CINXE.COM

Oscillatory Motion | SpringerLink

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="applicable-device" content="pc,mobile"> <meta name="access" content="Yes"> <meta name="twitter:site" content="SpringerLink"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Oscillatory Motion"/> <meta name="twitter:description" content="A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position..."/> <meta name="twitter:image" content="https://static-content.springer.com/cover/book/978-3-030-15195-9.jpg"/> <meta name="dc.identifier" content="10.1007/978-3-030-15195-9_10"/> <meta name="DOI" content="10.1007/978-3-030-15195-9_10"/> <meta name="dc.description" content="A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position..."/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/978-3-030-15195-9_10.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/chapter/10.1007/978-3-030-15195-9_10"/> <meta name="citation_abstract_html_url" content="https://link.springer.com/chapter/10.1007/978-3-030-15195-9_10"/> <meta name="citation_inbook_title" content="Principles of Mechanics"/> <meta name="citation_title" content="Oscillatory Motion"/> <meta name="citation_publication_date" content="2019"/> <meta name="citation_firstpage" content="155"/> <meta name="citation_lastpage" content="171"/> <meta name="citation_language" content="en"/> <meta name="citation_doi" content="10.1007/978-3-030-15195-9_10"/> <meta name="citation_issn" content="2522-8722"/> <meta name="citation_isbn" content="978-3-030-15195-9"/> <meta name="size" content="247743"/> <meta name="description" content="A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position..."/> <meta name="citation_author" content="Alrasheed, Salma"/> <meta name="citation_author_email" content="salma.alrasheed@kaust.edu.sa"/> <meta name="citation_publisher" content="Springer, Cham"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/978-3-030-15195-9_10&amp;api_key="/> <meta name="format-detection" content="telephone=no"/> <meta property="og:url" content="https://link.springer.com/chapter/10.1007/978-3-030-15195-9_10"/> <meta property="og:type" content="Paper"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Oscillatory Motion"/> <meta property="og:description" content="A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position..."/> <meta property="og:image" content="https://static-content.springer.com/cover/book/978-3-030-15195-9.jpg"/> <title>Oscillatory Motion | SpringerLink</title> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'js')})(document.documentElement)</script> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-8c08f3c2fc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/978-3-030-15195-9_10","Page":"chapter","Country":"SG","japan":false,"doi":"10.1007-978-3-030-15195-9_10","Keywords":"","kwrd":[],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-978-3-030-15195-9","Full HTML":"Y","session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"2522-8722","pissn":"2522-8714"},"book":{"doi":"10.1007/978-3-030-15195-9","title":"Principles of Mechanics","pisbn":"978-3-030-15194-2","eisbn":"978-3-030-15195-9","seriesTitle":"Advances in Science, Technology \u0026 Innovation","seriesId":"15883"},"chapter":{"doi":"10.1007/978-3-030-15195-9_10"},"type":"Chapter","category":{"pmc":{"primarySubject":"Physics","primarySubjectCode":"SCP","secondarySubjects":{"1":"Classical Mechanics","2":"Mechanical Engineering","3":"Elementary Particles, Quantum Field Theory"},"secondarySubjectCodes":{"1":"SCP21018","2":"SCT17004","3":"SCP23029"}},"sucode":"SUCO11646"},"attributes":{"deliveryPlatform":"oscar"},"country":"SG","Has Preview":"N","subjectCodes":"SCP,SCP21018,SCT17004,SCP23029","PMC":["SCP","SCP21018","SCT17004","SCP23029"]},"page":{"attributes":{"environment":"live"},"category":{"pageType":"chapter"}},"Event Category":"Chapter","ConferenceSeriesId":"","productId":"9783030151959"}]; </script> <script> window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true }, { name: 'darwin-books', active: true }], darwinAvailable: true } } }); </script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-35.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-35.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <link rel="canonical" href="https://link.springer.com/chapter/10.1007/978-3-030-15195-9_10"/> <script type="application/ld+json">{"headline":"Oscillatory Motion","pageEnd":"171","pageStart":"155","image":"https://media.springernature.com/w153/springer-static/cover/book/978-3-030-15195-9.jpg","genre":["Earth and Environmental Science","Earth and Environmental Science (R0)"],"isPartOf":{"name":"Principles of Mechanics","isbn":["978-3-030-15195-9","978-3-030-15194-2"],"@type":"Book"},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Salma Alrasheed","affiliation":[{"name":"","address":{"name":"Thuwal, Saudi Arabia","@type":"PostalAddress"},"@type":"Organization"}],"email":"salma.alrasheed@kaust.edu.sa","@type":"Person"}],"keywords":"","description":"A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position no matter in which direction the system is displaced. This motion is important to study many phenomena including electromagnetic waves, alternating current circuits, and molecules. For a vibration to occur, two quantities are necessary to be present—stiffness and inertia.","datePublished":"2019","isAccessibleForFree":true,"@type":"ScholarlyArticle","@context":"https://schema.org"}</script> </head> <body class="shared-article-renderer"> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-vh-full"> <a class="c-skip-link" href="#main-content">Skip to main content</a> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90" data-test="springer-doubleclick-ad"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" data-pa11y-ignore data-gpt data-test="LB1-ad" data-gpt-unitpath="/270604982/springerlink/book/chapter" data-gpt-sizes="728x90" style="min-width:728px;min-height:90px" data-gpt-targeting="pos=LB1;"></div> </div> </aside> <div class="app-elements"> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/chapter/10.1007/978-3-030-15195-9_10?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> </div> <div class="app-masthead__colour-5--pastel app-masthead--pastel" id="main" data-track-component="chapter" data-test="masthead-component"> <section class="app-masthead " aria-label="book chapter masthead"> <div class="app-masthead__container"> <div class="app-article-masthead app-article-masthead--chapter u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="chapter" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Chapter" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/book/10.1007/978-3-030-15195-9" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Chapter" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Principles of Mechanics</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Chapter</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="chapter-title" data-chapter-title="">Oscillatory Motion</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Chapter</li> <li class="c-article-identifiers__item"> <span class="u-color-open-access" data-test="open-access">Open Access</span> </li> <li class="c-article-identifiers__item">First Online: <time datetime="2019-05-01">01 May 2019</time></li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span class="c-chapter-book-details__meta"> pp 155–171</span> </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this chapter" data-track-category="chapter body" data-track-label="link">Cite this chapter</a> </li> </ul> <p class="app-article-masthead__access"> <p class="app-article-masthead__access app-article-masthead__access--above-download"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> chapter </p> <div class="app-article-masthead__buttons" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both"> <a href="/content/pdf/10.1007/978-3-030-15195-9.pdf" rel="noopener" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-book-pdf="true" data-test="pdf-link" data-track="content_download" data-track-type="book pdf download" data-track-label="link" data-track-action="Book download - pdf" download> <span class="c-pdf-download__text"><span class="u-sticky-visually-hidden">Download</span> book PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-download-medium"/> </svg> </a> </div> <div class="c-pdf-download u-clear-both"> <a href="/download/epub/10.1007/978-3-030-15195-9.epub" rel="noopener" class="u-button u-button--full-width u-button--secondary u-justify-content-space-between c-pdf-download__link" data-book-epub="true" data-test="epub-link" data-track="content_download" data-track-type="book epub download" data-track-label="link" data-track-action="Book download - ePub" download> <span class="c-pdf-download__text"><span class="u-sticky-visually-hidden">Download</span> book EPUB</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-download-medium"/> </svg> </a> </div> </div> </div> </div> <div class="app-article-masthead__brand app-article-masthead__brand--no-border app-article-masthead__conference-link"> <a href="/book/10.1007/978-3-030-15195-9" class="app-article-masthead__conference-link app-article-masthead__journal-link" data-track="click" data-track-action="book homepage" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="182" srcset="https://media.springernature.com/w120/springer-static/cover-hires/book/978-3-030-15195-9?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/book/978-3-030-15195-9?as=webp 2x"> <img width="72" height="109" src="https://media.springernature.com/w72/springer-static/cover-hires/book/978-3-030-15195-9?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/book/978-3-030-15195-9?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title ">Principles of Mechanics</span> </a> <span class="app-article-masthead__conference-info"></span> </div> </div> </div> </section> </div> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="js-main-column u-serif c-chapter-body" data-track-component="chapter"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> Oscillatory Motion </div> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both"> <a href="/content/pdf/10.1007/978-3-030-15195-9.pdf" rel="noopener" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-book-pdf="true" data-test="pdf-link" data-track="content_download" data-track-type="book pdf download" data-track-label="link" data-track-action="Book download - pdf" download> <span class="c-pdf-download__text"><span class="u-sticky-visually-hidden">Download</span> book PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-download-medium"/> </svg> </a> </div> <div class="c-pdf-download u-clear-both"> <a href="/download/epub/10.1007/978-3-030-15195-9.epub" rel="noopener" class="u-button u-button--full-width u-button--secondary u-justify-content-space-between c-pdf-download__link" data-book-epub="true" data-test="epub-link" data-track="content_download" data-track-type="book epub download" data-track-label="link" data-track-action="Book download - ePub" download> <span class="c-pdf-download__text"><span class="u-sticky-visually-hidden">Download</span> book EPUB</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-download-medium"/> </svg> </a> </div> </div> </div> </div> <article lang="en"> <div class="c-article-header"> <header> <div class="app-overview-section"> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Salma-Alrasheed" data-author-popup="auth-Salma-Alrasheed" data-corresp-id="c1">Salma Alrasheed<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff20">20</a></sup> </li></ul> <div class="app-overview-section__separator app-overview-section__book-series"> <div class="app-book-series-listing"> <div> <svg class="app-book-series-listing__icon" width="24" height="24" aria-hidden="true" focusable="false"><use href="#icon-eds-i-book-series-medium"></use></svg> </div> <div> <p data-test="series-link"> <span class="app-book-series-listing__description">Part of the book series:</span> <a href="https://www.springer.com/series/15883" data-track="click" data-track-action="open book series" data-track-label="link">Advances in Science, Technology &amp; Innovation</a> ((ASTI)) </p> </div> </div> </div> <div class="app-overview-section__separator" data-test="article-metrics"> <div id="altmetric-container"> <ul class="app-article-metrics-bar u-list-reset" data-test="article-metrics"> <li class="app-article-metrics-bar__item" data-test="access-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>83k <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item" data-test="citation-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>1 <span class="app-article-metrics-bar__label"> <a href="http://citations.springer.com/item?doi&#x3D;10.1007/978-3-030-15195-9_10" target="_blank" rel="noopener" title="Visit Springer Citations for full citation details" data-track="click" data-track-action="Citation count" data-track-label="link">Citations</a> </span></p> </li> </ul> </div> </div> </div> </header> </div> <div data-article-body="true" data-track-component="chapter body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 id="Abs1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position no matter in which direction the system is displaced. This motion is important to study many phenomena including electromagnetic waves, alternating current circuits, and molecules. For a vibration to occur, two quantities are necessary to be present—stiffness and inertia.