, semigroups approximating the delta function arise as <a href="/wiki/Fundamental_solution" title="Fundamental solution">fundamental solutions</a> or <a href="/wiki/Green%27s_function" title="Green's function">Green's functions</a> to physically motivated <a href="/wiki/Elliptic_partial_differential_equation" title="Elliptic partial differential equation">elliptic</a> or <a href="/wiki/Parabolic_partial_differential_equation" title="Parabolic partial differential equation">parabolic</a> <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a>. In the context of <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>, semigroups arise as the output of a <a href="/wiki/Linear_time-invariant_system" title="Linear time-invariant system">linear time-invariant system</a>. Abstractly, if <i>A</i> is a linear operator acting on functions of <i>x</i>, then a convolution semigroup arises by solving the <a href="/wiki/Initial_value_problem" title="Initial value problem">initial value problem</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}{\dfrac {\partial }{\partial t}}\eta (t,x)=A\eta (t,x),\quad t>0\\[5pt]\displaystyle \lim _{t\to 0^{+}}\eta (t,x)=\delta (x)\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.7em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> <mi>η<!-- η --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mi>η<!-- η --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>t</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mi>η<!-- η --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}{\dfrac {\partial }{\partial t}}\eta (t,x)=A\eta (t,x),\quad t>0\\[5pt]\displaystyle \lim _{t\to 0^{+}}\eta (t,x)=\delta (x)\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dcd8145e7871cf48f317c1c4d935ac7eb468604" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.676ex; margin-bottom: -0.328ex; width:31.474ex; height:11.176ex;" alt="{\displaystyle {\begin{cases}{\dfrac {\partial }{\partial t}}\eta (t,x)=A\eta (t,x),\quad t>0\\[5pt]\displaystyle \lim _{t\to 0^{+}}\eta (t,x)=\delta (x)\end{cases}}}"></span> </p><p>in which the limit is as usual understood in the weak sense. Setting <span class="texhtml"><i>η<sub>ε</sub></i>(<i>x</i>) = <i>η</i>(<i>ε</i>, <i>x</i>)</span> gives the associated nascent delta function. </p><p>Some examples of physically important convolution semigroups arising from such a fundamental solution include the following. </p> <div class="mw-heading mw-heading4"><h4 id="The_heat_kernel">The heat kernel</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=21" title="Edit section: The heat kernel"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Heat_kernel" title="Heat kernel">heat kernel</a>, defined by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\sqrt {2\pi \varepsilon }}}\mathrm {e} ^{-{\frac {x^{2}}{2\varepsilon }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <mi>ε<!-- ε --></mi> </msqrt> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\sqrt {2\pi \varepsilon }}}\mathrm {e} ^{-{\frac {x^{2}}{2\varepsilon }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e0dbd6b31c6cac6967775642aa8b58a572415d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.685ex; height:6.509ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\sqrt {2\pi \varepsilon }}}\mathrm {e} ^{-{\frac {x^{2}}{2\varepsilon }}}}"></span> </p><p>represents the temperature in an infinite wire at time <span class="texhtml"><i>t</i> > 0</span>, if a unit of heat energy is stored at the origin of the wire at time <span class="texhtml"><i>t</i> = 0</span>. This semigroup evolves according to the one-dimensional <a href="/wiki/Heat_equation" title="Heat equation">heat equation</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial u}{\partial t}}={\frac {1}{2}}{\frac {\partial ^{2}u}{\partial x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial u}{\partial t}}={\frac {1}{2}}{\frac {\partial ^{2}u}{\partial x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf708a9c790df7d55a4630dee915d14f2394066" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.791ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial u}{\partial t}}={\frac {1}{2}}{\frac {\partial ^{2}u}{\partial x^{2}}}.}"></span> </p><p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, <span class="texhtml"><i>η<sub>ε</sub></i>(<i>x</i>)</span> is a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> of <a href="/wiki/Variance" title="Variance">variance</a> <span class="texhtml mvar" style="font-style:italic;">ε</span> and mean <span class="texhtml">0</span>. It represents the <a href="/wiki/Probability_density_function" title="Probability density function">probability density</a> at time <span class="texhtml"><i>t</i> = <i>ε</i></span> of the position of a particle starting at the origin following a standard <a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a>. In this context, the semigroup condition is then an expression of the <a href="/wiki/Markov_property" title="Markov property">Markov property</a> of Brownian motion. </p><p>In higher-dimensional Euclidean space <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, the heat kernel is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }={\frac {1}{(2\pi \varepsilon )^{n/2}}}\mathrm {e} ^{-{\frac {x\cdot x}{2\varepsilon }}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>ε<!-- ε --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }={\frac {1}{(2\pi \varepsilon )^{n/2}}}\mathrm {e} ^{-{\frac {x\cdot x}{2\varepsilon }}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93224832e69b68d6f99e74af2089e5f27324de43" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:20.262ex; height:6.176ex;" alt="{\displaystyle \eta _{\varepsilon }={\frac {1}{(2\pi \varepsilon )^{n/2}}}\mathrm {e} ^{-{\frac {x\cdot x}{2\varepsilon }}},}"></span> and has the same physical interpretation, <span title="Latin-language text"><i lang="la"><a href="/wiki/Mutatis_mutandis" title="Mutatis mutandis">mutatis mutandis</a></i></span>. It also represents a nascent delta function in the sense that <span class="texhtml"><i>η<sub>ε</sub></i> → <i>δ</i></span> in the distribution sense as <span class="texhtml"><i>ε</i> → 0</span>. </p> <div class="mw-heading mw-heading4"><h4 id="The_Poisson_kernel">The Poisson kernel</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=22" title="Edit section: The Poisson kernel"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Poisson_kernel" title="Poisson kernel">Poisson kernel</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi }}\mathrm {Im} \left\{{\frac {1}{x-\mathrm {i} \varepsilon }}\right\}={\frac {1}{\pi }}{\frac {\varepsilon }{\varepsilon ^{2}+x^{2}}}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\mathrm {e} ^{\mathrm {i} \xi x-|\varepsilon \xi |}\,d\xi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>ε<!-- ε --></mi> <mrow> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>ξ<!-- ξ --></mi> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ε<!-- ε --></mi> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ξ<!-- ξ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi }}\mathrm {Im} \left\{{\frac {1}{x-\mathrm {i} \varepsilon }}\right\}={\frac {1}{\pi }}{\frac {\varepsilon }{\varepsilon ^{2}+x^{2}}}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\mathrm {e} ^{\mathrm {i} \xi x-|\varepsilon \xi |}\,d\xi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/180a474804453cfbeb782988310e99eed313eaac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.771ex; height:6.176ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi }}\mathrm {Im} \left\{{\frac {1}{x-\mathrm {i} \varepsilon }}\right\}={\frac {1}{\pi }}{\frac {\varepsilon }{\varepsilon ^{2}+x^{2}}}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\mathrm {e} ^{\mathrm {i} \xi x-|\varepsilon \xi |}\,d\xi }"></span> </p><p>is the fundamental solution of the <a href="/wiki/Laplace_equation" class="mw-redirect" title="Laplace equation">Laplace equation</a> in the upper half-plane.<sup id="cite_ref-FOOTNOTESteinWeiss1971§I.1_59-0" class="reference"><a href="#cite_note-FOOTNOTESteinWeiss1971§I.1-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> It represents the <a href="/wiki/Electrostatic_potential" class="mw-redirect" title="Electrostatic potential">electrostatic potential</a> in a semi-infinite plate whose potential along the edge is held at fixed at the delta function. The Poisson kernel is also closely related to the <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy distribution</a> and <a href="/wiki/Kernel_(statistics)#Kernel_functions_in_common_use" title="Kernel (statistics)">Epanechnikov and Gaussian kernel</a> functions.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> This semigroup evolves according to the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial u}{\partial t}}=-\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}u(t,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>u</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial u}{\partial t}}=-\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}u(t,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb389d04daadd99ee5d7d9c82ea56ad56afb9c25" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.236ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial u}{\partial t}}=-\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}u(t,x)}"></span> </p><p>where the operator is rigorously defined as the <a href="/wiki/Fourier_multiplier" class="mw-redirect" title="Fourier multiplier">Fourier multiplier</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}\left[\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}f\right](\xi )=|2\pi \xi |{\mathcal {F}}f(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>f</mi> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}\left[\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}f\right](\xi )=|2\pi \xi |{\mathcal {F}}f(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9dba5209bfdb79796ee7978fbc154e029212b62" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:36.031ex; height:8.509ex;" alt="{\displaystyle {\mathcal {F}}\left[\left(-{\frac {\partial ^{2}}{\partial x^{2}}}\right)^{\frac {1}{2}}f\right](\xi )=|2\pi \xi |{\mathcal {F}}f(\xi ).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Oscillatory_integrals">Oscillatory integrals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=23" title="Edit section: Oscillatory integrals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In areas of physics such as <a href="/wiki/Wave_propagation" class="mw-redirect" title="Wave propagation">wave propagation</a> and <a href="/wiki/Wave" title="Wave">wave mechanics</a>, the equations involved are <a href="/wiki/Hyperbolic_partial_differential_equations" class="mw-redirect" title="Hyperbolic partial differential equations">hyperbolic</a> and so may have more singular solutions. As a result, the nascent delta functions that arise as fundamental solutions of the associated <a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy problems</a> are generally <a href="/wiki/Oscillatory_integral" title="Oscillatory integral">oscillatory integrals</a>. An example, which comes from a solution of the <a href="/wiki/Euler%E2%80%93Tricomi_equation" title="Euler–Tricomi equation">Euler–Tricomi equation</a> of <a href="/wiki/Transonic" title="Transonic">transonic</a> <a href="/wiki/Gas_dynamics" class="mw-redirect" title="Gas dynamics">gas dynamics</a>,<sup id="cite_ref-FOOTNOTEValléeSoares2004§7.2_61-0" class="reference"><a href="#cite_note-FOOTNOTEValléeSoares2004§7.2-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> is the rescaled <a href="/wiki/Airy_function" title="Airy function">Airy function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon ^{-1/3}\operatorname {Ai} \left(x\varepsilon ^{-1/3}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> <mi>Ai</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon ^{-1/3}\operatorname {Ai} \left(x\varepsilon ^{-1/3}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d01bd3b4864e2fee5976929a5c915567befa862e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.65ex; height:4.843ex;" alt="{\displaystyle \varepsilon ^{-1/3}\operatorname {Ai} \left(x\varepsilon ^{-1/3}\right).}"></span> </p><p>Although using the Fourier transform, it is easy to see that this generates a semigroup in some sense—it is not absolutely integrable and so cannot define a semigroup in the above strong sense. Many nascent delta functions constructed as oscillatory integrals only converge in the sense of distributions (an example is the <a href="/wiki/Dirichlet_kernel" title="Dirichlet kernel">Dirichlet kernel</a> below), rather than in the sense of measures. </p><p>Another example is the Cauchy problem for the <a href="/wiki/Wave_equation" title="Wave equation">wave equation</a> in <span class="texhtml"><b>R</b><sup>1+1</sup></span>:<sup id="cite_ref-FOOTNOTEHörmander1983§7.8_62-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983§7.8-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}c^{-2}{\frac {\partial ^{2}u}{\partial t^{2}}}-\Delta u&=0\\u=0,\quad {\frac {\partial u}{\partial t}}=\delta &\qquad {\text{for }}t=0.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>u</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>u</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>δ<!-- δ --></mi> </mtd> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>t</mi> <mo>=</mo> <mn>0.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}c^{-2}{\frac {\partial ^{2}u}{\partial t^{2}}}-\Delta u&=0\\u=0,\quad {\frac {\partial u}{\partial t}}=\delta &\qquad {\text{for }}t=0.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd989ee1cf984a61102136b8bf0d397356d8d57" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:31.089ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}c^{-2}{\frac {\partial ^{2}u}{\partial t^{2}}}-\Delta u&=0\\u=0,\quad {\frac {\partial u}{\partial t}}=\delta &\qquad {\text{for }}t=0.\end{aligned}}}"></span> </p><p>The solution <span class="texhtml mvar" style="font-style:italic;">u</span> represents the displacement from equilibrium of an infinite elastic string, with an initial disturbance at the origin. </p><p>Other approximations to the identity of this kind include the <a href="/wiki/Sinc_function" title="Sinc function">sinc function</a> (used widely in electronics and telecommunications) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi x}}\sin \left({\frac {x}{\varepsilon }}\right)={\frac {1}{2\pi }}\int _{-{\frac {1}{\varepsilon }}}^{\frac {1}{\varepsilon }}\cos(kx)\,dk}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> </msubsup> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi x}}\sin \left({\frac {x}{\varepsilon }}\right)={\frac {1}{2\pi }}\int _{-{\frac {1}{\varepsilon }}}^{\frac {1}{\varepsilon }}\cos(kx)\,dk}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18e536afde96b55e6fa81744c880a26f8bad68a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.859ex; height:7.509ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\pi x}}\sin \left({\frac {x}{\varepsilon }}\right)={\frac {1}{2\pi }}\int _{-{\frac {1}{\varepsilon }}}^{\frac {1}{\varepsilon }}\cos(kx)\,dk}"></span> </p><p>and the <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}J_{\frac {1}{\varepsilon }}\left({\frac {x+1}{\varepsilon }}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>η<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <msub> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>ε<!-- ε --></mi> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>ε<!-- ε --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}J_{\frac {1}{\varepsilon }}\left({\frac {x+1}{\varepsilon }}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/314c280ad789361a72ca6cd9df0fd865196bae8c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.427ex; height:6.176ex;" alt="{\displaystyle \eta _{\varepsilon }(x)={\frac {1}{\varepsilon }}J_{\frac {1}{\varepsilon }}\left({\frac {x+1}{\varepsilon }}\right).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Plane_wave_decomposition">Plane wave decomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=24" title="Edit section: Plane wave decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One approach to the study of a linear partial differential equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[u]=f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[u]=f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/074535ba6bdba1d73b1f0bdb8cde6be6f06d1d6c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.23ex; height:2.843ex;" alt="{\displaystyle L[u]=f,}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">L</span> is a <a href="/wiki/Differential_operator" title="Differential operator">differential operator</a> on <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>, is to seek first a fundamental solution, which is a solution of the equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[u]=\delta .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[u]=\delta .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6306e66d605d9cde6ddf5b7f85302c2aa915dcd7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9ex; height:2.843ex;" alt="{\displaystyle L[u]=\delta .}"></span> </p><p>When <span class="texhtml mvar" style="font-style:italic;">L</span> is particularly simple, this problem can often be resolved using the Fourier transform directly (as in the case of the Poisson kernel and heat kernel already mentioned). For more complicated operators, it is sometimes easier first to consider an equation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[u]=h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[u]=h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0a532cf7d2fd63a65144c98a7bbf8456eceaf91" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.644ex; height:2.843ex;" alt="{\displaystyle L[u]=h}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">h</span> is a <a href="/wiki/Plane_wave" title="Plane wave">plane wave</a> function, meaning that it has the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h=h(x\cdot \xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h=h(x\cdot \xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/146f8ba7d25f89f5d88cbc236194c68c68a79eac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.625ex; height:2.843ex;" alt="{\displaystyle h=h(x\cdot \xi )}"></span> </p><p>for some vector <span class="texhtml mvar" style="font-style:italic;">ξ</span>. Such an equation can be resolved (if the coefficients of <span class="texhtml mvar" style="font-style:italic;">L</span> are <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a>) by the <a href="/wiki/Cauchy%E2%80%93Kovalevskaya_theorem" title="Cauchy–Kovalevskaya theorem">Cauchy–Kovalevskaya theorem</a> or (if the coefficients of <span class="texhtml mvar" style="font-style:italic;">L</span> are constant) by quadrature. So, if the delta function can be decomposed into plane waves, then one can in principle solve linear partial differential equations. </p><p>Such a decomposition of the delta function into plane waves was part of a general technique first introduced essentially by <a href="/wiki/Johann_Radon" title="Johann Radon">Johann Radon</a>, and then developed in this form by <a href="/wiki/Fritz_John" title="Fritz John">Fritz John</a> (<a href="#CITEREFJohn1955">1955</a>).<sup id="cite_ref-FOOTNOTECourantHilbert1962§14_63-0" class="reference"><a href="#cite_note-FOOTNOTECourantHilbert1962§14-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> Choose <span class="texhtml mvar" style="font-style:italic;">k</span> so that <span class="texhtml"><i>n</i> + <i>k</i></span> is an even integer, and for a real number <span class="texhtml mvar" style="font-style:italic;">s</span>, put <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(s)=\operatorname {Re} \left[{\frac {-s^{k}\log(-is)}{k!(2\pi i)^{n}}}\right]={\begin{cases}{\frac {|s|^{k}}{4k!(2\pi i)^{n-1}}}&n{\text{ odd}}\\[5pt]-{\frac {|s|^{k}\log |s|}{k!(2\pi i)^{n}}}&n{\text{ even.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Re</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.7em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> odd</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(s)=\operatorname {Re} \left[{\frac {-s^{k}\log(-is)}{k!(2\pi i)^{n}}}\right]={\begin{cases}{\frac {|s|^{k}}{4k!(2\pi i)^{n-1}}}&n{\text{ odd}}\\[5pt]-{\frac {|s|^{k}\log |s|}{k!(2\pi i)^{n}}}&n{\text{ even.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb36840bedf496b8822ad586804f91ae10fcba1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:51.457ex; height:11.843ex;" alt="{\displaystyle g(s)=\operatorname {Re} \left[{\frac {-s^{k}\log(-is)}{k!(2\pi i)^{n}}}\right]={\begin{cases}{\frac {|s|^{k}}{4k!(2\pi i)^{n-1}}}&n{\text{ odd}}\\[5pt]-{\frac {|s|^{k}\log |s|}{k!