CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 296 results for author: <span class="mathjax">Guo, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Guo%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Guo, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Guo%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Guo, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Guo%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05635">arXiv:2502.05635</a> <span> [<a href="https://arxiv.org/pdf/2502.05635">pdf</a>, <a href="https://arxiv.org/format/2502.05635">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Data-driven Low-rank Approximation for Electron-hole Kernel and Acceleration of Time-dependent GW Calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hou%2C+B">Bowen Hou</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jinyuan Wu</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+V+C">Victor Chang Lee</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiaxuan Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L+Y">Luna Y. Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+D+Y">Diana Y. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05635v1-abstract-short" style="display: inline;"> Many-body electron-hole interactions are essential for understanding non-linear optical processes and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green's function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict the nonequilibrium dynamics of excited states including electron-hole interactions. However, the high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05635v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05635v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05635v1-abstract-full" style="display: none;"> Many-body electron-hole interactions are essential for understanding non-linear optical processes and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green's function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict the nonequilibrium dynamics of excited states including electron-hole interactions. However, the high dimensionality of the electron-hole kernel poses significant computational challenges for scalability. Here, we develop a data-driven low-rank approximation for the electron-hole kernel, leveraging localized excitonic effects in the Hilbert space of crystalline systems. Through singular value decomposition (SVD) analysis, we show that the subspace of non-zero singular values, containing the key information of the electron-hole kernel, retains a small size even as the k-grid grows, ensuring computational feasibility with extremely dense k-grids for converged calculations. Utilizing this low-rank property, we achieve at least 95% compression of the kernel and an order-of-magnitude speedup of TD-aGW calculations. Our method, rooted in physical interpretability, outperforms existing machine learning approaches by avoiding intensive training processes and eliminating time-accumulated errors, providing a general framework for high-throughput, nonequilibrium simulation of light-driven dynamics in materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05635v1-abstract-full').style.display = 'none'; document.getElementById('2502.05635v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05576">arXiv:2502.05576</a> <span> [<a href="https://arxiv.org/pdf/2502.05576">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Human-AI collaboration for modeling heat conduction in nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ding%2C+W">Wenyang Ding</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiang Guo</a>, <a href="/search/physics?searchtype=author&query=An%2C+M">Meng An</a>, <a href="/search/physics?searchtype=author&query=Tsuda%2C+K">Koji Tsuda</a>, <a href="/search/physics?searchtype=author&query=Shiomi%2C+J">Junichiro Shiomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05576v1-abstract-short" style="display: inline;"> In recent years, materials informatics, which combines data science and artificial intelligence (AI), has garnered significant attention owing to its ability to accelerate material development, reduce costs, and enhance product design. However, despite the widespread use of AI, human involvement is often limited to the initiation and oversight of machine learning processes and rarely includes more… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05576v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05576v1-abstract-full" style="display: none;"> In recent years, materials informatics, which combines data science and artificial intelligence (AI), has garnered significant attention owing to its ability to accelerate material development, reduce costs, and enhance product design. However, despite the widespread use of AI, human involvement is often limited to the initiation and oversight of machine learning processes and rarely includes more substantial roles that capitalize on human intuition or domain expertise. Consequently, true human-AI collaborations, where integrated insights can be maximized, are scarce. This study considers the problem of heat conduction in a two-dimensional nanostructure as a case study. An integrated human-AI collaboration framework is designed and used to construct a model to predict the thermal conductivity. This approach is used to determine the parameters that govern phonon transmission over the full range of frequencies and incidence angles. During operation, the self-learning entropic population annealing technique, which combines entropic sampling with a surrogate machine learning model, generates a small dataset that can be interpreted by a human. Therefore, data-efficient and global modeling is achieved, and parameters with physical interpretations are developed, which can guide nanostructural design to produce materials with specific properties. The proposed framework can leverage the complementary strengths of humans and AI, thereby enhancing the understanding and control of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05576v1-abstract-full').style.display = 'none'; document.getElementById('2502.05576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02469">arXiv:2502.02469</a> <span> [<a href="https://arxiv.org/pdf/2502.02469">pdf</a>, <a href="https://arxiv.org/format/2502.02469">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Nowcasting Solar Energetic Particle Events for Mars Missions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=L%C3%B6we%2C+J+L">Jan Leo L枚we</a>, <a href="/search/physics?searchtype=author&query=Khaksarighiri%2C+S">Salman Khaksarighiri</a>, <a href="/search/physics?searchtype=author&query=Wimmer-Schweingruber%2C+R+F">Robert F. Wimmer-Schweingruber</a>, <a href="/search/physics?searchtype=author&query=Hassler%2C+D+M">Donald M. Hassler</a>, <a href="/search/physics?searchtype=author&query=Ehresmann%2C+B">Bent Ehresmann</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jingnan Guo</a>, <a href="/search/physics?searchtype=author&query=Reitz%2C+G">G眉nther Reitz</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+T">Thomas Berger</a>, <a href="/search/physics?searchtype=author&query=Matthi%C3%A4%2C+D">Daniel Matthi盲</a>, <a href="/search/physics?searchtype=author&query=Zeitlin%2C+C">Cary Zeitlin</a>, <a href="/search/physics?searchtype=author&query=L%C3%B6ffner%2C+S">Sven L枚ffner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02469v1-abstract-short" style="display: inline;"> In addition to the omnipresent Galactic Cosmic Rays (GCRs), sudden solar energetic particle (SEP) events present considerable health hazards for manned space missions. These events not only contribute to an increased long-term cancer risk, but can, in extreme cases, cause acute radiation syndromes. Forecasting their imminent occurrence could significantly reduce radiation exposure by warning astro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02469v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02469v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02469v1-abstract-full" style="display: none;"> In addition to the omnipresent Galactic Cosmic Rays (GCRs), sudden solar energetic particle (SEP) events present considerable health hazards for manned space missions. These events not only contribute to an increased long-term cancer risk, but can, in extreme cases, cause acute radiation syndromes. Forecasting their imminent occurrence could significantly reduce radiation exposure by warning astronauts to move to shelter. However, all currently available tools are primarily designed for the Earth or Earth-Moon system, which limits their applicability to future Mars missions. To address this, we developed a nowcasting system for SEP events applicable in deep space and on the Martian surface, which serves as a reliable last-resort backup when forecasts fail. The methodology of this system is based on dose rates measured by the Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory (MSL), which recorded 5 SEP events during the seven-month flight to Mars and 16 since its landing on Mars on August 6, 2012. An SEP event is triggered, and an astronaut is warned as soon as dose rates exceed the omnipresent background level by at least 25%. This approach suggests that our system can provide astronauts with at least 30 minutes to avoid both peak radiation exposure and the majority of the cumulative dose from SEP events. Our nowcasting system is robust, easily implementable in real-life scenarios, and achieves a near-zero false alarm rate both in deep space and on the Martian surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02469v1-abstract-full').style.display = 'none'; document.getElementById('2502.02469v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06933">arXiv:2501.06933</a> <span> [<a href="https://arxiv.org/pdf/2501.06933">pdf</a>, <a href="https://arxiv.org/format/2501.06933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Neural equilibria for long-term prediction of nonlinear conservation laws </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Benitez%2C+J+A+L">J. Antonio Lara Benitez</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Junyi Guo</a>, <a href="/search/physics?searchtype=author&query=Hegazy%2C+K">Kareem Hegazy</a>, <a href="/search/physics?searchtype=author&query=Dokmani%C4%87%2C+I">Ivan Dokmani膰</a>, <a href="/search/physics?searchtype=author&query=Mahoney%2C+M+W">Michael W. Mahoney</a>, <a href="/search/physics?searchtype=author&query=de+Hoop%2C+M+V">Maarten V. de Hoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06933v1-abstract-short" style="display: inline;"> We introduce Neural Discrete Equilibrium (NeurDE), a machine learning (ML) approach for long-term forecasting of flow phenomena that relies on a "lifting" of physical conservation laws into the framework of kinetic theory. The kinetic formulation provides an excellent structure for ML algorithms by separating nonlinear, non-local physics into a nonlinear but local relaxation to equilibrium and a l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06933v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06933v1-abstract-full" style="display: none;"> We introduce Neural Discrete Equilibrium (NeurDE), a machine learning (ML) approach for long-term forecasting of flow phenomena that relies on a "lifting" of physical conservation laws into the framework of kinetic theory. The kinetic formulation provides an excellent structure for ML algorithms by separating nonlinear, non-local physics into a nonlinear but local relaxation to equilibrium and a linear non-local transport. This separation allows the ML to focus on the local nonlinear components while addressing the simpler linear transport with efficient classical numerical algorithms. To accomplish this, we design an operator network that maps macroscopic observables to equilibrium states in a manner that maximizes entropy, yielding expressive BGK-type collisions. By incorporating our surrogate equilibrium into the lattice Boltzmann (LB) algorithm, we achieve accurate flow forecasts for a wide range of challenging flows. We show that NeurDE enables accurate prediction of compressible flows, including supersonic flows, while tracking shocks over hundreds of time steps, using a small velocity lattice-a heretofore unattainable feat without expensive numerical root finding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06933v1-abstract-full').style.display = 'none'; document.getElementById('2501.06933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06411">arXiv:2501.06411</a> <span> [<a href="https://arxiv.org/pdf/2501.06411">pdf</a>, <a href="https://arxiv.org/format/2501.06411">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> Evolutionary game dynamics for higher-order interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiachao Guo</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+Y">Yao Meng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+A">Aming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06411v1-abstract-short" style="display: inline;"> Cooperative behaviors are deeply embedded in structured biological and social systems. Networks are often employed to portray pairwise interactions among individuals, where network nodes represent individuals and links indicate who interacts with whom. However, it is increasingly recognized that many empirical interactions often involve triple or more individuals instead of the massively oversimpl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06411v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06411v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06411v1-abstract-full" style="display: none;"> Cooperative behaviors are deeply embedded in structured biological and social systems. Networks are often employed to portray pairwise interactions among individuals, where network nodes represent individuals and links indicate who interacts with whom. However, it is increasingly recognized that many empirical interactions often involve triple or more individuals instead of the massively oversimplified lower-order pairwise interactions, highlighting the fundamental gap in understanding the evolution of collective cooperation for higher-order interactions with diverse scales of the number of individuals. Here, we develop a theoretical framework of evolutionary game dynamics for systematically analyzing how cooperation evolves and fixates under higher-order interactions. Specifically, we offer a simple condition under which cooperation is favored under arbitrary combinations of different orders of interactions. Compared to pairwise interactions, our findings suggest that higher-order interactions enable lower thresholds for the emergence of cooperation. Surprisingly, we show that higher-order interactions favor the evolution of cooperation in large-scale systems, which is the opposite for lower-order scenarios. Our results offer a new avenue for understanding the evolution of collective cooperation in empirical systems with higher-order interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06411v1-abstract-full').style.display = 'none'; document.getElementById('2501.06411v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04244">arXiv:2501.04244</a> <span> [<a href="https://arxiv.org/pdf/2501.04244">pdf</a>, <a href="https://arxiv.org/format/2501.04244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Twin Interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Du%2C+W">Wei Du</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+S">Shuhe Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dong Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jun Chen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Y">Yiquan Yang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+P">Peiyu Yang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinxian Guo</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+G">Guzhi Bao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Weiping Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04244v2-abstract-short" style="display: inline;"> Quantum-correlated interferometer is a newly emerging tool in quantum technology that offers classical-limit-breaking phase sensitivity. But to date, there exists a configurational bottleneck for its practicability due to the low phase-sensitive photon numbers limited by the current detection strategies. Here we establish an innovative development termed as ``quantum twin interferometer'' with dua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04244v2-abstract-full').style.display = 'inline'; document.getElementById('2501.04244v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04244v2-abstract-full" style="display: none;"> Quantum-correlated interferometer is a newly emerging tool in quantum technology that offers classical-limit-breaking phase sensitivity. But to date, there exists a configurational bottleneck for its practicability due to the low phase-sensitive photon numbers limited by the current detection strategies. Here we establish an innovative development termed as ``quantum twin interferometer'' with dual pairs of entangled twin beams arranged in the parallel configuration, allowing fully exploits the quantum resource through the new configuration of entangled detection. We observe the distributed phase sensing with 3 dB quantum noise reduction in phase-sensing power at the level of milliwatts, which advances the record of signal-to-noise ratio so far achieved in photon-correlated interferometers by three orders of magnitude. The developed techniques in this work can be used to revolutionize a diversity of quantum devices requiring phase measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04244v2-abstract-full').style.display = 'none'; document.getElementById('2501.04244v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12pages,7figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10724">arXiv:2412.10724</a> <span> [<a href="https://arxiv.org/pdf/2412.10724">pdf</a>, <a href="https://arxiv.org/format/2412.10724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing the Fifth Force on Lepton Spins through Neutrino Oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+R">Rundong Fang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Ji-Heng Guo</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Ping Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10724v1-abstract-short" style="display: inline;"> We investigate a fifth force mediated by a light vector boson that couples to lepton spins, characterized by axial-vector