</p></div></div></section> <div data-test="cobranding-download"> <div class="note test-pdf-link" id="cobranding-and-download-availability-text"> <div class="c-article-access-provider" data-component="provided-by-box"> <p class="c-article-access-provider__text c-article-access-provider__text--chapter"> You have full access to this open access chapter,&nbsp; <a href="/content/pdf/10.1007/978-3-030-15195-9_10.pdf?pdf=inline%20link" class="c-pdf-download__link" id="js-body-chapter-download" style="display: inline; padding:0px!important;" target="_blank" rel="noopener" data-track="content_download" data-track-context="article body" data-track-type="chapter PDF download" data-track-action="Pdf download" data-track-label="inline link" download>Download chapter PDF</a> <svg width="24" height="24" focusable="false" role="img" aria-hidden="true" class="c-download-pdf-icon-large"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use> </svg> </p> </div> </div> </div> <div class="main-content"> <section data-title="Oscillatory Motion"><div class="c-article-section" id="Sec1-section"><h2 id="Sec1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">10.1 </span>Oscillatory Motion</h2><div class="c-article-section__content" id="Sec1-content"><p>A motion repeating itself is referred to as periodic or oscillatory motion. An object in such motion oscillates about an equilibrium position due to a restoring force or torque. Such force or torque tends to restore (return) the system toward its equilibrium position no matter in which direction the system is displaced. This motion is important to study many phenomena including electromagnetic waves, alternating current circuits, and molecules. For a vibration to occur, two quantities are necessary to be present—stiffness and inertia.</p></div></div></section><section data-title="Free Vibrations"><div class="c-article-section" id="Sec2-section"><h2 id="Sec2" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">10.2 </span>Free Vibrations</h2><div class="c-article-section__content" id="Sec2-content"><p>When a system vibrates, a restoring force must be present. In addition to that force, there is always a retarding or damping force such as friction. If the effect of the damping force is small and can be neglected, then the motion is classified as free and undamped motion. Otherwise, the motion is classified as free damped motion. In both cases, the motion is known as free vibration since no forces other than the restoring and damping forces exist during vibration. If a driving force that does positive work on the system exists, the motion is classified as forced vibration.</p><p>This force may be applied externally to the system or sometimes is produced within the system. In this chapter, the case in which a restoring force is directly proportional to the displacement is considered. The resulting motion is then known as a harmonic vibration and the system is said to be linear. If the restoring force depends on the displacement in some other way, the resulting motion is known as anharmonic vibration and the system is said to be nonlinear.</p></div></div></section><section data-title="Free Undamped Vibrations"><div class="c-article-section" id="Sec3-section"><h2 id="Sec3" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">10.3 </span>Free Undamped Vibrations</h2><div class="c-article-section__content" id="Sec3-content"><p>This kind of motion is known as the simple harmonic motion. Next, we will examine examples of such motion in physics.</p><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">10.3.1 </span>Mass Attached to a Spring</h3><p>Consider a block of mass <i>m</i> attached to a light spring of spring constant <i>k</i> that is fixed at the other end (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">10.1</a>). Suppose that the system lies on a frictionless horizontal surface. For small displacements, the restoring force acting on the block by the spring is given by Hook’s law</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ F_{s}=-kx $$</span></div></div><p>As we’ve mentioned in Sect. <a href="https://doi.org/10.1007/978-3-030-15195-9_4">4.1</a>, if the block is displaced slightly to the right (for example to <span class="mathjax-tex">\(x=A\)</span>), the restoring spring force will accelerate the block to the left transferring its potential energy into kinetic energy As the block reaches its equilibrium position <span class="mathjax-tex">\(x=0\)</span>, all of its potential energy will be transformed into kinetic energy and it will overshoot to the other side. Again, as it moves left, the spring force decelerates the block to the right, transferring its kinetic energy into potential energy until all of its energy is potential at <span class="mathjax-tex">\(x= -A\)</span> where it comes to rest. At that point, it accelerates back to <span class="mathjax-tex">\(x=0\)</span> and regains all of its kinetic energy where it overshoots again to <span class="mathjax-tex">\(x=A\)</span>. Therefore, stiffness restores the mass where inertia is responsible for the mass to overshoot. From Newton’s second law we, have</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ ma=-kx $$</span></div></div><p>or</p><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ m\frac{d^{2}x}{dt^{2}}+kx=0 $$</span></div></div><p>or</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \displaystyle \frac{d^{2}x}{dt^{2}}+\omega _{n}^{2}x=0 \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.1) </div></div><p>where <span class="mathjax-tex">\(\omega _{n}=\sqrt{k/m}\)</span> is called the natural angular frequency of the system. The general solution of this equation is of the form</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x(t)=A_{1}\cos \omega _{n}t+A_{2}\sin \omega _{n}t \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.2) </div></div><p>where <span class="mathjax-tex">\(A_{1}\)</span> and <span class="mathjax-tex">\(A_{2}\)</span> are arbitrary constants that can be found from the initial conditions. Therefore, there are many possible motions with the same angular frequency <span class="mathjax-tex">\(\omega _{n}\)</span>. By multiplying and dividing Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ2">10.2</a> by <span class="mathjax-tex">\(\sqrt{A_{1}^{2}+A_{2}^{2}}\)</span>, you can show that the solution may be written as</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x(t)=A\cos (\omega _{n}t-\phi ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.3) </div></div><p>where <span class="mathjax-tex">\(A=\sqrt{A_{1}^{2}+A_{2}^{2}}\)</span> is called the amplitude of motion and <span class="mathjax-tex">\(\phi =\tan ^{-1}A_{2}/A_{1}\)</span> is called the phase constant. In general, <span class="mathjax-tex">\(\phi \)</span> is chosen such that <span class="mathjax-tex">\(0\le \phi \le \pi . A\)</span> and <span class="mathjax-tex">\(\phi \)</span> can be determined from the initial conditions, i.e., from the values of the displacement and velocity when the motion starts. The mass therefore oscillates between <i>A</i> and <span class="mathjax-tex">\(-A\)</span>. The quantity <span class="mathjax-tex">\((\omega _{n}t-\phi )\)</span> is called the phase angle. If this angle is increased by <span class="mathjax-tex">\( 2\pi \)</span>, all physical quantities such as the displacement, velocity, and acceleration repeat themselves. The plot of <i>x</i> versus <i>t</i> is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig2">10.2</a>. If <i>A</i> is fixed and <span class="mathjax-tex">\(\phi \)</span> is changed the motion will be the same except that the same physical quantities will appear either earlier or later than the preceding motion.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 10.1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="200"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>A block of mass <i>m</i> attached to a light spring of spring constant <i>k</i> that is fixed at the other end</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 10.2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/2" rel="nofollow"><picture><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="293"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Plot of <i>x</i> versus <i>t</i> for a simple harmonic oscillator</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec5"><span class="c-article-section__title-number">10.3.1.1 </span>The Period and Frequency of Motion</h4><p>The period of motion is the time required for one complete cycle or oscillation. Since the phase angle is changed by <span class="mathjax-tex">\( 2\pi \)</span> after one complete cycle, we have for the mass–spring system,</p><div id="Equ26" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}t+2\pi =\omega _{n}(t+T) $$</span></div></div><p>or</p><div id="Equ27" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=2\pi \sqrt{\frac{m}{k}} $$</span></div></div><p>The frequency is defined as the number of complete cycles per unit time</p><div id="Equ28" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ f_{n}=\frac{1}{T}=\frac{\omega _{n}}{2\pi } $$</span></div></div><p>This frequency is called the natural frequency of the motion. The unit of the frequency is cycles/s or hertz (Hz).</p><h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec6"><span class="c-article-section__title-number">10.3.1.2 </span>The Phase Difference</h4><p>The phase constant <span class="mathjax-tex">\(\phi \)</span> is important when comparing two or more oscillations of the same frequency Suppose a certain vibration has <span class="mathjax-tex">\(\phi =0\)</span>, this means that at <span class="mathjax-tex">\(t=0\)</span> the displacement is maximum <span class="mathjax-tex">\(x=A\)</span>. If a second vibration has also <span class="mathjax-tex">\(\phi =0\)</span>, then the two vibrations are said to be in phase (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig3">10.3</a> part a). Otherwise, the two vibrations are out of phase. If the phase constant of the second vibration is <span class="mathjax-tex">\(\phi &gt;0\)</span>, then the second vibration is leading the first vibration in phase by <span class="mathjax-tex">\(\phi \)</span>. If <span class="mathjax-tex">\(\phi &lt;0\)</span>, then the second vibration is lagging the first by <span class="mathjax-tex">\(\phi \)</span>. If <span class="mathjax-tex">\(\phi =\pm \pi \)</span>, the two vibrations are said to be in antiphase with each other (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig3">10.3</a> part b).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 10.3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/3" rel="nofollow"><picture><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="748"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p><b>a</b> Two simple harmonic motions of the same frequency and same phase constant <span class="mathjax-tex">\(\pi =0\)</span> but differing in amplitude. <b>b</b> Two simple harmonic motions of the same frequency and amplitude but differing in phase by <span class="mathjax-tex">\(\phi =\pm \pi \)</span></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec7"><span class="c-article-section__title-number">10.3.1.3 </span>The Velocity and Acceleration</h4><p>The velocity of the mass is</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v(t)=\displaystyle \frac{dx}{dt}=-\omega _{n}A\sin (\omega _{n}t-\phi ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.4) </div></div><p>This can also be written as</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v(t)=\displaystyle \omega _{n}A\cos \bigg (\omega _{n}t-\phi +\frac{\pi }{2}\bigg ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.5) </div></div><p>The acceleration of the mass is</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} a(t)=\displaystyle \frac{dv}{dt}=-\omega _{n}^{2}A\cos (\omega _{n}t-\phi ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.6) </div></div><p>or</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} a(t)=\displaystyle \frac{dv}{dt}=\omega _{n}^{2}A\cos (\omega _{n}t-\phi +\pi ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.7) </div></div><p>Hence, the velocity and acceleration also vary harmonically with time with amplitudes <span class="mathjax-tex">\(\omega _{n}A\)</span> and <span class="mathjax-tex">\(\omega _{n}^{2}A\)</span>, respectively, but they all have the same angular frequency From Eqs. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ5">10.5</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ7">10.7</a> you can see that the velocity leads the displacement by <span class="mathjax-tex">\(\pi /2\)</span> or 90. The acceleration on the other hand leads the velocity by <span class="mathjax-tex">\(\pi /2\)</span> and the displacement by <span class="mathjax-tex">\(\pi \)</span> or 180. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig4">10.4</a> shows the displacement, velocity, and acceleration versus time.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 10.4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/4" rel="nofollow"><picture><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="1117"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>The displacement, velocity and acceleration versus time</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec8"><span class="c-article-section__title-number">10.3.1.4 </span>Boundary Conditions</h4><p>Boundary conditions are used to find <i>A</i> and <span class="mathjax-tex">\(\phi \)</span> for a specific vibration. Suppose that the vibration is measured when the stopwatch is set to zero, i.e., at <span class="mathjax-tex">\(t=0\)</span> and that at that instant the mass is released from rest at a distance of <span class="mathjax-tex">\(x=A_{1}\)</span> from its equilibrium position. Substituting these conditions into Eqs. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ3">10.3</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ4">10.4</a>, we have</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x=A\cos \phi =A_{1} \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.8) </div></div> <div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v=v_{0}=-\omega _{n}A\sin \phi \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.9) </div></div><p>Dividing Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ9">10.9</a> by Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ8">10.8</a> gives</p><div id="Equ29" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tan \phi =\frac{-v_{0}}{\omega _{n}A_{1}} $$</span></div></div><p>Squaring and adding Eqs. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ9">10.9</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ8">10.8</a> gives</p><div id="Equ30" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A_{1}^{2}+\bigg (\frac{v_{0}}{\omega _{n}}\bigg )^{2}=A^{2}\cos ^{2}\phi +A^{2}\sin ^{2}\phi $$</span></div></div><p>or</p><div id="Equ31" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\sqrt{A_{1}^{2}+\bigg (\frac{v_{0}}{\omega _{n}}\bigg )^{2}} $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar1">Example 10.1</h3> <p>An object oscillates in simple harmonic motion according to the expression <span class="mathjax-tex">\(x=(3\mathrm {m})\cos (\pi t+\pi /3)\)</span>. Find (a) the amplitude, phase constant, period, and frequency of motion; (b) the displacement, velocity, and acceleration of the object at <span class="mathjax-tex">\(t=0.5\mathrm {s}(\mathrm {c})\)</span> the time when the object first reach <span class="mathjax-tex">\(x=-1.5 \; \mathrm {m}.\)</span></p> <h3 class="c-article__sub-heading" id="FPar2">Solution 10.1</h3> <p>(a)</p><div id="Equ32" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=3\,\mathrm {m} $$</span></div></div> <div id="Equ33" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \phi =\frac{\pi }{3} $$</span></div></div> <div id="Equ34" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=\frac{(2\pi )}{\pi }=2 \; \mathrm {s} $$</span></div></div><p>and</p><div id="Equ35" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ f_{n}=\displaystyle \frac{1}{T}=\frac{1}{(2\mathrm {s})}=0.5 \; \text {Hz} $$</span></div></div><p>(b) At <span class="mathjax-tex">\(t=0.5\,\mathrm {s}\)</span></p><div id="Equ36" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=(3 \; \mathrm {m})\cos \bigg (\pi (0.5 \; \mathrm {s})+\frac{\pi }{3}\bigg )=-2.6 \; \mathrm {m} $$</span></div></div> <div id="Equ37" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=-(3\pi \; \mathrm {m}/\mathrm {s})\sin \bigg (\pi t+\frac{\pi }{3}\bigg ) $$</span></div></div><p>At <span class="mathjax-tex">\(t=0.5\,\mathrm {s}\)</span></p><div id="Equ38" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=(-3\pi \; \mathrm {m}/\mathrm {s})\sin \bigg (\pi (0.5 \; \mathrm {s})+\frac{\pi }{3}\bigg )=-4.7 \; \mathrm {m}/\mathrm {s} $$</span></div></div> <div id="Equ39" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a=(-3\pi ^{2} \; \mathrm {m}/\mathrm {s}^{2})\cos \bigg (\pi t+\frac{\pi }{3}\bigg ) $$</span></div></div><p>at <span class="mathjax-tex">\(t=0.5 \; \mathrm {s}\)</span></p><div id="Equ40" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a=(-3\pi ^{2} \; \mathrm {m}/\mathrm {s}^{2})\cos \bigg (\pi (0.5 \; \mathrm {s})+\frac{\pi }{3}\bigg )=25.6 \; \mathrm {m}/\mathrm {s}^{2} $$</span></div></div><p>(c) at <span class="mathjax-tex">\(x=-1.5 \; \mathrm {m}\)</span></p><div id="Equ41" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ (-1.5 \; \mathrm {m})=(3 \; \mathrm {m})\cos \bigg (\pi t+\frac{\pi }{3}\bigg ) $$</span></div></div><p>or</p><div id="Equ42" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{2\pi }{3}=\pi t+\frac{\pi }{3} $$</span></div></div><p>that gives <span class="mathjax-tex">\(t=0.3 \; \mathrm {s}.\)</span></p> <h3 class="c-article__sub-heading" id="FPar3">Example 10.2</h3> <p>A 9 kg object is moving along the <span class="mathjax-tex">\(\mathrm {x}\)</span>-axis under the influence of a force given by <span class="mathjax-tex">\(F=(-3x)\)</span> N. Find (a) the equation of motion; (b) the displacement of the mass at any time if at <span class="mathjax-tex">\(t=0, x=5 \; \mathrm {m}\)</span> and <span class="mathjax-tex">\(v=0.\)</span></p> <h3 class="c-article__sub-heading" id="FPar4">Solution 10.2</h3> <p>(a)</p><div id="Equ43" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ F=-3x=ma=m\frac{d^{2}x}{dt^{2}} $$</span></div></div><p>hence,</p><div id="Equ44" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{d^{2}x}{dt^{2}}+3x=0 $$</span></div></div><p>(b) The general solution of this equation is</p><div id="Equ45" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=A\cos \sqrt{3}t+B\sin \sqrt{3}t $$</span></div></div><p>Since at <span class="mathjax-tex">\(t=0, \; x=5 \; \mathrm {m}\)</span>, then <span class="mathjax-tex">\(A=5 \; \mathrm {m}\)</span> and</p><div id="Equ46" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=(5\mathrm {m})\cos \sqrt{3}t+B\sin \sqrt{3}t $$</span></div></div><p>also we have at <span class="mathjax-tex">\(t=0, dx/dt=0\)</span>, or</p><div id="Equ47" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -5\sqrt{3}\sin \sqrt{3}t+\sqrt{3}B\cos \sqrt{3}t=0 $$</span></div></div><p>and therefore <span class="mathjax-tex">\(B=0\)</span>. Thus,</p><div id="Equ48" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=(5\mathrm {m})\cos \sqrt{3}t $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar5">Example 10.3</h3> <p>A 0.3 kg block is attached to a spring of force constant 20 <span class="mathjax-tex">\(\mathrm {N}/\mathrm {m}\)</span> on a frictionless horizontal surface. If the initial displacement and velocity of the system is 0.02 <span class="mathjax-tex">\(\mathrm {m}\)</span> and 0.2 <span class="mathjax-tex">\(\mathrm {m}/\mathrm {s}\)</span>, respectively, find the period, amplitude, and phase constant of motion.</p> <h3 class="c-article__sub-heading" id="FPar6">Solution 10.3</h3> <div id="Equ49" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{(20 \; \mathrm {N}/\mathrm {m})}{(0.3 \; \mathrm {k}\mathrm {g})}}=8.2 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div> <div id="Equ50" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\sqrt{A_{1}^{2}+\bigg (\frac{v_{0}}{\omega _{n}}\bigg )^{2}}=\sqrt{(0.02 \; \mathrm {m})^{2}+\bigg (\frac{(0.2 \; \mathrm {m}/\mathrm {s})}{(82 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})}\bigg )^{2}}=0.03 \; \mathrm {m} $$</span></div></div> <div id="Equ51" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tan \phi =\frac{-v_{0}}{\omega _{n}A_{1}}=\frac{-(0.2 \; \mathrm {m}/.\mathrm {s})}{(8.2 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})(0.03 \; \mathrm {m})}=-0.8 $$</span></div></div> <div id="Equ52" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \phi =-38.7^{\circ } $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar7">Example 10.4</h3> <p>A particle of mass <i>m</i> is dropped in a straight tunnel that is drilled through the earth and which passes through the center of earth as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig5">10.5</a>. Show that the motion of the particle is simple harmonic motion and find its period.</p> <h3 class="c-article__sub-heading" id="FPar8">Solution 10.4</h3> <p>Assuming that the earth is a perfect sphere of uniform density and since the particle is inside the earth, then from Sect. <a href="https://doi.org/10.1007/978-3-030-15195-9_9">9.2</a>, the gravitational force exerted on the particle by the earth is</p><div id="Equ53" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ F=-\left( \frac{GmM_{E}}{R_{E}^{3}}\right) r=-kr $$</span></div></div><p>Because this force is directly proportional to the displacement and is opposite to it, then the particle will move in simple harmonic motion about the center of the earth. The equation of motion is</p><div id="Equ54" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dr^{2}}{dt^{2}}+\bigg (\frac{GM_{E}}{R_{E}^{3}}\bigg )r=0 $$</span></div></div><p>hence,</p><div id="Equ55" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{GM_{E}}{R_{E}^{3}}}=\sqrt{\frac{(6.67\times 10^{-11} \; \mathrm {N}\mathrm {m}^{2}/\mathrm {k}\mathrm {g}^{2})(5.98\times 10^{24} \; \mathrm {k}\mathrm {g})}{(6.37\times \mathrm {l0}^{6} \; \mathrm {m})^{3}}}=1.24\times 10^{-3} \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div> <div id="Equ56" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=\frac{2(3.14)}{(1.24\times 10^{-3} \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})}=5055.4 \; \mathrm {s}=84.25 \; \min $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 10.5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="685"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>A particle of mass <i>m</i> is dropped in a straight tunnel that is drilled through the earth and which passes through the center of earth</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar9">Example 10.5</h3> <p>A 0.4 kg block is connected to two springs of force constants <span class="mathjax-tex">\(k_{1}=20 \; \mathrm {N}/\mathrm {m}\)</span> and <span class="mathjax-tex">\(k_{2}=50 \; \mathrm {N}/\mathrm {m}\)</span> as in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig6">10.6</a>. Find (a) the total force acting on the block; (b) the period of motion.</p> <h3 class="c-article__sub-heading" id="FPar10">Solution 10.5</h3> <p>The force that each spring exerts on the block acts in the opposite direction of the displacement, therefore we have</p><div id="Equ57" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \sum F=-k_{1}x-k_{2}x=-(k_{1}+k_{2})x=-(70 \; \mathrm {N}/\mathrm {m})x $$</span></div></div><p>Thus the two springs can be considered as one spring of a force constant of <span class="mathjax-tex">\((k_{1}+k_{2})\)</span>. The period of motion is therefore</p><div id="Equ58" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=2\pi \sqrt{\frac{m}{k_{1}+k_{2}}}=2(3.14)\sqrt{\frac{(0.4 \; \mathrm {k}\mathrm {g})}{(70 \; \mathrm {N}/\mathrm {m})}}=0.5 \; \mathrm {s} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 10.6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="128"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>A block connected to two springs</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Fig. 10.7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="260"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>A second block on top of a block connected to a spring</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar11">Example 10.6</h3> <p>A 6 kg block is connected to a light spring of force constant of 300 <span class="mathjax-tex">\(\mathrm {N}/\mathrm {m}\)</span> on a frictionless horizontal surface. On top of it a second block of mass of 2 kg is placed. If the coefficient of static friction between the two blocks is 0.4 (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig7">10.7</a>), find the maximum amplitude the system can have when it is in simple harmonic motion such that there is no slipping between the blocks.