(2\pi i)^{n}}}&n{\text{ even.}}\end{cases}}}"></span> </p><p>Then <span class="texhtml mvar" style="font-style:italic;">δ</span> is obtained by applying a power of the <a href="/wiki/Laplacian" class="mw-redirect" title="Laplacian">Laplacian</a> to the integral with respect to the unit <a href="/wiki/Sphere_measure" class="mw-redirect" title="Sphere measure">sphere measure</a> <span class="texhtml mvar" style="font-style:italic;">dω</span> of <span class="texhtml"><i>g</i>(<i>x</i> · <i>ξ</i>)</span> for <span class="texhtml mvar" style="font-style:italic;">ξ</span> in the <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a> <span class="texhtml"><i>S</i><sup><i>n</i>−1</sup></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)=\Delta _{x}^{(n+k)/2}\int _{S^{n-1}}g(x\cdot \xi )\,d\omega _{\xi }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msubsup> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)=\Delta _{x}^{(n+k)/2}\int _{S^{n-1}}g(x\cdot \xi )\,d\omega _{\xi }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc46867ccbcc15a2c6296cbad99579ecdbc65de" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.164ex; height:5.676ex;" alt="{\displaystyle \delta (x)=\Delta _{x}^{(n+k)/2}\int _{S^{n-1}}g(x\cdot \xi )\,d\omega _{\xi }.}"></span> </p><p>The Laplacian here is interpreted as a weak derivative, so that this equation is taken to mean that, for any test function <span class="texhtml mvar" style="font-style:italic;">φ</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x)=\int _{\mathbf {R} ^{n}}\varphi (y)\,dy\,\Delta _{x}^{\frac {n+k}{2}}\int _{S^{n-1}}g((x-y)\cdot \xi )\,d\omega _{\xi }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mspace width="thinmathspace" /> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msubsup> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x)=\int _{\mathbf {R} ^{n}}\varphi (y)\,dy\,\Delta _{x}^{\frac {n+k}{2}}\int _{S^{n-1}}g((x-y)\cdot \xi )\,d\omega _{\xi }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e625e0b8145c4f397e81491209230712d1dd883c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.69ex; height:6.176ex;" alt="{\displaystyle \varphi (x)=\int _{\mathbf {R} ^{n}}\varphi (y)\,dy\,\Delta _{x}^{\frac {n+k}{2}}\int _{S^{n-1}}g((x-y)\cdot \xi )\,d\omega _{\xi }.}"></span> </p><p>The result follows from the formula for the <a href="/wiki/Newtonian_potential" title="Newtonian potential">Newtonian potential</a> (the fundamental solution of Poisson's equation). This is essentially a form of the inversion formula for the <a href="/wiki/Radon_transform" title="Radon transform">Radon transform</a> because it recovers the value of <span class="texhtml"><i>φ</i>(<i>x</i>)</span> from its integrals over hyperplanes. For instance, if <span class="texhtml mvar" style="font-style:italic;">n</span> is odd and <span class="texhtml"><i>k</i> = 1</span>, then the integral on the right hand side is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&c_{n}\Delta _{x}^{\frac {n+1}{2}}\iint _{S^{n-1}}\varphi (y)|(y-x)\cdot \xi |\,d\omega _{\xi }\,dy\\[5pt]&\qquad =c_{n}\Delta _{x}^{(n+1)/2}\int _{S^{n-1}}\,d\omega _{\xi }\int _{-\infty }^{\infty }|p|R\varphi (\xi ,p+x\cdot \xi )\,dp\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msubsup> <msub> <mo>∬<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msubsup> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>R</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo>,</mo> <mi>p</mi> <mo>+</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&c_{n}\Delta _{x}^{\frac {n+1}{2}}\iint _{S^{n-1}}\varphi (y)|(y-x)\cdot \xi |\,d\omega _{\xi }\,dy\\[5pt]&\qquad =c_{n}\Delta _{x}^{(n+1)/2}\int _{S^{n-1}}\,d\omega _{\xi }\int _{-\infty }^{\infty }|p|R\varphi (\xi ,p+x\cdot \xi )\,dp\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bb9fbfb3720307465949837a5c76ae4a649295" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.947ex; margin-bottom: -0.224ex; width:54.616ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}&c_{n}\Delta _{x}^{\frac {n+1}{2}}\iint _{S^{n-1}}\varphi (y)|(y-x)\cdot \xi |\,d\omega _{\xi }\,dy\\[5pt]&\qquad =c_{n}\Delta _{x}^{(n+1)/2}\int _{S^{n-1}}\,d\omega _{\xi }\int _{-\infty }^{\infty }|p|R\varphi (\xi ,p+x\cdot \xi )\,dp\end{aligned}}}"></span> </p><p>where <span class="texhtml"><i>Rφ</i>(<i>ξ</i>, <i>p</i>)</span> is the Radon transform of <span class="texhtml mvar" style="font-style:italic;">φ</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\varphi (\xi ,p)=\int _{x\cdot \xi =p}f(x)\,d^{n-1}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo>=</mo> <mi>p</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\varphi (\xi ,p)=\int _{x\cdot \xi =p}f(x)\,d^{n-1}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90603a79a6038922477ab48abed31e39c7a7460" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.887ex; height:6.009ex;" alt="{\displaystyle R\varphi (\xi ,p)=\int _{x\cdot \xi =p}f(x)\,d^{n-1}x.}"></span> </p><p>An alternative equivalent expression of the plane wave decomposition is:<sup id="cite_ref-FOOTNOTEGelfandShilov1966–1968I,_§3.10_64-0" class="reference"><a href="#cite_note-FOOTNOTEGelfandShilov1966–1968I,_§3.10-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)={\begin{cases}{\frac {(n-1)!}{(2\pi i)^{n}}}\displaystyle \int _{S^{n-1}}(x\cdot \xi )^{-n}\,d\omega _{\xi }&n{\text{ even}}\\{\frac {1}{2(2\pi i)^{n-1}}}\displaystyle \int _{S^{n-1}}\delta ^{(n-1)}(x\cdot \xi )\,d\omega _{\xi }&n{\text{ odd}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> </mstyle> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <msup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ξ<!-- ξ --></mi> </mrow> </msub> </mstyle> </mtd> <mtd> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> odd</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)={\begin{cases}{\frac {(n-1)!}{(2\pi i)^{n}}}\displaystyle \int _{S^{n-1}}(x\cdot \xi )^{-n}\,d\omega _{\xi }&n{\text{ even}}\\{\frac {1}{2(2\pi i)^{n-1}}}\displaystyle \int _{S^{n-1}}\delta ^{(n-1)}(x\cdot \xi )\,d\omega _{\xi }&n{\text{ odd}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa0a1404f8c491e30ace43d98c23142c3722e22" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:48.48ex; height:11.509ex;" alt="{\displaystyle \delta (x)={\begin{cases}{\frac {(n-1)!}{(2\pi i)^{n}}}\displaystyle \int _{S^{n-1}}(x\cdot \xi )^{-n}\,d\omega _{\xi }&n{\text{ even}}\\{\frac {1}{2(2\pi i)^{n-1}}}\displaystyle \int _{S^{n-1}}\delta ^{(n-1)}(x\cdot \xi )\,d\omega _{\xi }&n{\text{ odd}}.\end{cases}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Fourier_kernels">Fourier kernels</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=25" title="Edit section: Fourier kernels"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Convergence_of_Fourier_series" title="Convergence of Fourier series">Convergence of Fourier series</a></div> <p>In the study of <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, a major question consists of determining whether and in what sense the Fourier series associated with a <a href="/wiki/Periodic_function" title="Periodic function">periodic function</a> converges to the function. The <span class="texhtml mvar" style="font-style:italic;">n</span>-th partial sum of the Fourier series of a function <span class="texhtml mvar" style="font-style:italic;">f</span> of period <span class="texhtml">2π</span> is defined by convolution (on the interval <span class="texhtml">[−π,π]</span>) with the <a href="/wiki/Dirichlet_kernel" title="Dirichlet kernel">Dirichlet kernel</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{N}(x)=\sum _{n=-N}^{N}e^{inx}={\frac {\sin \left(\left(N+{\frac {1}{2}}\right)x\right)}{\sin(x/2)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{N}(x)=\sum _{n=-N}^{N}e^{inx}={\frac {\sin \left(\left(N+{\frac {1}{2}}\right)x\right)}{\sin(x/2)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd0acecb02108faf03064ce48ba289949a3d48e7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.028ex; height:7.676ex;" alt="{\displaystyle D_{N}(x)=\sum _{n=-N}^{N}e^{inx}={\frac {\sin \left(\left(N+{\frac {1}{2}}\right)x\right)}{\sin(x/2)}}.}"></span> Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{N}(f)(x)=D_{N}*f(x)=\sum _{n=-N}^{N}a_{n}e^{inx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>∗<!-- ∗ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{N}(f)(x)=D_{N}*f(x)=\sum _{n=-N}^{N}a_{n}e^{inx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6704591e4b27edda19fc806b498b50e13c532234" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.081ex; height:7.509ex;" alt="{\displaystyle s_{N}(f)(x)=D_{N}*f(x)=\sum _{n=-N}^{N}a_{n}e^{inx}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(y)e^{-iny}\,dy.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>n</mi> <mi>y</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(y)e^{-iny}\,dy.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d66fc2d1b35f208e01d3925df300c52cd1a8fed5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.01ex; height:6.009ex;" alt="{\displaystyle a_{n}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }f(y)e^{-iny}\,dy.}"></span> A fundamental result of elementary Fourier series states that the Dirichlet kernel restricted to the interval <span class="texhtml">[−π,π]</span> tends to a multiple of the delta function as <span class="texhtml"><i>N</i> → ∞</span>. This is interpreted in the distribution sense, that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{N}(f)(0)=\int _{-\pi }^{\pi }D_{N}(x)f(x)\,dx\to 2\pi f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </msubsup> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{N}(f)(0)=\int _{-\pi }^{\pi }D_{N}(x)f(x)\,dx\to 2\pi f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/685e0989da170fa02a67fce0f7d67c6ddc0e0290" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.536ex; height:6.009ex;" alt="{\displaystyle s_{N}(f)(0)=\int _{-\pi }^{\pi }D_{N}(x)f(x)\,dx\to 2\pi f(0)}"></span> for every compactly supported <em>smooth</em> function <span class="texhtml mvar" style="font-style:italic;">f</span>. Thus, formally one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x)={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{inx}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x)={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{inx}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1589f14927f4c3cd4bf079b1f6e443a86fe649" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.387ex; height:6.843ex;" alt="{\displaystyle \delta (x)={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{inx}}"></span> on the interval <span class="texhtml">[−π,π]</span>. </p><p>Despite this, the result does not hold for all compactly supported <em>continuous</em> functions: that is <span class="texhtml"><i>D<sub>N</sub></i></span> does not converge weakly in the sense of measures. The lack of convergence of the Fourier series has led to the introduction of a variety of <a href="/wiki/Summability_methods" class="mw-redirect" title="Summability methods">summability methods</a> to produce convergence. The method of <a href="/wiki/Ces%C3%A0ro_summation" title="Cesàro summation">Cesàro summation</a> leads to the <a href="/wiki/Fej%C3%A9r_kernel" title="Fejér kernel">Fejér kernel</a><sup id="cite_ref-FOOTNOTELang1997312_65-0" class="reference"><a href="#cite_note-FOOTNOTELang1997312-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{N}(x)={\frac {1}{N}}\sum _{n=0}^{N-1}D_{n}(x)={\frac {1}{N}}\left({\frac {\sin {\frac {Nx}{2}}}{\sin {\frac {x}{2}}}}\right)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>N</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{N}(x)={\frac {1}{N}}\sum _{n=0}^{N-1}D_{n}(x)={\frac {1}{N}}\left({\frac {\sin {\frac {Nx}{2}}}{\sin {\frac {x}{2}}}}\right)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c4ac7d6be64ffa987ce54aa64cd0bc14bcf4d2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.634ex; height:8.176ex;" alt="{\displaystyle F_{N}(x)={\frac {1}{N}}\sum _{n=0}^{N-1}D_{n}(x)={\frac {1}{N}}\left({\frac {\sin {\frac {Nx}{2}}}{\sin {\frac {x}{2}}}}\right)^{2}.}"></span> </p><p>The <a href="/wiki/Fej%C3%A9r_kernel" title="Fejér kernel">Fejér kernels</a> tend to the delta function in a stronger sense that<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\pi }^{\pi }F_{N}(x)f(x)\,dx\to 2\pi f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> </mrow> </msubsup> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo stretchy="false">→<!-- → --></mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\pi }^{\pi }F_{N}(x)f(x)\,dx\to 2\pi f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc7f4850da6a6e786ac553e45262a7ea345aa66c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.166ex; height:6.009ex;" alt="{\displaystyle \int _{-\pi }^{\pi }F_{N}(x)f(x)\,dx\to 2\pi f(0)}"></span> </p><p>for every compactly supported <em>continuous</em> function <span class="texhtml mvar" style="font-style:italic;">f</span>. The implication is that the Fourier series of any continuous function is Cesàro summable to the value of the function at every point. </p> <div class="mw-heading mw-heading3"><h3 id="Hilbert_space_theory">Hilbert space theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=26" title="Edit section: Hilbert space theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Dirac delta distribution is a <a href="/wiki/Densely_defined" class="mw-redirect" title="Densely defined">densely defined</a> <a href="/wiki/Unbounded_operator" title="Unbounded operator">unbounded</a> <a href="/wiki/Linear_functional" class="mw-redirect" title="Linear functional">linear functional</a> on the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <a href="/wiki/Lp_space" title="Lp space">L<sup>2</sup></a> of <a href="/wiki/Square-integrable_function" title="Square-integrable function">square-integrable functions</a>. Indeed, smooth compactly supported functions are <a href="/wiki/Dense_set" title="Dense set">dense</a> in <span class="texhtml"><i>L</i><sup>2</sup></span>, and the action of the delta distribution on such functions is well-defined. In many applications, it is possible to identify subspaces of <span class="texhtml"><i>L</i><sup>2</sup></span> and to give a stronger <a href="/wiki/Topology" title="Topology">topology</a> on which the delta function defines a <a href="/wiki/Bounded_linear_functional" class="mw-redirect" title="Bounded linear functional">bounded linear functional</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Sobolev_spaces">Sobolev spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=27" title="Edit section: Sobolev spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Sobolev_embedding_theorem" class="mw-redirect" title="Sobolev embedding theorem">Sobolev embedding theorem</a> for <a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev spaces</a> on the real line <span class="texhtml"><b>R</b></span> implies that any square-integrable function <span class="texhtml mvar" style="font-style:italic;">f</span> such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{H^{1}}^{2}=\int _{-\infty }^{\infty }|{\widehat {f}}(\xi )|^{2}(1+|\xi |^{2})\,d\xi <\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ξ<!-- ξ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ξ<!-- ξ --></mi> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{H^{1}}^{2}=\int _{-\infty }^{\infty }|{\widehat {f}}(\xi )|^{2}(1+|\xi |^{2})\,d\xi <\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dabe7b3ee46741e2a55f4b0ecd9c3046e61af29" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.29ex; height:6.009ex;" alt="{\displaystyle \|f\|_{H^{1}}^{2}=\int _{-\infty }^{\infty }|{\widehat {f}}(\xi )|^{2}(1+|\xi |^{2})\,d\xi <\infty }"></span> </p><p>is automatically continuous, and satisfies in particular </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta [f]=|f(0)|<C\|f\|_{H^{1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mi>C</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta [f]=|f(0)|<C\|f\|_{H^{1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d546155e53e1d2a324b2639790b8845db523fca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.93ex; height:3.009ex;" alt="{\displaystyle \delta [f]=|f(0)|<C\|f\|_{H^{1}}.}"></span> </p><p>Thus <span class="texhtml mvar" style="font-style:italic;">δ</span> is a bounded linear functional on the Sobolev space <span class="texhtml"><i>H</i><sup>1</sup></span>. Equivalently <span class="texhtml mvar" style="font-style:italic;">δ</span> is an element of the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> <span class="texhtml"><i>H</i><sup>−1</sup></span> of <span class="texhtml"><i>H</i><sup>1</sup></span>. More generally, in <span class="texhtml mvar" style="font-style:italic;">n</span> dimensions, one has <span class="texhtml"><i>δ</i> ∈ <i>H</i><sup>−<i>s</i></sup>(<b>R</b><sup><i>n</i></sup>)</span> provided <span class="texhtml"><i>s</i> > <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Spaces_of_holomorphic_functions">Spaces of holomorphic functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=28" title="Edit section: Spaces of holomorphic functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, the delta function enters via <a href="/wiki/Cauchy%27s_integral_formula" title="Cauchy's integral formula">Cauchy's integral formula</a>, which asserts that if <span class="texhtml mvar" style="font-style:italic;">D</span> is a domain in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> with smooth boundary, then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}},\quad z\in D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ζ<!-- ζ --></mi> </mrow> <mrow> <mi>ζ<!-- ζ --></mi> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}},\quad z\in D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28bc45a2dfeda82ebea4bce4e25df5bf0efaa14f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.926ex; height:6.176ex;" alt="{\displaystyle f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}},\quad z\in D}"></span> </p><p>for all <a href="/wiki/Holomorphic_function" title="Holomorphic function">holomorphic functions</a> <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml mvar" style="font-style:italic;">D</span> that are continuous on the closure of <span class="texhtml mvar" style="font-style:italic;">D</span>. As a result, the delta function <span class="texhtml"><i>δ</i><sub><i>z</i></sub></span> is represented in this class of holomorphic functions by the Cauchy integral: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{z}[f]=f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mo>∮<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>D</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ζ<!-- ζ --></mi> </mrow> <mrow> <mi>ζ<!-- ζ --></mi> <mo>−<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{z}[f]=f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35176ad52679bd943137c4ab9d002ad92a8c4dea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.068ex; height:6.176ex;" alt="{\displaystyle \delta _{z}[f]=f(z)={\frac {1}{2\pi i}}\oint _{\partial D}{\frac {f(\zeta )\,d\zeta }{\zeta -z}}.}"></span> </p><p>Moreover, let <span class="texhtml"><i>H</i><sup>2</sup>(∂<i>D</i>)</span> be the <a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a> consisting of the closure in <span class="texhtml"><i>L</i><sup>2</sup>(∂<i>D</i>)</span> of all holomorphic functions in <span class="texhtml mvar" style="font-style:italic;">D</span> continuous up to the boundary of <span class="texhtml mvar" style="font-style:italic;">D</span>. Then functions in <span class="texhtml"><i>H</i><sup>2</sup>(∂<i>D</i>)</span> uniquely extend to holomorphic functions in <span class="texhtml mvar" style="font-style:italic;">D</span>, and the Cauchy integral formula continues to hold. In particular for <span class="texhtml"><i>z</i> ∈ <i>D</i></span>, the delta function <span class="texhtml mvar" style="font-style:italic;">δ<sub>z</sub></span> is a continuous linear functional on <span class="texhtml"><i>H</i><sup>2</sup>(∂<i>D</i>)</span>. This is a special case of the situation in <a href="/wiki/Several_complex_variables" class="mw-redirect" title="Several complex variables">several complex variables</a> in which, for smooth domains <span class="texhtml mvar" style="font-style:italic;">D</span>, the <a href="/wiki/Szeg%C5%91_kernel" title="Szegő kernel">Szegő kernel</a> plays the role of the Cauchy integral.<sup id="cite_ref-FOOTNOTEHazewinkel1995[httpsbooksgooglecombooksidPE1a-EIG22kCpgPA357_357]_67-0" class="reference"><a href="#cite_note-FOOTNOTEHazewinkel1995[httpsbooksgooglecombooksidPE1a-EIG22kCpgPA357_357]-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> </p><p>Another representation of the delta function in a space of holomorphic functions is on the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(D)\cap L^{2}(D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>∩<!