couplings to leptons and vector couplings to nucleons. This interaction generates a potential proportional to the inner product of the lepton spin vector and the nucleon-lepton relative velocity vector, a feature extensively explored with precision spin sensors. Employing weak… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10724v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10724v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10724v1-abstract-full" style="display: none;"> We investigate a fifth force mediated by a light vector boson that couples to lepton spins, characterized by axial-vector couplings to leptons and vector couplings to nucleons. This interaction generates a potential proportional to the inner product of the lepton spin vector and the nucleon-lepton relative velocity vector, a feature extensively explored with precision spin sensors. Employing weak symmetry, we show that left-handed charged lepton couplings naturally extend to left-handed neutrinos, enabling this fifth force to influence neutrino oscillations. For electron-nucleon couplings, we find that solar and reactor neutrino experiments provide comparable constraints to those from spin sensors and surpass them in the short-range fifth force region. For muon-nucleon couplings, neutrino oscillation experiments exclude the fifth force as a viable explanation for the muon $ g-2 $ anomaly in the context of a vector mediator, tightening the bounds by two orders of magnitude in coupling strength by solar and atmospheric neutrino data. Our results highlight the critical role of neutrino oscillations in probing fifth forces acting across all three generations of lepton spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10724v1-abstract-full').style.display = 'none'; document.getElementById('2412.10724v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19340">arXiv:2411.19340</a> <span> [<a href="https://arxiv.org/pdf/2411.19340">pdf</a>, <a href="https://arxiv.org/format/2411.19340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> CME propagation in the dynamically coupled space weather tool: COCONUT + EUHFORIA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linan%2C+L">L. Linan</a>, <a href="/search/physics?searchtype=author&query=Baratashvili%2C+T">T. Baratashvili</a>, <a href="/search/physics?searchtype=author&query=Lani%2C+A">A. Lani</a>, <a href="/search/physics?searchtype=author&query=Schmieder%2C+B">B. Schmieder</a>, <a href="/search/physics?searchtype=author&query=Brchnelova%2C+M">M. Brchnelova</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J+H">J. H. Guo</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">S. Poedts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19340v1-abstract-short" style="display: inline;"> This paper aims to present the time-dependent coupling between the coronal model COolfluid COroNal UnsTructured (COCONUT) and the heliospheric forecasting tool EUHFORIA. We perform six COCONUT simulations where a flux rope is implemented at the solar surface using either the Titov-D茅moulin CME model or the Regularized Biot-Savart Laws (RBSL) CME model. At regular intervals, the magnetic field, v… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19340v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19340v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19340v1-abstract-full" style="display: none;"> This paper aims to present the time-dependent coupling between the coronal model COolfluid COroNal UnsTructured (COCONUT) and the heliospheric forecasting tool EUHFORIA. We perform six COCONUT simulations where a flux rope is implemented at the solar surface using either the Titov-D茅moulin CME model or the Regularized Biot-Savart Laws (RBSL) CME model. At regular intervals, the magnetic field, velocity, temperature, and density of the 2D surface $R_{b}=21.5~\;R_{\odot}$ are saved in boundary files. This series of coupling files is read in a modified version of EUHFORIA to update progressively its inner boundary. After presenting the early stage of the propagation in COCONUT, we examine how the disturbance of the solar corona created by the propagation of flux ropes is transmitted into EUHFORIA. In particular, we consider the thermodynamic and magnetic profiles at L1 and compare them with those obtained at the interface between the two models. We demonstrate that the properties of the heliospheric solar wind in EUHFORIA are consistent with those in COCONUT, acting as a direct extension of the coronal domain. Moreover, the disturbances initially created from the propagation of flux ropes in COCONUT continue evolving from the corona in the heliosphere to Earth with a smooth transition at the interface between the two simulations. Looking at the profile of magnetic field components at Earth and different distances from the Sun, we also find that the transient magnetic structures have a self-similar expansion in COCONUT and EUHFORIA. However, the amplitude of the profiles depends on the flux rope model used and its properties, thus emphasizing the important role of the initial properties in solar source regions for accurately predicting the impact of CMEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19340v1-abstract-full').style.display = 'none'; document.getElementById('2411.19340v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09345">arXiv:2411.09345</a> <span> [<a href="https://arxiv.org/pdf/2411.09345">pdf</a>, <a href="https://arxiv.org/format/2411.09345">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DarkSHINE Baseline Design Report: Physics Prospects and Detector Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Ji-Yuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jun-Feng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Chang-Bo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yi-Han Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jia-Lin Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yu-ming Lin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Dan-Ning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kang Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qi-Bin Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Z">Ze-Jia Lu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+M">Meng Lv</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Si-Yuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jian-Nan Tang</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+W">Wei-Shi Wan</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Dong Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiao-Long Wang</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09345v2-abstract-short" style="display: inline;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09345v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09345v2-abstract-full" style="display: none;"> DarkSHINE is a newly proposed fixed-target experiment initiative to search for the invisible decay of Dark Photon via missing energy/momentum signatures, based on the high repetition rate electron beam to be deployed/delivered by the Shanghai High repetition rate XFEL and Extreme light facility (SHINE). This report elaborates the baseline design of DarkSHINE experiment by introducing the physics goals, experimental setups, details of each sub-detector system technical designs, signal and backgground modelings, expected search sensitivities and future prospects, which mark an important step towards the further prototyping and technical demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09345v2-abstract-full').style.display = 'none'; document.getElementById('2411.09345v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08667">arXiv:2411.08667</a> <span> [<a href="https://arxiv.org/pdf/2411.08667">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Cavity-enhanced circular dichroism in a van der Waals antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ren%2C+S">Shu-Liang Ren</a>, <a href="/search/physics?searchtype=author&query=Pang%2C+S">Simin Pang</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+S">Shan Guan</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yu-Jia Sun</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+T">Tian-Yu Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+N">Nai Jiang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiaqi Guo</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+H">Hou-Zhi Zheng</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Jun-Wei Luo</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+P">Ping-Heng Tan</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+C">Chao Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08667v1-abstract-short" style="display: inline;"> Broken symmetry plays a pivotal role in determining the macroscopic electrical, optical, magnetic, and topological properties of materials. Circular dichroism (CD) has been widely employed to probe broken symmetry in various systems, from small molecules to bulk crystals, but designing CD responses on demand remains a challenge, especially for antiferromagnetic materials. Here, we develop a cavity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08667v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08667v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08667v1-abstract-full" style="display: none;"> Broken symmetry plays a pivotal role in determining the macroscopic electrical, optical, magnetic, and topological properties of materials. Circular dichroism (CD) has been widely employed to probe broken symmetry in various systems, from small molecules to bulk crystals, but designing CD responses on demand remains a challenge, especially for antiferromagnetic materials. Here, we develop a cavity-enhanced CD technique to sensitively probe the magnetic order and broken symmetry in the van der Waals antiferromagnet FePS3. By introducing interfacial inversion asymmetry in cavity-coupled FePS3 crystals, we demonstrate that the induced CD is strongly coupled with the zig-zag antiferromagnetic order of FePS3 and can be tuned both spectrally and in magnitude by varying the cavity length and FePS3 thickness. Our findings open new avenues for using cavity-modulated CD as a sensitive diagnostic probe to detect weak broken symmetries, particularly at hidden interfaces, and in systems exhibiting hidden spin polarization or strong correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08667v1-abstract-full').style.display = 'none'; document.getElementById('2411.08667v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08056">arXiv:2411.08056</a> <span> [<a href="https://arxiv.org/pdf/2411.08056">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Biodynamic Analysis of Alpine Skiing with a Skier-Ski-Snow Interaction Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gao%2C+N">Nan Gao</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+H">Huitong Jin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jianqiao Guo</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+G">Gexue Ren</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Chun Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08056v1-abstract-short" style="display: inline;"> This study establishes a skier-ski-snow interaction (SSSI) model that integrates a 3D full-body musculoskeletal model, a flexible ski model, a ski-snow contact model, and an air resistance model. An experimental method is developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which are cost-effective and capable of capturing motion in large-scale… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08056v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08056v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08056v1-abstract-full" style="display: none;"> This study establishes a skier-ski-snow interaction (SSSI) model that integrates a 3D full-body musculoskeletal model, a flexible ski model, a ski-snow contact model, and an air resistance model. An experimental method is developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which are cost-effective and capable of capturing motion in large-scale field conditions. The ski-snow interaction parameters are optimized for dynamic alignment with snow conditions and individual turning techniques. Forward-inverse dynamics simulation is performed using only the skier's posture as model input and leaving the translational degrees of freedom (DOFs) between the pelvis and the ground unconstrained. The effectiveness of our model is further verified by comparing the simulated results with the collected GPS and plantar pressure data. The correlation coefficient between the simulated ski-snow contact force and the measured plantar pressure data is 0.964, and the error between the predicted motion trajectory and GPS data is 0.7%. By extracting kinematic and kinetic parameters from skiers of different skill levels, quantitative performance analysis helps quantify ski training. The SSSI model with the parameter optimization algorithm of the ski-snow interaction allows for the description of skiing characteristics across varied snow conditions and different turning techniques, such as carving and skidding. Our research advances the understanding of alpine skiing dynamics, informing the development of training programs and facility designs to enhance athlete performance and safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08056v1-abstract-full').style.display = 'none'; document.getElementById('2411.08056v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13186">arXiv:2410.13186</a> <span> [<a href="https://arxiv.org/pdf/2410.13186">pdf</a>, <a href="https://arxiv.org/format/2410.13186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450046">10.1051/0004-6361/202450046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A statistical study on the peak and fluence spectra of Solar Energetic Particles observed over 4 solar cycles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yubao Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jingnan Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13186v1-abstract-short" style="display: inline;"> Solar energetic particles (SEPs) are an important space radiation source, especially for the space weather environment in the inner heliosphere. The energy spectrum of SEP events is crucial both for evaluating their radiation effects and for understanding their acceleration process at the source region and their propagation mechanism. In this work, we investigate the properties of the SEP peak flu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13186v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13186v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13186v1-abstract-full" style="display: none;"> Solar energetic particles (SEPs) are an important space radiation source, especially for the space weather environment in the inner heliosphere. The energy spectrum of SEP events is crucial both for evaluating their radiation effects and for understanding their acceleration process at the source region and their propagation mechanism. In this work, we investigate the properties of the SEP peak flux spectra and the fluence spectra and their potential formation mechanisms using statistical methods. We aim to advance our understanding of both SEPs' acceleration and propagation mechanisms. Employing the dataset of European Space Agency's Solar Energetic Particle Environment Modelling (SEPEM) program, we have obtained and fitted the peak-flux and fluence proton spectra of more than a hundred SEP events from 1974 to 2018. We analyzed the relationship among the solar activity, X-ray peak intensity of solar flares and the SEP spectral parameters. Based on the assumption that the initial spectrum of accelerated SEPs generally has a power-law distribution and also the diffusion coefficient has a power-law dependence on particle energy, we can assess both the source and propagation properties using the observed SEP event peak flux and fluence energy spectra. We confirm that SEPs' spectral properties are influenced by the solar source and the interplanetary conditions and their transportation process can be influenced by different phases of solar cycle. This study provides an observational perspective on the double power-law spectral characteristics of the SEP energy spectra, showing their correlation with the adiabatic cooling and diffusion processes during the particle propagation from the Sun to the observer. This contributes to a deeper understanding of the acceleration and propagation of SEP events, in particular the possible origins of the double-power law. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13186v1-abstract-full').style.display = 'none'; document.getElementById('2410.13186v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01095">arXiv:2410.01095</a> <span> [<a href="https://arxiv.org/pdf/2410.01095">pdf</a>, <a href="https://arxiv.org/format/2410.01095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Harnessing micro-Fabry-Perot reference cavities in photonic integrated circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+H">Haotian Cheng</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+C">Chao Xiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+N">Naijun Jin</a>, <a href="/search/physics?searchtype=author&query=Kudelin%2C+I">Igor Kudelin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Heyrich%2C+M">Matthew Heyrich</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yifan Liu</a>, <a href="/search/physics?searchtype=author&query=Peters%2C+J">Jonathan Peters</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+Q">Qing-Xin Ji</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yishu Zhou</a>, <a href="/search/physics?searchtype=author&query=Vahala%2C+K+J">Kerry J. Vahala</a>, <a href="/search/physics?searchtype=author&query=Quinlan%2C+F">Franklyn Quinlan</a>, <a href="/search/physics?searchtype=author&query=Diddams%2C+S+A">Scott A. Diddams</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J+E">John E. Bowers</a>, <a href="/search/physics?searchtype=author&query=Rakich%2C+P+T">Peter T. Rakich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01095v1-abstract-short" style="display: inline;"> Compact photonic systems that offer high frequency stability and low noise are of increasing importance to applications in precision metrology, quantum computing, communication, and advanced sensing technologies. However, on-chip resonators comprised of dielectrics cannot match the frequency stability and noise characteristics of Fabry-Perot cavities, whose electromagnetic modes live almost entire… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01095v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01095v1-abstract-full" style="display: none;"> Compact photonic systems that offer high frequency stability and low noise are of increasing importance to applications in precision metrology, quantum computing, communication, and advanced sensing technologies. However, on-chip resonators comprised of dielectrics cannot match the frequency stability and noise characteristics of Fabry-Perot cavities, whose electromagnetic modes live almost entirely in vacuum. In this study, we present a novel strategy to interface micro-fabricated Fabry-Perot cavities with photonic integrated circuits to realize compact, high-performance integrated systems. Using this new integration approach, we demonstrate self-injection locking of an on-chip laser to a milimeter-scale vacuum-gap Fabry-Perot using a circuit interface that transforms the reflected cavity response to enable efficient feedback to the laser. This system achieves a phase noise of -97 dBc/Hz at 10 kHz offset frequency, a fractional frequency stability of 5*10-13 at 10 ms, a 150 Hz 1/pi integral linewidth, and a 35 mHz fundamental linewidth. We also present a complementary integration strategy that utilizes a vertical emission grating coupler and a back-reflection cancellation circuit to realize a fully co-integrated module that effectively redirects the reflected signals and isolates back-reflections with a 10 dB suppression ratio, readily adaptable for on-chip PDH locking. Together, these demonstrations significantly enhance the precision and functionality of RF photonic systems, paving the way for continued advancements in photonic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01095v1-abstract-full').style.display = 'none'; document.getElementById('2410.01095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17199">arXiv:2409.17199</a> <span> [<a href="https://arxiv.org/pdf/2409.17199">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Multilayer Thin Film Structure Inverse Design: From Optimization to Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+T">Taigao Ma</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+M">Mingqian Ma</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+L+J">L. Jay Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17199v1-abstract-short" style="display: inline;"> Optical multilayer thin film structures have been widely used in numerous photonic domains and applications. The key component to enable these applications is the inverse design. Different from other photonic structures such as metasurface or waveguide, multilayer thin film is a one-dimensional structure, which deserves its own treatment for the design process. Optimization has always been the sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17199v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17199v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17199v1-abstract-full" style="display: none;"> Optical multilayer thin film structures have been widely used in numerous photonic domains and applications. The key component to enable these applications is the inverse design. Different from other photonic structures such as metasurface or waveguide, multilayer thin film is a one-dimensional structure, which deserves its own treatment for the design process. Optimization has always been the standard design algorithm for decades. Recent years have witnessed a rapid development of integrating different deep learning algorithms to tackle the inverse design problems. A natural question to ask is: how do these algorithms differ from each other? Why do we need to develop so many algorithms and what type of challenges do they solve? What is the state-of-the-art algorithm in this domain? Here, we review recent progress and provide a guide-tour through this research area, starting from traditional optimization to recent deep learning approaches. Challenges and future perspectives are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17199v1-abstract-full').style.display = 'none'; document.getElementById('2409.17199v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 Pages, 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.03352">arXiv:2409.03352</a> <span> [<a href="https://arxiv.org/pdf/2409.03352">pdf</a>, <a href="https://arxiv.org/format/2409.03352">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> On-orbit calibration and long-term performance of the DAMPE trigger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+W">Wen-Hao Li</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+C">Chuan Yue</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong-Qiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jian-Hua Guo</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Q">Qiang Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.03352v1-abstract-short" style="display: inline;"> The DArk Matter Particle Explorer (DAMPE) is a satellite-borne particle detector for measurements of high-energy cosmic rays and 纬-rays. DAMPE has been operating smoothly in space for more than 8 years since launch on December 17, 2015. The trigger logic of DAMPE is designed according to the deposited energy information recorded by the calorimeter. The precise calibration of the trigger thresholds… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03352v1-abstract-full').style.display = 'inline'; document.getElementById('2409.03352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.03352v1-abstract-full" style="display: none;"> The DArk Matter Particle Explorer (DAMPE) is a satellite-borne particle detector for measurements of high-energy cosmic rays and 纬-rays. DAMPE has been operating smoothly in space for more than 8 years since launch on December 17, 2015. The trigger logic of DAMPE is designed according to the deposited energy information recorded by the calorimeter. The precise calibration of the trigger thresholds and their long-term evolutions are very important for the scientific analysis of DAMPE. In this work, we develop a new method for the threshold calibration, considering the influence from the electronic noise, and obtain the long-term evolutions of the trigger thresholds. The average increase rate of the trigger thresholds for the first 4 layers of the calorimeter is found to be about 0.9% per year, resulting in variations of the high-energy trigger efficiency of cosmic ray electrons by about -5% per year at 2 GeV and less than about -0.05% above 30 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.03352v1-abstract-full').style.display = 'none'; document.getElementById('2409.03352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02022">arXiv:2409.02022</a> <span> [<a href="https://arxiv.org/pdf/2409.02022">pdf</a>, <a href="https://arxiv.org/ps/2409.02022">ps</a>, <a href="https://arxiv.org/format/2409.02022">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450771">10.1051/0004-6361/202450771 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SIP-IFVM: Efficient time-accurate magnetohydrodynamic model of the corona and coronal mass ejections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+H+P">H. P. Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J+H">J. H. Guo</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+P">L. P. Yang</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">S. Poedts</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+F">F. Zhang</a>, <a href="/search/physics?searchtype=author&query=Lani%2C+A">A. Lani</a>, <a href="/search/physics?searchtype=author&query=Baratashvili%2C+T">T. Baratashvili</a>, <a href="/search/physics?searchtype=author&query=Linan%2C+L">L. Linan</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+R">R. Lin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Y. Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02022v2-abstract-short" style="display: inline;"> In this paper, we present an efficient and time-accurate three-dimensional (3D) single-fluid MHD solar coronal model and employ it to simulate CME evolution and propagation. Based on a quasi-steady-state implicit MHD coronal model, we developed an efficient time-accurate coronal model that can be used to speed up the CME simulation by selecting a large time-step size. We have called it the Solar I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02022v2-abstract-full').style.display = 'inline'; document.getElementById('2409.02022v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02022v2-abstract-full" style="display: none;"> In this paper, we present an efficient and time-accurate three-dimensional (3D) single-fluid MHD solar coronal model and employ it to simulate CME evolution and propagation. Based on a quasi-steady-state implicit MHD coronal model, we developed an efficient time-accurate coronal model that can be used to speed up the CME simulation by selecting a large time-step size. We have called it the Solar Interplanetary Phenomena-Implicit Finite Volume Method (SIP-IFVM) coronal model. A pseudo-time marching method was implemented to improve temporal accuracy. A regularised Biot-Savart Laws (RBSL) flux rope, whose axis can be designed into an arbitrary shape, was inserted into the background corona to trigger the CME event. We performed a CME simulation on the background corona of Carrington rotation (CR) 2219 and evaluated the impact of time-step sizes on simulation results. Our study demonstrates that this model is able to simulate the CME evolution and propagation process from the solar surface to $20\; R_s$ in less than 0.5 hours (192 CPU cores, $\sim$ 1 M cells). Compared to the explicit counterpart, this implicit coronal model is not only faster, but it also has improved numerical stability. We also conducted an ad hoc simulation with initial magnetic fields artificially increased. It shows that this model can effectively deal with time-dependent low-$尾$ problems ($尾<10^{-4}$). Additionally, an Orszag-Tang MHD vortex flow simulation demonstrates that the pseudo-time-marching method used in this coronal model can simulate small-scale unsteady-state flows. The simulation results show that this MHD coronal model is very efficient and numerically stable. It is a promising approach to simulating time-varying events in the solar corona with low plasma $尾$ in a timely and accurate manner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02022v2-abstract-full').style.display = 'none'; document.getElementById('2409.02022v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures. (Accepted by A&A.)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 693, A257 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16880">arXiv:2408.16880</a> <span> [<a href="https://arxiv.org/pdf/2408.16880">pdf</a>, <a href="https://arxiv.org/format/2408.16880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.27.084802">10.1103/PhysRevAccelBeams.27.084802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Electron Beam Accelerator Facility at 12 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adderley%2C+P+A">P. A. Adderley</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+T">T. Allison</a>, <a href="/search/physics?searchtype=author&query=Bachimanchi%2C+R">R. Bachimanchi</a>, <a href="/search/physics?searchtype=author&query=Baggett%2C+K">K. Baggett</a>, <a href="/search/physics?searchtype=author&query=BastaniNejad%2C+M">M. BastaniNejad</a>, <a href="/search/physics?searchtype=author&query=Bevins%2C+B">B. Bevins</a>, <a href="/search/physics?searchtype=author&query=Bevins%2C+M">M. Bevins</a>, <a href="/search/physics?searchtype=author&query=Bickley%2C+M">M. Bickley</a>, <a href="/search/physics?searchtype=author&query=Bodenstein%2C+R+M">R. M. Bodenstein</a>, <a href="/search/physics?searchtype=author&query=Bogacz%2C+S+A">S. A. Bogacz</a>, <a href="/search/physics?searchtype=author&query=Bruker%2C+M">M. Bruker</a>, <a href="/search/physics?searchtype=author&query=Burrill%2C+A">A. Burrill</a>, <a href="/search/physics?searchtype=author&query=Cardman%2C+L">L. Cardman</a>, <a href="/search/physics?searchtype=author&query=Creel%2C+J">J. Creel</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+Y+-">Y. -C. Chao</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+G">G. Cheng</a>, <a href="/search/physics?searchtype=author&query=Ciovati%2C+G">G. Ciovati</a>, <a href="/search/physics?searchtype=author&query=Chattopadhyay%2C+S">S. Chattopadhyay</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+J">J. Clark</a>, <a href="/search/physics?searchtype=author&query=Clemens%2C+W+A">W. A. Clemens</a>, <a href="/search/physics?searchtype=author&query=Croke%2C+G">G. Croke</a>, <a href="/search/physics?searchtype=author&query=Daly%2C+E">E. Daly</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+G+K">G. K. Davis</a>, <a href="/search/physics?searchtype=author&query=Delayen%2C+J">J. Delayen</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16880v1-abstract-short" style="display: inline;"> This review paper describes the energy-upgraded CEBAF accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing eighty-eight superconducting cavities that have operated CW at an average accelerating gradient of 20 MV/m. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgrad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16880v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16880v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16880v1-abstract-full" style="display: none;"> This review paper describes the energy-upgraded CEBAF accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing eighty-eight superconducting cavities that have operated CW at an average accelerating gradient of 20 MV/m. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgraded CEBAF accelerator system in detail with particular attention paid to the new beam acceleration systems. In addition to doubling the acceleration in each linac, the upgrade included improving the beam recirculation magnets, adding more helium cooling capacity to allow the newly installed modules to run cold, adding a new experimental hall, and improving numerous other accelerator components. We review several of the techniques deployed to operate and analyze the accelerator performance, and document system operating experience and performance. In the final portion of the document, we present much of the current planning regarding projects to improve accelerator performance and enhance operating margins, and our plans for ensuring CEBAF operates reliably into the future. For the benefit of potential users of CEBAF, the performance and quality measures for beam delivered to each of the experimental halls is summarized in the appendix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16880v1-abstract-full').style.display = 'none'; document.getElementById('2408.16880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">66 pages, 73 figures, 21 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-ACC-23-3940 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 27 (2024) 084802 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13789">arXiv:2408.13789</a> <span> [<a href="https://arxiv.org/pdf/2408.13789">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-watt long-wavelength infrared femtosecond lasers and resonant enamel ablation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xuemei Yang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Dunxiang Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Weizhe Wang</a>, <a href="/search/physics?searchtype=author&query=Tian%2C+K">Kan Tian</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">Linzhen He</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinmiao Guo</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+B">Bo Hu</a>, <a href="/search/physics?searchtype=author&query=Pu%2C+T">Tao Pu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenlong Li</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+S">Shiran Sun</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+C">Chunmei Ding</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Han Wu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+K">Kenkai Li</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+Y">Yujie Peng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jianshu Li</a>, <a href="/search/physics?searchtype=author&query=Leng%2C+Y">Yuxin Leng</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+H">Houkun Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13789v1-abstract-short" style="display: inline;"> High-power broadband tunable long-wavelength infrared (LWIR) femtosecond lasers operating at fingerprint wavelengths of 7-14 渭m hold significant promise across a range of applications, including molecular hyperspectral imaging, strong-field light-matter interaction, and resonant tissue ablation. Here we present 6-12 渭m broadband tunable parametric amplifier based on LiGaS2 or BaGa4S7, generating n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13789v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13789v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13789v1-abstract-full" style="display: none;"> High-power broadband tunable long-wavelength infrared (LWIR) femtosecond lasers operating at fingerprint wavelengths of 7-14 渭m hold significant promise across a range of applications, including molecular hyperspectral imaging, strong-field light-matter interaction, and resonant tissue ablation. Here we present 6-12 渭m broadband tunable parametric amplifier based on LiGaS2 or BaGa4S7, generating new record output power of 2.4 W at 7.5 渭m, and 1.5 W at 9.5 渭m, pumped by a simple and effective thin-square-rod Yb:YAG amplifier producing 110 W 274 fs output pulses. As a proof of concept, we showcase efficient resonant ablation and microstructure fabrication on enamel at the hydroxyapatite resonant wavelength of 9.5 渭m, with a laser intensity two orders-of-magnitude lower than that required by non-resonant femtosecond lasers, which could foster more precision surgical applications with superior biosafety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13789v1-abstract-full').style.display = 'none'; document.getElementById('2408.13789v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.13380">arXiv:2408.13380</a> <span> [<a href="https://arxiv.org/pdf/2408.13380">pdf</a>, <a href="https://arxiv.org/format/2408.13380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The MUSE Beamline Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+W">W. Lin</a>, <a href="/search/physics?searchtype=author&query=Rostomyan%2C+T">T. Rostomyan</a>, <a