</p> <h3 class="c-article__sub-heading" id="FPar12">Solution 10.6</h3> <p>The maximum acceleration of the lower block is <span class="mathjax-tex">\(a_{\max }=\omega _{n}^{2}A\)</span>. In order for the upper block not to slip, the force of static friction between the two blocks must produce the same acceleration as the lower block. The maximum statistical frictional force that can be exerted on the upper block is <span class="mathjax-tex">\(\mu _{s}mg\)</span> and hence, the maximum acceleration that the force of static friction can produce is <span class="mathjax-tex">\(\mu _{s}g\)</span>. Therefore, <span class="mathjax-tex">\(\mu _{s}g=a_{\max }=\omega _{n}^{2}A\)</span>. Since</p><div id="Equ59" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{k}{(m+M)}} $$</span></div></div><p>we have</p><div id="Equ60" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\frac{\mu _{s}g}{\omega _{n}^{2}}=\frac{\mu _{s}g(m+M)}{k}=\frac{(0.4)(9.8 \; \mathrm {m}/\mathrm {s}^{2})(8 \; \mathrm {k}\mathrm {g})}{(300 \; \mathrm {N}/\mathrm {m})}=0.1 \; \mathrm {m} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Fig. 10.8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/8" rel="nofollow"><picture><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="528"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>A particle in uniform circular motion</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec9"><span class="c-article-section__title-number">10.3.2 </span>Simple Harmonic Motion and Uniform Circular Motion</h3><p>Consider a circle of radius <i>A</i> centered at the <span class="mathjax-tex">\(\mathrm {x}\)</span> and <span class="mathjax-tex">\(\mathrm {y}\)</span> axes as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig8">10.8</a>. Let A be the position vector of a particle <span class="mathjax-tex">\(\mathrm {P}\)</span> rotating with a constant angular speed <span class="mathjax-tex">\(\omega _{n}\)</span> in the anticlockwise direction. The particle is thus in uniform circular motion. Suppose <span class="mathjax-tex">\(\mathrm {P}\)</span> starts the rotation at <span class="mathjax-tex">\(t=0\)</span> at an angle of <span class="mathjax-tex">\(\phi \)</span> measured from the positive <span class="mathjax-tex">\(\mathrm {x}\)</span>-axis. At any time, the angular position of the particle is given by <span class="mathjax-tex">\((\omega _{n}t+\phi )\)</span>, therefore the vector position of the particle at any time is</p><div id="Equ61" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \mathbf {A}=x\mathbf {i}+y\mathbf {j}=A\cos (\omega _{n}t+\phi )\mathbf {i}+A\sin (\omega _{n}t+\phi )\mathbf {j} $$</span></div></div><p>Hence,</p><div id="Equ62" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=A\cos (\omega _{n}t+\phi ) $$</span></div></div><p>and</p><div id="Equ63" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ y=A\sin (\omega _{n}t+\phi ) $$</span></div></div><p>That is, as <span class="mathjax-tex">\(\mathrm {P}\)</span> moves in uniform circular motion, its projection <span class="mathjax-tex">\(\mathrm {P}'\)</span> on the x-axis moves in simple harmonic motion where the radius of the circle is equal to the amplitude of motion. The projection of <span class="mathjax-tex">\(\mathrm {P}\)</span> along the <span class="mathjax-tex">\(\mathrm {y}\)</span>-axis also undergoes simple harmonic motion. Thus, uniform circular motion may be considered as a combination of the simple harmonic motions of the projections of <span class="mathjax-tex">\(\mathrm {P}\)</span> on each axis. These two simple harmonic motions have equal amplitudes and angular frequencies but are in quadrature with each other (they differ in phase by <span class="mathjax-tex">\(\pi /2\)</span>). The linear tangential velocity of the particle in this uniform circular motion is given by</p><div id="Equ64" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=A\omega _{n} $$</span></div></div><p>The <span class="mathjax-tex">\(\mathrm {x}\)</span> component of the velocity is from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig9">10.9</a> given by</p><div id="Equ65" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v_{x}=-\omega _{n}A\sin (\omega _{n}t+\phi ) $$</span></div></div><p>The acceleration of the particle in uniform circular motion is just the radial (centripetal) acceleration that is given by</p><div id="Equ66" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a=\frac{v^{2}}{A}=A\omega _{n}^{2} $$</span></div></div><p>The <span class="mathjax-tex">\(\mathrm {x}\)</span> components of the acceleration (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig10">10.10</a>) is</p><div id="Equ67" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a_{x}=-\omega _{n}^{2}A\cos (\omega _{n}t+\phi ) $$</span></div></div><p>Hence as you can see, the displacement, velocity, and acceleration of the projection of <span class="mathjax-tex">\(\mathrm {P}\)</span> onto the <span class="mathjax-tex">\(\mathrm {x}\)</span> (or <span class="mathjax-tex">\(\mathrm {y}\)</span> axis) are the same as that of a simple harmonic motion. From this, we conclude that the simple harmonic motion can be represented as the projection of uniform circular motion along a diameter of the circle.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Fig. 10.9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/9" rel="nofollow"><picture><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="528"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>The velocity components of the particle</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Fig. 10.10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/10" rel="nofollow"><picture><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="528"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>The acceleration components of the particle</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec10"><span class="c-article-section__title-number">10.3.3 </span>Energy of a Simple Harmonic Oscillator</h3><p>Since in a simple harmonic oscillator, there aren’t any dissipative forces, the total mechanical energy of the system is conserved and is equal to the sum of its kinetic and potential energies, that is</p><div id="Equ68" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=K+U $$</span></div></div> <div id="Equ69" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ K=\frac{1}{2}mv^{2}=\frac{1}{2}m\omega _{n}^{2}A^{2}\sin ^{2}(\omega _{n}t+\phi ) $$</span></div></div> <div id="Equ70" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ U=\frac{1}{2}kx^{2}=\frac{1}{2}kA^{2}\cos ^{2}(\omega _{n}t+\phi ) $$</span></div></div><p>Thus,</p><div id="Equ71" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}kA^{2}[\sin ^{2}(\omega _{n}t+\phi )+\cos ^{2}(\omega _{n}t+\phi )] $$</span></div></div><p>or</p><div id="Equ72" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\displaystyle \frac{1}{2}kA^{2}= \text {constant} $$</span></div></div><p>The equation of motion of a simple harmonic oscillator can be obtained from the total mechanical energy of the system as follows:</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} E=\displaystyle \frac{1}{2}m\dot{x}^{2}+\frac{1}{2}kx^{2}=\frac{1}{2}kA^{2} \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.10) </div></div> <div id="Equ73" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dE}{dt}=m\dot{x}\ddot{x}+kx\dot{x}=0 $$</span></div></div><p>or</p><div id="Equ74" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ m\ddot{x}+kx=0 $$</span></div></div><p>Hence</p><div id="Equ75" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{x}+\omega _{n}^{2}x=0 $$</span></div></div><p>where <span class="mathjax-tex">\(\omega _{n}=\sqrt{k/m}\)</span>. As the mass moves, its kinetic energy is transformed into potential energy and vice versa. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig11">10.11</a> shows the kinetic energy and potential energy of the system as a function of time and as a function of the displacement respectively Note that the variation of <i>U</i> and <i>K</i> with time is at twice the angular frequency of the variation of <i>x</i>, <i>v</i>, and <i>a</i> with time. This is because the potential energy is converted to kinetic energy twice in each cycle. The velocity of the simple harmonic oscillator can be obtained from the total energy of the system. From Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ10">10.10</a>, we have</p><div id="Equ76" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=\pm \sqrt{\frac{k}{m}(A^{2}-x^{2})} $$</span></div></div><p>Hence, the maximum speed is at <span class="mathjax-tex">\(x=0\)</span> and is zero at <span class="mathjax-tex">\(x=\pm A\)</span> which are called the turning points as discussed in Chap. chap444.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Fig. 10.11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="610"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>As the mass moves, its kinetic energy is transformed into potential energy and vice versa</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar13">Example 10.7</h3> <p>A 0.3 kg mass is attached to a light spring. If the total energy of the system is 0.025 <span class="mathjax-tex">\(\mathrm {J}\)</span> and the amplitude of motion is 5 cm, find the period and frequency of motion.</p> <h3 class="c-article__sub-heading" id="FPar14">Solution 10.7</h3> <div id="Equ77" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E= (0.025\,\displaystyle \mathrm {J})=\frac{1}{2}kA^{2}=\frac{1}{2}k(0.05 \; \mathrm {m})^{2} $$</span></div></div><p>hence</p><div id="Equ78" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ k=20 \; \mathrm {N}/\mathrm {m} $$</span></div></div><p>The period of motion is therefore</p><div id="Equ79" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=2\pi \sqrt{\frac{m}{k}}=2(3.14)\sqrt{\frac{(0.3 \; \mathrm {k}\mathrm {g})}{(20 \; \mathrm {N}/\mathrm {m})}}=0.8 \; \mathrm {s} $$</span></div></div><p>and the frequency is</p><div id="Equ80" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$f_{n}=\displaystyle \frac{1}{T}=\frac{1}{(0.8 \; \mathrm {s})}=1.25 \; \mathrm {Hz}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar15">Example 10.8</h3> <p>A 0.2 kg block is attached to a light spring of force constant of 11 <span class="mathjax-tex">\(\mathrm {N}/\mathrm {m}\)</span> on a horizontal frictionless surface. If the block is displaced a distance of 8 cm from its equilibrium position, find (a) the amplitude, the angular frequency, the period and the frequency of motion when the block is released; (b) the maximum force exerted on the block; (c) the total mechanical energy of the system; (d) the maximum speed and maximum acceleration of the block; (e) the velocity of the block when its displacement is 2 cm; (f) the acceleration of the block when its displacement is 3 cm.</p> <h3 class="c-article__sub-heading" id="FPar16">Solution 10.8</h3> <p>(a)</p><div id="Equ81" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=8\,\mathrm {c}\mathrm {m} $$</span></div></div> <div id="Equ82" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{(11 \; \mathrm {N}/\mathrm {m})}{(0.2 \; \mathrm {k}\mathrm {g})}}=7.4 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div> <div id="Equ83" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=\frac{2(3.14)}{(7.4 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})}=0.85 \; \mathrm {s} $$</span></div></div> <div id="Equ84" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ f_{n}=\displaystyle \frac{1}{T}=\frac{1}{(0.85 \; \mathrm {s})}=1.2 \; \mathrm {Hz} $$</span></div></div><p>(b)</p><div id="Equ85" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ |F|=kA=(11\,\mathrm {N}/\mathrm {m})(0.08\,\mathrm {m})=0.9\,\mathrm {N} $$</span></div></div><p>(c)</p><div id="Equ86" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}kA^{2}=\frac{1}{2}(11 \; \mathrm {N}/\mathrm {m})(0.08 \; \mathrm {m})^{2}=0.035 \; \mathrm {J} $$</span></div></div><p>(d)</p><div id="Equ87" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v_{\max }=\omega _{n}A=( 7.4 \; \mathrm {rad/s}) (0.08 \; \mathrm {m})=0.6 \; \mathrm {m}/\mathrm {s} $$</span></div></div> <div id="Equ88" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a_{\max }=\omega _{n}^{2}A=(7.4 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})^{2}(0.08 \; \mathrm {m})=4.4 \; \mathrm {m}/\mathrm {s}^{2} $$</span></div></div><p>(e)</p><div id="Equ89" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=\pm \sqrt{\frac{k}{m}(A^{2}-x^{2})}=\sqrt{\frac{(11 \; \mathrm {N}/\mathrm {m})}{(0.2 \; \mathrm {k}\mathrm {g})}((0.08 \; \mathrm {m})^2-(0.02 \; \mathrm {m})^2)}=1.8 \; \mathrm {m}/\mathrm {s} $$</span></div></div><p>(f)</p><div id="Equ90" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a=-\omega _{n}^{2}x=-(7.4 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})^{2}(0.03 \; \mathrm {m})=-1.6 \; \mathrm {m}/\mathrm {s}^{2} $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar17">Example 10.9</h3> <p>An object connected to a spring is in simple harmonic motion on a frictionless surface. If the object’s displacement when <span class="mathjax-tex">\((2v_{\max }/3)\)</span> is <span class="mathjax-tex">\(\pm 0.015 \; \mathrm {m}\)</span>, find the amplitude of motion.