-- ∩ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(D)\cap L^{2}(D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/badb776f85fd3d09048ed5681c7636b5653a8695" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.75ex; height:3.176ex;" alt="{\displaystyle H(D)\cap L^{2}(D)}"></span> of square-integrable holomorphic functions in an open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\subset \mathbb {C} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>⊂<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\subset \mathbb {C} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d340ebde44f48772693969cb72e0da51eaa51a0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.919ex; height:2.343ex;" alt="{\displaystyle D\subset \mathbb {C} ^{n}}"></span>. This is a closed subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}(D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}(D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22d37c2a8854bd3c82f3791b039ca9b30c1192ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.371ex; height:3.176ex;" alt="{\displaystyle L^{2}(D)}"></span>, and therefore is a Hilbert space. On the other hand, the functional that evaluates a holomorphic function in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(D)\cap L^{2}(D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>∩<!-- ∩ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(D)\cap L^{2}(D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/badb776f85fd3d09048ed5681c7636b5653a8695" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.75ex; height:3.176ex;" alt="{\displaystyle H(D)\cap L^{2}(D)}"></span> at a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is a continuous functional, and so by the Riesz representation theorem, is represented by integration against a kernel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{z}(\zeta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{z}(\zeta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac8fa06d3e4f50a748aed118e684f248749a0f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.879ex; height:2.843ex;" alt="{\displaystyle K_{z}(\zeta )}"></span>, the <a href="/wiki/Bergman_kernel" title="Bergman kernel">Bergman kernel</a>. This kernel is the analog of the delta function in this Hilbert space. A Hilbert space having such a kernel is called a <a href="/wiki/Reproducing_kernel_Hilbert_space" title="Reproducing kernel Hilbert space">reproducing kernel Hilbert space</a>. In the special case of the unit disc, one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{w}[f]=f(w)={\frac {1}{\pi }}\iint _{|z|<1}{\frac {f(z)\,dx\,dy}{(1-{\bar {z}}w)^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <msub> <mo>∬<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>w</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{w}[f]=f(w)={\frac {1}{\pi }}\iint _{|z|<1}{\frac {f(z)\,dx\,dy}{(1-{\bar {z}}w)^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4107a6750747d8aad60c24262e3c1bc56d9f9e4b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.791ex; height:6.509ex;" alt="{\displaystyle \delta _{w}[f]=f(w)={\frac {1}{\pi }}\iint _{|z|<1}{\frac {f(z)\,dx\,dy}{(1-{\bar {z}}w)^{2}}}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Resolutions_of_the_identity">Resolutions of the identity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=29" title="Edit section: Resolutions of the identity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a complete <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> set of functions <span class="texhtml">{<i>φ</i><sub><i>n</i></sub>}</span> in a separable Hilbert space, for example, the normalized <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvectors</a> of a <a href="/wiki/Compact_operator_on_Hilbert_space#Spectral_theorem" title="Compact operator on Hilbert space">compact self-adjoint operator</a>, any vector <span class="texhtml mvar" style="font-style:italic;">f</span> can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\sum _{n=1}^{\infty }\alpha _{n}\varphi _{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\sum _{n=1}^{\infty }\alpha _{n}\varphi _{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/242aff14e02ae75d7435b67b533e3d80f4065ca9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.211ex; height:6.843ex;" alt="{\displaystyle f=\sum _{n=1}^{\infty }\alpha _{n}\varphi _{n}.}"></span> The coefficients {α<sub>n</sub>} are found as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{n}=\langle \varphi _{n},f\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{n}=\langle \varphi _{n},f\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbc66b65d0dfcd14127efd71860b4685c44db863" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.312ex; height:2.843ex;" alt="{\displaystyle \alpha _{n}=\langle \varphi _{n},f\rangle ,}"></span> which may be represented by the notation: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{n}=\varphi _{n}^{\dagger }f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{n}=\varphi _{n}^{\dagger }f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/631e1a8067274f1fb77f31f485fcfc2f22b9796e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.469ex; height:3.343ex;" alt="{\displaystyle \alpha _{n}=\varphi _{n}^{\dagger }f,}"></span> a form of the <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket notation</a> of Dirac.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Adopting this notation, the expansion of <span class="texhtml mvar" style="font-style:italic;">f</span> takes the <a href="/wiki/Dyadic_tensor" class="mw-redirect" title="Dyadic tensor">dyadic</a> form:<sup id="cite_ref-FOOTNOTEDavisThomson2000Perfect_operators,_p.344_69-0" class="reference"><a href="#cite_note-FOOTNOTEDavisThomson2000Perfect_operators,_p.344-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\sum _{n=1}^{\infty }\varphi _{n}\left(\varphi _{n}^{\dagger }f\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\sum _{n=1}^{\infty }\varphi _{n}\left(\varphi _{n}^{\dagger }f\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76884d3b270e2611b34ac8f4d19310402e725459" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.071ex; height:6.843ex;" alt="{\displaystyle f=\sum _{n=1}^{\infty }\varphi _{n}\left(\varphi _{n}^{\dagger }f\right).}"></span> </p><p>Letting <span class="texhtml mvar" style="font-style:italic;">I</span> denote the <a href="/wiki/Identity_operator" class="mw-redirect" title="Identity operator">identity operator</a> on the Hilbert space, the expression </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\sum _{n=1}^{\infty }\varphi _{n}\varphi _{n}^{\dagger },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\sum _{n=1}^{\infty }\varphi _{n}\varphi _{n}^{\dagger },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b7ea5af73fc1ecda81e36ca57383d1893bc3388" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.136ex; height:6.843ex;" alt="{\displaystyle I=\sum _{n=1}^{\infty }\varphi _{n}\varphi _{n}^{\dagger },}"></span> </p><p>is called a <a href="/wiki/Borel_functional_calculus#Resolution_of_the_identity" title="Borel functional calculus">resolution of the identity</a>. When the Hilbert space is the space <span class="texhtml"><i>L</i><sup>2</sup>(<i>D</i>)</span> of square-integrable functions on a domain <span class="texhtml mvar" style="font-style:italic;">D</span>, the quantity: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{n}\varphi _{n}^{\dagger },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{n}\varphi _{n}^{\dagger },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656acc880baffbf97b7aa58c788db6b7dee767e4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.343ex;" alt="{\displaystyle \varphi _{n}\varphi _{n}^{\dagger },}"></span> </p><p>is an integral operator, and the expression for <span class="texhtml mvar" style="font-style:italic;">f</span> can be rewritten </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{n=1}^{\infty }\int _{D}\,\left(\varphi _{n}(x)\varphi _{n}^{*}(\xi )\right)f(\xi )\,d\xi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ξ<!-- ξ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{n=1}^{\infty }\int _{D}\,\left(\varphi _{n}(x)\varphi _{n}^{*}(\xi )\right)f(\xi )\,d\xi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/615cd30ab3f8592eba06de5f58e102aacb0a6542" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.968ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{n=1}^{\infty }\int _{D}\,\left(\varphi _{n}(x)\varphi _{n}^{*}(\xi )\right)f(\xi )\,d\xi .}"></span> </p><p>The right-hand side converges to <span class="texhtml mvar" style="font-style:italic;">f</span> in the <span class="texhtml"><i>L</i><sup>2</sup></span> sense. It need not hold in a pointwise sense, even when <span class="texhtml mvar" style="font-style:italic;">f</span> is a continuous function. Nevertheless, it is common to abuse notation and write </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\int \,\delta (x-\xi )f(\xi )\,d\xi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ξ<!-- ξ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\int \,\delta (x-\xi )f(\xi )\,d\xi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0456236abf9ba80b7ec235a2bcdb7c8cd262bfdd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.94ex; height:5.676ex;" alt="{\displaystyle f(x)=\int \,\delta (x-\xi )f(\xi )\,d\xi ,}"></span> </p><p>resulting in the representation of the delta function:<sup id="cite_ref-FOOTNOTEDavisThomson2000Equation_8.9.11,_p._344_70-0" class="reference"><a href="#cite_note-FOOTNOTEDavisThomson2000Equation_8.9.11,_p._344-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta (x-\xi )=\sum _{n=1}^{\infty }\varphi _{n}(x)\varphi _{n}^{*}(\xi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msubsup> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta (x-\xi )=\sum _{n=1}^{\infty }\varphi _{n}(x)\varphi _{n}^{*}(\xi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eec7029b19f112482e0e54d1605a3560359ceefa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.001ex; height:6.843ex;" alt="{\displaystyle \delta (x-\xi )=\sum _{n=1}^{\infty }\varphi _{n}(x)\varphi _{n}^{*}(\xi ).}"></span> </p><p>With a suitable <a href="/wiki/Rigged_Hilbert_space" title="Rigged Hilbert space">rigged Hilbert space</a> <span class="texhtml">(Φ, <i>L</i><sup>2</sup>(<i>D</i>), Φ*)</span> where <span class="texhtml">Φ ⊂ <i>L</i><sup>2</sup>(<i>D</i>)</span> contains all compactly supported smooth functions, this summation may converge in <span class="texhtml">Φ*</span>, depending on the properties of the basis <span class="texhtml"><i>φ</i><sub><i>n</i></sub></span>. In most cases of practical interest, the orthonormal basis comes from an integral or differential operator, in which case the series converges in the <a href="/wiki/Distribution_(mathematics)#Distributions" title="Distribution (mathematics)">distribution</a> sense.<sup id="cite_ref-FOOTNOTEde_la_MadridBohmGadella2002_71-0" class="reference"><a href="#cite_note-FOOTNOTEde_la_MadridBohmGadella2002-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinitesimal_delta_functions">Infinitesimal delta functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=30" title="Edit section: Infinitesimal delta functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a> used an infinitesimal <span class="texhtml mvar" style="font-style:italic;">α</span> to write down a unit impulse, infinitely tall and narrow Dirac-type delta function <span class="texhtml mvar" style="font-style:italic;">δ<sub>α</sub></span> satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c6e7188142732aee4402b7732a04e82bce0508" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.884ex; height:3.176ex;" alt="{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}"></span> in a number of articles in 1827.<sup id="cite_ref-FOOTNOTELaugwitz1989_72-0" class="reference"><a href="#cite_note-FOOTNOTELaugwitz1989-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> Cauchy defined an infinitesimal in <i><a href="/wiki/Cours_d%27Analyse" title="Cours d'Analyse">Cours d'Analyse</a></i> (1827) in terms of a sequence tending to zero. Namely, such a null sequence becomes an infinitesimal in Cauchy's and <a href="/wiki/Lazare_Carnot" title="Lazare Carnot">Lazare Carnot</a>'s terminology. </p><p><a href="/wiki/Non-standard_analysis" class="mw-redirect" title="Non-standard analysis">Non-standard analysis</a> allows one to rigorously treat infinitesimals. The article by <a href="#CITEREFYamashita2007">Yamashita (2007)</a> contains a bibliography on modern Dirac delta functions in the context of an infinitesimal-enriched continuum provided by the <a href="/wiki/Hyperreal_number" title="Hyperreal number">hyperreals</a>. Here the Dirac delta can be given by an actual function, having the property that for every real function <span class="texhtml mvar" style="font-style:italic;">F</span> one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c6e7188142732aee4402b7732a04e82bce0508" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.884ex; height:3.176ex;" alt="{\textstyle \int F(x)\delta _{\alpha }(x)\,dx=F(0)}"></span> as anticipated by Fourier and Cauchy. </p> <div class="mw-heading mw-heading2"><h2 id="Dirac_comb">Dirac comb</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=31" title="Edit section: Dirac comb"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac comb</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Dirac_comb.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Dirac_comb.svg/220px-Dirac_comb.svg.png" decoding="async" width="220" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Dirac_comb.svg/330px-Dirac_comb.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Dirac_comb.svg/440px-Dirac_comb.svg.png 2x" data-file-width="512" data-file-height="323" /></a><figcaption>A Dirac comb is an infinite series of Dirac delta functions spaced at intervals of <span class="texhtml mvar" style="font-style:italic;">T</span></figcaption></figure> <p>A so-called uniform "pulse train" of Dirac delta measures, which is known as a <a href="/wiki/Dirac_comb" title="Dirac comb">Dirac comb</a>, or as the <a href="/wiki/Sha_(Cyrillic)" title="Sha (Cyrillic)">Sha</a> distribution, creates a <a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">sampling</a> function, often used in <a href="/wiki/Digital_signal_processing" title="Digital signal processing">digital signal processing</a> (DSP) and discrete time signal analysis. The Dirac comb is given as the <a href="/wiki/Infinite_sum" class="mw-redirect" title="Infinite sum">infinite sum</a>, whose limit is understood in the distribution sense, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {\text{Ш}} (x)=\sum _{n=-\infty }^{\infty }\delta (x-n),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>Ш</mtext> </mrow> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {\text{Ш}} (x)=\sum _{n=-\infty }^{\infty }\delta (x-n),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2835ee1a00bd8d0a06fafbfd1f6b89d8d3416bff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.297ex; height:6.843ex;" alt="{\displaystyle \operatorname {\text{Ш}} (x)=\sum _{n=-\infty }^{\infty }\delta (x-n),}"></span> </p><p>which is a sequence of point masses at each of the integers. </p><p>Up to an overall normalizing constant, the Dirac comb is equal to its own Fourier transform. This is significant because if <span class="texhtml mvar" style="font-style:italic;">f</span> is any <a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz function</a>, then the <a href="/wiki/Wrapped_distribution" title="Wrapped distribution">periodization</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> is given by the convolution <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*\operatorname {\text{Ш}} )(x)=\sum _{n=-\infty }^{\infty }f(x-n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>Ш</mtext> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*\operatorname {\text{Ш}} )(x)=\sum _{n=-\infty }^{\infty }f(x-n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/983960c780f976eaea4bb35bb4d1d516c171c15e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.81ex; height:6.843ex;" alt="{\displaystyle (f*\operatorname {\text{Ш}} )(x)=\sum _{n=-\infty }^{\infty }f(x-n).}"></span> In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f*\operatorname {\text{Ш}} )^{\wedge }={\widehat {f}}{\widehat {\operatorname {\text{Ш}} }}={\widehat {f}}\operatorname {\text{Ш}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∗<!-- ∗ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>Ш</mtext> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∧<!-- ∧ --></mo> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>Ш</mtext> </mrow> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mtext>Ш</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f*\operatorname {\text{Ш}} )^{\wedge }={\widehat {f}}{\widehat {\operatorname {\text{Ш}} }}={\widehat {f}}\operatorname {\text{Ш}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43226de936a90d00bd4da2da78d2a107d269a63" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.987ex; height:4.176ex;" alt="{\displaystyle (f*\operatorname {\text{Ш}} )^{\wedge }={\widehat {f}}{\widehat {\operatorname {\text{Ш}} }}={\widehat {f}}\operatorname {\text{Ш}} }"></span> is precisely the <a href="/wiki/Poisson_summation_formula" title="Poisson summation formula">Poisson summation formula</a>.<sup id="cite_ref-FOOTNOTECórdoba1988_73-0" class="reference"><a href="#cite_note-FOOTNOTECórdoba1988-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEHörmander1983[httpsbooksgooglecombooksidaaLrCAAAQBAJpgPA177_§7.2]_74-0" class="reference"><a href="#cite_note-FOOTNOTEHörmander1983[httpsbooksgooglecombooksidaaLrCAAAQBAJpgPA177_§7.2]-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> More generally, this formula remains to be true if <span class="texhtml mvar" style="font-style:italic;">f</span> is a tempered distribution of rapid descent or, equivalently, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153a4a4d50ef7099fc5f8804e34dccc539f08743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.019ex; width:1.79ex; height:3.343ex;" alt="{\displaystyle {\widehat {f}}}"></span> is a slowly growing, ordinary function within the space of tempered distributions. </p> <div class="mw-heading mw-heading2"><h2 id="Sokhotski–Plemelj_theorem"><span id="Sokhotski.E2.80.93Plemelj_theorem"></span>Sokhotski–Plemelj theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=32" title="Edit section: Sokhotski–Plemelj theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Sokhotski%E2%80%93Plemelj_theorem" title="Sokhotski–Plemelj theorem">Sokhotski–Plemelj theorem</a>, important in quantum mechanics, relates the delta function to the distribution <span class="texhtml">p.v. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>x</i></span></span>⁠</span></span>, the <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> of the function <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>x</i></span></span>⁠</span></span>, defined by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle \operatorname {p.v.} {\frac {1}{x}},\varphi \right\rangle =\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {\varphi (x)}{x}}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>,</mo> <mi>φ<!-- φ --></mi> </mrow> <mo>⟩</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>ε<!-- ε --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle \operatorname {p.v.} {\frac {1}{x}},\varphi \right\rangle =\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {\varphi (x)}{x}}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0e979de266c5abe799ed95a15eb9b1833cdd82c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.599ex; height:6.509ex;" alt="{\displaystyle \left\langle \operatorname {p.v.} {\frac {1}{x}},\varphi \right\rangle =\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {\varphi (x)}{x}}\,dx.}"></span> </p><p>Sokhotsky's formula states that<sup id="cite_ref-FOOTNOTEVladimirov1971§5.7_75-0" class="reference"><a href="#cite_note-FOOTNOTEVladimirov1971§5.7-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\varepsilon \to 0^{+}}{\frac {1}{x\pm i\varepsilon }}=\operatorname {p.v.} {\frac {1}{x}}\mp i\pi \delta (x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>±<!-- ± --></mo> <mi>i</mi> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <mo>.</mo> <mi mathvariant="normal">v</mi> <mo>.</mo> </mrow> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>∓<!-- ∓ --></mo> <mi>i</mi> <mi>π<!-- π --></mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\varepsilon \to 0^{+}}{\frac {1}{x\pm i\varepsilon }}=\operatorname {p.v.