href="/search/physics?searchtype=author&query=Gilman%2C+R">R. Gilman</a>, <a href="/search/physics?searchtype=author&query=Strauch%2C+S">S. Strauch</a>, <a href="/search/physics?searchtype=author&query=Meier%2C+C">C. Meier</a>, <a href="/search/physics?searchtype=author&query=Nestler%2C+C">C. Nestler</a>, <a href="/search/physics?searchtype=author&query=Ali%2C+M">M. Ali</a>, <a href="/search/physics?searchtype=author&query=Atac%2C+H">H. Atac</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&query=Ndukwe%2C+A+C">A. Christopher Ndukwe</a>, <a href="/search/physics?searchtype=author&query=Cline%2C+E+W">E. W. Cline</a>, <a href="/search/physics?searchtype=author&query=Deiters%2C+K">K. Deiters</a>, <a href="/search/physics?searchtype=author&query=Dogra%2C+S">S. Dogra</a>, <a href="/search/physics?searchtype=author&query=Downie%2C+E+J">E. J. Downie</a>, <a href="/search/physics?searchtype=author&query=Duan%2C+Z">Z. Duan</a>, <a href="/search/physics?searchtype=author&query=Fernando%2C+I+P">I. P. Fernando</a>, <a href="/search/physics?searchtype=author&query=Flannery%2C+A">A. Flannery</a>, <a href="/search/physics?searchtype=author&query=Ghosal%2C+D">D. Ghosal</a>, <a href="/search/physics?searchtype=author&query=Golossanov%2C+A">A. Golossanov</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">J. Guo</a>, <a href="/search/physics?searchtype=author&query=Ifat%2C+N+S">N. S. Ifat</a>, <a href="/search/physics?searchtype=author&query=Ilieva%2C+Y">Y. Ilieva</a>, <a href="/search/physics?searchtype=author&query=Kohl%2C+M">M. Kohl</a>, <a href="/search/physics?searchtype=author&query=Lavrukhin%2C+I">I. Lavrukhin</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.13380v1-abstract-short" style="display: inline;"> The MUon Scattering Experiment (MUSE) was motivated by the proton radius puzzle arising from the discrepancy between muonic hydrogen spectroscopy and electron-proton measurements. The MUSE physics goals also include testing lepton universality, precisely measuring two-photon exchange contribution, and testing radiative corrections. MUSE addresses these physics goals through simultaneous measuremen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13380v1-abstract-full').style.display = 'inline'; document.getElementById('2408.13380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.13380v1-abstract-full" style="display: none;"> The MUon Scattering Experiment (MUSE) was motivated by the proton radius puzzle arising from the discrepancy between muonic hydrogen spectroscopy and electron-proton measurements. The MUSE physics goals also include testing lepton universality, precisely measuring two-photon exchange contribution, and testing radiative corrections. MUSE addresses these physics goals through simultaneous measurement of high precision cross sections for electron-proton and muon-proton scattering using a mixed-species beam. The experiment will run at both positive and negative beam polarities. Measuring precise cross sections requires understanding both the incident beam energy and the radiative corrections. For this purpose, a lead-glass calorimeter was installed at the end of the beam line in the MUSE detector system. In this article we discuss the detector specifications, calibration and performance. We demonstrate that the detector performance is well reproduced by simulation, and meets experimental requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.13380v1-abstract-full').style.display = 'none'; document.getElementById('2408.13380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06595">arXiv:2408.06595</a> <span> [<a href="https://arxiv.org/pdf/2408.06595">pdf</a>, <a href="https://arxiv.org/ps/2408.06595">ps</a>, <a href="https://arxiv.org/format/2408.06595">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Recent advances in solar data-driven MHD simulations of the formation and evolution of CME flux ropes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schmieder%2C+B">Brigitte Schmieder</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinhan Guo</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">Stefaan Poedts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06595v1-abstract-short" style="display: inline;"> Filament eruptions and coronal mass ejections are physical phenomena related to magnetic flux ropes carrying electric current. A magnetic flux rope is a key structure for solar eruptions, and when it carries a southward magnetic field component when propagating to the Earth. It is the primary driver of strong geomagnetic storms. As a result, developing a numerical model capable of capturing the en… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06595v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06595v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06595v1-abstract-full" style="display: none;"> Filament eruptions and coronal mass ejections are physical phenomena related to magnetic flux ropes carrying electric current. A magnetic flux rope is a key structure for solar eruptions, and when it carries a southward magnetic field component when propagating to the Earth. It is the primary driver of strong geomagnetic storms. As a result, developing a numerical model capable of capturing the entire progression of a flux rope, from its inception to its eruptive phase, is crucial for forecasting adverse space weather. The existence of such flux ropes is revealed by the presence of sigmoids in active regions or hot channels by observations from space and ground instruments. After proposing cartoons in 2D, potential, linear, non-linear-force-free-field (NLFFF) and non-force-free-field (NFFF) magnetic extrapolations, 3D numerical magnetohydrodynamic (MHD) simulation models were developed, first in a static configuration and later dynamic data-driven MHD models using high resolution observed vector magnetograms. This paper reviews a few recent developments in data-driven mode, such as the time-dependent magneto-frictional (TMF) and thermodynamic magnetohydrodynamic (MHD) models. Hereafter, to demonstrate the capacity of these models to reveal the physics of observations, we present the results for three events explored in our group: 1. the eruptive X1.0 flare on 28 October 2021; 2. the filament eruption on 18 August 2022; and 3. the confined X2.2 flare on 6 September 2017. These case studies validate the ability of data-driven models to retrieve observations, including the formation and eruption of flux ropes, 3D magnetic reconnection, CME three-part structures and the failed eruption. Based on these results, we provide some arguments for the formation mechanisms of flux ropes, the physical nature of the CME leading front, and the constraints of failed eruptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06595v1-abstract-full').style.display = 'none'; document.getElementById('2408.06595v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 12 figures, pulished on Reviews of Modern Plasma Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05799">arXiv:2408.05799</a> <span> [<a href="https://arxiv.org/pdf/2408.05799">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Boosting the quality factor of Tamm structures to millions by quantum inspired classical annealer with factorization machine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiang Guo</a>, <a href="/search/physics?searchtype=author&query=Kitai%2C+K">Koki Kitai</a>, <a href="/search/physics?searchtype=author&query=Jippo%2C+H">Hideyuki Jippo</a>, <a href="/search/physics?searchtype=author&query=Shiomi%2C+J">Junichiro Shiomi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05799v1-abstract-short" style="display: inline;"> The Tamm structures show high quality (Q) factor property with simple photonic Bragg reflectors composed of alternative high/low refractive index layers and metal reflectors. However, the Q-factor of Tamm structures is inherently limited by the periodic constraints and fixed thicknesses of the Bragg reflector pairs. Removing periodic constraints and adopting aperiodic designs can lead to significa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05799v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05799v1-abstract-full" style="display: none;"> The Tamm structures show high quality (Q) factor property with simple photonic Bragg reflectors composed of alternative high/low refractive index layers and metal reflectors. However, the Q-factor of Tamm structures is inherently limited by the periodic constraints and fixed thicknesses of the Bragg reflector pairs. Removing periodic constraints and adopting aperiodic designs can lead to significantly higher Q-factors. Nevertheless, to fully exploit the potential of Tamm structures, it is essential to thoroughly explore the extensive search space introduced by these aperiodic designs. Herein, we introduce a novel approach that utilizes the quantum-inspired classical annealer combined with a factorization machine to facilitate the design of photonic Bragg reflectors with the aim of achieving ultrahigh Q-factor properties. Our investigation begins by establishing the effectiveness of global optimization in a 15-bit problem setting, showcasing a remarkable efficiency improvement of nearly one order of magnitude compared to random search strategies. Subsequently, we expand our analysis to a 20-bit problem, demonstrating comparable efficiency to state-of-the-art Bayesian optimization methods. Moreover, the proposed method proves its capability in handling extremely large search spaces, exemplified by a 40-bit problem, where we successfully uncover a Tamm structure design exhibiting an extraordinary ultrahigh Q-factor surpassing millions. The designed aperiodic Tamm structure exhibits exceptional high localization and enhancement of electric field, and the power loss is concentrated in the low loss dielectric layer. Hence, the decay rate of power dissipation significantly decreases and light-matter interaction time increases, resulting in ultrahigh Q-factor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05799v1-abstract-full').style.display = 'none'; document.getElementById('2408.05799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.19360">arXiv:2407.19360</a> <span> [<a href="https://arxiv.org/pdf/2407.19360">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralow-loss spiral resonators for precise LiDAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Terra%2C+O">Osama Terra</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Warren Jin</a>, <a href="/search/physics?searchtype=author&query=Kotb%2C+H">Hussein Kotb</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J+E">John E. Bowers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.19360v1-abstract-short" style="display: inline;"> Swept laser interferometry is an extremely powerful solution embedded in several recent technologies such as absolute distance measurement, light detection and ranging, optical frequency domain reflectometry, optical coherence tomography, microresonator characterization, and gas spectroscopy. Nonlinearity in the optical frequency sweeping of tunable lasers is a fatal drawback in gaining the expect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19360v1-abstract-full').style.display = 'inline'; document.getElementById('2407.19360v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.19360v1-abstract-full" style="display: none;"> Swept laser interferometry is an extremely powerful solution embedded in several recent technologies such as absolute distance measurement, light detection and ranging, optical frequency domain reflectometry, optical coherence tomography, microresonator characterization, and gas spectroscopy. Nonlinearity in the optical frequency sweeping of tunable lasers is a fatal drawback in gaining the expected outcome from these technologies. Here, we introduce an onchip, millimeter scale, 7 m spiral resonator that is made of ultralow loss silicon nitride to act as a frequency ruler for correction of the tunable lasers sweeping nonlinearities. The sharp 2 MHz frequency lines of the 85 M high-quality resonator and the narrow spaced 25.57 MHz frequency ticks of the 7 m spiral allow unprecedented precise nonlinearity correction on an integrated photonics platform. Accurate measurements of the rulers frequency spacing, linewidth, and temperature and wavelength sensitivities of the frequency ticks are performed here to demonstrate the quality of the frequency ruler. In addition, the spiral resonator is implemented in an FMCW LiDAR experiment to demonstrate a potential application of the proposed onchip frequency ruler. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.19360v1-abstract-full').style.display = 'none'; document.getElementById('2407.19360v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17800">arXiv:2407.17800</a> <span> [<a href="https://arxiv.org/pdf/2407.17800">pdf</a>, <a href="https://arxiv.org/format/2407.17800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of a LYSO Crystal Electromagnetic Calorimeter for DarkSHINE Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhiyu Zhao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Q">Qibin Liu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jiyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Junfeng Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiang Chen</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+C">Changbo Fu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Khaw%2C+K+S">Kim Siang Khaw</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+D">Danning Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+K">Kun Liu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+S">Siyuan Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+T">Tong Sun</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jiannan Tang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yufeng Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+W">Weihao Wu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Haijun Yang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuming Lin</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+R">Rui Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yulei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yunlong Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+B">Baihong Zhou</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17800v2-abstract-short" style="display: inline;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17800v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17800v2-abstract-full" style="display: none;"> This paper presents the design and optimization of a LYSO crystal electromagnetic calorimeter (ECAL) for the DarkSHINE experiment, which aims to search for dark photons as potential mediators of dark forces. The ECAL design was evaluated through comprehensive simulations, focusing on optimizing dimensions, material selection, energy distribution, and energy resolution. The ECAL configuration consists of 21$\times$21$\times$11 LYSO crystals, each measuring 2.5$\times$2.5$\times$4 cm$^3$, arranged in a staggered layout to improve signal detection efficiency. A 4 GeV energy dynamic range was established to ensure accurate energy measurements without saturation, which is essential for background rejection and signal identification. A detailed digitization model was developed to simulate the scintillation, SiPM, and ADC behaviors, providing a more realistic representation of detector performance. Additionally, the study assessed radiation damage in the ECAL region, highlighting the necessity of radiation-resistant scintillators and silicon sensors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17800v2-abstract-full').style.display = 'none'; document.getElementById('2407.17800v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09457">arXiv:2407.09457</a> <span> [<a href="https://arxiv.org/pdf/2407.09457">pdf</a>, <a href="https://arxiv.org/format/2407.09457">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> How coronal mass ejections are influenced by the morphology and toroidal flux of their source magnetic flux ropes? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J+H">J. H. Guo</a>, <a href="/search/physics?searchtype=author&query=Linan%2C+L">L. Linan</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">S. Poedts</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Y. Guo</a>, <a href="/search/physics?searchtype=author&query=Schmieder%2C+B">B. Schmieder</a>, <a href="/search/physics?searchtype=author&query=Lani%2C+A">A. Lani</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+Y+W">Y. W. Ni</a>, <a href="/search/physics?searchtype=author&query=Brchnelova%2C+M">M. Brchnelova</a>, <a href="/search/physics?searchtype=author&query=Perri%2C+B">B. Perri</a>, <a href="/search/physics?searchtype=author&query=Baratashvili%2C+T">T. Baratashvili</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S+T">S. T. Li</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P+F">P. F. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09457v1-abstract-short" style="display: inline;"> Coronal mass ejections (CMEs) stand as intense eruptions of magnetized plasma from the Sun, playing a pivotal role in driving significant changes of the heliospheric environment. Deducing the properties of CMEs from their progenitors in solar source regions is crucial for space weather forecasting. Deducing the properties of CMEs from their progenitors in solar source regions is crucial for space… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09457v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09457v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09457v1-abstract-full" style="display: none;"> Coronal mass ejections (CMEs) stand as intense eruptions of magnetized plasma from the Sun, playing a pivotal role in driving significant changes of the heliospheric environment. Deducing the properties of CMEs from their progenitors in solar source regions is crucial for space weather forecasting. Deducing the properties of CMEs from their progenitors in solar source regions is crucial for space weather forecasting. The primary objective of this paper is to establish a connection between CMEs and their progenitors in solar source regions, enabling us to infer the magnetic structures of CMEs before their full development. To this end, we create a dataset comprising a magnetic flux rope series with varying projection shapes, sizes and toroidal fluxes, using the Regularized Biot-Savart Laws (RBSL). Thereafter, we simulate the propagation of these flux ropes from the solar surface to a distance of 25$R_{\odot}$ with our global coronal MHD model which is named COCONUT. Our parametric survey reveals significant impacts of source flux ropes on the consequent CMEs. We find that the projection shape can influence the magnetic structures of CMEs at 20$R_{\odot}$, albeit with minimal impacts on the propagation speed. However, these impacts diminish as source flux ropes become fat. In terms of toroidal flux, our simulation results demonstrate a pronounced correlation with the propagation speed of CMEs, as well as the successfulness in erupting. This work builds the bridge between the CMEs in the outer corona and their progenitors in solar source regions. Our parametric survey suggests that the projection shape, cross-section radius and toroidal flux of source flux ropes are crucial parameters in predicting magnetic structures and propagation speed of CMEs, providing valuable insights for space weather prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09457v1-abstract-full').style.display = 'none'; document.getElementById('2407.09457v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figrues, accepted for publication by A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13448">arXiv:2406.13448</a> <span> [<a href="https://arxiv.org/pdf/2406.13448">pdf</a>, <a href="https://arxiv.org/format/2406.13448">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.27.083401">10.1103/PhysRevAccelBeams.27.083401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Demonstration of High-Efficiency Microwave Heating Producing Record Highly Charged Xenon Ion Beams with Superconducting ECR Ion Sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">X. Wang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J+B">J. B. Li</a>, <a href="/search/physics?searchtype=author&query=Mironov%2C+V">V. Mironov</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J+W">J. W. Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+Z">X. Z. Zhang</a>, <a href="/search/physics?searchtype=author&query=Tarvainen%2C+O">O. Tarvainen</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+Y+C">Y. C. Feng</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L+X">L. X. Li</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J+D">J. D. Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+W">W. Lu</a>, <a href="/search/physics?searchtype=author&query=Bogomolov%2C+S">S. Bogomolov</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+L">L. Sun</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+H+W">H. W. Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13448v3-abstract-short" style="display: inline;"> Intense highly charged ion beam production is essential for high-power heavy ion accelerators. A novel movable Vlasov launcher for superconducting high charge state Electron Cyclotron Resonance (ECR) ion source has been devised that can affect the microwave power effectiveness by a factor of about 4 in terms of highly charged ion beam production. This approach based on a dedicated microwave launch… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13448v3-abstract-full').style.display = 'inline'; document.getElementById('2406.13448v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13448v3-abstract-full" style="display: none;"> Intense highly charged ion beam production is essential for high-power heavy ion accelerators. A novel movable Vlasov launcher for superconducting high charge state Electron Cyclotron Resonance (ECR) ion source has been devised that can affect the microwave power effectiveness by a factor of about 4 in terms of highly charged ion beam production. This approach based on a dedicated microwave launching system instead of the traditional coupling scheme has led to new insight on microwave-plasma interaction. With this new understanding, the world record highly charged xenon ion beam currents have been enhanced by up to a factor of 2, which could directly and significantly enhance the performance of heavy ion accelerators and provide many new research opportunities in nuclear physics, atomic physics and other disciplines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13448v3-abstract-full').style.display = 'none'; document.getElementById('2406.13448v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11937">arXiv:2406.11937</a> <span> [<a href="https://arxiv.org/pdf/2406.11937">pdf</a>, <a href="https://arxiv.org/format/2406.11937">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/11/P11025">10.1088/1748-0221/19/11/P11025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aamir%2C+M">M. Aamir</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+T">T. Adams</a>, <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Afanasiev%2C+S">S. Afanasiev</a>, <a href="/search/physics?searchtype=author&query=Agrawal%2C+C">C. Agrawal</a>, <a href="/search/physics?searchtype=author&query=Agrawal%2C+C">C. Agrawal</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+A">A. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+H+A">H. A. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+S">S. Akbar</a>, <a href="/search/physics?searchtype=author&query=Akchurin%2C+N">N. Akchurin</a>, <a href="/search/physics?searchtype=author&query=Akgul%2C+B">B. Akgul</a>, <a href="/search/physics?searchtype=author&query=Akgun%2C+B">B. Akgun</a>, <a href="/search/physics?searchtype=author&query=Akpinar%2C+R+O">R. O. Akpinar</a>, <a href="/search/physics?searchtype=author&query=Aktas%2C+E">E. Aktas</a>, <a href="/search/physics?searchtype=author&query=Kadhim%2C+A+A">A. Al Kadhim</a>, <a href="/search/physics?searchtype=author&query=Alexakhin%2C+V">V. Alexakhin</a>, <a href="/search/physics?searchtype=author&query=Alimena%2C+J">J. Alimena</a>, <a href="/search/physics?searchtype=author&query=Alison%2C+J">J. Alison</a>, <a href="/search/physics?searchtype=author&query=Alpana%2C+A">A. Alpana</a>, <a href="/search/physics?searchtype=author&query=Alshehri%2C+W">W. Alshehri</a>, <a href="/search/physics?searchtype=author&query=Dominguez%2C+P+A">P. Alvarez Dominguez</a>, <a href="/search/physics?searchtype=author&query=Alyari%2C+M">M. Alyari</a>, <a href="/search/physics?searchtype=author&query=Amendola%2C+C">C. Amendola</a>, <a href="/search/physics?searchtype=author&query=Amir%2C+R+B">R. B. Amir</a> , et al. (550 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11937v3-abstract-short" style="display: inline;"> A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11937v3-abstract-full').style.display = 'inline'; document.getElementById('2406.11937v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11937v3-abstract-full" style="display: none;"> A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensors and scintillator tiles readout by SiPMs and the absorbers are a combination of lead and Cu/CuW in the electromagnetic section, and steel in the hadronic section. The shower reconstruction method is based on graph neural networks and it makes use of a dynamic reduction network architecture. It is shown that the algorithm is able to capture and mitigate the main effects that normally hinder the reconstruction of hadronic showers using classical reconstruction methods, by compensating for fluctuations in the multiplicity, energy, and spatial distributions of the shower's constituents. The performance of the algorithm is evaluated using test beam data collected in 2018 prototype of the CMS HGCAL accompanied by a section of the CALICE AHCAL prototype. The capability of the method to mitigate the impact of energy leakage from the calorimeter is also demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11937v3-abstract-full').style.display = 'none'; document.getElementById('2406.11937v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P11025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09533">arXiv:2406.09533</a> <span> [<a href="https://arxiv.org/pdf/2406.09533">pdf</a>, <a href="https://arxiv.org/ps/2406.09533">ps</a>, <a href="https://arxiv.org/format/2406.09533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Investigation of Q degradation in low-loss Si3N4 from heterogeneous laser integration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+C">Chao Xiang</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Warren Jin</a>, <a href="/search/physics?searchtype=author&query=Peters%2C+J">Jonathan Peters</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mingxiao Li</a>, <a href="/search/physics?searchtype=author&query=Morin%2C+T">Theodore Morin</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+Y">Yu Xia</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J+E">John E. Bowers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09533v1-abstract-short" style="display: inline;"> High-performance, high-volume-manufacturing Si3N4 photonics requires extremely low waveguide losses augmented with heterogeneously integrated lasers for applications beyond traditional markets of high-capacity interconnects. State-of-the-art quality factors (Q) over 200 million at 1550 nm have been shown previously; however, maintaining high Qs throughout laser fabrication has not been shown. Here… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09533v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09533v1-abstract-full" style="display: none;"> High-performance, high-volume-manufacturing Si3N4 photonics requires extremely low waveguide losses augmented with heterogeneously integrated lasers for applications beyond traditional markets of high-capacity interconnects. State-of-the-art quality factors (Q) over 200 million at 1550 nm have been shown previously; however, maintaining high Qs throughout laser fabrication has not been shown. Here, Si3N4 resonator intrinsic Qs over 100 million are demonstrated on a fully integrated heterogeneous laser platform. Qi is measured throughout laser processing steps, showing degradation down to 50 million from dry etching, metal evaporation, and ion implant steps, and controllable recovery to over 100 million from annealing at 250C - 350C. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09533v1-abstract-full').style.display = 'none'; document.getElementById('2406.09533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01839">arXiv:2406.01839</a> <span> [<a href="https://arxiv.org/pdf/2406.01839">pdf</a>, <a href="https://arxiv.org/format/2406.01839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168685">10.1016/j.nima.2023.168685 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of DAMPE silicon microstrip detectors in the $\rm Allpix^{2}$ framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cui%2C+Y">Yu-Xin Cui</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shen Wang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+C">Chuan Yue</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+Q">Qiang Wan</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+S">Shi-Jun Lei</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+G">Guan-Wen Yuan</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yi-Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+J">Jia-Ju Wei</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jian-Hua Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01839v1-abstract-short" style="display: inline;"> Silicon strip detectors have been widely utilized in space experiments for gamma-ray and cosmic-ray detections thanks to their high spatial resolution and stable performance. For a silicon micro-strip detector, the Monte Carlo simulation is recognized as a practical and cost-effective approach to verify the detector performance. In this study, a technique for the simulation of the silicon micro-st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01839v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01839v1-abstract-full" style="display: none;"> Silicon strip detectors have been widely utilized in space experiments for gamma-ray and cosmic-ray detections thanks to their high spatial resolution and stable performance. For a silicon micro-strip detector, the Monte Carlo simulation is recognized as a practical and cost-effective approach to verify the detector performance. In this study, a technique for the simulation of the silicon micro-strip detector with the $\rm Allpix^{2}$ framework is developed. By incorporating the electric field into the particle transport simulation based on Geant4, this framework could precisely emulate the carrier drift in the silicon micro-strip detector. The simulation results are validated using the beam test data as well as the flight data of the DAMPE experiment, which suggests that the $\rm Allpix^{2}$ framework is a powerful tool to obtain the performance of the silicon micro-strip detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01839v1-abstract-full').style.display = 'none'; document.getElementById('2406.01839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research A 1057 (2023) 168685 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07303">arXiv:2405.07303</a> <span> [<a href="https://arxiv.org/pdf/2405.07303">pdf</a>, <a href="https://arxiv.org/format/2405.07303">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for solar axions by Primakoff effect with the full dataset of the CDEX-1B Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S+K">S. K. Liu</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07303v1-abstract-short" style="display: inline;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'inline'; document.getElementById('2405.07303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07303v1-abstract-full" style="display: none;"> We present the first limit on $g_{A纬}$ coupling constant using the Bragg-Primakoff conversion based on an exposure of 1107.5 kg days of data from the CDEX-1B experiment at the China Jinping Underground Laboratory. The data are consistent with the null signal hypothesis, and no excess signals are observed. Limits of the coupling $g_{A纬}<2.08\times10^{-9}$ GeV$^{-1}$ (95\% C.L.) are derived for axions with mass up to 100 eV/$c^2$. Within the hadronic model of KSVZ, our results exclude axion mass $>5.3~\rm{eV}/c^2$ at 95\% C.L. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07303v1-abstract-full').style.display = 'none'; document.getElementById('2405.07303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03788">arXiv:2405.03788</a> <span> [<a href="https://arxiv.org/pdf/2405.03788">pdf</a>, <a href="https://arxiv.org/format/2405.03788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Photonic Millimeter-wave Generation Beyond the Cavity Thermal Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Groman%2C+W">William Groman</a>, <a href="/search/physics?searchtype=author&query=Kudelin%2C+I">Igor Kudelin</a>, <a href="/search/physics?searchtype=author&query=Lind%2C+A">Alexander Lind</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+D">Dahyeon Lee</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+T">Takuma Nakamura</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yifan Liu</a>, <a href="/search/physics?searchtype=author&query=Kelleher%2C+M+L">Megan L. Kelleher</a>, <a href="/search/physics?searchtype=author&query=McLemore%2C+C+A">Charles A. McLemore</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Lue Wu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Warren Jin</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J+E">John E. Bowers</a>, <a href="/search/physics?searchtype=author&query=Quinlan%2C+F">Franklyn Quinlan</a>, <a href="/search/physics?searchtype=author&query=Diddams%2C+S+A">Scott A. Diddams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03788v1-abstract-short" style="display: inline;"> Next-generation communications, radar and navigation systems will extend and exploit the higher bandwidth of the millimeter-wave domain for increased communication data rates as well as radar with higher sensitivity and increased spatial resolution. However, realizing these advantages will require the generation of millimeter-wave signals with low phase noise in simple and compact form-factors. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03788v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03788v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03788v1-abstract-full" style="display: none;"> Next-generation communications, radar and navigation systems will extend and exploit the higher bandwidth of the millimeter-wave domain for increased communication data rates as well as radar with higher sensitivity and increased spatial resolution. However, realizing these advantages will require the generation of millimeter-wave signals with low phase noise in simple and compact form-factors. The rapidly developing field of photonic integration addresses this challenge and provides a path toward simplified and portable, low-noise mm-wave generation for these applications. We leverage these advances by heterodyning two silicon photonic chip lasers, phase-locked to the same miniature Fabry-Perot (F-P) cavity to demonstrate a simple framework for generating low-noise millimeter-waves with phase noise below the thermal limit of the F-P cavity. Specifically, we generate 94.5 GHz and 118.1 GHz millimeter-wave signals with phase noise of -117 dBc/Hz at 10 kHz offset, decreasing to -120 dBc/Hz at 40 kHz offset, a record low value for such photonic devices. We achieve this with existing technologies that can be integrated into a platform less than $\approx$ 10 mL in volume. Our work illustrates the significant potential and advantages of low size, weight, and power (SWaP) photonic-sourced mm-waves for communications and sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03788v1-abstract-full').style.display = 'none'; document.getElementById('2405.03788v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16655">arXiv:2404.16655</a> <span> [<a href="https://arxiv.org/pdf/2404.16655">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Rational Designing of Anthocyanidins-Directed Near-Infrared Two-Photon Fluorescence Probes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiu-e Zhang</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+X">Xue Wei</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+W">Wei-Bo Cui</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jin-Pu Bai</a>, <a href="/search/physics?searchtype=author&query=Matyusup%2C+A">Aynur Matyusup</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jing-Fu Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+A">Ai-Min Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16655v1-abstract-short" style="display: inline;"> Recently, two-photon fluorescent probes based on anthocyanidins molecules have attracted extensive attention due to their outstanding photophysical properties. However, there are only a few two-photon excited fluorescent probes that really meet the requirements of relatively long emission wavelengths (>600 nm), large two-photon absorption (TPA) cross sections (300 GM), significant Stokes shift (>8… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16655v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16655v1-abstract-full" style="display: none;"> Recently, two-photon fluorescent probes based on anthocyanidins molecules have attracted extensive attention due to their outstanding photophysical properties. However, there are only a few two-photon excited fluorescent probes that really meet the requirements of relatively long emission wavelengths (>600 nm), large two-photon absorption (TPA) cross sections (300 GM), significant Stokes shift (>80 nm), and high fluorescence intensity. Herein, the photophysical properties of a series of anthocyanidins with the same substituents but different fluorophore skeletons were investigated in detail. Compared with b-series molecules, a-series molecules with a six-membered ring in the backbone have a slightly higher reorganization energy. This results in more energy loss upon light excitation, enabling the reaction products to detect NTR through a larger Stokes shift. More importantly, there is very little decrease in fluorescence intensity as the Stokes shift increases. These features are extremely valuable for high-resolution NTR detection. In light of this, novel 2a-n (n=1-5) compounds are designed, which are accomplished by inhibiting the twisted intramolecular charge transfer (TICT) effect through alkyl cyclization, azetidine ring and extending 蟺 conjugation. Among them, 2a-3 gains long emission spectrum (位em=691.42 nm), noticeable TPA cross section (957.36 GM), and large Stokes shift (110.88 nm), indicating that it serves as a promising candidate for two-photon fluorescent dyes. It is hoped that this work will offer some insightful theoretical direction for the development of novel high performance anthocyanin fluorescent materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16655v1-abstract-full').style.display = 'none'; document.getElementById('2404.16655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09793">arXiv:2404.09793</a> <span> [<a href="https://arxiv.org/pdf/2404.09793">pdf</a>, <a href="https://arxiv.org/format/2404.09793">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First Search for Light Fermionic Dark Matter Absorption on Electrons Using Germanium Detector in CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+J+X">J. X. Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+R">J. R. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (61 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09793v1-abstract-short" style="display: inline;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09793v1-abstract-full" style="display: none;"> We present the first results of the search for sub-MeV fermionic dark matter absorbed by electron targets of Germanium using the 205.4~kg$\cdot$day data collected by the CDEX-10 experiment, with the analysis threshold of 160~eVee. No significant dark matter (DM) signals over the background are observed. Results are presented as limits on the cross section of DM--electron interaction. We present new constraints of cross section in the DM range of 0.1--10 keV/$c^2$ for vector and axial-vector interaction. The upper limit on the cross section is set to be $\rm 5.5\times10^{-46}~cm^2$ for vector interaction, and $\rm 1.8\times10^{-46}~cm^2$ for axial-vector interaction at DM mass of 5 keV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09793v1-abstract-full').style.display = 'none'; document.getElementById('2404.09793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08317">arXiv:2404.08317</a> <span> [<a href="https://arxiv.org/pdf/2404.08317">pdf</a>, <a href="https://arxiv.org/format/2404.08317">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Technical Design Report of the Spin Physics Detector at NICA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+SPD+Collaboration"> The SPD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abazov%2C+V">V. Abazov</a>, <a href="/search/physics?searchtype=author&query=Abramov%2C+V">V. Abramov</a>, <a href="/search/physics?searchtype=author&query=Afanasyev%2C+L">L. Afanasyev</a>, <a href="/search/physics?searchtype=author&query=Akhunzyanov%2C+R">R. Akhunzyanov</a>, <a href="/search/physics?searchtype=author&query=Akindinov%2C+A">A. Akindinov</a>, <a href="/search/physics?searchtype=author&query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&query=Aleshko%2C+A">A. Aleshko</a>, <a href="/search/physics?searchtype=author&query=Alexakhin%2C+V">V. Alexakhin</a>, <a href="/search/physics?searchtype=author&query=Alexeev%2C+G">G. Alexeev</a>, <a href="/search/physics?searchtype=author&query=Alimov%2C+L">L. Alimov</a>, <a href="/search/physics?searchtype=author&query=Allakhverdieva%2C+A">A. Allakhverdieva</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&query=Andreev%2C+V">V. Andreev</a>, <a href="/search/physics?searchtype=author&query=Andronov%2C+E">E. Andronov</a>, <a href="/search/physics?searchtype=author&query=Anikin%2C+Y">Yu. Anikin</a>, <a href="/search/physics?searchtype=author&query=Anischenko%2C+S">S. Anischenko</a>, <a href="/search/physics?searchtype=author&query=Anisenkov%2C+A">A. Anisenkov</a>, <a href="/search/physics?searchtype=author&query=Anosov%2C+V">V. Anosov</a>, <a href="/search/physics?searchtype=author&query=Antokhin%2C+E">E. Antokhin</a>, <a href="/search/physics?searchtype=author&query=Antonov%2C+A">A. Antonov</a>, <a href="/search/physics?searchtype=author&query=Antsupov%2C+S">S. Antsupov</a>, <a href="/search/physics?searchtype=author&query=Anufriev%2C+A">A. Anufriev</a>, <a href="/search/physics?searchtype=author&query=Asadova%2C+K">K. Asadova</a> , et al. (392 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08317v2-abstract-short" style="display: inline;"> The Spin Physics Detector collaboration proposes to install a universal detector in the second interaction point of the NICA collider under construction (JINR, Dubna) to study the spin structure of the proton and deuteron and other spin-related phenomena using a unique possibility to operate with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08317v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08317v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08317v2-abstract-full" style="display: none;"> The Spin Physics Detector collaboration proposes to install a universal detector in the second interaction point of the NICA collider under construction (JINR, Dubna) to study the spin structure of the proton and deuteron and other spin-related phenomena using a unique possibility to operate with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to $10^{32}$ cm$^{-2}$ s$^{-1}$. As the main goal, the experiment aims to provide access to the gluon TMD PDFs in the proton and deuteron, as well as the gluon transversity distribution and tensor PDFs in the deuteron, via the measurement of specific single and double spin asymmetries using different complementary probes such as charmonia, open charm, and prompt photon production processes. Other polarized and unpolarized physics is possible, especially at the first stage of NICA operation with reduced luminosity and collision energy of the proton and ion beams. This document is dedicated exclusively to technical issues of the SPD setup construction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08317v2-abstract-full').style.display = 'none'; document.getElementById('2404.08317v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Natural Science Review 1 1 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03093">arXiv:2404.03093</a> <span> [<a href="https://arxiv.org/pdf/2404.03093">pdf</a>, <a href="https://arxiv.org/format/2404.03093">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Unified laser stabilization and isolation on a silicon chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=White%2C+A+D">Alexander D. White</a>, <a href="/search/physics?searchtype=author&query=Ahn%2C+G+H">Geun Ho Ahn</a>, <a href="/search/physics?searchtype=author&query=Luhtaru%2C+R">Richard Luhtaru</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Morin%2C+T+J">Theodore J. Morin</a>, <a href="/search/physics?searchtype=author&query=Saxena%2C+A">Abhi Saxena</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+L">Lin Chang</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a>, <a href="/search/physics?searchtype=author&query=Van+Gasse%2C+K">Kasper Van Gasse</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J+E">John E. Bowers</a>, <a href="/search/physics?searchtype=author&query=Vu%C4%8Dkovi%C4%87%2C+J">Jelena Vu膷kovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03093v2-abstract-short" style="display: inline;"> Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale; heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nano… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03093v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03093v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03093v2-abstract-full" style="display: none;"> Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale; heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main ingredients for high-performance lasers -- noise reduction and isolation -- currently requiring serial combination of incompatible technologies, can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device. To do this, we take advantage of both the long photon lifetime and the nonreciprocal Kerr nonlinearity of a high quality factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. Additionally, we identify a previously unappreciated power regime limitation of current on-chip laser architectures which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03093v2-abstract-full').style.display = 'none'; document.getElementById('2404.03093v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20276">arXiv:2403.20276</a> <span> [<a href="https://arxiv.org/pdf/2403.20276">pdf</a>, <a href="https://arxiv.org/format/2403.20276">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the Blazar-Boosted Dark Matter from the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+R">R. Xu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20276v1-abstract-short" style="display: inline;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'inline'; document.getElementById('2403.20276v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20276v1-abstract-full" style="display: none;"> We report new constraints on light dark matter (DM) boosted by blazars using the 205.4 kg day data from the CDEX-10 experiment located at the China Jinping Underground Laboratory. Two representative blazars, TXS 0506+56 and BL Lacertae are studied. The results derived from TXS 0506+56 exclude DM-nucleon elastic scattering cross sections from $4.6\times 10^{-33}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for DM masses between 10 keV and 1 GeV, and the results derived from BL Lacertae exclude DM-nucleon elastic scattering cross sections from $2.4\times 10^{-34}\ \rm cm^2$ to $1\times10^{-26}\ \rm cm^2$ for the same range of DM masses. The constraints correspond to the best sensitivities among solid-state detector experiments in the sub-MeV mass range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20276v1-abstract-full').style.display = 'none'; document.getElementById('2403.20276v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.20263">arXiv:2403.20263</a> <span> [<a href="https://arxiv.org/pdf/2403.20263">pdf</a>, <a href="https://arxiv.org/format/2403.20263">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-024-2446-2">10.1007/s11433-024-2446-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Dark Matter Particles from Evaporating Primordial Black Holes via Electron Scattering in the CDEX-10 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Z+H">Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+L+T">L. T. Yang</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Q">Q. Yue</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+K+J">K. J. Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/physics?searchtype=author&query=An%2C+H+P">H. P. An</a>, <a href="/search/physics?searchtype=author&query=C.%2C+G">Greeshma C.</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J+P">J. P. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y+H">Y. H. Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+J+P">J. P. Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+W+H">W. H. Dai</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Z. Deng</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+C+H">C. H. Fang</a>, <a href="/search/physics?searchtype=author&query=Geng%2C+X+P">X. P. Geng</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+H">H. Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Q+J">Q. J. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+T">T. Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+X+Y">X. Y. Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+L">L. He</a>, <a href="/search/physics?searchtype=author&query=He%2C+S+M">S. M. He</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J+W">J. W. Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+H+X">H. X. Huang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+T+C">T. C. Huang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+L">L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Karmakar%2C+S">S. Karmakar</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.20263v2-abstract-short" style="display: inline;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'inline'; document.getElementById('2403.20263v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.20263v2-abstract-full" style="display: none;"> Dark matter (DM) is a major constituent of the Universe. However, no definite evidence of DM particles (denoted as ``$蠂$") has been found in DM direct detection (DD) experiments to date. There is a novel concept of detecting $蠂$ from evaporating primordial black holes (PBHs). We search for $蠂$ emitted from PBHs by investigating their interaction with target electrons. The examined PBH masses range from 1$\times$10$^{15}$ to 7$\times$10$^{16}$ g under the current limits of PBH abundance $f_{PBH}$. Using 205.4 kg$\cdot$day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory, we exclude the $蠂$--electron ($蠂$--$e$) elastic-scattering cross section $蟽_{蠂e} \sim 5\times10^{-29}$ cm$^2$ for $蠂$ with a mass $m_蠂\lesssim$ 0.1 keV from our results. With the higher radiation background but lower energy threshold (160 eV), CDEX-10 fill a part of the gap in the previous work. If ($m_蠂$, $蟽_{蠂e}$) can be determined in the future, DD experiments are expected to impose strong constraints on $f_{PBH}$ for large $M_{PBH}$s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.20263v2-abstract-full').style.display = 'none'; document.getElementById('2403.20263v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 3 tables. Version updated to match SCPMA version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 101011 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06596">arXiv:2403.06596</a> <span> [<a href="https://arxiv.org/pdf/2403.06596">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Ultra-broadband Optical Switching Plasmons Waveguide in Ge Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xinghui Liu</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+K">Kaili Chang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiarong Guo</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+M">Mengfei Xue</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+R">Ran Zhou</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+K">Ke Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jianing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06596v1-abstract-short" style="display: inline;"> Plasmonic devices, with their ultra-high integration density and data-carrying capacity comparable to optical devices, are currently a hot topic in the field of nanophotonic devices. Photodetectors, non-volatile memories, and ultra-compact lasers based on plasmons in low-dimensional materials are emerging at a rapid pace. However, the narrow optical response band and limited of convenient tunable… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06596v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06596v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06596v1-abstract-full" style="display: none;"> Plasmonic devices, with their ultra-high integration density and data-carrying capacity comparable to optical devices, are currently a hot topic in the field of nanophotonic devices. Photodetectors, non-volatile memories, and ultra-compact lasers based on plasmons in low-dimensional materials are emerging at a rapid pace. However, the narrow optical response band and limited of convenient tunable methods currently available have hindered the development of these plasmonic materials. Here, we report a ultrabroadband non-equilibrium plasmonic responses based on Ge nanowires tuned by optical method. We tracked the blue shift of the plasmonic response of Ge nanowires due to photo-induced carriers over an ultra-broad spectral range of 800-2000 $cm^{-1}$. For the first time, we have achieved the imaging of propagating surface plasmon polaritons (SPPs) in semiconductor nanowires, which were tuned by photo-induced carriers. The ultrafast and ultrabroadband response of semiconductor nanowire plasmons is of great significance for future ultrafast all-optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06596v1-abstract-full').style.display = 'none'; document.getElementById('2403.06596v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00973">arXiv:2403.00973</a> <span> [<a href="https://arxiv.org/pdf/2403.00973">pdf</a>, <a href="https://arxiv.org/format/2403.00973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Dispersive-wave-agile optical frequency division </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ji%2C+Q">Qing-Xin Ji</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wei Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+P">Peng Liu</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+W">Warren Jin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Joel Guo</a>, <a href="/search/physics?searchtype=author&query=Peters%2C+J">Jonathan