CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;8 of 8 results for author: <span class="mathjax">Livanos, V</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Livanos%2C+V">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Livanos, V"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Livanos%2C+V&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Livanos, V"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12069">arXiv:2411.12069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12069">pdf</a>, <a href="https://arxiv.org/format/2411.12069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Matroid Secretary via Labeling Schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=B%C3%A9rczi%2C+K">Krist贸f B茅rczi</a>, <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a>, <a href="/search/cs?searchtype=author&amp;query=Soto%2C+J">Jos茅 Soto</a>, <a href="/search/cs?searchtype=author&amp;query=Verdugo%2C+V">Victor Verdugo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12069v1-abstract-short" style="display: inline;"> The Matroid Secretary Problem (MSP) is one of the most prominent settings for online resource allocation and optimal stopping. A decision-maker is presented with a ground set of elements $E$ revealed sequentially and in random order. Upon arrival, an irrevocable decision is made in a take-it-or-leave-it fashion, subject to a feasibility constraint on the set of selected elements captured by a matr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12069v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12069v1-abstract-full" style="display: none;"> The Matroid Secretary Problem (MSP) is one of the most prominent settings for online resource allocation and optimal stopping. A decision-maker is presented with a ground set of elements $E$ revealed sequentially and in random order. Upon arrival, an irrevocable decision is made in a take-it-or-leave-it fashion, subject to a feasibility constraint on the set of selected elements captured by a matroid defined over $E$. The decision-maker only has ordinal access to compare the elements, and the goal is to design an algorithm that selects every element of the optimal basis with probability at least $伪$ (i.e., $伪$-probability-competitive). While the existence of a constant probability-competitive algorithm for MSP remains a major open question, simple greedy policies are at the core of state-of-the-art algorithms for several matroid classes. We introduce a flexible and general algorithmic framework to analyze greedy-like algorithms for MSP based on constructing a language associated with the matroid. Using this language, we establish a lower bound on the probability-competitiveness of the algorithm by studying a corresponding Poisson point process that governs the words&#39; distribution in the language. Using our framework, we break the state-of-the-art guarantee for laminar matroids by settling the probability-competitiveness of the greedy-improving algorithm to be exactly $1-\ln(2) \approx 0.3068$. For graphic matroids, we show a probability-competitiveness of $0.2693$ when the underlying graph has no parallel edges and a guarantee of $0.2504$ for general graphs, also breaking the state-of-the-art factor of $0.25$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12069v1-abstract-full').style.display = 'none'; document.getElementById('2411.12069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05077">arXiv:2406.05077</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05077">pdf</a>, <a href="https://arxiv.org/format/2406.05077">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Improved Mechanisms and Prophet Inequalities for Graphical Dependencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a>, <a href="/search/cs?searchtype=author&amp;query=Patton%2C+K">Kalen Patton</a>, <a href="/search/cs?searchtype=author&amp;query=Singla%2C+S">Sahil Singla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05077v1-abstract-short" style="display: inline;"> Over the past two decades, significant strides have been made in stochastic problems such as revenue-optimal auction design and prophet inequalities, traditionally modeled with $n$ independent random variables to represent the values of $n$ items. However, in many applications, this assumption of independence often diverges from reality. Given the strong impossibility results associated with arbit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05077v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05077v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05077v1-abstract-full" style="display: none;"> Over the past two decades, significant strides have been made in stochastic problems such as revenue-optimal auction design and prophet inequalities, traditionally modeled with $n$ independent random variables to represent the values of $n$ items. However, in many applications, this assumption of independence often diverges from reality. Given the strong impossibility results associated with arbitrary correlations, recent research has pivoted towards exploring these problems under models of mild dependency. In this work, we study the optimal auction and prophet inequalities problems within the framework of the popular graphical model of Markov Random Fields (MRFs), a choice motivated by its ability to capture complex dependency structures. Specifically, for the problem of selling $n$ items to a single buyer to maximize revenue, we show that the max of SRev and BRev is an $O(螖)$-approximation to the optimal revenue for subadditive buyers, where $螖$ is the maximum weighted degree of the underlying MRF. This is a generalization as well as an exponential improvement on the $\exp(O(螖))$-approximation results of Cai and Oikonomou (EC 2021) for additive and unit-demand buyers. We also obtain a similar exponential improvement for the prophet inequality problem, which is asymptotically optimal as we show a matching upper bound. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05077v1-abstract-full').style.display = 'none'; document.getElementById('2406.05077v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11853">arXiv:2404.11853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11853">pdf</a>, <a href="https://arxiv.org/format/2404.11853">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Oracle-Augmented Prophet Inequalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Har-Peled%2C+S">Sariel Har-Peled</a>, <a href="/search/cs?searchtype=author&amp;query=Harb%2C+E">Elfarouk Harb</a>, <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11853v1-abstract-short" style="display: inline;"> In the classical prophet inequality settings, a gambler is given a sequence of $n$ random variables $X_1, \dots, X_n$, taken from known distributions, observes their values in this (potentially adversarial) order, and select one of them, immediately after it is being observed, so that its value is as high as possible. The classical \emph{prophet inequality} shows a strategy that guarantees a value&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11853v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11853v1-abstract-full" style="display: none;"> In the classical prophet inequality settings, a gambler is given a sequence of $n$ random variables $X_1, \dots, X_n$, taken from known distributions, observes their values in this (potentially adversarial) order, and select one of them, immediately after it is being observed, so that its value is as high as possible. The classical \emph{prophet inequality} shows a strategy that guarantees a value at least half of that an omniscience prophet that picks the maximum, and this ratio is optimal. Here, we generalize the prophet inequality, allowing the gambler some additional information about the future that is otherwise privy only to the prophet. Specifically, at any point in the process, the gambler is allowed to query an oracle $\mathcal{O}$. The oracle responds with a single bit answer: YES if the current realization is greater than the remaining realizations, and NO otherwise. We show that the oracle model with $m$ oracle calls is equivalent to the \textsc{Top-$1$-of-$(m+1)$} model when the objective is maximizing the probability of selecting the maximum. This equivalence fails to hold when the objective is maximizing the competitive ratio, but we still show that any algorithm for the oracle model implies an equivalent competitive ratio for the \textsc{Top-$1$-of-$(m+1)$} model. We resolve the oracle model for any $m$, giving tight lower and upper bound on the best possible competitive ratio compared to an almighty adversary. As a consequence, we provide new results as well as improvements on known results for the \textsc{Top-$1$-of-$m$} model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11853v1-abstract-full').style.display = 'none'; document.getElementById('2404.11853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07988">arXiv:2209.07988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07988">pdf</a>, <a href="https://arxiv.org/ps/2209.07988">ps</a>, <a href="https://arxiv.org/format/2209.07988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> Prophet Inequalities for Cost Minimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a>, <a href="/search/cs?searchtype=author&amp;query=Mehta%2C+R">Ruta Mehta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07988v3-abstract-short" style="display: inline;"> Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet inequality: a decision maker is facing a sequence of costs $X_1, X_2, \dots, X_n$ drawn from known distributions in an online manner and \emph{must} ``stop&#39;&#39; at so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07988v3-abstract-full').style.display = 'inline'; document.getElementById('2209.07988v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07988v3-abstract-full" style="display: none;"> Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with extensive applications to mechanism design and online optimization. We study the \emph{cost minimization} counterpart of the classical prophet inequality: a decision maker is facing a sequence of costs $X_1, X_2, \dots, X_n$ drawn from known distributions in an online manner and \emph{must} ``stop&#39;&#39; at some point and take the last cost seen. The goal is to compete with a ``prophet&#39;&#39; who can see the realizations of all $X_i$&#39;s upfront and always select the minimum, obtaining a cost of $\mathbb{E}[\min_i X_i]$. If the $X_i$&#39;s are not identically distributed, no strategy can achieve a bounded approximation, even for random arrival order and $n = 2$. This leads us to consider the case where the $X_i$&#39;s are independent and identically distributed (I.I.D.). For the I.I.D. case, we show that if the distribution satisfies a mild condition, the optimal stopping strategy achieves a (distribution-dependent) constant-factor approximation to the prophet&#39;s cost. Moreover, for MHR distributions, this constant is at most $2$. All our results are tight. We also demonstrate an example distribution that does not satisfy the condition and for which the competitive ratio of any algorithm is infinite. Turning our attention to single-threshold strategies, we design a threshold that achieves a $O\left(polylog{n}\right)$-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. Finally, we note that our results can be used to design approximately optimal posted price-style mechanisms for