} {\frac {1}{x}}\mp i\pi \delta (x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d0e91d56b1d0eb984500bbdb6d4dbcbec63331" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.374ex; height:5.676ex;" alt="{\displaystyle \lim _{\varepsilon \to 0^{+}}{\frac {1}{x\pm i\varepsilon }}=\operatorname {p.v.} {\frac {1}{x}}\mp i\pi \delta (x),}"></span> </p><p>Here the limit is understood in the distribution sense, that for all compactly supported smooth functions <span class="texhtml mvar" style="font-style:italic;">f</span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }\lim _{\varepsilon \to 0^{+}}{\frac {f(x)}{x\pm i\varepsilon }}\,dx=\mp i\pi f(0)+\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {f(x)}{x}}\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>±<!-- ± --></mo> <mi>i</mi> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>∓<!-- ∓ --></mo> <mi>i</mi> <mi>π<!-- π --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mi>ε<!-- ε --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>x</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }\lim _{\varepsilon \to 0^{+}}{\frac {f(x)}{x\pm i\varepsilon }}\,dx=\mp i\pi f(0)+\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {f(x)}{x}}\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a46a66e6ea0beb6a72312ccd41a6754bf51339d7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:53.076ex; height:6.509ex;" alt="{\displaystyle \int _{-\infty }^{\infty }\lim _{\varepsilon \to 0^{+}}{\frac {f(x)}{x\pm i\varepsilon }}\,dx=\mp i\pi f(0)+\lim _{\varepsilon \to 0^{+}}\int _{|x|>\varepsilon }{\frac {f(x)}{x}}\,dx.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Relationship_to_the_Kronecker_delta">Relationship to the Kronecker delta</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=33" title="Edit section: Relationship to the Kronecker delta"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> <span class="texhtml mvar" style="font-style:italic;">δ<sub>ij</sub></span> is the quantity defined by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{ij}={\begin{cases}1&i=j\\0&i\not =j\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> <mo>≠</mo> <mi>j</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{ij}={\begin{cases}1&i=j\\0&i\not =j\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c59930d1f15174ec9d84282cec18212b265cfb09" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.447ex; height:6.176ex;" alt="{\displaystyle \delta _{ij}={\begin{cases}1&i=j\\0&i\not =j\end{cases}}}"></span> </p><p>for all integers <span class="texhtml mvar" style="font-style:italic;">i</span>, <span class="texhtml mvar" style="font-style:italic;">j</span>. This function then satisfies the following analog of the sifting property: if <span class="texhtml mvar" style="font-style:italic;">a<sub>i</sub></span> (for <span class="texhtml mvar" style="font-style:italic;">i</span> in the set of all integers) is any <a href="/wiki/Infinite_sequence#Doubly-infinite_sequences" class="mw-redirect" title="Infinite sequence">doubly infinite sequence</a>, then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=-\infty }^{\infty }a_{i}\delta _{ik}=a_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=-\infty }^{\infty }a_{i}\delta _{ik}=a_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b595c7a9598cbbdf0dd7cf682dfd92733ae03aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:15.937ex; height:7.009ex;" alt="{\displaystyle \sum _{i=-\infty }^{\infty }a_{i}\delta _{ik}=a_{k}.}"></span> </p><p>Similarly, for any real or complex valued continuous function <span class="texhtml mvar" style="font-style:italic;">f</span> on <span class="texhtml"><b>R</b></span>, the Dirac delta satisfies the sifting property </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }f(x)\delta (x-x_{0})\,dx=f(x_{0}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }f(x)\delta (x-x_{0})\,dx=f(x_{0}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2e6c78232fd0dfe7b791e431d437fab8e861ec0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.813ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }f(x)\delta (x-x_{0})\,dx=f(x_{0}).}"></span> </p><p>This exhibits the Kronecker delta function as a discrete analog of the Dirac delta function.<sup id="cite_ref-FOOTNOTEHartmann1997pp._154–155_76-0" class="reference"><a href="#cite_note-FOOTNOTEHartmann1997pp._154–155-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=34" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Probability_theory">Probability theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=35" title="Edit section: Probability theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the Dirac delta function is often used to represent a <a href="/wiki/Discrete_distribution" class="mw-redirect" title="Discrete distribution">discrete distribution</a>, or a partially discrete, partially <a href="/wiki/Continuous_distribution" class="mw-redirect" title="Continuous distribution">continuous distribution</a>, using a <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (which is normally used to represent absolutely continuous distributions). For example, the probability density function <span class="texhtml"><i>f</i>(<i>x</i>)</span> of a discrete distribution consisting of points <span class="texhtml"><b>x</b> = {<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>}</span>, with corresponding probabilities <span class="texhtml"><i>p</i><sub>1</sub>, ..., <i>p<sub>n</sub></i></span>, can be written as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{i=1}^{n}p_{i}\delta (x-x_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{i=1}^{n}p_{i}\delta (x-x_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df030dbfcfdbc915326e856b29fc21edd2ca9a94" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.031ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{i=1}^{n}p_{i}\delta (x-x_{i}).}"></span> </p><p>As another example, consider a distribution in which 6/10 of the time returns a standard <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>, and 4/10 of the time returns exactly the value 3.5 (i.e. a partly continuous, partly discrete <a href="/wiki/Mixture_distribution" title="Mixture distribution">mixture distribution</a>). The density function of this distribution can be written as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=0.6\,{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}+0.4\,\delta (x-3.5).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.6</mn> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> </msqrt> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mo>+</mo> <mn>0.4</mn> <mspace width="thinmathspace" /> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>3.5</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=0.6\,{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}+0.4\,\delta (x-3.5).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42997822d0745a22f02620d6bb8e566762b0ee97" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:37.982ex; height:6.509ex;" alt="{\displaystyle f(x)=0.6\,{\frac {1}{\sqrt {2\pi }}}e^{-{\frac {x^{2}}{2}}}+0.4\,\delta (x-3.5).}"></span> </p><p>The delta function is also used to represent the resulting probability density function of a random variable that is transformed by continuously differentiable function. If <span class="texhtml"><i>Y</i> = g(<i>X</i>)</span> is a continuous differentiable function, then the density of <span class="texhtml mvar" style="font-style:italic;">Y</span> can be written as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{Y}(y)=\int _{-\infty }^{+\infty }f_{X}(x)\delta (y-g(x))\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{Y}(y)=\int _{-\infty }^{+\infty }f_{X}(x)\delta (y-g(x))\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1859af9ba4e81ed72ae8cd7952fa91fc2b75744" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.293ex; height:6.176ex;" alt="{\displaystyle f_{Y}(y)=\int _{-\infty }^{+\infty }f_{X}(x)\delta (y-g(x))\,dx.}"></span> </p><p>The delta function is also used in a completely different way to represent the <a href="/wiki/Local_time_(mathematics)" title="Local time (mathematics)">local time</a> of a <a href="/wiki/Diffusion_process" title="Diffusion process">diffusion process</a> (like <a href="/wiki/Brownian_motion" title="Brownian motion">Brownian motion</a>). The local time of a stochastic process <span class="texhtml"><i>B</i>(<i>t</i>)</span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell (x,t)=\int _{0}^{t}\delta (x-B(s))\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell (x,t)=\int _{0}^{t}\delta (x-B(s))\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0200632fe8ac164dabb35f5c5ff1798dec3a7bb0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.143ex; height:6.176ex;" alt="{\displaystyle \ell (x,t)=\int _{0}^{t}\delta (x-B(s))\,ds}"></span> and represents the amount of time that the process spends at the point <span class="texhtml mvar" style="font-style:italic;">x</span> in the range of the process. More precisely, in one dimension this integral can be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell (x,t)=\lim _{\varepsilon \to 0^{+}}{\frac {1}{2\varepsilon }}\int _{0}^{t}\mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}(B(s))\,ds}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ε<!-- ε --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>ε<!-- ε --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell (x,t)=\lim _{\varepsilon \to 0^{+}}{\frac {1}{2\varepsilon }}\int _{0}^{t}\mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}(B(s))\,ds}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5559ee5dae6a003812081e6f4785fe97c5c7ce3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.125ex; height:6.176ex;" alt="{\displaystyle \ell (x,t)=\lim _{\varepsilon \to 0^{+}}{\frac {1}{2\varepsilon }}\int _{0}^{t}\mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}(B(s))\,ds}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">]</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d2638b50ca5e6ffd77a1e6e4747b7b98c5b786f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.911ex; height:3.009ex;" alt="{\displaystyle \mathbf {1} _{[x-\varepsilon ,x+\varepsilon ]}}"></span> is the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> of the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x-\varepsilon ,x+\varepsilon ].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <mo>,</mo> <mi>x</mi> <mo>+</mo> <mi>ε<!-- ε --></mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x-\varepsilon ,x+\varepsilon ].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee3e4409bd7fe914f16bb104c11de59e5ee1a225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.482ex; height:2.843ex;" alt="{\displaystyle [x-\varepsilon ,x+\varepsilon ].}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_mechanics">Quantum mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=36" title="Edit section: Quantum mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function is expedient in <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>. The <a href="/wiki/Wave_function" title="Wave function">wave function</a> of a particle gives the <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a> of finding a particle within a given region of space. Wave functions are assumed to be elements of the Hilbert space <span class="texhtml"><i>L</i><sup>2</sup></span> of <a href="/wiki/Square-integrable_function" title="Square-integrable function">square-integrable functions</a>, and the total probability of finding a particle within a given interval is the integral of the magnitude of the wave function squared over the interval. A set <span class="texhtml">{<span class="nowrap">|<i>φ<sub>n</sub></i>⟩</span>}</span> of wave functions is orthonormal if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \varphi _{n}\mid \varphi _{m}\rangle =\delta _{nm},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>∣<!-- ∣ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>m</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \varphi _{n}\mid \varphi _{m}\rangle =\delta _{nm},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b29e7171ed63cda3fe7acbb0db4db2c14a802d0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.119ex; height:2.843ex;" alt="{\displaystyle \langle \varphi _{n}\mid \varphi _{m}\rangle =\delta _{nm},}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">δ<sub>nm</sub></span> is the Kronecker delta. A set of orthonormal wave functions is complete in the space of square-integrable functions if any wave function <span class="texhtml"><span class="nowrap">|ψ⟩</span></span> can be expressed as a linear combination of the <span class="texhtml">{<span class="nowrap">|<i>φ<sub>n</sub></i>⟩</span>}</span> with complex coefficients: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi =\sum c_{n}\varphi _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi =\sum c_{n}\varphi _{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01a42296ab42c7a0687a6a983d4f0ddccc353604" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.964ex; height:3.843ex;" alt="{\displaystyle \psi =\sum c_{n}\varphi _{n},}"></span> </p><p>where <span class="texhtml"><i>c<sub>n</sub></i> = <span class="nowrap">⟨<i>φ<sub>n</sub></i>|<i>ψ</i>⟩</span></span>. Complete orthonormal systems of wave functions appear naturally as the <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunctions</a> of the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> (of a <a href="/wiki/Bound_state" title="Bound state">bound system</a>) in quantum mechanics that measures the energy levels, which are called the eigenvalues. The set of eigenvalues, in this case, is known as the <a href="/wiki/Spectrum_(functional_analysis)" title="Spectrum (functional analysis)">spectrum</a> of the Hamiltonian. In <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket notation</a> this equality implies the <a href="/wiki/Borel_functional_calculus#Resolution_of_the_identity" title="Borel functional calculus">resolution of the identity</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\sum |\varphi _{n}\rangle \langle \varphi _{n}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\sum |\varphi _{n}\rangle \langle \varphi _{n}|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4b383161286e2ba9ce85e0a4c0495001c7b293c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.239ex; height:3.843ex;" alt="{\displaystyle I=\sum |\varphi _{n}\rangle \langle \varphi _{n}|.}"></span> </p><p>Here the eigenvalues are assumed to be discrete, but the set of eigenvalues of an <a href="/wiki/Observable" title="Observable">observable</a> can also be continuous. An example is the <a href="/wiki/Position_operator" title="Position operator">position operator</a>, <span class="texhtml"><i>Qψ</i>(<i>x</i>) = <i>x</i>ψ(<i>x</i>)</span>. The spectrum of the position (in one dimension) is the entire real line and is called a <a href="/wiki/Spectrum_(physical_sciences)#In_quantum_mechanics" title="Spectrum (physical sciences)">continuous spectrum</a>. However, unlike the Hamiltonian, the position operator lacks proper eigenfunctions. The conventional way to overcome this shortcoming is to widen the class of available functions by allowing distributions as well, i.e., to replace the Hilbert space with a <a href="/wiki/Rigged_Hilbert_space" title="Rigged Hilbert space">rigged Hilbert space</a>.<sup id="cite_ref-FOOTNOTEIsham1995§6.2_77-0" class="reference"><a href="#cite_note-FOOTNOTEIsham1995§6.2-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> In this context, the position operator has a complete set of "generalized eigenfunctions", labeled by the points <span class="texhtml mvar" style="font-style:italic;">y</span> of the real line, given by </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{y}(x)=\delta (x-y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{y}(x)=\delta (x-y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee92e79b4ce4b11ae6a1f92f7aba827cf9292580" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.637ex; height:3.009ex;" alt="{\displaystyle \varphi _{y}(x)=\delta (x-y).}"></span> </p><p>The generalized eigenfunctions of the position operator are called the <i>eigenkets</i> and are denoted by <span class="texhtml"><i>φ<sub>y</sub></i> = <span class="nowrap">|<i>y</i>⟩</span></span>.<sup id="cite_ref-FOOTNOTEde_la_Madrid_Modino200196,_106_78-0" class="reference"><a href="#cite_note-FOOTNOTEde_la_Madrid_Modino200196,_106-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> </p><p>Similar considerations apply to any other <a href="/wiki/Spectral_theorem#Unbounded_self-adjoint_operators" title="Spectral theorem">(unbounded) self-adjoint operator</a> with continuous spectrum and no degenerate eigenvalues, such as the <a href="/wiki/Momentum_operator" title="Momentum operator">momentum operator</a> <span class="texhtml mvar" style="font-style:italic;">P</span>. In that case, there is a set <span class="texhtml">Ω</span> of real numbers (the spectrum) and a collection of distributions <span class="texhtml mvar" style="font-style:italic;">φ<sub>y</sub></span> with <span class="texhtml"><i>y</i> ∈ Ω</span> such that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\varphi _{y}=y\varphi _{y}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mi>y</mi> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\varphi _{y}=y\varphi _{y}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3853f92b0c24a3eb6a0d85fd184fd0e4f513504" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.785ex; height:2.843ex;" alt="{\displaystyle P\varphi _{y}=y\varphi _{y}.}"></span> </p><p>That is, <span class="texhtml mvar" style="font-style:italic;">φ<sub>y</sub></span> are the generalized eigenvectors of <span class="texhtml mvar" style="font-style:italic;">P</span>. If they form an "orthonormal basis" in the distribution sense, that is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \varphi _{y},\varphi _{y'}\rangle =\delta (y-y'),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>y</mi> <mo>′</mo> </msup> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \varphi _{y},\varphi _{y'}\rangle =\delta (y-y'),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd9a3bae543ed91fbf83f9eba81d467c7776533" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.962ex; height:3.176ex;" alt="{\displaystyle \langle \varphi _{y},\varphi _{y'}\rangle =\delta (y-y'),}"></span> </p><p>then for any test function <span class="texhtml mvar" style="font-style:italic;">ψ</span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)=\int _{\Omega }c(y)\varphi _{y}(x)\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mi>c</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)=\int _{\Omega }c(y)\varphi _{y}(x)\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db273ee8be939ee91d25a6071556402b81b92add" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:23.288ex; height:5.676ex;" alt="{\displaystyle \psi (x)=\int _{\Omega }c(y)\varphi _{y}(x)\,dy}"></span> </p><p>where <span class="texhtml"><i>c</i>(<i>y</i>) = <span class="nowrap">⟨<i>ψ</i>, <i>φ<sub>y</sub></i>⟩</span></span>. That is, there is a resolution of the identity </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\int _{\Omega }|\varphi _{y}\rangle \,\langle \varphi _{y}|\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\int _{\Omega }|\varphi _{y}\rangle \,\langle \varphi _{y}|\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71af2b6e5c50f2a9d956bfaf06919f84ff19083f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.756ex; height:5.676ex;" alt="{\displaystyle I=\int _{\Omega }|\varphi _{y}\rangle \,\langle \varphi _{y}|\,dy}"></span> </p><p>where the operator-valued integral is again understood in the weak sense. If the spectrum of <span class="texhtml mvar" style="font-style:italic;">P</span> has both continuous and discrete parts, then the resolution of the identity involves a summation over the discrete spectrum and an integral over the continuous spectrum. </p><p>The delta function also has many more specialized applications in quantum mechanics, such as the <a href="/wiki/Delta_potential" title="Delta potential">delta potential</a> models for a single and double potential well. </p> <div class="mw-heading mw-heading3"><h3 id="Structural_mechanics">Structural mechanics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=37" title="Edit section: Structural mechanics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The delta function can be used in <a href="/wiki/Structural_mechanics" title="Structural mechanics">structural mechanics</a> to describe transient loads or point loads acting on structures. The governing equation of a simple <a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">mass–spring system</a> excited by a sudden force <a href="/wiki/Impulse_(physics)" title="Impulse (physics)">impulse</a> <span class="texhtml mvar" style="font-style:italic;">I</span> at time <span class="texhtml"><i>t</i> = 0</span> can be written </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m{\frac {d^{2}\xi }{dt^{2}}}+k\xi =I\delta (t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ξ<!