Peters</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+L">Lue Wu</a>, <a href="/search/physics?searchtype=author&query=Feshali%2C+A">Avi Feshali</a>, <a href="/search/physics?searchtype=author&query=Paniccia%2C+M">Mario Paniccia</a>, <a href="/search/physics?searchtype=author&query=Ilchenko%2C+V">Vladimir Ilchenko</a>, <a href="/search/physics?searchtype=author&query=Bowers%2C+J">John Bowers</a>, <a href="/search/physics?searchtype=author&query=Matsko%2C+A">Andrey Matsko</a>, <a href="/search/physics?searchtype=author&query=Vahala%2C+K">Kerry Vahala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00973v1-abstract-short" style="display: inline;"> The remarkable frequency stability of resonant systems in the optical domain (optical cavities and atomic transitions) can be harnessed at frequency scales accessible by electronics using optical frequency division. This capability is revolutionizing technologies spanning time keeping to high-performance electrical signal sources. A version of the technique called 2-point optical frequency divisio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00973v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00973v1-abstract-full" style="display: none;"> The remarkable frequency stability of resonant systems in the optical domain (optical cavities and atomic transitions) can be harnessed at frequency scales accessible by electronics using optical frequency division. This capability is revolutionizing technologies spanning time keeping to high-performance electrical signal sources. A version of the technique called 2-point optical frequency division (2P-OFD) is proving advantageous for application to high-performance signal sources. In 2P-OFD, an optical cavity anchors two spectral endpoints defined by lines of a frequency comb. The comb need not be self-referenced, which greatly simplifies the system architecture and reduces power requirements. Here, a 2P-OFD microwave signal source is demonstrated with record-low phase noise using a microcomb. Key to this advance is a spectral endpoint defined by a frequency agile single-mode dispersive wave that is emitted by the microcomb soliton. Moreover, the system frequency reference is a compact all-solid-state optical cavity with a record Q-factor. The results advance integrable microcomb-based signal sources into the performance realm of much larger microwave sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00973v1-abstract-full').style.display = 'none'; document.getElementById('2403.00973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00359">arXiv:2403.00359</a> <span> [<a href="https://arxiv.org/pdf/2403.00359">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity and metallic behavior in heavily doped bulk single crystal diamond and graphene/diamond heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+S">Shisheng Lin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xutao Yu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+M">Minhui Yang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+H">Huikai Zhong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jiarui Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00359v1-abstract-short" style="display: inline;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band ga… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00359v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00359v1-abstract-full" style="display: none;"> Owing to extremely large band gap of 5.5 eV and high thermal conductivity, diamond is recognized as the most important semiconductor. The superconductivity of polycrystalline diamond has always been reported, but there are also many controversies over the existence of superconductivity in bulk single crystal diamond and it remains a question whether a metallic state exists for such a large band gap semiconductor. Herein, we realize a single crystal superconducting diamond with a Hall carrier concentration larger than 3*1020 cm-3 by co-doped of boron and nitrogen. Furthermore, we show that diamond can transform from superconducting to metallic state under similar carrier concentration with tuned carrier mobility degrading from 9.10 cm2 V-1 s-1 or 5.30 cm2 V-1 s-1 to 2.66 cm2 V-1 s-1 or 1.34 cm2 V-1 s-1. Through integrating graphene on a nitrogen and boron heavily co-doped diamond, the monolayer graphene can be superconducting through combining Andreev reflection and exciton mediated superconductivity, which may intrigue more interesting superconducting behavior of diamond heterostructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00359v1-abstract-full').style.display = 'none'; document.getElementById('2403.00359v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17271">arXiv:2402.17271</a> <span> [<a href="https://arxiv.org/pdf/2402.17271">pdf</a>, <a href="https://arxiv.org/format/2402.17271">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Capacitive coupling study of the HERD SCD prototype: preliminary results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lu%2C+R">Ruo-Si Lu</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+R">Rui Qiao</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+K">Ke Gong</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+W">Wen-Xi Peng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wei-Shuai Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+D">Dong-Ya Guo</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+J">Jia-Ju Wei</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y">Yi-Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jian-Hua Guo</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qi Wu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+P">Peng Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xuan Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+B">Bing Lu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yi-Rong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17271v1-abstract-short" style="display: inline;"> The Silicon Charge Detector (SCD) is a subdetector of the High Energy Cosmic Radiation Detection payload. The dynamic range of the silicon microstrip detector can be extended by the capacitive coupling effect, which is related to the interstrip capacitance and the coupling capacitance. A detector prototype with several sets of parameters was designed and tested in the ion beams at the CERN Super P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17271v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17271v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17271v1-abstract-full" style="display: none;"> The Silicon Charge Detector (SCD) is a subdetector of the High Energy Cosmic Radiation Detection payload. The dynamic range of the silicon microstrip detector can be extended by the capacitive coupling effect, which is related to the interstrip capacitance and the coupling capacitance. A detector prototype with several sets of parameters was designed and tested in the ion beams at the CERN Super Proton Synchrotron. The capacitive coupling fractions with readout strip and floating strip incidences were studied using the beam test data and SPICE simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17271v1-abstract-full').style.display = 'none'; document.getElementById('2402.17271v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16032">arXiv:2402.16032</a> <span> [<a href="https://arxiv.org/pdf/2402.16032">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Four-Channel WDM Graphene Optical Receiver </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yu%2C+L">Laiwen Yu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yurui Li</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+H">Hengtai Xiang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuanrong Li</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+H">Hengzhen Cao</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+Z">Zhongyang Ji</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+L">Liu Liu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+X">Xi Xiao</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+J">Jianbo Yin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jingshu Guo</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+D">Daoxin Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16032v2-abstract-short" style="display: inline;"> Silicon photonics with the advantages of low power consumption, low cost, and high yield is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the conventional SiGe photodetectors, supporting silicon-integrated on-chip photodetec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16032v2-abstract-full').style.display = 'inline'; document.getElementById('2402.16032v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16032v2-abstract-full" style="display: none;"> Silicon photonics with the advantages of low power consumption, low cost, and high yield is a crucial technology for facilitating high-capacity optical communications and interconnects. The graphene photodetectors (GPDs) featuring broadband operation, high speed, and low integration cost can be good additions to the conventional SiGe photodetectors, supporting silicon-integrated on-chip photodetection in new wavelength bands beyond 1.6 microns (e.g., U-band and 2 microns). Here we realize a silicon-integrated four-channel wavelength division multiplexing (WDM) optical receiver based on a micro-ring resonator (MRR) array and four p-n homojunction GPDs. These GPDs based on the photo-thermoelectric (PTE) effect operating under zero (current) bias exhibit responsivities of about 1.1 V/W and flat frequency responses up to 67 GHz which is set-up limited. The GPDs show good consistence benefiting from the compact active region array (0.006 mm^2) covered by a single mechanically exfoliated hBN/graphene/hBN stack. Moreover, the WDM graphene optical receiver realized the 4 x 16 Gbps non-return to zero (NRZ) optical signal transmission. To the best of our knowledge, it is the first GPD-array-based optical receiver using high-quality mechanically exfoliated graphene and edge graphene-metal conduct with low resistance. Apparently, our design is also compatible with CVD-grown graphene, which can also result in a good consistence of the GPDs. This work shed light on the large-scale integration of GPDs with high consistency and uniformity, enabling the application of high-quality mechanically exfoliated graphene, and promoting the development of the graphene photonic integrated circuits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16032v2-abstract-full').style.display = 'none'; document.getElementById('2402.16032v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06451">arXiv:2402.06451</a> <span> [<a href="https://arxiv.org/pdf/2402.06451">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Competitive and Weighted Evolving Simplicial Complexes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaohua Guo</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+R">Rui Miao</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jin-Li Guo</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+Y">Yuan Yuan</a>, <a href="/search/physics?searchtype=author&query=Forrest%2C+J+Y">Jeffrey Yi-Lin Forrest</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06451v2-abstract-short" style="display: inline;"> A simplex-based network is referred to as a higher-order network, in which describe that the interactions can include more than two nodes. Many multicomponent interactions can be grasped through simplicial complexes, which have recently found applications in social, technological, and biological contexts. The paper first proposes a competitive evolving model of higher-order networks. We introduce… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06451v2-abstract-full').style.display = 'inline'; document.getElementById('2402.06451v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06451v2-abstract-full" style="display: none;"> A simplex-based network is referred to as a higher-order network, in which describe that the interactions can include more than two nodes. Many multicomponent interactions can be grasped through simplicial complexes, which have recently found applications in social, technological, and biological contexts. The paper first proposes a competitive evolving model of higher-order networks. We introduce the difference equation analysis approach in the high-order network to make the analysis network more rigorous. It avoids the assumption that the degrees of nodes are continuous in the traditional analysis network. We obtain an analytical expression for the distribution of higher-order degrees by employing the theory of Poisson processes. The established results indicate that in a d-order network the scale-free behavior for the (d-1)-dim simplex with respect to the d-order degree is controlled by the competitiveness factor. As the competitiveness increases, the d-order degree of the (d-1)-dim simplex is bent under the logarithmic coordinates. While the e(<d-1)-dim simplex with respect to the d-order degree exhibits scale-free behavior. Second, by considering the weight changes of the neighboring simplices, as triggered by the selected simplex, a new weighted evolving model in higher-order networks is proposed. The results of the competitive evolving model of higher-order networks are used to analyze the weighted evolving model so that obtained are the analytical expressions of the higher-order degree distribution and higher-order strength density function of weighted higher-order networks. The outcomes of the simulation experiments are consistent with the theoretical analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06451v2-abstract-full').style.display = 'none'; document.getElementById('2402.06451v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05991">arXiv:2401.05991</a> <span> [<a href="https://arxiv.org/pdf/2401.05991">pdf</a>, <a href="https://arxiv.org/format/2401.05991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346045">10.1051/0004-6361/202346045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The multi-spacecraft high-energy solar particle event of 28 October 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kouloumvakos%2C+A">A. Kouloumvakos</a>, <a href="/search/physics?searchtype=author&query=Papaioannou%2C+A">A. Papaioannou</a>, <a href="/search/physics?searchtype=author&query=Waterfall%2C+C+O+G">C. O. G. Waterfall</a>, <a href="/search/physics?searchtype=author&query=Dalla%2C+S">S. Dalla</a>, <a href="/search/physics?searchtype=author&query=Vainio%2C+R">R. Vainio</a>, <a href="/search/physics?searchtype=author&query=Mason%2C+G+M">G. M. Mason</a>, <a href="/search/physics?searchtype=author&query=Heber%2C+B">B. Heber</a>, <a href="/search/physics?searchtype=author&query=K%C3%BChl%2C+P">P. K眉hl</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+R+C">R. C. Allen</a>, <a href="/search/physics?searchtype=author&query=Cohen%2C+C+M+S">C. M. S. Cohen</a>, <a href="/search/physics?searchtype=author&query=Ho%2C+G">G. Ho</a>, <a href="/search/physics?searchtype=author&query=Anastasiadis%2C+A">A. Anastasiadis</a>, <a href="/search/physics?searchtype=author&query=Rouillard%2C+A+P">A. P. Rouillard</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez-Pacheco%2C+J">J. Rodr铆guez-Pacheco</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">J. Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6rl%C3%B6ck%2C+M">M. H枚rl枚ck</a>, <a href="/search/physics?searchtype=author&query=Wimmer-Schweingruber%2C+R+F">R. F. Wimmer-Schweingruber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05991v1-abstract-short" style="display: inline;"> Aims. We studied the first multi-spacecraft high-energy solar energetic particle (SEP) event of solar cycle 25, which triggered a ground level enhancement (GLE) on 28 October 2021, using data from multiple observers that were widely distributed throughout the heliosphere. Methods. We performed detail modelling of the shock wave and investigated the magnetic connectivity of each observer to the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05991v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05991v1-abstract-full" style="display: none;"> Aims. We studied the first multi-spacecraft high-energy solar energetic particle (SEP) event of solar cycle 25, which triggered a ground level enhancement (GLE) on 28 October 2021, using data from multiple observers that were widely distributed throughout the heliosphere. Methods. We performed detail modelling of the shock wave and investigated the magnetic connectivity of each observer to the solar surface and examined the shock magnetic connection. We performed 3D SEP propagation simulations to investigate the role of particle transport in the distribution of SEPs to distant magnetically connected observers. Results. Observations and modelling show that a strong shock wave formed promptly in the low corona. At the SEP release time windows, we find a connection with the shock for all the observers. PSP, STA, and Solar Orbiter were connected to strong shock regions with high Mach numbers, whereas the Earth and other observers were connected to lower Mach numbers. The SEP spectral properties near Earth demonstrate two power laws, with a harder (softer) spectrum in the low-energy (high-energy) range. Composition observations from SIS (and near-Earth instruments) show no serious enhancement of flare-accelerated material. Conclusions. A possible scenario consistent with the observations and our analysis indicates that high-energy SEPs at PSP, STA, and Solar Orbiter were dominated by particle acceleration and injection by the shock, whereas high-energy SEPs that reached near-Earth space were associated with a weaker shock; it is likely that efficient transport of particles from a wide injection source contributed to the observed high-energy SEPs. Our study cannot exclude a contribution from a flare-related process; however, composition observations show no evidence of an impulsive composition of suprathermals during the event, suggestive of a non-dominant flare-related process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05991v1-abstract-full').style.display = 'none'; document.getElementById('2401.05991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05780">arXiv:2401.05780</a> <span> [<a href="https://arxiv.org/pdf/2401.05780">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Tunable terahertz photodetector using ferroelectric-integrated graphene plasmonics for portable spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lin%2C+L">Lin