</p> <h3 class="c-article__sub-heading" id="FPar18">Solution 10.9</h3> <div id="Equ91" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{1}{2}kA^{2}=\frac{1}{2}mv^{2}+\frac{1}{2}kx^{2}=\frac{1}{2}m\frac{4\omega _{n}^{2}A^{2}}{9}+\frac{1}{2}kx^{2} $$</span></div></div><p>therefore</p><div id="Equ92" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A^{2}=\displaystyle \frac{9}{5}x^{2}=\frac{9}{5} (0.015 \; \mathrm {m})^{2} $$</span></div></div> <div id="Equ93" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=0.02 \; \mathrm {m} $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar19">Example 10.10</h3> <p>A solid cylinder is connected to a light spring as in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig12">10.12</a>. If the cylinder rolls without slipping along the surface, show that the motion of the cylinder is simple harmonic motion and find its frequency.</p> <h3 class="c-article__sub-heading" id="FPar20">Solution 10.10</h3> <p>At any instant the total mechanical energy is</p><div id="Equ94" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}kx^{2}+\frac{1}{2}I_{cm}\omega ^{2}+\frac{1}{2}Mv_{cm}^{2}=\frac{1}{2}kx^{2}+\frac{1}{2}I_{cm}\frac{v_{cm}^{2}}{R^{2}}+\frac{1}{2}Mv_{cm}^{2} $$</span></div></div> <div id="Equ95" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ =\frac{1}{2}kx^{2}+\frac{1}{2}\left( \frac{1}{2}MR^{2}\right) \frac{v_{cm}^{2}}{R^{2}}+\frac{1}{2}Mv_{cm}^{2} $$</span></div></div><p>Since the total mechanical energy is conserved</p><div id="Equ96" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dE}{dt}=kv_{cm}x+\frac{1}{2}Mv_{cm}a_{cm}+Mv_{cm}a_{cm}=0 $$</span></div></div> <div id="Equ97" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ kv_{cm}x=\frac{-3}{2}Mv_{cm}a_{cm} $$</span></div></div><p>or</p><div id="Equ98" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ a_{cm}=\frac{-2}{3}\frac{k}{M}x $$</span></div></div> <div id="Equ99" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{d^{2}x}{dt^{2}}+\frac{2}{3}\frac{k}{M}x=0 $$</span></div></div><p>this equation is of a simple harmonic motion with</p><div id="Equ100" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{2}{3}\frac{k}{M}} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12" data-title="Fig. 10.12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/12" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig12_HTML.png?as=webp"><img aria-describedby="Fig12" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig12_HTML.png" alt="figure 12" loading="lazy" width="685" height="260"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-12-desc"><p>A solid cylinder connected to a light spring</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/12" data-track-dest="link:Figure12 Full size image" aria-label="Full size image figure 12" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec11"><span class="c-article-section__title-number">10.3.4 </span>The Simple Pendulum</h3><p>The simple pendulum is an example of an angular vibration in which the restoring effect is due to a restoring torque. A simple pendulum consists of a mass (called the bob) suspended by a light string of length <i>L</i> that is fixed at the other end (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig13">10.13</a>). If the mass is pulled to the right or left from its equilibrium position and released, then the pendulum will swing in a vertical plane about an axis passing through O. The resulting motion is then a periodic or oscillatory motion. The restoring torque is due to gravity and is given by</p><div id="Equ101" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =-(mg\sin \theta )L $$</span></div></div><p>The minus sign indicates that the torque is a restoring torque, since it always tends to decrease <span class="mathjax-tex">\(\theta \)</span>. The moment of inertia of the bob about an axis passing through <span class="mathjax-tex">\(\mathrm {O}\)</span> is</p><div id="Equ102" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I=mL^{2} $$</span></div></div><p>From Newton’s second law in angular form, we have</p><div id="Equ103" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =I\alpha =I\ddot{\theta } $$</span></div></div><p>Hence,</p><div id="Equ104" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -mg\sin \theta L=mL^{2}\ddot{\theta } $$</span></div></div><p>or</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \displaystyle \ddot{\theta }+\bigg (\frac{g}{L}\bigg )\sin \theta =0 \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.11) </div></div><p>This equation does not represent a harmonic motion. That is because the torque is not directly proportional to the angular displacement. Thus, the system is nonlinear. However for small angular displacements, we have <span class="mathjax-tex">\(\sin \theta \approx \theta (\)</span>since <span class="mathjax-tex">\(\sin \theta =\theta -\theta ^{3}/3!+\theta ^{5}/5!\ldots )\)</span> and Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ11">10.11</a> becomes</p><div id="Equ105" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\bigg (\frac{g}{L}\bigg )\theta =0 $$</span></div></div><p>or</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \ddot{\theta }+\omega _{n}^{2}\theta =0 \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.12) </div></div><p>where <span class="mathjax-tex">\(\omega _{n}=\sqrt{g/L}\)</span>. Hence for small angular displacements, the motion is a simple harmonic motion. The solution of Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ12">10.12</a> is of the form</p><div id="Equ106" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \theta =\theta _{m}\cos (\omega _{n}t-\phi ) $$</span></div></div><p>where <span class="mathjax-tex">\(\theta _{m}\)</span> is the maximum angular displacement and <span class="mathjax-tex">\(\phi \)</span> is the phase constant. The plot of this equation is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig14">10.14</a>. The period of the simple pendulum is therefore given by</p><div id="Equ107" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=2\pi \sqrt{\frac{L}{g}} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-13" data-title="Fig. 10.13"><figure><figcaption><b id="Fig13" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.13</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/13" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig13_HTML.png?as=webp"><img aria-describedby="Fig13" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig13_HTML.png" alt="figure 13" loading="lazy" width="685" height="656"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-13-desc"><p>The simple pendulum</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/13" data-track-dest="link:Figure13 Full size image" aria-label="Full size image figure 13" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-14" data-title="Fig. 10.14"><figure><figcaption><b id="Fig14" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.14</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/14" rel="nofollow"><picture><img aria-describedby="Fig14" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig14_HTML.png" alt="figure 14" loading="lazy" width="685" height="373"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-14-desc"><p>The displacement versus time of a simple pendulum</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/14" data-track-dest="link:Figure14 Full size image" aria-label="Full size image figure 14" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec12"><span class="c-article-section__title-number">10.3.4.1 </span>Energy</h4><p>The kinetic energy of the simple pendulum is</p><div id="Equ108" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ K=\frac{1}{2}mv^{2}=\frac{1}{2}mL^{2}\omega _{n}^{2}=\frac{1}{2}mL\dot{\theta }^{2} $$</span></div></div><p>Taking the reference point of potential energy of the system to be zero when the bob is at the bottom, we have</p><div id="Equ109" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ U=MgL(1-\cos \theta ) $$</span></div></div><p>The total energy is therefore given by</p><div id="Equ110" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=K+U=\frac{1}{2}ML^{2}\dot{\theta }^{2}+MgL(1-\cos \theta ) $$</span></div></div><p>For small <span class="mathjax-tex">\(\theta \)</span>, we have <span class="mathjax-tex">\(\displaystyle \cos \theta \approx 1-\frac{\theta ^{2}}{2} \)</span>since <span class="mathjax-tex">\(\cos \theta =1-\theta ^{2}/2!+\theta ^{4}/4!\ldots )\)</span> thus</p><div id="Equ111" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}ML^{2}\dot{\theta }^{2}+\frac{1}{2}MgL\theta ^{2} $$</span></div></div><p>Since</p><div id="Equ112" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \dot{\theta }=-\theta _{m}\omega _{n}\sin (\omega _{n}t-\phi ) $$</span></div></div><p>we have</p><div id="Equ113" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}ML^{2}\theta _{m}^{2}\omega _{n}^{2}\sin ^{2}(\omega _{n}t-\phi )+\frac{1}{2}MgL\theta _{m}^{2}\cos ^{2}(\omega _{n}t-\phi ) $$</span></div></div><p>or</p><div id="Equ114" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=\frac{1}{2}MgL\theta _{m}^{2} $$</span></div></div><p>Therefore, the total energy of the system is constant. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig15">10.15</a> shows the variation of the kinetic and potential energies with the displacement.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-15" data-title="Fig. 10.15"><figure><figcaption><b id="Fig15" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.15</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/15" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig15_HTML.png?as=webp"><img aria-describedby="Fig15" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig15_HTML.png" alt="figure 15" loading="lazy" width="685" height="302"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-15-desc"><p>The total energy of a simple pendulum</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/15" data-track-dest="link:Figure15 Full size image" aria-label="Full size image figure 15" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The equation of motion may also be obtained from energy as follows:</p><div id="Equ115" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dE}{dt}=ML^{2}\dot{\theta }\ddot{\theta }+MgL\theta \dot{\theta }=0 $$</span></div></div><p>or</p><div id="Equ116" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\bigg (\frac{g}{L}\bigg )\theta =0 $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar21">Example 10.11</h3> <p>A simple pendulum is 0.5 <span class="mathjax-tex">\(\mathrm {m}\)</span> long. Find its period at the surface of Mars and compare it to its period at the earth’s surface.</p> <h3 class="c-article__sub-heading" id="FPar22">Solution 10.11</h3> <p>At Mars’s surface, the gravitational acceleration is</p><div id="Equ117" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ g_{M}=\frac{GM_{M}}{R_{M}^{2}}=\frac{(6.67\times 10^{-11} \; \mathrm {N}\, mathrm{m}^{2}/\mathrm {k}\mathrm {g}^{2})(6.42\times 10^{23} \; \mathrm {k}\mathrm {g})}{(3.37\times \mathrm {l}0^{6} \; \mathrm {m})^{2}}=3.8 \; \mathrm {m}/\mathrm {s}^{2} $$</span></div></div><p>The period at Mars is therefore</p><div id="Equ118" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T_{M}=2\pi \sqrt{\frac{L}{g_{M}}}=2(3.14)\sqrt{\frac{(0.5 \; \mathrm {m})}{(3.8 \; \mathrm {m}/\mathrm {s}^{2})}}=2.3 \; \mathrm {s} $$</span></div></div><p>At the earth’s surface,</p><div id="Equ119" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T_{E}=2\pi \sqrt{\frac{L}{g_{E}}}=2(3.14)\sqrt{\frac{(0.5 \; \mathrm {m})}{(9.8 \; \mathrm {m}/\mathrm {s}^{2})}}=1.4 \; \mathrm {s} $$</span></div></div><p>Thus, <span class="mathjax-tex">\(T_{M}=1.6T_{E}.