-- ξ --></mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>k</mi> <mi>ξ<!-- ξ --></mi> <mo>=</mo> <mi>I</mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m{\frac {d^{2}\xi }{dt^{2}}}+k\xi =I\delta (t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18c095dc7dfac9d0a604cf5f01c7d330b777c618" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.875ex; height:6.009ex;" alt="{\displaystyle m{\frac {d^{2}\xi }{dt^{2}}}+k\xi =I\delta (t),}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">m</span> is the mass, <span class="texhtml mvar" style="font-style:italic;">ξ</span> is the deflection, and <span class="texhtml mvar" style="font-style:italic;">k</span> is the <a href="/wiki/Spring_constant" class="mw-redirect" title="Spring constant">spring constant</a>. </p><p>As another example, the equation governing the static deflection of a slender <a href="/wiki/Beam_(structure)" title="Beam (structure)">beam</a> is, according to <a href="/wiki/Euler%E2%80%93Bernoulli_beam_equation" class="mw-redirect" title="Euler–Bernoulli beam equation">Euler–Bernoulli theory</a>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle EI{\frac {d^{4}w}{dx^{4}}}=q(x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mi>w</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle EI{\frac {d^{4}w}{dx^{4}}}=q(x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c79f36e1a3902ecf7531e851fc917662483bd69" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.674ex; height:6.009ex;" alt="{\displaystyle EI{\frac {d^{4}w}{dx^{4}}}=q(x),}"></span> </p><p>where <span class="texhtml mvar" style="font-style:italic;">EI</span> is the <a href="/wiki/Bending_stiffness" title="Bending stiffness">bending stiffness</a> of the beam, <span class="texhtml mvar" style="font-style:italic;">w</span> is the <a href="/wiki/Deflection_(engineering)" title="Deflection (engineering)">deflection</a>, <span class="texhtml mvar" style="font-style:italic;">x</span> is the spatial coordinate, and <span class="texhtml"><i>q</i>(<i>x</i>)</span> is the load distribution. If a beam is loaded by a point force <span class="texhtml mvar" style="font-style:italic;">F</span> at <span class="texhtml"><i>x</i> = <i>x</i><sub>0</sub></span>, the load distribution is written </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(x)=F\delta (x-x_{0}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(x)=F\delta (x-x_{0}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339b0c1e87ddd55ace2ae43d72d4b54537ca5ee3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.107ex; height:2.843ex;" alt="{\displaystyle q(x)=F\delta (x-x_{0}).}"></span> </p><p>As the integration of the delta function results in the <a href="/wiki/Heaviside_step_function" title="Heaviside step function">Heaviside step function</a>, it follows that the static deflection of a slender beam subject to multiple point loads is described by a set of piecewise <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>. </p><p>Also, a point <a href="/wiki/Bending_moment" title="Bending moment">moment</a> acting on a beam can be described by delta functions. Consider two opposing point forces <span class="texhtml mvar" style="font-style:italic;">F</span> at a distance <span class="texhtml mvar" style="font-style:italic;">d</span> apart. They then produce a moment <span class="texhtml"><i>M</i> = <i>Fd</i></span> acting on the beam. Now, let the distance <span class="texhtml mvar" style="font-style:italic;">d</span> approach the <a href="/wiki/Limit_of_a_function" title="Limit of a function">limit</a> zero, while <span class="texhtml mvar" style="font-style:italic;">M</span> is kept constant. The load distribution, assuming a clockwise moment acting at <span class="texhtml"><i>x</i> = 0</span>, is written </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}q(x)&=\lim _{d\to 0}{\Big (}F\delta (x)-F\delta (x-d){\Big )}\\[4pt]&=\lim _{d\to 0}\left({\frac {M}{d}}\delta (x)-{\frac {M}{d}}\delta (x-d)\right)\\[4pt]&=M\lim _{d\to 0}{\frac {\delta (x)-\delta (x-d)}{d}}\\[4pt]&=M\delta '(x).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mi>F</mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>F</mi> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>M</mi> <mi>d</mi> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>M</mi> <mi>d</mi> </mfrac> </mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>M</mi> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>M</mi> <msup> <mi>δ<!-- δ --></mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}q(x)&=\lim _{d\to 0}{\Big (}F\delta (x)-F\delta (x-d){\Big )}\\[4pt]&=\lim _{d\to 0}\left({\frac {M}{d}}\delta (x)-{\frac {M}{d}}\delta (x-d)\right)\\[4pt]&=M\lim _{d\to 0}{\frac {\delta (x)-\delta (x-d)}{d}}\\[4pt]&=M\delta '(x).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd72d95be9328aeeea207fd8a970c1bdd5304b56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.782ex; margin-bottom: -0.223ex; width:37.02ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}q(x)&=\lim _{d\to 0}{\Big (}F\delta (x)-F\delta (x-d){\Big )}\\[4pt]&=\lim _{d\to 0}\left({\frac {M}{d}}\delta (x)-{\frac {M}{d}}\delta (x-d)\right)\\[4pt]&=M\lim _{d\to 0}{\frac {\delta (x)-\delta (x-d)}{d}}\\[4pt]&=M\delta '(x).\end{aligned}}}"></span> </p><p>Point moments can thus be represented by the <a href="/wiki/Derivative" title="Derivative">derivative</a> of the delta function. Integration of the beam equation again results in piecewise <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> deflection. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=38" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Atom_(measure_theory)" title="Atom (measure theory)">Atom (measure theory)</a></li> <li><a href="/wiki/Laplacian_of_the_indicator" title="Laplacian of the indicator">Laplacian of the indicator</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=39" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div style="clear:both;" class=""></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEatis2013unit_impulse-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEatis2013unit_impulse_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFatis2013">atis 2013</a>, unit impulse.</span> </li> <li id="cite_note-FOOTNOTEArfkenWeber200084-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArfkenWeber200084_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArfkenWeber2000">Arfken & Weber 2000</a>, p. 84.</span> </li> <li id="cite_note-FOOTNOTEDirac1930§22_The_''δ''_function-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEDirac1930§22_The_''δ''_function_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEDirac1930§22_The_''δ''_function_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFDirac1930">Dirac 1930</a>, §22 The <i>δ</i> function.</span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, Volume I, §1.1.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFZhao2011" class="citation book cs1">Zhao, Ji-Cheng (2011-05-05). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=blZYGDREpk8C&pg=PA174"><i>Methods for Phase Diagram Determination</i></a>. Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-054996-5" title="Special:BookSources/978-0-08-054996-5"><bdi>978-0-08-054996-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Methods+for+Phase+Diagram+Determination&rft.pub=Elsevier&rft.date=2011-05-05&rft.isbn=978-0-08-054996-5&rft.aulast=Zhao&rft.aufirst=Ji-Cheng&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DblZYGDREpk8C%26pg%3DPA174&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Fourier-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fourier_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFourier1822" class="citation book cs1"><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Fourier, JB</a> (1822). <i>The Analytical Theory of Heat</i> (English translation by Alexander Freeman, 1878 ed.). The University Press. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=-N8EAAAAYAAJ&pg=PA408">[1]</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Analytical+Theory+of+Heat&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-N8EAAAAYAAJ%26pg%3DPA408&rft.edition=English+translation+by+Alexander+Freeman%2C+1878&rft.pub=The+University+Press&rft.date=1822&rft.aulast=Fourier&rft.aufirst=JB&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>, cf. <a rel="nofollow" class="external free" href="https://books.google.com/books?id=-N8EAAAAYAAJ&pg=PA449">https://books.google.com/books?id=-N8EAAAAYAAJ&pg=PA449</a> and pp. 546–551. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TDQJAAAAIAAJ&pg=PA525">Original French text</a>.</span> </li> <li id="cite_note-Kawai-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kawai_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKomatsu2002" class="citation book cs1">Komatsu, Hikosaburo (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8GwKzEemrIcC">"Fourier's hyperfunctions and Heaviside's pseudodifferential operators"</a>. In <a href="/wiki/Takahiro_Kawai" title="Takahiro Kawai">Takahiro Kawai</a>; Keiko Fujita (eds.). <i>Microlocal Analysis and Complex Fourier Analysis</i>. World Scientific. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=8GwKzEemrIcC&pg=PA200">[2]</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-238-161-3" title="Special:BookSources/978-981-238-161-3"><bdi>978-981-238-161-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Fourier%27s+hyperfunctions+and+Heaviside%27s+pseudodifferential+operators&rft.btitle=Microlocal+Analysis+and+Complex+Fourier+Analysis&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8GwKzEemrIcC%26pg%3DPA200&rft.pub=World+Scientific&rft.date=2002&rft.isbn=978-981-238-161-3&rft.aulast=Komatsu&rft.aufirst=Hikosaburo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8GwKzEemrIcC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Myint-U-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Myint-U_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMyint-U.Debnath2007" class="citation book cs1">Myint-U., Tyn; <a href="/wiki/Lokenath_Debnath" title="Lokenath Debnath">Debnath, Lokenath</a> (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Zbz5_UvERIIC"><i>Linear Partial Differential Equations for Scientists And Engineers</i></a> (4th ed.). Springer. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=Zbz5_UvERIIC&pg=PA4">[3]</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4393-5" title="Special:BookSources/978-0-8176-4393-5"><bdi>978-0-8176-4393-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Partial+Differential+Equations+for+Scientists+And+Engineers&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZbz5_UvERIIC%26pg%3DPA4&rft.edition=4th&rft.pub=Springer&rft.date=2007&rft.isbn=978-0-8176-4393-5&rft.aulast=Myint-U.&rft.aufirst=Tyn&rft.au=Debnath%2C+Lokenath&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZbz5_UvERIIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Debnath-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Debnath_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDebnathBhatta2007" class="citation book cs1">Debnath, Lokenath; Bhatta, Dambaru (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WbZcqdvCEfwC"><i>Integral Transforms And Their Applications</i></a> (2nd ed.). <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=WbZcqdvCEfwC&pg=PA2">[4]</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58488-575-7" title="Special:BookSources/978-1-58488-575-7"><bdi>978-1-58488-575-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Integral+Transforms+And+Their+Applications&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWbZcqdvCEfwC%26pg%3DPA2&rft.edition=2nd&rft.pub=CRC+Press&rft.date=2007&rft.isbn=978-1-58488-575-7&rft.aulast=Debnath&rft.aufirst=Lokenath&rft.au=Bhatta%2C+Dambaru&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWbZcqdvCEfwC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Grattan-Guinness-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Grattan-Guinness_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrattan-Guinness2009" class="citation book cs1"><a href="/wiki/Ivor_Grattan-Guinness" title="Ivor Grattan-Guinness">Grattan-Guinness, Ivor</a> (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_GgioErrbW8C"><i>Convolutions in French Mathematics, 1800–1840: From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics, Volume 2</i></a>. Birkhäuser. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_GgioErrbW8C&pg=PA653">653</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7643-2238-0" title="Special:BookSources/978-3-7643-2238-0"><bdi>978-3-7643-2238-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Convolutions+in+French+Mathematics%2C+1800%E2%80%931840%3A+From+the+Calculus+and+Mechanics+to+Mathematical+Analysis+and+Mathematical+Physics%2C+Volume+2&rft.pages=653&rft.pub=Birkh%C3%A4user&rft.date=2009&rft.isbn=978-3-7643-2238-0&rft.aulast=Grattan-Guinness&rft.aufirst=Ivor&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_GgioErrbW8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Cauchy-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cauchy_11-0">^</a></b></span> <span class="reference-text"> See, for example, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCauchy1882–1974" class="citation book cs1">Cauchy, Augustin-Louis (1789-1857) Auteur du texte (1882–1974). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k90181x/f387">"Des intégrales doubles qui se présentent sous une forme indéterminèe"</a>. <a rel="nofollow" class="external text" href="https://gallica.bnf.fr/ark:/12148/bpt6k90181x"><i>Oeuvres complètes d'Augustin Cauchy. Série 1, tome 1 / publiées sous la direction scientifique de l'Académie des sciences et sous les auspices de M. le ministre de l'Instruction publique...</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Des+int%C3%A9grales+doubles+qui+se+pr%C3%A9sentent+sous+une+forme+ind%C3%A9termin%C3%A8e&rft.btitle=Oeuvres+compl%C3%A8tes+d%27Augustin+Cauchy.+S%C3%A9rie+1%2C+tome+1+%2F+publi%C3%A9es+sous+la+direction+scientifique+de+l%27Acad%C3%A9mie+des+sciences+et+sous+les+auspices+de+M.+le+ministre+de+l%27Instruction+publique...&rft.date=1882%2F1974&rft.aulast=Cauchy&rft.aufirst=Augustin-Louis+%281789-1857%29+Auteur+du+texte&rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k90181x%2Ff387&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: numeric names: authors list (<a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">link</a>)</span></span> </li> <li id="cite_note-Mitrović-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mitrović_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitrovićŽubrinić1998" class="citation book cs1">Mitrović, Dragiša; Žubrinić, Darko (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Od5BxTEN0VsC"><i>Fundamentals of Applied Functional Analysis: Distributions, Sobolev Spaces</i></a>. CRC Press. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Od5BxTEN0VsC&pg=PA62">62</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-582-24694-2" title="Special:BookSources/978-0-582-24694-2"><bdi>978-0-582-24694-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Applied+Functional+Analysis%3A+Distributions%2C+Sobolev+Spaces&rft.pages=62&rft.pub=CRC+Press&rft.date=1998&rft.isbn=978-0-582-24694-2&rft.aulast=Mitrovi%C4%87&rft.aufirst=Dragi%C5%A1a&rft.au=%C5%BDubrini%C4%87%2C+Darko&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOd5BxTEN0VsC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-Kracht-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kracht_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrachtKreyszig1989" class="citation book cs1">Kracht, Manfred; <a href="/wiki/Erwin_Kreyszig" title="Erwin Kreyszig">Kreyszig, Erwin</a> (1989). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xIsPrSiDlZIC">"On singular integral operators and generalizations"</a>. In Themistocles M. Rassias (ed.). <i>Topics in Mathematical Analysis: A Volume Dedicated to the Memory of A.L. Cauchy</i>. World Scientific. p. <a rel="nofollow" class="external free" href="https://books.google.com/books?id=xIsPrSiDlZIC&pg=PA553">https://books.google.com/books?id=xIsPrSiDlZIC&pg=PA553</a> 553]. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9971-5-0666-7" title="Special:BookSources/978-9971-5-0666-7"><bdi>978-9971-5-0666-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=On+singular+integral+operators+and+generalizations&rft.btitle=Topics+in+Mathematical+Analysis%3A+A+Volume+Dedicated+to+the+Memory+of+A.L.+Cauchy&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxIsPrSiDlZIC%26pg%3DPA553+553&rft.pub=World+Scientific&rft.date=1989&rft.isbn=978-9971-5-0666-7&rft.aulast=Kracht&rft.aufirst=Manfred&rft.au=Kreyszig%2C+Erwin&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxIsPrSiDlZIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTELaugwitz1989230-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELaugwitz1989230_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLaugwitz1989">Laugwitz 1989</a>, p. 230.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">A more complete historical account can be found in <a href="#CITEREFvan_der_PolBremmer1987">van der Pol & Bremmer 1987</a>, §V.4.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDirac1927" class="citation journal cs1">Dirac, P. A. M. (January 1927). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1927.0012">"The physical interpretation of the quantum dynamics"</a>. <i>Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character</i>. <b>113</b> (765): 621–641. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1927RSPSA.113..621D">1927RSPSA.113..621D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1927.0012">10.1098/rspa.1927.0012</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0950-1207">0950-1207</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122855515">122855515</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London.+Series+A%2C+Containing+Papers+of+a+Mathematical+and+Physical+Character&rft.atitle=The+physical+interpretation+of+the+quantum+dynamics&rft.volume=113&rft.issue=765&rft.pages=621-641&rft.date=1927-01&rft_id=info%3Adoi%2F10.1098%2Frspa.1927.0012&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122855515%23id-name%3DS2CID&rft.issn=0950-1207&rft_id=info%3Abibcode%2F1927RSPSA.113..621D&rft.aulast=Dirac&rft.aufirst=P.+A.+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1927.0012&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1,_p._1-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968Volume_I,_§1.1,_p._1_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, Volume I, §1.1, p. 1.</span> </li> <li id="cite_note-FOOTNOTEDirac193063-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDirac193063_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDirac1930">Dirac 1930</a>, p. 63.</span> </li> <li id="cite_note-Rudin_1966_loc=§1.20-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rudin_1966_loc=§1.20_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1966">Rudin 1966</a>, §1.20</span> </li> <li id="cite_note-FOOTNOTEHewittStromberg1963§19.61-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHewittStromberg1963§19.61_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1963">Hewitt & Stromberg 1963</a>, §19.61.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a href="#CITEREFDriggers2003">Driggers 2003</a>, p. 2321 See also <a href="#CITEREFBracewell1986">Bracewell 1986</a>, Chapter 5 for a different interpretation. Other conventions for the assigning the value of the Heaviside function at zero exist, and some of these are not consistent with what follows.</span> </li> <li id="cite_note-FOOTNOTEHewittStromberg1963§9.19-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHewittStromberg1963§9.19_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHewittStromberg1963">Hewitt & Stromberg 1963</a>, §9.19.</span> </li> <li id="cite_note-FOOTNOTEHazewinkel2011[httpsbooksgooglecombooksid_YPtCAAAQBAJpgPA41_41]-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHazewinkel2011[httpsbooksgooglecombooksid_YPtCAAAQBAJpgPA41_41]_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHazewinkel2011">Hazewinkel 2011</a>, p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_YPtCAAAQBAJ&pg=PA41">41</a>.</span> </li> <li id="cite_note-FOOTNOTEStrichartz1994§2.2-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStrichartz1994§2.2_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStrichartz1994">Strichartz 1994</a>, §2.2.