Lin</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Junxiong Guo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+S">Shangdong Li</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+T">Tianxun Gong</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+J">Juan Xia</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zenghui Wang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+J">Jun Tang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jinxing Zhang</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yuan Lin</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wen Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaosheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05780v1-abstract-short" style="display: inline;"> Terahertz (THz) detector has great potential for use in imaging, spectroscopy, and communications due to its fascinating interactions between radiation and matter. However, current THz detection devices have limitations in sensitivity, operating frequency range, and bulky footprint. While recent ferroelectric-integrated graphene plasmonic devices show promise in overcoming these limitations, they… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05780v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05780v1-abstract-full" style="display: none;"> Terahertz (THz) detector has great potential for use in imaging, spectroscopy, and communications due to its fascinating interactions between radiation and matter. However, current THz detection devices have limitations in sensitivity, operating frequency range, and bulky footprint. While recent ferroelectric-integrated graphene plasmonic devices show promise in overcoming these limitations, they are not yet extended to the THz range. Here, we propose a wavelength-sensitive terahertz detector that uses a single layer graphene integrated onto the ferroelectric thin film with patterned polarization domains. This device works at room temperature, with high responsivity and detectivity by coupling graphene plasmons with THz frequencies through spatial modulation of carrier behaviors using ferroelectric polarization, without requiring additional local electrodes. By reconfiguring an interweaving squared ferroelectric domain array with alternating upward and downward polarizations to highly confine graphene surface plasmon polaritons, our device achieves an ultrahigh responsivity of 1717 A W-1 and a normalized detectivity of 1.07*10^13 Jones at a resonance frequency of 6.30 THz and a 0.3 V bias voltage. We also show that the device makes possible for spectrum reconstruction application of portable spectrometer combining the mathematical algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05780v1-abstract-full').style.display = 'none'; document.getElementById('2401.05780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15589">arXiv:2312.15589</a> <span> [<a href="https://arxiv.org/pdf/2312.15589">pdf</a>, <a href="https://arxiv.org/format/2312.15589">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347564">10.1051/0004-6361/202347564 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Method for Determining the Locations and Configurations of Magnetic Reconnection within 3D Turbulent Plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yulei Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xin Cheng</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Yang Guo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinhan Guo</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+M">Mingde Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15589v2-abstract-short" style="display: inline;"> Context. Three-dimensional (3D) reconnection is an important mechanism for efficiently releasing energy during astrophysical eruptive events, which is difficult to be quantitatively analyzed especially within turbulent plasmas. Aims. In this paper, an efficient method for identifying locations and configurations of 3D reconnection from MHD data is developed. Methods. This method analyzes the l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15589v2-abstract-full').style.display = 'inline'; document.getElementById('2312.15589v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15589v2-abstract-full" style="display: none;"> Context. Three-dimensional (3D) reconnection is an important mechanism for efficiently releasing energy during astrophysical eruptive events, which is difficult to be quantitatively analyzed especially within turbulent plasmas. Aims. In this paper, an efficient method for identifying locations and configurations of 3D reconnection from MHD data is developed. Methods. This method analyzes the local nonideal electric field and magnetic structure at an arbitrary position. As only performing algebraical manipulations on the discrete field data and avoiding computationally expensive operations like field-line tracing and root-finding, this method naturally possesses high efficiency. To validate this method, we apply it to the 3D data from a high-resolution simulation of a Harris-sheet reconnection and a data-driven simulation of a coronal flux rope eruption. Results. It is shown that this method can precisely identify the local structures of discrete magnetic field. Through the information of nonideal electric field and the geometric attributes of magnetic field, the local structures of reconnection sites can be effectively and comprehensively determined. For fine turbulent processes, both qualitative pictures and quantitative statistical properties of small-scale reconnection structures can be obtained. For large-scale solar simulations, macro-scale magnetic structures such as flux ropes and eruption current sheets can also be recognized. Conclusions. We develop a powerful method to analyze multi-scale structures of 3D reconnection. It can be applied not only in MHD simulations but also in kinetic simulations, plasma experiments, and in-situ observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15589v2-abstract-full').style.display = 'none'; document.getElementById('2312.15589v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 14 figures, 4 tables. Accepted for publication in Astronomy & Astrophysics. The code URL: https://github.com/RainthunderWYL/LoRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04816">arXiv:2312.04816</a> <span> [<a href="https://arxiv.org/pdf/2312.04816">pdf</a>, <a href="https://arxiv.org/format/2312.04816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Coupler RF kick and emittance optimization of the SHINE injector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J">Junjie Guo</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+D">Duan Gu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zenggong Jiang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Meng Zhang</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Q">Qiang Gu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+H">Haixiao Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04816v1-abstract-short" style="display: inline;"> Coupler RF kick due to the asymmetric structure caused by the coupler, is more likely to lead to emittance growth in the SHINE injector with low beam energy. The calculation of coupler RF kick and resulting emittance dilution has been studied in detail in the literature. In this paper, a novel approach is provided that a lossy material is placed on the surface of the superconducting cavity to appr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04816v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04816v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04816v1-abstract-full" style="display: none;"> Coupler RF kick due to the asymmetric structure caused by the coupler, is more likely to lead to emittance growth in the SHINE injector with low beam energy. The calculation of coupler RF kick and resulting emittance dilution has been studied in detail in the literature. In this paper, a novel approach is provided that a lossy material is placed on the surface of the superconducting cavity to approximate the Q0 of the TESLA cavity, and a frequency solver of CST is used to simulate the electromagnetic field distribution, which is used to calculate coupler RF kick, and calibrated against the results of CST Particle Tracking Studio with a good agreement. In order to minimize the emittance growth of SHINE injector, a 1.3 GHz symmetric twin-coupler cavity is adoped in the single-cavity cryomodule, and the rotational angle and permutation of the 8 cavities in the 8-cavities cryomodule is optimized. Ultimately, the optimized emittance is lower than the design parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04816v1-abstract-full').style.display = 'none'; document.getElementById('2312.04816v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04202">arXiv:2312.04202</a> <span> [<a href="https://arxiv.org/pdf/2312.04202">pdf</a>, <a href="https://arxiv.org/format/2312.04202">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2024.116780">10.1016/j.nuclphysb.2024.116780 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing levitodynamics with multi-stochastic forces and the simple applications on the dark matter detection in optical levitation experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xi Cheng</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Ji-Heng Guo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+B">Bin Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04202v3-abstract-short" style="display: inline;"> If the terrestrial environment is permeated by dark matter, the levitation experiences damping forces and fluctuations attributed to dark matter. This paper investigates levitodynamics with multiple stochastic forces, including thermal drag, photon recoil, feedback, etc., assuming that all of these forces adhere to the fluctuation-dissipation theorem. The ratio of total damping to the stochastic d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04202v3-abstract-full').style.display = 'inline'; document.getElementById('2312.04202v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04202v3-abstract-full" style="display: none;"> If the terrestrial environment is permeated by dark matter, the levitation experiences damping forces and fluctuations attributed to dark matter. This paper investigates levitodynamics with multiple stochastic forces, including thermal drag, photon recoil, feedback, etc., assuming that all of these forces adhere to the fluctuation-dissipation theorem. The ratio of total damping to the stochastic damping coefficient distinguishes the levitodynamics from cases involving only one single stochastic force. The heating and cooling processes are formulated to determine the limits of temperature change. All sources of stochastic forces are comprehensively examined, revealing that dark matter collisions cannot be treated analogously to fluid dynamics. Additionally, a meticulous analysis is presented, elucidating the intricate relationship between the fundamental transfer cross-section and the macroscopic transfer cross-section. While the dark damping coefficient is suppressed by the mass of the levitated particle, scattering can be coherently enhanced based on the scale of the component microscopic particle, the atomic form factor, and the static structure factor. Hence, dark damping holds the potential to provide valuable insights into the detection of the macroscopic strength of fundamental particles. We propose experimental procedures for levitation and employ linear estimation to extract the dark damping coefficient. Utilizing current levitation results, we demonstrate that the fundamental transfer cross section of dark matter can be of the order $蟽^{\rm D}_{T}\lsim {\cal O}(10^{-26})\rm cm^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04202v3-abstract-full').style.display = 'none'; document.getElementById('2312.04202v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures. We have updated the clear images, made minor modifications, and added references;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. B 1010 (2025) 116780 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02569">arXiv:2312.02569</a> <span> [<a href="https://arxiv.org/pdf/2312.02569">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Laser frequency stabilization and photoacoustic detection based on the tapered fiber coupled crystalline resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yaohui Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xiaolan Liu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wujun Li</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Haotian Wang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jun Guo</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+J">Jie Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jianing Zhang</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+D">Deyuan Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02569v1-abstract-short" style="display: inline;"> We demonstrate laser frequency stabilization using a high-Q MgF2 crystalline whispering gallery mode resonator coupled with a tapered fiber. We discovered that the tapered fiber, acting as a microcantilever, exhibits mechanical resonance characteristics that is capable of transmitting acoustic perturbations to the frequency locking loop. Both experimental and theoretical investigations into the in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02569v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02569v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02569v1-abstract-full" style="display: none;"> We demonstrate laser frequency stabilization using a high-Q MgF2 crystalline whispering gallery mode resonator coupled with a tapered fiber. We discovered that the tapered fiber, acting as a microcantilever, exhibits mechanical resonance characteristics that is capable of transmitting acoustic perturbations to the frequency locking loop. Both experimental and theoretical investigations into the influence of external acoustic waves on the coupling system were conducted. After acoustic isolation, the locked laser exhibits a minimum frequency noise of 0.4Hz2/Hz at 7kHz and an integral linewidth of 68Hz (0.1s integration time). Benefiting from the ultralow frequency noise of the stabilized laser, it achieves a minimum noise equivalent acoustic signal level of 4.76*10-4 Pa/Hz1/2. Our results not only facilitate the realization of ultralow noise lasers but also serves as a novel and sensitive photoacoustic detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02569v1-abstract-full').style.display = 'none'; document.getElementById('2312.02569v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13432">arXiv:2311.13432</a> <span> [<a href="https://arxiv.org/pdf/2311.13432">pdf</a>, <a href="https://arxiv.org/format/2311.13432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Modelling the propagation of coronal mass ejections with COCONUT: implementation of the Regularized Biot-Savart Laws flux rope model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Guo%2C+J">Jinhan Guo</a>, <a href="/search/physics?searchtype=author&query=Linan%2C+L">L. Linan</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">S. Poedts</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Y">Y. Guo</a>, <a href="/search/physics?searchtype=author&query=Lani%2C+A">A. Lani</a>, <a href="/search/physics?searchtype=author&query=Schmieder%2C+B">B. Schmieder</a>, <a href="/search/physics?searchtype=author&query=Brchnelova%2C+M">M. Brchnelova</a>, <a href="/search/physics?searchtype=author&query=Perri%2C+B">B. Perri</a>, <a href="/search/physics?searchtype=author&query=Baratashvili%2C+T">T. Baratashvili</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+Y+W">Y. W. Ni</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+P+F">P. F. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13432v1-abstract-short" style="display: inline;"> Context: Coronal mass ejections (CMEs) are rapid eruptions of magnetized plasma that occur on the Sun, which are known as the main drivers of adverse space weather. Accurately tracking their evolution in the heliosphere in numerical models is of utmost importance for space weather forecasting. Aims: The main objective of this paper is to implement the Regularized Biot-Savart Laws (RBSL) method in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13432v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13432v1-abstract-full" style="display: none;"> Context: Coronal mass ejections (CMEs) are rapid eruptions of magnetized plasma that occur on the Sun, which are known as the main drivers of adverse space weather. Accurately tracking their evolution in the heliosphere in numerical models is of utmost importance for space weather forecasting. Aims: The main objective of this paper is to implement the Regularized Biot-Savart Laws (RBSL) method in a new global corona model COCONUT. This approach has the capability to construct the magnetic flux rope with an axis of arbitrary shape. Methods: We present the implementation process of the RBSL flux rope model in COCONUT, which is superposed onto a realistic solar wind reconstructed from the observed magnetogram around the minimum of solar activity. Based on this, we simulate the propagation of an S-shaped flux rope from the solar surface to a distance of 25 solar radii. Results: Our simulation successfully reproduces the birth process of a CME originating from a sigmoid in a self-consistent way. The model effectively captures various physical processes and retrieves the prominent features of the CMEs in observations. In addition, the simulation results indicate that the magnetic topology of the CME flux rope at around 20 solar radii deviates from a coherent structure, and manifests as a mix of open and closed field lines with diverse footpoints. Conclusions: This work demonstrates the potential of the RBSL flux rope model in reproducing CME events that are more consistent with observations. Moreover, our findings strongly suggest that magnetic reconnection during the CME propagation plays a critical role in destroying the coherent characteristic of a CME flux rope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13432v1-abstract-full').style.display = 'none'; document.getElementById('2311.13432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, accepted for publication in A&A</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Guo%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Guo%2C+J&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>