\)</span></p> <h3 class="c-article__sub-heading" id="FPar23">Example 10.12</h3> <p>A simple pendulum of length of 2 <span class="mathjax-tex">\(\mathrm {m}\)</span> is displaced through an angle of <span class="mathjax-tex">\(12^{\circ }\)</span> and released. Find (a) the angular frequency of motion; (b) the maximum angular speed and maximum angular acceleration.</p> <h3 class="c-article__sub-heading" id="FPar24">Solution 10.12</h3> <p>(a) The amplitude of motion is</p><div id="Equ120" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \displaystyle \theta _{\max }=(12^{\circ })\bigg (\frac{2\pi \; \mathrm {r}\mathrm {a}\mathrm {d}}{360^{\circ } \; \deg }\bigg )=0.21 \; \text {rad} $$</span></div></div><p>The angular frequency is</p><div id="Equ121" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{g}{L}}=\sqrt{\frac{(9.8 \; \mathrm {m}/\mathrm {s}^{2})}{(2 \; \mathrm {m})}}=2.2 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div><p>(b) The maximum angular speed is</p><div id="Equ122" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \dot{\theta }_{\max }=\omega _{n}A=( 2.2 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})(0.21 \; \mathrm {r}\mathrm {a}\mathrm {d}) =0.5 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div><p>The maximum angular acceleration is</p><div id="Equ123" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }_{\max }=\omega _{n}^{2}A=(2.2 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})^{2}(0.21 \; \mathrm {r}\mathrm {a}\mathrm {d} )=1 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s}^{2} $$</span></div></div> <h3 class="c-article__sub-heading" id="FPar25">Example 10.13</h3> <p>A simple pendulum 1.4 <span class="mathjax-tex">\(\mathrm {m}\)</span> in length is displaced through an angle of <span class="mathjax-tex">\(10^{\circ }\)</span> and released. Find the velocity of the bob when it reaches the bottom.</p> <h3 class="c-article__sub-heading" id="FPar26">Solution 10.13</h3> <div id="Equ124" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \displaystyle \theta =(10^{\circ })\bigg (\frac{2\pi \; \mathrm {r}\mathrm {a}\mathrm {d}}{360^{\circ } \; \deg }\bigg )=0.17 \; \text {rad} $$</span></div></div><p>Taking the potential energy to be zero at the bottom, we have</p><div id="Equ125" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ mgL(1-\cos \theta )=\frac{1}{2}mv^{2} $$</span></div></div><p>Since <span class="mathjax-tex">\(\theta \)</span> is small, <span class="mathjax-tex">\(\cos \theta \approx 1-\theta ^{2}/2\)</span> and therefore</p><div id="Equ126" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ mgL\frac{\theta ^{2}}{2}=\frac{1}{2}mv^{2} $$</span></div></div><p>and</p><div id="Equ127" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v=\sqrt{gL}\theta =\sqrt{(9.8 \; \mathrm {m}/\mathrm {s}^{2})(14 \; \mathrm {m})} (0.17 \; \mathrm {rad}) = \; 0.63\mathrm {m}/\mathrm {s} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-16" data-title="Fig. 10.16"><figure><figcaption><b id="Fig16" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.16</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/16" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig16_HTML.png?as=webp"><img aria-describedby="Fig16" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig16_HTML.png" alt="figure 16" loading="lazy" width="685" height="412"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-16-desc"><p>The physical pendulum</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/16" data-track-dest="link:Figure16 Full size image" aria-label="Full size image figure 16" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec13"><span class="c-article-section__title-number">10.3.5 </span>The Physical Pendulum</h3><p>The physical pendulum is a rigid body that oscillates about an axis passing through a point in the body other than its center of mass (the center of mass is assumed to be located at the center of gravity). Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig16">10.16</a> shows a rigid body pivoted at point <span class="mathjax-tex">\(\mathrm {O}\)</span> that is at a distance <i>d</i> from the center of mass. The equilibrium position of the body is when its center of mass is directly below the pivot O. If the body is displaced either to the right or left from the equilibrium position, a restoring torque due to gravity will act on it. As a result, the body will oscillate in a vertical plane where the axis of rotation is perpendicular to the page. The restoring torque is given by</p><div id="Equ128" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =-Mgd\ \sin \theta $$</span></div></div><p>where <i>M</i> is the mass of the body and <i>d</i> is the moment arm of the tangential component of the weight <span class="mathjax-tex">\((Mg\ \sin \theta )\)</span>. From Newton’s second law, we have</p><div id="Equ129" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =I\alpha $$</span></div></div> <div id="Equ130" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -Mgd\sin \theta =I\ddot{\theta } $$</span></div></div><p>For small angular displacements <span class="mathjax-tex">\(\sin \theta \approx \theta \)</span> and hence</p><div id="Equ131" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\bigg (\frac{Mgd}{I}\bigg )\theta =0 $$</span></div></div><p>or</p><div id="Equ132" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\omega _{n}^{2}\theta =0 $$</span></div></div><p>This equation is of a simple harmonic motion with an angular frequency of</p><div id="Equ133" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{Mgd}{I}} $$</span></div></div><p>and a period of motion of</p><div id="Equ134" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=\frac{2\pi }{\omega _{n}}=2\pi \sqrt{\frac{I}{Mgd}} $$</span></div></div><p>Thus,</p><div id="Equ135" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I=\frac{T^{2}Mgd}{4\pi ^{2}} $$</span></div></div><p>Therefore, the moment of inertia of a body can be found by measuring its period when it is in simple harmonic motion as a physical pendulum. Note that, the simple pendulum is a special case of the physical pendulum since for a simple pendulum of mass <i>m</i>, the moment of inertia is</p><div id="Equ136" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I=md^{2} $$</span></div></div><p>and thus, the angular frequency is</p><div id="Equ137" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{mgd}{md^{2}}}=\sqrt{\frac{g}{d}} $$</span></div></div><p>This angular frequency is of a simple pendulum where <i>d</i> represents the length of the string.</p> <h3 class="c-article__sub-heading" id="FPar27">Example 10.14</h3> <p>A uniform rod of length of 0.6 <span class="mathjax-tex">\(\mathrm {m}\)</span> that is suspended at one end oscillates with a small amplitude as in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig17">10.17</a>. Find the frequency of motion.</p> <h3 class="c-article__sub-heading" id="FPar28">Solution 10.14</h3> <div id="Equ138" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$f_{n}=\displaystyle \frac{1}{2\pi }\sqrt{\frac{Mgd}{I}}=\frac{1}{2\pi }\sqrt{\frac{Mg({L}/{2})}{(1/3){ML^{2}}}}=\frac{1}{2\pi }\sqrt{\frac{3g}{2L}}=\frac{1}{2(3.14)}\sqrt{\frac{3(9.8\mathrm {m}/\mathrm {s}^{2})}{2(0.6\mathrm {m})}}=0.8\,\text {Hz} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-17" data-title="Fig. 10.17"><figure><figcaption><b id="Fig17" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.17</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/17" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig17_HTML.png?as=webp"><img aria-describedby="Fig17" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig17_HTML.png" alt="figure 17" loading="lazy" width="685" height="552"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-17-desc"><p>A uniform rod suspended at one end oscillated with a small amplitude</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/17" data-track-dest="link:Figure17 Full size image" aria-label="Full size image figure 17" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-18" data-title="Fig. 10.18"><figure><figcaption><b id="Fig18" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.18</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/18" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig18_HTML.png?as=webp"><img aria-describedby="Fig18" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig18_HTML.png" alt="figure 18" loading="lazy" width="592" height="513"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-18-desc"><p>A uniform square plate pivoted at one of its corners and oscillates in a vertical plane</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/18" data-track-dest="link:Figure18 Full size image" aria-label="Full size image figure 18" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar29">Example 10.15</h3> <p>A uniform square plate of length <i>a</i> is pivoted at one of its corners and oscillates in a vertical plane as in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig18">10.18</a>. Find the period of motion if the amplitude is small.</p> <h3 class="c-article__sub-heading" id="FPar30">Solution 10.15</h3> <p>The moment of inertia of a uniform rectangular plate about its center of mass is</p><div id="Equ139" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I_{cm}=\frac{1}{12}M(a^{2}+b^{2}) $$</span></div></div><p>Thus for a uniform square plate, we have</p><div id="Equ140" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I_{cm}=\frac{1}{6}Ma^{2} $$</span></div></div><p>From the parallel axis theorem, the moment of inertia of the plate about an axis that is parallel to the center of mass axis and passing through one corner <span class="mathjax-tex">\((D=\sqrt{2}a)\)</span> is</p><div id="Equ141" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I=I_{cm}+MD^{2}=\frac{1}{6}\ Ma^{2}+2Ma^{2}=\frac{13}{6}Ma^{2} $$</span></div></div><p>and hence</p><div id="Equ142" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=2\pi \sqrt{\frac{I}{Mgd}}=2\pi \sqrt{\frac{(13/6){Ma^{2}}}{Mg\sqrt{2}a}}=2\pi \sqrt{1.5\frac{a}{g}} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-19" data-title="Fig. 10.19"><figure><figcaption><b id="Fig19" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.19</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/19" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig19_HTML.png?as=webp"><img aria-describedby="Fig19" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig19_HTML.png" alt="figure 19" loading="lazy" width="471" height="542"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-19-desc"><p>The torsional pendulum</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/19" data-track-dest="link:Figure19 Full size image" aria-label="Full size image figure 19" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec14"><span class="c-article-section__title-number">10.3.6 </span>The Torsional Pendulum</h3><p>The torsional pendulum consists of a rigid body suspended by a wire from its center of mass where the other end of the wire is fixed as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig19">10.19</a>. The body is in equilibrium if the wire is untwisted. If the body is rotated through an angle <span class="mathjax-tex">\(\theta \)</span> it will oscillate about its equilibrium position (the line OP) due to a restoring torque exerted by the twisted wire on the body. This torque is found to be directly proportional to the angular displacement of the body. That is</p><div id="Equ143" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =-k\theta $$</span></div></div><p>where <i>k</i> is called the torsional constant. Its value depends on the property of the wire. Note that this equation is the rotational analogue of Hook’s law in linear form <span class="mathjax-tex">\((F=-kx)\)</span>. From Newton’s second law, we have</p><div id="Equ144" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau =I\alpha $$</span></div></div><p>or</p><div id="Equ145" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -k\theta =I\ddot{\theta } $$</span></div></div><p>That gives</p><div id="Equ146" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\bigg (\frac{k}{I}\bigg )\theta =0 $$</span></div></div><p>or</p><div id="Equ147" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{\theta }+\omega _{n}^{2}\theta =0 $$</span></div></div><p>where <span class="mathjax-tex">\(\omega _{n}=\sqrt{k/I}\)</span> and the period is <span class="mathjax-tex">\(T=2\pi \sqrt{I/k}.