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983Theorem_2.1.5-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983Theorem_2.1.5_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, Theorem 2.1.5.</span> </li> <li id="cite_note-FOOTNOTEBracewell1986Chapter_5-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBracewell1986Chapter_5_26-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBracewell1986">Bracewell 1986</a>, Chapter 5.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983§3.1-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983§3.1_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, §3.1.</span> </li> <li id="cite_note-FOOTNOTEStrichartz1994§2.3-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStrichartz1994§2.3_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStrichartz1994">Strichartz 1994</a>, §2.3.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983§8.2-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983§8.2_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, §8.2.</span> </li> <li id="cite_note-FOOTNOTERudin1966§1.20-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1966§1.20_30-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1966">Rudin 1966</a>, §1.20.</span> </li> <li id="cite_note-FOOTNOTEDieudonné1972§17.3.3-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDieudonné1972§17.3.3_31-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDieudonné1972">Dieudonné 1972</a>, §17.3.3.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrantzParks2008" class="citation book cs1">Krantz, Steven G.; Parks, Harold R. (2008-12-15). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=X_BKmVphIcsC&q"><i>Geometric Integration Theory</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4679-0" title="Special:BookSources/978-0-8176-4679-0"><bdi>978-0-8176-4679-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometric+Integration+Theory&rft.pub=Springer+Science+%26+Business+Media&rft.date=2008-12-15&rft.isbn=978-0-8176-4679-0&rft.aulast=Krantz&rft.aufirst=Steven+G.&rft.au=Parks%2C+Harold+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DX_BKmVphIcsC%26q&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEFederer1969§2.5.19-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEFederer1969§2.5.19_33-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFFederer1969">Federer 1969</a>, §2.5.19.</span> </li> <li id="cite_note-FOOTNOTEStrichartz1994Problem_2.6.2-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStrichartz1994Problem_2.6.2_34-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStrichartz1994">Strichartz 1994</a>, Problem 2.6.2.</span> </li> <li id="cite_note-FOOTNOTEVladimirov1971Chapter_2,_Example_3(d)-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEVladimirov1971Chapter_2,_Example_3(d)_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFVladimirov1971">Vladimirov 1971</a>, Chapter 2, Example 3(d).</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Sifting_Property"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/SiftingProperty.html">"Sifting Property"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Sifting+Property&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FSiftingProperty.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKarris2003" class="citation book cs1">Karris, Steven T. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=f0RdM1zv_dkC"><i>Signals and Systems with MATLAB Applications</i></a>. Orchard Publications. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=f0RdM1zv_dkC&pg=SA1-PA15">15</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9709511-6-8" title="Special:BookSources/978-0-9709511-6-8"><bdi>978-0-9709511-6-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Signals+and+Systems+with+MATLAB+Applications&rft.pages=15&rft.pub=Orchard+Publications&rft.date=2003&rft.isbn=978-0-9709511-6-8&rft.aulast=Karris&rft.aufirst=Steven+T.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Df0RdM1zv_dkC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoden2014" class="citation book cs1">Roden, Martin S. (2014-05-17). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YEKeBQAAQBAJ"><i>Introduction to Communication Theory</i></a>. Elsevier. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=YEKeBQAAQBAJ&pg=PA40">[5]</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4831-4556-3" title="Special:BookSources/978-1-4831-4556-3"><bdi>978-1-4831-4556-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Communication+Theory&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYEKeBQAAQBAJ%26pg%3DPA40&rft.pub=Elsevier&rft.date=2014-05-17&rft.isbn=978-1-4831-4556-3&rft.aulast=Roden&rft.aufirst=Martin+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYEKeBQAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRottwittTidemand-Lichtenberg2014" class="citation book cs1">Rottwitt, Karsten; Tidemand-Lichtenberg, Peter (2014-12-11). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G1jSBQAAQBAJ"><i>Nonlinear Optics: Principles and Applications</i></a>. CRC Press. p. <a rel="nofollow" class="external autonumber" href="https://books.google.com/books?id=G1jSBQAAQBAJ&pg=PA276">[6]</a> 276. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4665-6583-8" title="Special:BookSources/978-1-4665-6583-8"><bdi>978-1-4665-6583-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nonlinear+Optics%3A+Principles+and+Applications&rft.pages=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG1jSBQAAQBAJ%26pg%3DPA276+276&rft.pub=CRC+Press&rft.date=2014-12-11&rft.isbn=978-1-4665-6583-8&rft.aulast=Rottwitt&rft.aufirst=Karsten&rft.au=Tidemand-Lichtenberg%2C+Peter&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG1jSBQAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968Vol._1,_§II.2.5-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968Vol._1,_§II.2.5_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, Vol. 1, §II.2.5.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Further refinement is possible, namely to <a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">submersions</a>, although these require a more involved change of variables formula.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983§6.1-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983§6.1_42-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, §6.1.</span> </li> <li id="cite_note-FOOTNOTELange2012pp.29–30-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELange2012pp.29–30_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLange2012">Lange 2012</a>, pp.29–30.</span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968212-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968212_44-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, p. 212.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">The numerical factors depend on the <a href="/wiki/Fourier_transform#Other_conventions" title="Fourier transform">conventions</a> for the Fourier transform.</span> </li> <li id="cite_note-FOOTNOTEBracewell1986-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBracewell1986_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBracewell1986">Bracewell 1986</a>.</span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–196826-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–196826_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, p. 26.</span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968§2.1-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968§2.1_48-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, §2.1.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Doublet_Function"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/DoubletFunction.html">"Doublet Function"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Doublet+Function&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDoubletFunction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span></span> </li> <li id="cite_note-FOOTNOTEBracewell200086-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBracewell200086_50-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBracewell2000">Bracewell 2000</a>, p. 86.</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.matematicamente.it/forum/viewtopic.php?f=36&t=62388&start=10#wrap">"Gugo82's comment on the distributional derivative of Dirac's delta"</a>. <i>matematicamente.it</i>. 12 September 2010.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=matematicamente.it&rft.atitle=Gugo82%27s+comment+on+the+distributional+derivative+of+Dirac%27s+delta&rft.date=2010-09-12&rft_id=https%3A%2F%2Fwww.matematicamente.it%2Fforum%2Fviewtopic.php%3Ff%3D36%26t%3D62388%26start%3D10%23wrap&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEHörmander198356-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHörmander198356_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHörmander198356_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHörmander198356_52-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, p. 56.</span> </li> <li id="cite_note-FOOTNOTERudin1991Theorem_6.25-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991Theorem_6.25_53-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, Theorem 6.25.</span> </li> <li id="cite_note-FOOTNOTESteinWeiss1971Theorem_1.18-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESteinWeiss1971Theorem_1.18_54-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein & Weiss 1971</a>, Theorem 1.18.</span> </li> <li id="cite_note-FOOTNOTERudin1991§II.6.31-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERudin1991§II.6.31_55-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1991">Rudin 1991</a>, §II.6.31.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">More generally, one only needs <span class="texhtml"><i>η</i> = <i>η</i><sub>1</sub></span> to have an integrable radially symmetric decreasing rearrangement.</span> </li> <li id="cite_note-FOOTNOTESaichevWoyczyński1997§1.1_The_"delta_function"_as_viewed_by_a_physicist_and_an_engineer,_p._3-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESaichevWoyczyński1997§1.1_The_"delta_function"_as_viewed_by_a_physicist_and_an_engineer,_p._3_57-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSaichevWoyczyński1997">Saichev & Woyczyński 1997</a>, §1.1 The "delta function" as viewed by a physicist and an engineer, p. 3.</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilovanovićRassias2014" class="citation book cs1">Milovanović, Gradimir V.; Rassias, Michael Th (2014-07-08). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4U-5BQAAQBAJ"><i>Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava</i></a>. Springer. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4U-5BQAAQBAJ&pg=PA748">748</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4939-0258-3" title="Special:BookSources/978-1-4939-0258-3"><bdi>978-1-4939-0258-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analytic+Number+Theory%2C+Approximation+Theory%2C+and+Special+Functions%3A+In+Honor+of+Hari+M.+Srivastava&rft.pages=748&rft.pub=Springer&rft.date=2014-07-08&rft.isbn=978-1-4939-0258-3&rft.aulast=Milovanovi%C4%87&rft.aufirst=Gradimir+V.&rft.au=Rassias%2C+Michael+Th&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4U-5BQAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTESteinWeiss1971§I.1-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTESteinWeiss1971§I.1_59-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteinWeiss1971">Stein & Weiss 1971</a>, §I.1.</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMader2006" class="citation book cs1">Mader, Heidy M. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e5Y_RRPxdyYC"><i>Statistics in Volcanology</i></a>. Geological Society of London. p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=e5Y_RRPxdyYC&pg=PA81">81</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-86239-208-3" title="Special:BookSources/978-1-86239-208-3"><bdi>978-1-86239-208-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistics+in+Volcanology&rft.pages=81&rft.pub=Geological+Society+of+London&rft.date=2006&rft.isbn=978-1-86239-208-3&rft.aulast=Mader&rft.aufirst=Heidy+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3De5Y_RRPxdyYC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEValléeSoares2004§7.2-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEValléeSoares2004§7.2_61-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFValléeSoares2004">Vallée & Soares 2004</a>, §7.2.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983§7.8-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983§7.8_62-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, §7.8.</span> </li> <li id="cite_note-FOOTNOTECourantHilbert1962§14-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECourantHilbert1962§14_63-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCourantHilbert1962">Courant & Hilbert 1962</a>, §14.</span> </li> <li id="cite_note-FOOTNOTEGelfandShilov1966–1968I,_§3.10-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGelfandShilov1966–1968I,_§3.10_64-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGelfandShilov1966–1968">Gelfand & Shilov 1966–1968</a>, I, §3.10.</span> </li> <li id="cite_note-FOOTNOTELang1997312-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELang1997312_65-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLang1997">Lang 1997</a>, p. 312.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text">In the terminology of <a href="#CITEREFLang1997">Lang (1997)</a>, the Fejér kernel is a Dirac sequence, whereas the Dirichlet kernel is not.</span> </li> <li id="cite_note-FOOTNOTEHazewinkel1995[httpsbooksgooglecombooksidPE1a-EIG22kCpgPA357_357]-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHazewinkel1995[httpsbooksgooglecombooksidPE1a-EIG22kCpgPA357_357]_67-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHazewinkel1995">Hazewinkel 1995</a>, p. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PE1a-EIG22kC&pg=PA357">357</a>.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"> The development of this section in bra–ket notation is found in (<a href="#CITEREFLevin2002">Levin 2002</a>, Coordinate-space wave functions and completeness, pp.=109<i>ff</i>)</span> </li> <li id="cite_note-FOOTNOTEDavisThomson2000Perfect_operators,_p.344-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDavisThomson2000Perfect_operators,_p.344_69-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDavisThomson2000">Davis & Thomson 2000</a>, Perfect operators, p.344.</span> </li> <li id="cite_note-FOOTNOTEDavisThomson2000Equation_8.9.11,_p._344-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDavisThomson2000Equation_8.9.11,_p._344_70-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDavisThomson2000">Davis & Thomson 2000</a>, Equation 8.9.11, p. 344.</span> </li> <li id="cite_note-FOOTNOTEde_la_MadridBohmGadella2002-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEde_la_MadridBohmGadella2002_71-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFde_la_MadridBohmGadella2002">de la Madrid, Bohm & Gadella 2002</a>.</span> </li> <li id="cite_note-FOOTNOTELaugwitz1989-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTELaugwitz1989_72-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLaugwitz1989">Laugwitz 1989</a>.</span> </li> <li id="cite_note-FOOTNOTECórdoba1988-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECórdoba1988_73-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCórdoba1988">Córdoba 1988</a>.</span> </li> <li id="cite_note-FOOTNOTEHörmander1983[httpsbooksgooglecombooksidaaLrCAAAQBAJpgPA177_§7.2]-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHörmander1983[httpsbooksgooglecombooksidaaLrCAAAQBAJpgPA177_§7.2]_74-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1983">Hörmander 1983</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aaLrCAAAQBAJ&pg=PA177">§7.2</a>.</span> </li> <li id="cite_note-FOOTNOTEVladimirov1971§5.7-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEVladimirov1971§5.7_75-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFVladimirov1971">Vladimirov 1971</a>, §5.7.</span> </li> <li id="cite_note-FOOTNOTEHartmann1997pp._154–155-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHartmann1997pp._154–155_76-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartmann1997">Hartmann 1997</a>, pp. 154–155.</span> </li> <li id="cite_note-FOOTNOTEIsham1995§6.2-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEIsham1995§6.2_77-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFIsham1995">Isham 1995</a>, §6.2.</span> </li> <li id="cite_note-FOOTNOTEde_la_Madrid_Modino200196,_106-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEde_la_Madrid_Modino200196,_106_78-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFde_la_Madrid_Modino2001">de la Madrid Modino 2001</a>, pp. 96, 106.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=40" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAratynRasinariu2006" class="citation cs2">Aratyn, Henrik; Rasinariu, Constantin (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JFmUQGd1I3IC&pg=PA314"><i>A short course in mathematical methods with Maple</i></a>, World Scientific, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-256-461-0" title="Special:BookSources/978-981-256-461-0"><bdi>978-981-256-461-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+short+course+in+mathematical+methods+with+Maple&rft.pub=World+Scientific&rft.date=2006&rft.isbn=978-981-256-461-0&rft.aulast=Aratyn&rft.aufirst=Henrik&rft.au=Rasinariu%2C+Constantin&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJFmUQGd1I3IC%26pg%3DPA314&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArfkenWeber2000" class="citation cs2"><a href="/wiki/George_B._Arfken" title="George B. Arfken">Arfken, G. B.</a>; Weber, H. J. (2000), <i>Mathematical Methods for Physicists</i> (5th ed.), Boston, Massachusetts: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-059825-0" title="Special:BookSources/978-0-12-059825-0"><bdi>978-0-12-059825-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Methods+for+Physicists&rft.place=Boston%2C+Massachusetts&rft.edition=5th&rft.pub=Academic+Press&rft.date=2000&rft.isbn=978-0-12-059825-0&rft.aulast=Arfken&rft.aufirst=G.+B.&rft.au=Weber%2C+H.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFatis2013" class="citation cs2">atis (2013), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130313211636/http://www.atis.org/glossary/definition.aspx?id=743"><i>ATIS Telecom Glossary</i></a>, archived from <a rel="nofollow" class="external text" href="http://www.atis.org/glossary/definition.aspx?id=743">the original</a> on 2013-03-13</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=ATIS+Telecom+Glossary&rft.date=2013&rft.au=atis&rft_id=http%3A%2F%2Fwww.atis.org%2Fglossary%2Fdefinition.aspx%3Fid%3D743&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBracewell1986" class="citation cs2"><a href="/wiki/Ronald_N._Bracewell" title="Ronald N. Bracewell">Bracewell, R. N.</a> (1986), <i>The Fourier Transform and Its Applications</i> (2nd ed.), McGraw-Hill</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Fourier+Transform+and+Its+Applications&rft.edition=2nd&rft.pub=McGraw-Hill&rft.date=1986&rft.aulast=Bracewell&rft.aufirst=R.+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBracewell2000" class="citation cs2"><a href="/wiki/Ronald_N._Bracewell" title="Ronald N. Bracewell">Bracewell, R. N.</a> (2000), <i>The Fourier Transform and Its Applications</i> (3rd ed.), McGraw-Hill</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Fourier+Transform+and+Its+Applications&rft.edition=3rd&rft.pub=McGraw-Hill&rft.date=2000&rft.aulast=Bracewell&rft.aufirst=R.+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCórdoba1988" class="citation cs2">Córdoba, A. (1988), "La formule sommatoire de Poisson", <i>Comptes Rendus de l'Académie des Sciences, Série I</i>, <b>306</b>: 373–376</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences%2C+S%C3%A9rie+I&rft.atitle=La+formule+sommatoire+de+Poisson&rft.volume=306&rft.pages=373-376&rft.date=1988&rft.aulast=C%C3%B3rdoba&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCourantHilbert1962" class="citation cs2"><a href="/wiki/Richard_Courant" title="Richard Courant">Courant, Richard</a>; <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (1962), <i>Methods of Mathematical Physics, Volume II</i>, Wiley-Interscience</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Methods+of+Mathematical+Physics%2C+Volume+II&rft.pub=Wiley-Interscience&rft.date=1962&rft.aulast=Courant&rft.aufirst=Richard&rft.au=Hilbert%2C+David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavisThomson2000" class="citation cs2">Davis, Howard Ted; Thomson, Kendall T (2000), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3OqoMFHLhG0C&pg=PA344"><i>Linear algebra and linear operators in engineering with applications in Mathematica</i></a>, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-206349-7" title="Special:BookSources/978-0-12-206349-7"><bdi>978-0-12-206349-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+algebra+and+linear+operators+in+engineering+with+applications+in+Mathematica&rft.pub=Academic+Press&rft.date=2000&rft.isbn=978-0-12-206349-7&rft.aulast=Davis&rft.aufirst=Howard+Ted&rft.au=Thomson%2C+Kendall+T&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3OqoMFHLhG0C%26pg%3DPA344&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1976" class="citation cs2"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1976), <i>Treatise on analysis. Vol. II</i>, New York: Academic Press [Harcourt Brace Jovanovich Publishers], <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-215502-4" title="Special:BookSources/978-0-12-215502-4"><bdi>978-0-12-215502-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0530406">0530406</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Treatise+on+analysis.