procurement auctions which may be of independent interest. Our techniques utilize the \emph{hazard rate} of the distribution in a novel way, allowing for a fine-grained analysis which could find further applications in prophet inequalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07988v3-abstract-full').style.display = 'none'; document.getElementById('2209.07988v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02672">arXiv:2202.02672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02672">pdf</a>, <a href="https://arxiv.org/ps/2202.02672">ps</a>, <a href="https://arxiv.org/format/2202.02672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> (Almost) Envy-Free, Proportional and Efficient Allocations of an Indivisible Mixed Manna </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a>, <a href="/search/cs?searchtype=author&amp;query=Mehta%2C+R">Ruta Mehta</a>, <a href="/search/cs?searchtype=author&amp;query=Murhekar%2C+A">Aniket Murhekar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02672v1-abstract-short" style="display: inline;"> We study the problem of finding fair and efficient allocations of a set of indivisible items to a set of agents, where each item may be a good (positively valued) for some agents and a bad (negatively valued) for others, i.e., a mixed manna. As fairness notions, we consider arguably the strongest possible relaxations of envy-freeness and proportionality, namely envy-free up to any item (EFX and EF&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02672v1-abstract-full').style.display = 'inline'; document.getElementById('2202.02672v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02672v1-abstract-full" style="display: none;"> We study the problem of finding fair and efficient allocations of a set of indivisible items to a set of agents, where each item may be a good (positively valued) for some agents and a bad (negatively valued) for others, i.e., a mixed manna. As fairness notions, we consider arguably the strongest possible relaxations of envy-freeness and proportionality, namely envy-free up to any item (EFX and EFX$_0$), and proportional up to the maximin good or any bad (PropMX and PropMX$_0$). Our efficiency notion is Pareto-optimality (PO). We study two types of instances: (i) Separable, where the item set can be partitioned into goods and bads, and (ii) Restricted mixed goods (RMG), where for each item $j$, every agent has either a non-positive value for $j$, or values $j$ at the same $v_j&gt;0$. We obtain polynomial-time algorithms for the following: (i) Separable instances: PropMX$_0$ allocation. (ii) RMG instances: Let pure bads be the set of items that everyone values negatively. - PropMX allocation for general pure bads. - EFX+PropMX allocation for identically-ordered pure bads. - EFX+PropMX+PO allocation for identical pure bads. Finally, if the RMG instances are further restricted to binary mixed goods where all the $v_j$&#39;s are the same, we strengthen the results to guarantee EFX$_0$ and PropMX$_0$ respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02672v1-abstract-full').style.display = 'none'; document.getElementById('2202.02672v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13253">arXiv:2111.13253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13253">pdf</a>, <a href="https://arxiv.org/ps/2111.13253">ps</a>, <a href="https://arxiv.org/format/2111.13253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Simple and Optimal Greedy Online Contention Resolution Schemes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13253v3-abstract-short" style="display: inline;"> Real-world problems such as ad allocation and matching have been extensively studied under the lens of combinatorial optimization. In several applications, uncertainty in the input appears naturally and this has led to the study of online stochastic optimization models for such problems. For the offline case, these constrained combinatorial optimization problems have been extensively studied, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13253v3-abstract-full').style.display = 'inline'; document.getElementById('2111.13253v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13253v3-abstract-full" style="display: none;"> Real-world problems such as ad allocation and matching have been extensively studied under the lens of combinatorial optimization. In several applications, uncertainty in the input appears naturally and this has led to the study of online stochastic optimization models for such problems. For the offline case, these constrained combinatorial optimization problems have been extensively studied, and Contention Resolution Schemes (CRSs), introduced by Chekuri, Vondr谩k, and Zenklusen, have emerged in recent years as a general framework to obtaining a solution. The idea behind a CRS is to first obtain a fractional solution to a (continuous) relaxation of the objective and then round the fractional solution to an integral one. When the order of rounding is controlled by an adversary, Online Contention Resolution Schemes (OCRSs) can be used instead, and have been successfully applied in settings such as prophet inequalities and stochastic probing. In this work, we focus on greedy OCRSs, which provide guarantees against the strongest possible adversary, an almighty adversary. Intuitively, a greedy OCRS has to make all its decisions before the online process starts. We present simple $1/e$ - selectable greedy OCRSs for the single-item setting, partition matroids and transversal matroids, which improve upon the previous state-of-the-art greedy OCRSs for these constraints. We also show that our greedy OCRSs are optimal, even for the simple single-item