+Vol.+II&rft.place=New+York&rft.pub=Academic+Press+%5BHarcourt+Brace+Jovanovich+Publishers%5D&rft.date=1976&rft.isbn=978-0-12-215502-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0530406%23id-name%3DMR&rft.aulast=Dieudonn%C3%A9&rft.aufirst=Jean&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1972" class="citation cs2"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1972), <i>Treatise on analysis. Vol. III</i>, Boston, Massachusetts: Academic Press, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0350769">0350769</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Treatise+on+analysis.+Vol.+III&rft.place=Boston%2C+Massachusetts&rft.pub=Academic+Press&rft.date=1972&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0350769%23id-name%3DMR&rft.aulast=Dieudonn%C3%A9&rft.aufirst=Jean&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDirac1930" class="citation cs2"><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac, Paul</a> (1930), <a href="/wiki/The_Principles_of_Quantum_Mechanics" title="The Principles of Quantum Mechanics"><i>The Principles of Quantum Mechanics</i></a> (1st ed.), Oxford University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Principles+of+Quantum+Mechanics&rft.edition=1st&rft.pub=Oxford+University+Press&rft.date=1930&rft.aulast=Dirac&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDriggers2003" class="citation cs2">Driggers, Ronald G. (2003), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4hBTUY_2BMIC"><i>Encyclopedia of Optical Engineering</i></a>, CRC Press, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003eoe..book.....D">2003eoe..book.....D</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-0940-2" title="Special:BookSources/978-0-8247-0940-2"><bdi>978-0-8247-0940-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+Optical+Engineering&rft.pub=CRC+Press&rft.date=2003&rft_id=info%3Abibcode%2F2003eoe..book.....D&rft.isbn=978-0-8247-0940-2&rft.aulast=Driggers&rft.aufirst=Ronald+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4hBTUY_2BMIC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuistermaatKolk2010" class="citation cs2"><a href="/wiki/Hans_Duistermaat" title="Hans Duistermaat">Duistermaat, Hans</a>; Kolk (2010), <i>Distributions: Theory and applications</i>, Springer</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Distributions%3A+Theory+and+applications&rft.pub=Springer&rft.date=2010&rft.aulast=Duistermaat&rft.aufirst=Hans&rft.au=Kolk&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFederer1969" class="citation cs2"><a href="/wiki/Herbert_Federer" title="Herbert Federer">Federer, Herbert</a> (1969), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jld-BgAAQBAJ"><i>Geometric measure theory</i></a>, Die Grundlehren der mathematischen Wissenschaften, vol. 153, New York: Springer-Verlag, pp. xiv+676, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-60656-7" title="Special:BookSources/978-3-540-60656-7"><bdi>978-3-540-60656-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0257325">0257325</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometric+measure+theory&rft.place=New+York&rft.series=Die+Grundlehren+der+mathematischen+Wissenschaften&rft.pages=xiv%2B676&rft.pub=Springer-Verlag&rft.date=1969&rft.isbn=978-3-540-60656-7&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0257325%23id-name%3DMR&rft.aulast=Federer&rft.aufirst=Herbert&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Djld-BgAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGannon2008" class="citation cs2">Gannon, Terry (2008), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZOfUsvemJDMC&pg=PA539">"Vertex operator algebras"</a>, <i>Princeton Companion to Mathematics</i>, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1400830398" title="Special:BookSources/978-1400830398"><bdi>978-1400830398</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Vertex+operator+algebras&rft.btitle=Princeton+Companion+to+Mathematics&rft.pub=Princeton+University+Press&rft.date=2008&rft.isbn=978-1400830398&rft.aulast=Gannon&rft.aufirst=Terry&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZOfUsvemJDMC%26pg%3DPA539&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfandShilov1966–1968" class="citation cs2"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gelfand, I. M.</a>; Shilov, G. E. (1966–1968), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nAnjBQAAQBAJ"><i>Generalized functions</i></a>, vol. 1–5, Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781483262246" title="Special:BookSources/9781483262246"><bdi>9781483262246</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Generalized+functions&rft.pub=Academic+Press&rft.date=1966%2F1968&rft.isbn=9781483262246&rft.aulast=Gelfand&rft.aufirst=I.+M.&rft.au=Shilov%2C+G.+E.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnAnjBQAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartmann1997" class="citation cs2">Hartmann, William M. (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3N72rIoTHiEC"><i>Signals, sound, and sensation</i></a>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56396-283-7" title="Special:BookSources/978-1-56396-283-7"><bdi>978-1-56396-283-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Signals%2C+sound%2C+and+sensation&rft.pub=Springer&rft.date=1997&rft.isbn=978-1-56396-283-7&rft.aulast=Hartmann&rft.aufirst=William+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3N72rIoTHiEC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHazewinkel1995" class="citation book cs1">Hazewinkel, Michiel (1995). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PE1a-EIG22kC&pg=PA357"><i>Encyclopaedia of Mathematics (set)</i></a>. Springer Science & Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-55608-010-4" title="Special:BookSources/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedia+of+Mathematics+%28set%29&rft.pub=Springer+Science+%26+Business+Media&rft.date=1995&rft.isbn=978-1-55608-010-4&rft.aulast=Hazewinkel&rft.aufirst=Michiel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPE1a-EIG22kC%26pg%3DPA357&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHazewinkel2011" class="citation book cs1"><a href="/wiki/Michiel_Hazewinkel" title="Michiel Hazewinkel">Hazewinkel, Michiel</a> (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id="><i>Encyclopaedia of mathematics</i></a>. Vol. 10. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-90-481-4896-7" title="Special:BookSources/978-90-481-4896-7"><bdi>978-90-481-4896-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/751862625">751862625</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedia+of+mathematics&rft.pub=Springer&rft.date=2011&rft_id=info%3Aoclcnum%2F751862625&rft.isbn=978-90-481-4896-7&rft.aulast=Hazewinkel&rft.aufirst=Michiel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHewittStromberg1963" class="citation cs2"><a href="/wiki/Edwin_Hewitt" title="Edwin Hewitt">Hewitt, E</a>; Stromberg, K (1963), <i>Real and abstract analysis</i>, Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Real+and+abstract+analysis&rft.pub=Springer-Verlag&rft.date=1963&rft.aulast=Hewitt&rft.aufirst=E&rft.au=Stromberg%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHörmander1983" class="citation cs2"><a href="/wiki/Lars_H%C3%B6rmander" title="Lars Hörmander">Hörmander, L.</a> (1983), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aaLrCAAAQBAJ"><i>The analysis of linear partial differential operators I</i></a>, Grundl. Math. Wissenschaft., vol. 256, Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-96750-4">10.1007/978-3-642-96750-4</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-12104-6" title="Special:BookSources/978-3-540-12104-6"><bdi>978-3-540-12104-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0717035">0717035</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+analysis+of+linear+partial+differential+operators+I&rft.series=Grundl.+Math.+Wissenschaft.&rft.pub=Springer&rft.date=1983&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0717035%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-96750-4&rft.isbn=978-3-540-12104-6&rft.aulast=H%C3%B6rmander&rft.aufirst=L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaaLrCAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIsham1995" class="citation cs2">Isham, C. J. (1995), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dVs8PcZ0Hd8C"><i>Lectures on quantum theory: mathematical and structural foundations</i></a>, Imperial College Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-81-7764-190-5" title="Special:BookSources/978-81-7764-190-5"><bdi>978-81-7764-190-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+quantum+theory%3A+mathematical+and+structural+foundations&rft.pub=Imperial+College+Press&rft.date=1995&rft.isbn=978-81-7764-190-5&rft.aulast=Isham&rft.aufirst=C.+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdVs8PcZ0Hd8C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn1955" class="citation cs2"><a href="/wiki/Fritz_John" title="Fritz John">John, Fritz</a> (1955), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JP6ABuUnhecC"><i>Plane waves and spherical means applied to partial differential equations</i></a>, Interscience Publishers, New York-London, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780486438047" title="Special:BookSources/9780486438047"><bdi>9780486438047</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0075429">0075429</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Plane+waves+and+spherical+means+applied+to+partial+differential+equations&rft.pub=Interscience+Publishers%2C+New+York-London&rft.date=1955&rft.isbn=9780486438047&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0075429%23id-name%3DMR&rft.aulast=John&rft.aufirst=Fritz&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJP6ABuUnhecC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1997" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1997), <i>Undergraduate analysis</i>, <a href="/wiki/Undergraduate_Texts_in_Mathematics" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a> (2nd ed.), Berlin, New York: Springer-Verlag, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4757-2698-5">10.1007/978-1-4757-2698-5</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-94841-6" title="Special:BookSources/978-0-387-94841-6"><bdi>978-0-387-94841-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1476913">1476913</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Undergraduate+analysis&rft.place=Berlin%2C+New+York&rft.series=Undergraduate+Texts+in+Mathematics&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1476913%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4757-2698-5&rft.isbn=978-0-387-94841-6&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLange2012" class="citation cs2">Lange, Rutger-Jan (2012), "Potential theory, path integrals and the Laplacian of the indicator", <i>Journal of High Energy Physics</i>, <b>2012</b> (11): 29–30, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1302.0864">1302.0864</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JHEP...11..032L">2012JHEP...11..032L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FJHEP11%282012%29032">10.1007/JHEP11(2012)032</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56188533">56188533</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+High+Energy+Physics&rft.atitle=Potential+theory%2C+path+integrals+and+the+Laplacian+of+the+indicator&rft.volume=2012&rft.issue=11&rft.pages=29-30&rft.date=2012&rft_id=info%3Aarxiv%2F1302.0864&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56188533%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FJHEP11%282012%29032&rft_id=info%3Abibcode%2F2012JHEP...11..032L&rft.aulast=Lange&rft.aufirst=Rutger-Jan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaugwitz1989" class="citation cs2"><a href="/wiki/Detlef_Laugwitz" title="Detlef Laugwitz">Laugwitz, D.</a> (1989), "Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820", <i>Arch. Hist. Exact Sci.</i>, <b>39</b> (3): 195–245, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00329867">10.1007/BF00329867</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120890300">120890300</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Arch.+Hist.+Exact+Sci.&rft.atitle=Definite+values+of+infinite+sums%3A+aspects+of+the+foundations+of+infinitesimal+analysis+around+1820&rft.volume=39&rft.issue=3&rft.pages=195-245&rft.date=1989&rft_id=info%3Adoi%2F10.1007%2FBF00329867&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120890300%23id-name%3DS2CID&rft.aulast=Laugwitz&rft.aufirst=D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevin2002" class="citation cs2">Levin, Frank S. (2002), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=oc64f4EspFgC&pg=PA109">"Coordinate-space wave functions and completeness"</a>, <i>An introduction to quantum theory</i>, Cambridge University Press, pp. 109<i>ff</i>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-59841-5" title="Special:BookSources/978-0-521-59841-5"><bdi>978-0-521-59841-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Coordinate-space+wave+functions+and+completeness&rft.btitle=An+introduction+to+quantum+theory&rft.pages=109%27%27ff%27%27&rft.pub=Cambridge+University+Press&rft.date=2002&rft.isbn=978-0-521-59841-5&rft.aulast=Levin&rft.aufirst=Frank+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Doc64f4EspFgC%26pg%3DPA109&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiWong2008" class="citation cs2">Li, Y. T.; Wong, R. (2008), "Integral and series representations of the Dirac delta function", <i>Commun. Pure Appl. Anal.</i>, <b>7</b> (2): 229–247, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.1943">1303.1943</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3934%2Fcpaa.2008.7.229">10.3934/cpaa.2008.7.229</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2373214">2373214</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119319140">119319140</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Commun.+Pure+Appl.+Anal.&rft.atitle=Integral+and+series+representations+of+the+Dirac+delta+function&rft.volume=7&rft.issue=2&rft.pages=229-247&rft.date=2008&rft_id=info%3Aarxiv%2F1303.1943&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2373214%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119319140%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.3934%2Fcpaa.2008.7.229&rft.aulast=Li&rft.aufirst=Y.+T.&rft.au=Wong%2C+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_la_Madrid_Modino2001" class="citation thesis cs1">de la Madrid Modino, R. (2001). <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?oi=bibs&cluster=2442809273695897641&btnI=1&hl=en"><i>Quantum mechanics in rigged Hilbert space language</i></a> (PhD thesis). Universidad de Valladolid.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.title=Quantum+mechanics+in+rigged+Hilbert+space+language&rft.degree=PhD&rft.inst=Universidad+de+Valladolid&rft.date=2001&rft.aulast=de+la+Madrid+Modino&rft.aufirst=R.&rft_id=https%3A%2F%2Fscholar.google.com%2Fscholar%3Foi%3Dbibs%26cluster%3D2442809273695897641%26btnI%3D1%26hl%3Den&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_la_MadridBohmGadella2002" class="citation cs2">de la Madrid, R.; Bohm, A.; Gadella, M. (2002), "Rigged Hilbert Space Treatment of Continuous Spectrum", <i>Fortschr. Phys.</i>, <b>50</b> (2): 185–216, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0109154">quant-ph/0109154</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002ForPh..50..185D">2002ForPh..50..185D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F1521-3978%28200203%2950%3A2%3C185%3A%3AAID-PROP185%3E3.0.CO%3B2-S">10.1002/1521-3978(200203)50:2<185::AID-PROP185>3.0.CO;2-S</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9407651">9407651</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fortschr.+Phys.&rft.atitle=Rigged+Hilbert+Space+Treatment+of+Continuous+Spectrum&rft.volume=50&rft.issue=2&rft.pages=185-216&rft.date=2002&rft_id=info%3Aarxiv%2Fquant-ph%2F0109154&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9407651%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1002%2F1521-3978%28200203%2950%3A2%3C185%3A%3AAID-PROP185%3E3.0.CO%3B2-S&rft_id=info%3Abibcode%2F2002ForPh..50..185D&rft.aulast=de+la+Madrid&rft.aufirst=R.&rft.au=Bohm%2C+A.&rft.au=Gadella%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcMahon2005" class="citation cs2">McMahon, D. (2005-11-22), <a rel="nofollow" class="external text" href="http://index-of.co.uk/Misc/McGraw-Hill%20-%20Quantum%20Mechanics%20Demystified%20(2006).pdf">"An Introduction to State Space"</a> <span class="cs1-format">(PDF)</span>, <i>Quantum Mechanics Demystified, A Self-Teaching Guide</i>, Demystified Series, New York: McGraw-Hill, p. 108, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-145546-6" title="Special:BookSources/978-0-07-145546-6"><bdi>978-0-07-145546-6</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2008-03-17</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=An+Introduction+to+State+Space&rft.btitle=Quantum+Mechanics+Demystified%2C+A+Self-Teaching+Guide&rft.place=New+York&rft.series=Demystified+Series&rft.pages=108&rft.pub=McGraw-Hill&rft.date=2005-11-22&rft.isbn=978-0-07-145546-6&rft.aulast=McMahon&rft.aufirst=D.&rft_id=http%3A%2F%2Findex-of.co.uk%2FMisc%2FMcGraw-Hill%2520-%2520Quantum%2520Mechanics%2520Demystified%2520%282006%29.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_PolBremmer1987" class="citation cs2">van der Pol, Balth.; Bremmer, H. (1987), <i>Operational calculus</i> (3rd ed.), New York: Chelsea Publishing Co., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8284-0327-6" title="Special:BookSources/978-0-8284-0327-6"><bdi>978-0-8284-0327-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0904873">0904873</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Operational+calculus&rft.place=New+York&rft.edition=3rd&rft.pub=Chelsea+Publishing+Co.&rft.date=1987&rft.isbn=978-0-8284-0327-6&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D904873%23id-name%3DMR&rft.aulast=van+der+Pol&rft.aufirst=Balth.&rft.au=Bremmer%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1966" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1966). Devine, Peter R. (ed.). <i>Real and complex analysis</i> (3rd ed.). New York: McGraw-Hill (published 1987). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-100276-6" title="Special:BookSources/0-07-100276-6"><bdi>0-07-100276-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Real+and+complex+analysis&rft.place=New+York&rft.edition=3rd&rft.pub=McGraw-Hill&rft.date=1966&rft.isbn=0-07-100276-6&rft.aulast=Rudin&rft.aufirst=Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1991" class="citation cs2"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1991), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/functionalanalys00rudi"><i>Functional Analysis</i></a></span> (2nd ed.), McGraw-Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-054236-5" title="Special:BookSources/978-0-07-054236-5"><bdi>978-0-07-054236-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functional+Analysis&rft.edition=2nd&rft.pub=McGraw-Hill&rft.date=1991&rft.isbn=978-0-07-054236-5&rft.aulast=Rudin&rft.aufirst=Walter&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffunctionalanalys00rudi&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValléeSoares2004" class="citation cs2">Vallée, Olivier; Soares, Manuel (2004), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8M42DwAAQBAJ"><i>Airy functions and applications to physics</i></a>, London: Imperial College Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781911299486" title="Special:BookSources/9781911299486"><bdi>9781911299486</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Airy+functions+and+applications+to+physics&rft.place=London&rft.pub=Imperial+College+Press&rft.date=2004&rft.isbn=9781911299486&rft.aulast=Vall%C3%A9e&rft.aufirst=Olivier&rft.au=Soares%2C+Manuel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8M42DwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaichevWoyczyński1997" class="citation cs2">Saichev, A I; Woyczyński, Wojbor Andrzej (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=42I7huO-hiYC&pg=PA3">"Chapter1: Basic definitions and operations"</a>, <i>Distributions in the Physical and Engineering Sciences: Distributional and fractal calculus, integral transforms, and wavelets</i>, Birkhäuser, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-3924-2" title="Special:BookSources/978-0-8176-3924-2"><bdi>978-0-8176-3924-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter1%3A+Basic+definitions+and+operations&rft.btitle=Distributions+in+the+Physical+and+Engineering+Sciences%3A+Distributional+and+fractal+calculus%2C+integral+transforms%2C+and+wavelets&rft.pub=Birkh%C3%A4user&rft.date=1997&rft.isbn=978-0-8176-3924-2&rft.aulast=Saichev&rft.aufirst=A+I&rft.au=Woyczy%C5%84ski%2C+Wojbor+Andrzej&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D42I7huO-hiYC%26pg%3DPA3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz1950" class="citation cs2"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, L.</a> (1950), <i>Théorie des distributions</i>, vol. 1, Hermann</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Th%C3%A9orie+des+distributions&rft.pub=Hermann&rft.date=1950&rft.aulast=Schwartz&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwartz1951" class="citation cs2"><a href="/wiki/Laurent_Schwartz" title="Laurent Schwartz">Schwartz, L.</a> (1951), <i>Théorie des distributions</i>, vol. 2, Hermann</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Th%C3%A9orie+des+distributions&rft.pub=Hermann&rft.date=1951&rft.aulast=Schwartz&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinWeiss1971" class="citation cs2"><a href="/wiki/Elias_Stein" class="mw-redirect" title="Elias Stein">Stein, Elias</a>; Weiss, Guido (1971), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xnIwDAAAQBAJ"><i>Introduction to Fourier Analysis on Euclidean Spaces</i></a>, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-08078-9" title="Special:BookSources/978-0-691-08078-9"><bdi>978-0-691-08078-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Fourier+Analysis+on+Euclidean+Spaces&rft.pub=Princeton+University+Press&rft.date=1971&rft.isbn=978-0-691-08078-9&rft.aulast=Stein&rft.aufirst=Elias&rft.au=Weiss%2C+Guido&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxnIwDAAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrichartz1994" class="citation cs2"><a href="/wiki/Robert_Strichartz" title="Robert Strichartz">Strichartz, R.</a> (1994), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=T7vEOGGDCh4C"><i>A Guide to Distribution Theory and Fourier Transforms</i></a>, CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-8273-4" title="Special:BookSources/978-0-8493-8273-4"><bdi>978-0-8493-8273-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Guide+to+Distribution+Theory+and+Fourier+Transforms&rft.pub=CRC+Press&rft.date=1994&rft.isbn=978-0-8493-8273-4&rft.aulast=Strichartz&rft.aufirst=R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DT7vEOGGDCh4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVladimirov1971" class="citation cs2">Vladimirov, V. S. (1971), <i>Equations of mathematical physics</i>, Marcel Dekker, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-1713-1" title="Special:BookSources/978-0-8247-1713-1"><bdi>978-0-8247-1713-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Equations+of+mathematical+physics&rft.pub=Marcel+Dekker&rft.date=1971&rft.isbn=978-0-8247-1713-1&rft.aulast=Vladimirov&rft.aufirst=V.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span>.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Delta_Function"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/DeltaFunction.html">"Delta Function"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Delta+Function&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDeltaFunction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamashita2006" class="citation cs2">Yamashita, H. (2006), "Pointwise analysis of scalar fields: A nonstandard approach", <i><a href="/wiki/Journal_of_Mathematical_Physics" title="Journal of Mathematical Physics">Journal of Mathematical Physics</a></i>, <b>47</b> (9): 092301, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006JMP....47i2301Y">2006JMP....47i2301Y</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2339017">10.1063/1.2339017</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Physics&rft.atitle=Pointwise+analysis+of+scalar+fields%3A+A+nonstandard+approach&rft.volume=47&rft.issue=9&rft.pages=092301&rft.date=2006&rft_id=info%3Adoi%2F10.1063%2F1.2339017&rft_id=info%3Abibcode%2F2006JMP....47i2301Y&rft.aulast=Yamashita&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamashita2007" class="citation cs2">Yamashita, H. (2007), "Comment on "Pointwise analysis of scalar fields: A nonstandard approach" [J. Math. Phys. 47, 092301 (2006)]", <i><a href="/wiki/Journal_of_Mathematical_Physics" title="Journal of Mathematical Physics">Journal of Mathematical Physics</a></i>, <b>48</b> (8): 084101, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JMP....48h4101Y">2007JMP....48h4101Y</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2771422">10.1063/1.2771422</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Physics&rft.atitle=Comment+on+%22Pointwise+analysis+of+scalar+fields%3A+A+nonstandard+approach%22+%5BJ.+Math.+Phys.+47%2C+092301+%282006%29%5D&rft.volume=48&rft.issue=8&rft.pages=084101&rft.date=2007&rft_id=info%3Adoi%2F10.1063%2F1.2771422&rft_id=info%3Abibcode%2F2007JMP....48h4101Y&rft.aulast=Yamashita&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dirac_delta_function&action=edit&section=41" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Media related to <a href="https://commons.wikimedia.org/wiki/Category:Dirac_distribution" class="extiw" title="commons:Category:Dirac distribution">Dirac distribution</a> at Wikimedia Commons</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Delta-function">"Delta-function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Delta-function&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DDelta-function&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADirac+delta+function" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://www.khanacademy.org/video/dirac-delta-function">KhanAcademy.org video lesson</a></li> <li><a rel="nofollow" class="external text" href="https://www.physicsforums.com/showthread.php?t=73447">The Dirac Delta function</a>, a tutorial on the Dirac delta function.</li> <li><a rel="nofollow" class="external text" href="http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/lecture-23-use-with-impulse-inputs">Video Lectures – Lecture 23</a>, a lecture by <a href="/wiki/Arthur_Mattuck" title="Arthur Mattuck">Arthur Mattuck</a>.</li> <li><a rel="nofollow" class="external text" href="http://www.osaka-kyoiku.ac.jp/~ashino/pdf/chinaproceedings.pdf">The Dirac delta measure is a hyperfunction</a></li> <li><a rel="nofollow" class="external text" href="http://www.ing-mat.udec.cl/~rodolfo/Papers/BGR-3.pdf">We show the existence of a unique solution and analyze a finite element approximation when the source term is a Dirac delta measure</a></li> <li><a rel="nofollow" class="external text" href="http://www.mathematik.uni-muenchen.de/~lerdos/WS04/FA/content.html">Non-Lebesgue measures on R. Lebesgue-Stieltjes measure, Dirac delta measure.</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080307221128/http://www.mathematik.uni-muenchen.de/~lerdos/WS04/FA/content.html">Archived</a> 2008-03-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford's law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf's law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks's lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher's z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson's SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens's sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a class="mw-selflink selflink">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Differential_equations" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations_topics" title="Template:Differential equations topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations_topics" title="Template talk:Differential equations topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations_topics" title="Special:EditPage/Template:Differential equations topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differential_equations" style="font-size:114%;margin:0 4em"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classification</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation for differentiation</a></li> <li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li> <li><a href="/wiki/Holonomic_function" title="Holonomic function">Holonomic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Attributes of variables</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a></li> <li><a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Coupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Decoupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Order</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Degree</a></li> <li><a href="/wiki/Autonomous_system_(mathematics)" title="Autonomous system (mathematics)">Autonomous</a></li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact differential equation</a></li> <li><a href="/wiki/Jet_bundle#Partial_differential_equations" title="Jet bundle">On jet bundles</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Relation to processes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference</a> (discrete analogue)</li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solutions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Existence/uniqueness</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem</a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory's existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Phase_space" title="Phase space">Phase space</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov stability</a></li> <li><a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic stability</a></li> <li><a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a href="/wiki/Rate_of_convergence" title="Rate of convergence">Rate of convergence</a></li> <li><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series solutions</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a> solutions</li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a class="mw-selflink selflink">Dirac delta function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_mathematical_jargon#Proof_techniques" class="mw-redirect" title="List of mathematical jargon">Inspection</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a></li> <li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Method of undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Euler_method" title="Euler method">Euler method</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference method</a></li> <li><a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson method</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta methods</a></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element method</a></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume method</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin method</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></li> <li><a href="/wiki/List_of_linear_ordinary_differential_equations" title="List of linear ordinary differential equations">List of linear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_ordinary_differential_equations" title="List of nonlinear ordinary differential equations">List of nonlinear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_partial_differential_equations" title="List of nonlinear partial differential equations">List of nonlinear partial differential equations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mathematicians</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Ernst_Leonard_Lindel%C3%B6f" title="Ernst Leonard Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Sofya_Kovalevskaya" title="Sofya Kovalevskaya">Sofya Kovalevskaya</a></li></ul> </div></td></tr></tbody></table></div> <p><br /> </p> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐5blz9 Cached time: 20241122140424 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.930 seconds Real time usage: 2.320 seconds Preprocessor visited node count: 18716/1000000 Post‐expand include size: 310176/2097152 bytes Template argument size: 22564/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 295440/5000000 bytes Lua time usage: 1.015/10.000 seconds Lua memory usage: 16677336/52428800 bytes Lua Profile: ? 260 ms 22.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 240 ms 20.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 180 ms 15.5% dataWrapper <mw.lua:672> 140 ms 12.1% type 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 40 ms 3.4% <mw.lua:694> 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getEntityStatements 40 ms 3.4% args_fetch <Module:Footnotes:308> 40 ms 3.4% recursiveClone <mwInit.lua:45> 20 ms 1.7% [others] 120 ms 10.3% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1673.199 1 -total 17.00% 284.511 1 Template:Reflist 13.90% 232.503 54 Template:Sfn 12.56% 210.102 18 Template:Cite_book 12.52% 209.437 39 Template:Citation 11.40% 190.732 148 Template:Math 8.87% 148.357 1 Template:Differential_equations 8.71% 145.815 1 Template:Sidebar_with_collapsible_lists 7.91% 132.311 1 Template:Short_description 6.77% 113.268 1 Template:Lang --> <!-- Saved in parser cache with key enwiki:pcache:idhash:37021-0!canonical and timestamp 20241122140424 and revision id 1257959343. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Dirac_delta_function&oldid=1257959343">https://en.wikipedia.org/w/index.php?title=Dirac_delta_function&oldid=1257959343</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Fourier_analysis" title="Category:Fourier analysis">Fourier analysis</a></li><li><a href="/wiki/Category:Generalized_functions" title="Category:Generalized functions">Generalized functions</a></li><li><a href="/wiki/Category:Measure_theory" title="Category:Measure theory">Measure theory</a></li><li><a href="/wiki/Category:Digital_signal_processing" title="Category:Digital signal processing">Digital signal processing</a></li><li><a href="/wiki/Category:Paul_Dirac" title="Category:Paul Dirac">Paul Dirac</a></li><li><a href="/wiki/Category:Schwartz_distributions" title="Category:Schwartz distributions">Schwartz distributions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_numeric_names:_authors_list" title="Category:CS1 maint: numeric names: authors list">CS1 maint: numeric names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_January_2019" title="Category:Use American English from January 2019">Use American English from January 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Good_articles" title="Category:Good articles">Good articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 17 November 2024, at 11:39<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Dirac_delta_function&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4fsrh","wgBackendResponseTime":206,"wgPageParseReport":{"limitreport":{"cputime":"1.930","walltime":"2.320","ppvisitednodes":{"value":18716,"limit":1000000},"postexpandincludesize":{"value":310176,"limit":2097152},"templateargumentsize":{"value":22564,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":295440,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1673.199 1 -total"," 17.00% 284.511 1 Template:Reflist"," 13.90% 232.503 54 Template:Sfn"," 12.56% 210.102 18 Template:Cite_book"," 12.52% 209.437 39 Template:Citation"," 11.40% 190.732 148 Template:Math"," 8.87% 148.357 1 Template:Differential_equations"," 8.71% 145.815 1 Template:Sidebar_with_collapsible_lists"," 7.91% 132.311 1 Template:Short_description"," 6.77% 113.268 1 Template:Lang"]},"scribunto":{"limitreport-timeusage":{"value":"1.015","limit":"10.000"},"limitreport-memusage":{"value":16677336,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAratynRasinariu2006\"] = 1,\n [\"CITEREFArfkenWeber2000\"] = 1,\n [\"CITEREFBracewell1986\"] = 1,\n [\"CITEREFBracewell2000\"] = 1,\n [\"CITEREFCauchy1882–1974\"] = 1,\n [\"CITEREFCourantHilbert1962\"] = 1,\n [\"CITEREFCórdoba1988\"] = 1,\n [\"CITEREFDavisThomson2000\"] = 1,\n [\"CITEREFDebnathBhatta2007\"] = 1,\n [\"CITEREFDieudonné1972\"] = 1,\n [\"CITEREFDieudonné1976\"] = 1,\n [\"CITEREFDirac1927\"] = 1,\n [\"CITEREFDirac1930\"] = 1,\n [\"CITEREFDriggers2003\"] = 1,\n [\"CITEREFDuistermaatKolk2010\"] = 1,\n [\"CITEREFFederer1969\"] = 1,\n [\"CITEREFFourier1822\"] = 1,\n [\"CITEREFGannon2008\"] = 1,\n [\"CITEREFGelfandShilov1966–1968\"] = 1,\n [\"CITEREFGrattan-Guinness2009\"] = 1,\n [\"CITEREFHartmann1997\"] = 1,\n [\"CITEREFHazewinkel1995\"] = 1,\n [\"CITEREFHazewinkel2011\"] = 1,\n [\"CITEREFHewittStromberg1963\"] = 1,\n [\"CITEREFHörmander1983\"] = 1,\n [\"CITEREFIsham1995\"] = 1,\n [\"CITEREFJohn1955\"] = 1,\n [\"CITEREFKarris2003\"] = 1,\n [\"CITEREFKomatsu2002\"] = 1,\n [\"CITEREFKrachtKreyszig1989\"] = 1,\n [\"CITEREFKrantzParks2008\"] = 1,\n [\"CITEREFLang1997\"] = 1,\n [\"CITEREFLange2012\"] = 1,\n [\"CITEREFLaugwitz1989\"] = 1,\n [\"CITEREFLevin2002\"] = 1,\n [\"CITEREFLiWong2008\"] = 1,\n [\"CITEREFMader2006\"] = 1,\n [\"CITEREFMcMahon2005\"] = 1,\n [\"CITEREFMilovanovićRassias2014\"] = 1,\n [\"CITEREFMitrovićŽubrinić1998\"] = 1,\n [\"CITEREFMyint-U.Debnath2007\"] = 1,\n [\"CITEREFRoden2014\"] = 1,\n [\"CITEREFRottwittTidemand-Lichtenberg2014\"] = 1,\n [\"CITEREFRudin1966\"] = 1,\n [\"CITEREFRudin1991\"] = 1,\n [\"CITEREFSaichevWoyczyński1997\"] = 1,\n [\"CITEREFSchwartz1950\"] = 1,\n [\"CITEREFSchwartz1951\"] = 1,\n [\"CITEREFSteinWeiss1971\"] = 1,\n [\"CITEREFStrichartz1994\"] = 1,\n [\"CITEREFValléeSoares2004\"] = 1,\n [\"CITEREFVladimirov1971\"] = 1,\n [\"CITEREFYamashita2006\"] = 1,\n [\"CITEREFYamashita2007\"] = 1,\n [\"CITEREFZhao2011\"] = 1,\n [\"CITEREFatis2013\"] = 1,\n [\"CITEREFde_la_MadridBohmGadella2002\"] = 1,\n [\"CITEREFde_la_Madrid_Modino2001\"] = 1,\n [\"CITEREFvan_der_PolBremmer1987\"] = 1,\n [\"nascent_delta_function\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"Anchor\"] = 1,\n [\"Angbr\"] = 1,\n [\"Bra-ket\"] = 1,\n [\"Brace\"] = 6,\n [\"Citation\"] = 39,\n [\"Cite book\"] = 18,\n [\"Cite journal\"] = 1,\n [\"Cite thesis\"] = 1,\n [\"Cite web\"] = 1,\n [\"Clear\"] = 1,\n [\"Closed-closed\"] = 3,\n [\"Commons category-inline\"] = 1,\n [\"Differential equations\"] = 1,\n [\"Differential equations topics\"] = 1,\n [\"Em\"] = 5,\n [\"EquationNote\"] = 4,\n [\"EquationRef\"] = 5,\n [\"Good article\"] = 1,\n [\"Google books\"] = 32,\n [\"Harv\"] = 1,\n [\"Harvnb\"] = 4,\n [\"Harvtxt\"] = 2,\n [\"Ket\"] = 4,\n [\"Lang\"] = 1,\n [\"Main\"] = 1,\n [\"Math\"] = 145,\n [\"MathWorld\"] = 3,\n [\"Mvar\"] = 205,\n [\"Nowrap\"] = 5,\n [\"NumBlk\"] = 5,\n [\"ProbDistributions\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 1,\n [\"Section link\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn\"] = 54,\n [\"Sfrac\"] = 3,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Use American English\"] = 1,\n [\"Webarchive\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","260","22.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","240","20.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","180","15.5"],["dataWrapper \u003Cmw.lua:672\u003E","140","12.1"],["type","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","40","3.4"],["\u003Cmw.lua:694\u003E","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getEntityStatements","40","3.4"],["args_fetch \u003CModule:Footnotes:308\u003E","40","3.4"],["recursiveClone \u003CmwInit.lua:45\u003E","20","1.7"],["[others]","120","10.3"]]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-5blz9","timestamp":"20241122140424","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Dirac delta function","url":"https:\/\/en.wikipedia.org\/wiki\/Dirac_delta_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q209675","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q209675","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-01-31T12:47:36Z","dateModified":"2024-11-17T11:39:21Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/48\/Dirac_distribution_PDF.svg","headline":"pseudo-function \u03b4 such that an integral of \u03b4(x-c)f(x) always takes the value of f(c)"}</script> </body> </html>