case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13253v3-abstract-full').style.display = 'none'; document.getElementById('2111.13253v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, to appear in NeurIPS 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03662">arXiv:2107.03662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.03662">pdf</a>, <a href="https://arxiv.org/format/2107.03662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> </div> </div> <p class="title is-5 mathjax"> On Submodular Prophet Inequalities and Correlation Gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chekuri%2C+C">Chandra Chekuri</a>, <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03662v1-abstract-short" style="display: inline;"> Prophet inequalities and secretary problems have been extensively studied in recent years due to their elegance, connections to online algorithms, stochastic optimization, and mechanism design problems in game theoretic settings. Rubinstein and Singla developed a notion of combinatorial prophet inequalities in order to generalize the standard prophet inequality setting to combinatorial valuation f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03662v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03662v1-abstract-full" style="display: none;"> Prophet inequalities and secretary problems have been extensively studied in recent years due to their elegance, connections to online algorithms, stochastic optimization, and mechanism design problems in game theoretic settings. Rubinstein and Singla developed a notion of combinatorial prophet inequalities in order to generalize the standard prophet inequality setting to combinatorial valuation functions such as submodular and subadditive functions. For non-negative submodular functions they demonstrated a constant factor prophet inequality for matroid constraints. Along the way they showed a variant of the correlation gap for non-negative submodular functions. In this paper we revisit their notion of correlation gap as well as the standard notion of correlation gap and prove much tighter and cleaner bounds. Via these bounds and other insights we obtain substantially improved constant factor combinatorial prophet inequalities for both monotone and non-monotone submodular functions over any constraint that admits an Online Contention Resolution Scheme. In addition to improved bounds we describe efficient polynomial-time algorithms that achieve these bounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03662v1-abstract-full').style.display = 'none'; document.getElementById('2107.03662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 1 figure, SAGT 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.08260">arXiv:1808.08260</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.08260">pdf</a>, <a href="https://arxiv.org/format/1808.08260">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Resource Allocation Game on Social Networks: Best Response Dynamics and Convergence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lee%2C+W">Wei-Chun Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Livanos%2C+V">Vasilis Livanos</a>, <a href="/search/cs?searchtype=author&amp;query=Mehta%2C+R">Ruta Mehta</a>, <a href="/search/cs?searchtype=author&amp;query=Sundaram%2C+H">Hari Sundaram</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.08260v1-abstract-short" style="display: inline;"> The decisions that human beings make to allocate time has significant bearing on economic output and to the sustenance of social networks. The time allocation problem motivates our formal analysis of the resource allocation game, where agents on a social network, who have asymmetric, private interaction preferences, make decisions on how to allocate time, a bounded endowment, over their neighbors.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08260v1-abstract-full').style.display = 'inline'; document.getElementById('1808.08260v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.08260v1-abstract-full" style="display: none;"> The decisions that human beings make to allocate time has significant bearing on economic output and to the sustenance of social networks. The time allocation problem motivates our formal analysis of the resource allocation game, where agents on a social network, who have asymmetric, private interaction preferences, make decisions on how to allocate time, a bounded endowment, over their neighbors. Unlike the well-known opinion formation game on a social network, our game appears not to be a potential game, and the Best-Response dynamics is non-differentiable making the analysis of Best-Response dynamics non-trivial. In our game, we consider two types of player behavior, namely optimistic or pessimistic, based on how they use their time endowment over their neighbors. To analyze Best-Response dynamics, we circumvent the problem of the game not being a potential game, through the lens of a novel two-level potential function approach. We show that the Best-Response dynamics converges point-wise to a Nash Equilibrium when players are all: optimistic; pessimistic; a mix of both types. Finally, we show that the Nash Equilibrium set is non-convex but connected, and Price of Anarchy is unbounded while Price of Stability is one. Extensive simulations over a stylized grid reveals that the distribution of quality of the convergence points is unimodal-we conjecture that presence of unimodality is tied to the connectedness of Nash Equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.08260v1-abstract-full').style.display = 'none'; document.getElementById('1808.08260v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 2 figures, submitted to WINE 2018</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10