\)</span></p> <h3 class="c-article__sub-heading" id="FPar31">Example 10.16</h3> <p>A uniform solid sphere of mass of 4.7 kg and radius of 5 cm is suspended at its midpoint by a light string (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig20">10.20</a>) where it oscillates as a torsional pendulum. If the period of motion is 3.5 <span class="mathjax-tex">\(\mathrm {s}\)</span>, find the torsion constant.</p> <h3 class="c-article__sub-heading" id="FPar32">Solution 10.16</h3> <div id="Equ148" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ T=2\pi \sqrt{\frac{I}{k}} $$</span></div></div><p>for a uniform solid sphere</p><div id="Equ149" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ I_{cm}=\displaystyle \frac{2}{5}MR^{2}=\frac{2}{5}(4.7 \; \mathrm {k}\mathrm {g})(0.05 \; \mathrm {m})^{2}=4.7\times 10^{-3} \; \mathrm {k}\mathrm {g}\,\mathrm {m}^{2} $$</span></div></div><p>hence,</p><div id="Equ150" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ k=\frac{4\pi ^{2}I_{cm}}{T}=\frac{4(3.14)^{2}(4.7\times 10^{-3} \; \mathrm {k}\mathrm {g}\,\mathrm {m}^{2})}{(3.5 \; \mathrm {s})}=0.05 \; \mathrm {k}\mathrm {g}\,\mathrm {m}^{2}/\mathrm {s}^{2} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-20" data-title="Fig. 10.20"><figure><figcaption><b id="Fig20" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.20</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/20" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig20_HTML.png?as=webp"><img aria-describedby="Fig20" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig20_HTML.png" alt="figure 20" loading="lazy" width="475" height="679"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-20-desc"><p>A uniform solid sphere suspended at its midpoint by a light string</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/20" data-track-dest="link:Figure20 Full size image" aria-label="Full size image figure 20" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> </div></div></section><section data-title="Damped Free Vibrations"><div class="c-article-section" id="Sec15-section"><h2 id="Sec15" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">10.4 </span>Damped Free Vibrations</h2><div class="c-article-section__content" id="Sec15-content"><p>In this section, we will discuss the case in which the effect of damping that is due to a nonconservative force cannot be neglected. An example of such a force in mechanical systems is the force of friction. In this case, the mechanical energy of the system will be lost, the amplitude of motion will decrease to zero, and the oscillation dies out eventually. Here, we will discuss damping due to friction in the simplest case, where the frictional force is proportional to the first power of the velocity of the oscillating body. An example of such a frictional force is the force that an object experience when moving in a fluid with a low speed and is given by</p><div id="Equ151" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ F_{D}=-bv $$</span></div></div><p>where <i>b</i> is a positive constant called the damping coefficient. Its SI units is <span class="mathjax-tex">\(\mathrm {N}(\mathrm {m}\,\mathrm {s}^{-1})=\mathrm {k}\mathrm {g}\,\mathrm {s}^{-1}\)</span>. The negative sign shows that the direction of the force is always opposite to the velocity. Now consider the spring–mass system as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig21">10.21</a>, the cylinder shown in the figure contains a viscous fluid and a piston moving in it. Such device is known as the viscous damper. The net force on the oscillating body is</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-21" data-title="Fig. 10.21"><figure><figcaption><b id="Fig21" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.21</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/21" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig21_HTML.png?as=webp"><img aria-describedby="Fig21" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig21_HTML.png" alt="figure 21" loading="lazy" width="685" height="260"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-21-desc"><p>A mass-spring system with damping</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/21" data-track-dest="link:Figure21 Full size image" aria-label="Full size image figure 21" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div id="Equ152" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \sum F=F_{s}+F_{D}=-kx-bv $$</span></div></div><p>hence</p><div id="Equ153" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ m\ddot{x}+b\dot{x}+kx=0 $$</span></div></div><p>or</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \ddot{x}+\gamma \dot{x}+\omega _{n}^{2}x=0 \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.13) </div></div><p>where <span class="mathjax-tex">\(\gamma =b/m\)</span> and <span class="mathjax-tex">\(\omega _{n}=\sqrt{k/m}\)</span>. The units of <span class="mathjax-tex">\(\gamma \)</span> is <span class="mathjax-tex">\(\mathrm {s}^{-1}\)</span>. This equation is a second order linear differential equation of constant coefficients. We may assume a solution of the form</p><div id="Equ154" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=Ce^{\lambda t} $$</span></div></div><p>Substituting this solution into Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ13">10.13</a> gives the characteristic (auxiliary) equation given by</p><div id="Equ155" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda ^{2}+\gamma \lambda +\omega _{n}^{2}=0 $$</span></div></div><p>The roots of this equation are given by</p><div id="Equ156" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{1}=-\frac{\gamma }{2}+\sqrt{\bigg (\frac{\gamma ^{2}}{4}-\omega _{n}^{2}\bigg )} $$</span></div></div><p>and</p><div id="Equ157" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{2}=-\frac{\gamma }{2}-\sqrt{\bigg (\frac{\gamma ^{2}}{4}-\omega _{n}^{2}\bigg )} $$</span></div></div><p>From superposition, the general solution is given by</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x=C_{1}e^{\lambda _{1}t}+C_{2}e^{\lambda _{2}t} \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.14) </div></div><p>Three possible solutions arise depending on whether the sign of the bracket <span class="mathjax-tex">\((\gamma ^{2}/4-\omega _{n}^{2})\)</span> is positive, negative or zero, i.e., depending on the size of the damping force. The roots <span class="mathjax-tex">\(\lambda _{1}\)</span> and <span class="mathjax-tex">\(\lambda _{2}\)</span> are either distinct real roots, equal real roots or a conjugate complex roots. Therefore, there are three possible motions of the system.</p><h3 class="c-article__sub-heading" id="Sec16"><span class="c-article-section__title-number">10.4.1 </span>Light Damping (Under-Damped) <span class="mathjax-tex">\((\gamma &lt;2\omega _{n})\)</span></h3><p>If <span class="mathjax-tex">\(\gamma &lt;2\omega _{n}\)</span> the resulting roots are complex roots given by</p><div id="Equ158" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{1}=-\frac{\gamma }{2}+i\omega _{D} $$</span></div></div><p>and</p><div id="Equ159" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{2}=-\frac{\gamma }{2}-i\omega _{D} $$</span></div></div><p>where</p><div id="Equ160" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{D}=\bigg (\omega _{n}^{2}-\frac{\gamma ^{2}}{4}\bigg )^{1_{/2}} $$</span></div></div><p>Hence, Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ14">10.14</a> may be written as</p><div id="Equ161" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=\bigg [C_{1}e^{i\omega _{D}t}+C_{2}e^{-i\omega _{D}t}\bigg ]e^{\frac{-\gamma }{2}t} $$</span></div></div><p>Since <span class="mathjax-tex">\(e^{\pm ix}=\cos x\pm i\sin x\)</span> we have</p><div id="Equ162" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=[C_{1}(\cos \omega _{D}t+i\sin \omega _{D}t)+C_{2}(\cos \omega _{D}t-i\sin \omega _{D}t)]e^{\frac{-\gamma }{2}t} $$</span></div></div> <div id="Equ163" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ =[(C_{1}+C_{2})\cos \omega _{D}t+i(C_{1}-C_{2})\sin \omega _{D}t]e^{\frac{-\gamma }{2}t} $$</span></div></div> <div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} =[A_{1}\cos \omega _{D}t+A_{2}\sin \omega _{D}t]e^{\frac{-\gamma }{2}t} \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.15) </div></div><p>where <span class="mathjax-tex">\(A_{1}=C_{1}+C_{2}\)</span> and <span class="mathjax-tex">\(A_{2}=i(C_{1}-C_{2})\)</span>. As mentioned earlier Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ15">10.15</a> can be written as</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x=A\cos (\omega _{D}t-\phi )e^{\frac{-\gamma }{2}t} \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.16) </div></div><p>where <i>A</i> is the initial amplitude of motion. <span class="mathjax-tex">\(Ae^{\frac{-\gamma }{2}t}\)</span> is called the amplitude of motion and <span class="mathjax-tex">\(\phi \)</span> is the phase constant and <span class="mathjax-tex">\(\omega _{D}\)</span> is the angular frequency of the damped motion. This equation shows that the system oscillates in a decreasing harmonic motion where the amplitude of motion decreases exponentially with time until eventually the oscillation dies out (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig22">10.22</a>). The dashed lines in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig22">10.22</a> are called the envelope of the oscillation curve. The period of motion in light damping is therefore given by</p><div id="Equ164" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau _{D}=\frac{2\pi }{\omega _{D}}=\frac{2\pi }{\sqrt{\omega _{n}^{2}-\frac{\gamma ^{2}}{4}}} $$</span></div></div><p>If <span class="mathjax-tex">\(b=0\)</span> and thus <span class="mathjax-tex">\(\gamma =0\)</span> the period of motion is reduced to that of a simple harmonic oscillator. If <span class="mathjax-tex">\(\gamma \ll \omega _{D}\)</span>, the situation is referred to as very light damping and <span class="mathjax-tex">\(\omega _{D}\approx \omega _{n}\)</span>. Furthermore if there are two amplitudes <span class="mathjax-tex">\(A_{a}\)</span> and <span class="mathjax-tex">\(A_{b}\)</span> separated by the period of motion, then their ratio is given by</p><div id="Equ165" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{A_{a}}{A_{b}}=\frac{Ae^{-\frac{\gamma }{2}t_{1}}}{Ae^{-\frac{\gamma }{2}(t_{1}+\tau _{D})}}=e^{\frac{\gamma }{2}\tau _{D}} $$</span></div></div><p>A quantity known as the logarithmic decrement is defined as</p><div id="Equ166" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \delta =\ln \bigg (\frac{A_{a}}{A_{b}}\bigg )=\frac{\gamma }{2}\tau _{D} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-22" data-title="Fig. 10.22"><figure><figcaption><b id="Fig22" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.22</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/22" rel="nofollow"><picture><img aria-describedby="Fig22" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig22_HTML.png" alt="figure 22" loading="lazy" width="685" height="470"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-22-desc"><p>In A lightly damped oscillator, the system oscillates in a decreasing harmonic motion where the amplitude of motion decreases exponentially with time until eventually the oscillation dies out</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/22" data-track-dest="link:Figure22 Full size image" aria-label="Full size image figure 22" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar33">Example 10.17</h3> <p>An 8 kg block is attached to a light spring and a light viscous damper. If at <span class="mathjax-tex">\(t=0, x=0.12 \; \mathrm {m}\)</span> and <span class="mathjax-tex">\(v=0\)</span>, find (a) the displacement at any time; (b) the logarithmic decrement. <span class="mathjax-tex">\((k=30 \; \mathrm {N}/\mathrm {m},\ b=20 \; \mathrm {N}\,\mathrm {s}/\mathrm {m})\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar34">Solution 10.17</h3> <p>(a)</p><div id="Equ167" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \omega _{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{(30 \; \mathrm {N}/\mathrm {m})}{(8 \; \mathrm {k}\mathrm {g})}}=1.9 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div> <div id="Equ168" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \gamma =\frac{b}{m}=\frac{(20 \; \mathrm {N}\,\mathrm {s}/\mathrm {m})}{(8 \; \mathrm {k}\mathrm {g})}=2.5 \; \mathrm {s}^{-1} $$</span></div></div><p>and</p><div id="Equ169" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \displaystyle \omega _{D}=\bigg (\omega _{n}^{2}-\frac{\gamma ^{2}}{4}\bigg )^{1_{/2}}=((1.9 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})^{2}-(2.5 \; \mathrm {N} \mathrm {s}/\mathrm {m}\,\mathrm {k}\mathrm {g})^{2}4)^{1_{/2}}=1.43 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s} $$</span></div></div><p>since <span class="mathjax-tex">\(\gamma &lt;2\omega _{\mathrm {n}}\)</span>, the damping is light. The displacement as a function of time is given by</p><div id="Equ170" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=A\cos (\omega _{D}t-\phi )e^{\frac{-\gamma }{2}t} $$</span></div></div><p>or</p><div id="Equ171" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=A\cos (1.43t-\phi )e^{-1.25t} $$</span></div></div><p>since at <span class="mathjax-tex">\(t=0, x=0.12 \; \mathrm {m}\)</span>, then</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (0.12 \; \mathrm {m})=A\cos \phi \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.17) </div></div><p>the velocity of the block at any time is</p><div id="Equ172" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \dot{x}=-1.43A\sin (1.43t-\phi )e^{-1.25t}-1.25A\cos (1.43t-\phi )e^{-1.25t} $$</span></div></div><p>at <span class="mathjax-tex">\(t=0, v=0\)</span> and thus</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} 0=-1.43A\sin \phi -1.25A\cos \phi \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.18) </div></div><p>Solving Eqs. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ17">10.17</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ18">10.18</a> for <i>A</i> and <span class="mathjax-tex">\(\phi \)</span> gives <span class="mathjax-tex">\(\phi =-0.7\)</span> rad and <span class="mathjax-tex">\(A=0.17 \; \mathrm {m}.\)</span> Therefore,</p><div id="Equ173" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=0.17\cos (1.43t-0.7)e^{-1.25t} $$</span></div></div><p>(b)</p><div id="Equ174" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \tau _{D}=\frac{2\pi }{\omega _{D}}=\frac{2\pi }{(1.43 \; \mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s})}=4.4 \; \mathrm {s} $$</span></div></div> <div id="Equ175" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \delta =\frac{\gamma }{2}\tau _{D}=(1.25 \; \mathrm {s}^{-1})(4.4 \; \mathrm {s})=5.5 $$</span></div></div> <h3 class="c-article__sub-heading" id="Sec17"><span class="c-article-section__title-number">10.4.2 </span>Critically Damped Motion <span class="mathjax-tex">\((\gamma =2\omega _{n})\)</span></h3><p>If <span class="mathjax-tex">\(\gamma =2\omega _{n}\)</span>, then the roots are equal real roots</p><div id="Equ176" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{1}=\lambda _{2}=-\frac{\gamma }{2}=-\omega _{n} $$</span></div></div><p>In that case, the motion decays without oscillation (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig23">10.23</a>) and the general solution of Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ13">10.13</a> is</p><div id="Equ177" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=(C_{1}+C_{2}\omega _{n}t)e^{-\omega _{n}t} $$</span></div></div><p><span class="mathjax-tex">\(C_{1}\)</span> and <span class="mathjax-tex">\(C_{2}\)</span> are found from boundary conditions. If at <span class="mathjax-tex">\(t=0, x=A\)</span>, and <span class="mathjax-tex">\(v=0,\)</span> then</p><div id="Equ178" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x(0)=C_{1}=A $$</span></div></div><p>and</p><div id="Equ179" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ v(0)=\omega _{n}C_{2}-\omega _{n}C_{1}=0 $$</span></div></div><p>or</p><div id="Equ180" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ C_{1}=C_{2}=A $$</span></div></div><p>That gives</p><div id="Equ181" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=A(1+\omega _{n}t)e^{-\omega _{n}t} $$</span></div></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-23" data-title="Fig. 10.23"><figure><figcaption><b id="Fig23" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.23</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/23" rel="nofollow"><picture><img aria-describedby="Fig23" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig23_HTML.png" alt="figure 23" loading="lazy" width="685" height="356"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-23-desc"><p>In a critically damped motion, the motion decays without oscillation</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/23" data-track-dest="link:Figure23 Full size image" aria-label="Full size image figure 23" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="Sec18"><span class="c-article-section__title-number">10.4.3 </span>Over Damped Motion (Heavy Damping) <span class="mathjax-tex">\((\gamma &gt;2\omega _{n})\)</span></h3><p>If <span class="mathjax-tex">\(\gamma &gt;2\omega _{n}\)</span>, the roots are distinct real roots given by</p><div id="Equ182" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{1}=-\frac{\gamma }{2}+\sqrt{\bigg (\frac{\gamma ^{2}}{4}-\omega _{n}^{2}\bigg )} $$</span></div></div><p>and</p><div id="Equ183" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \lambda _{2}=-\frac{\gamma }{2}-\sqrt{\bigg (\frac{\gamma ^{2}}{4}-\omega _{n}^{2}\bigg )} $$</span></div></div><p>The general solution is given by</p><div id="Equ184" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=C_{1}e^{\lambda _{1}t}+C_{2}e^{\lambda _{2}t} $$</span></div></div><p>or</p><div id="Equ185" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=(C_{1}e^{\alpha t}+C_{2}e^{-\alpha t})e^{-\frac{\gamma }{2}t} $$</span></div></div><p>where</p><div id="Equ186" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \alpha =\sqrt{\bigg (\frac{\gamma ^{2}}{4}-\omega _{n}^{2}\bigg )} $$</span></div></div><p><span class="mathjax-tex">\(C_{1}\)</span> and <span class="mathjax-tex">\(C_{2}\)</span> are found from boundary conditions. As critical damping, the resulting motion here is nonperiodic but the system returns to its equilibrium position at large values of <i>t</i> unlike critical damping (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig24">10.24</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-24" data-title="Fig. 10.24"><figure><figcaption><b id="Fig24" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.24</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/24" rel="nofollow"><picture><img aria-describedby="Fig24" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig24_HTML.png" alt="figure 24" loading="lazy" width="685" height="356"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-24-desc"><p>As critical damping, the resulting motion here is non-periodic but the system returns to its equilibrium position at large values of <i>t</i> unlike critical damping</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/24" data-track-dest="link:Figure24 Full size image" aria-label="Full size image figure 24" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar35">Example 10.18</h3> <p>In Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="#FPar33">10.17</a>, find the range of values of the damping coefficient for the system to be: (a) over damped; (b) critically damped.</p> <h3 class="c-article__sub-heading" id="FPar36">Solution 10.18</h3> <p>(a) over damped if <span class="mathjax-tex">\(\gamma &gt;2\omega _{n}\)</span>, i.e., if <span class="mathjax-tex">\(\gamma &gt;3.8\mathrm {s}^{-1}(\mathrm {b})\)</span> critically damped if <span class="mathjax-tex">\(\gamma =3.8\mathrm {s}^{-1}.\)</span></p> <h3 class="c-article__sub-heading" id="Sec19"><span class="c-article-section__title-number">10.4.4 </span>Energy Decay</h3><p>In damped free vibrations, the total mechanical energy is not constant since the damping force opposes the motion and dissipates the energy of the system. Now, consider the mass–spring system, the total mechanical energy of the system is</p><div id="Equ187" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ E=K+U=\frac{1}{2}m\dot{x}^{2}+\frac{1}{2}kx^{2} $$</span></div></div><p>The rate of change of energy is</p><div id="Equ188" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dE}{dt}=(m\ddot{x}+kx)\dot{x} $$</span></div></div><p>For damped vibrations in which the damping force is directly proportional to the velocity, we have</p><div id="Equ189" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ m\ddot{x}+kx=-b\dot{x} $$</span></div></div><p>Hence,</p><div id="Equ190" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \frac{dE}{dt}=-b\dot{x}^{2}\le 0 $$</span></div></div><p>Thus, the energy decreases with time in any damped motion and the rate in which it decreases is not uniform.</p></div></div></section><section data-title="Forced Vibrations"><div class="c-article-section" id="Sec20-section"><h2 id="Sec20" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">10.5 </span>Forced Vibrations</h2><div class="c-article-section__content" id="Sec20-content"><p>In the previous sections, only free vibrations have been considered (i.e., vibrations in which only a restoring and damping force act within the system during motion). This section considers the case in which an external driving force is applied to the vibrator. This force is given as a function of time and we have</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} m\ddot{x}+b\dot{x}+kx=F(t) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.19) </div></div><p>Here, we will consider the case in which the force is a simple periodic force given by</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F(t)=F_{0}\cos \omega t \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.20) </div></div><p>where <span class="mathjax-tex">\(F_{0}\)</span> is the amplitude and <span class="mathjax-tex">\(\omega \)</span> is the driving frequency. This force does positive work on the system to balance the energy loss due to damping. Substituting Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ20">10.20</a> into Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ19">10.19</a> gives</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} m\ddot{x}+b\dot{x}+kx=F_{0}\cos \omega t \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.21) </div></div><p>or</p><div id="Equ191" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{x}+\gamma \dot{x}+\omega _{n}^{2}x=\frac{F_{0}\cos \omega t}{m} $$</span></div></div><p>Let us assume that the solution of Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ19">10.19</a> is given by</p><div id="Equ192" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=C_{1}\cos \omega t+C_{2}\sin \omega t $$</span></div></div><p>then, we have</p><div id="Equ193" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \dot{x}=-\omega C_{1}\sin \omega t+\omega C_{2}\cos \omega t $$</span></div></div><p>and</p><div id="Equ194" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \ddot{x}=-\omega ^{2}C_{1}\cos \omega t-\omega ^{2}C_{2}\sin \omega t $$</span></div></div><p>Substituting into Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ19">10.19</a> gives</p><div id="Equ195" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&amp;(-\displaystyle \omega ^{2}C_{1}\cos \omega t-\omega ^{2}C_{2}\sin \omega t)+\gamma (-\omega C_{1}\sin \omega t+\omega C_{2}\cos \omega t) \nonumber \\&amp;+\omega _{n}^{2}(C_{1}\cos \omega t+C_{2}\sin \omega t)=\frac{F_{0}\cos \omega t}{m} \end{aligned}$$</span></div></div><p>That gives</p><div id="Equ196" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -\omega ^{2}C_{1}+\gamma \omega C_{2}+\omega _{n}^{2}C_{1}=\frac{F_{0}}{m} $$</span></div></div><p>and</p><div id="Equ197" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ -\omega ^{2}C_{2}-\gamma \omega C_{1}+\omega _{n}^{2}C_{2}=0 $$</span></div></div><p>Solving for <span class="mathjax-tex">\(C_{1}\)</span> and <span class="mathjax-tex">\(C_{2}\)</span> gives</p><div id="Equ198" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ C_{1}=\frac{({F_{0}}/{m})(\omega _{n}^{2}-\omega ^{2})}{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}} $$</span></div></div><p>and</p><div id="Equ199" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ C_{2}=\frac{({F_{0}}/{m})\gamma \omega }{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}} $$</span></div></div><p>Hence,</p><div id="Equ200" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=\frac{({F_{0}}/{m})[(\omega _{n}^{2}-\omega ^{2})\cos \omega t+\gamma \omega \sin \omega t]}{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}} $$</span></div></div><p>The term in brackets is of the form <span class="mathjax-tex">\(A_{1}\cos \omega t+A_{2}\sin \omega t\)</span> and thus it can be written as <span class="mathjax-tex">\(A'\cos (\omega t-\phi )\)</span> where</p><div id="Equ201" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A'=\sqrt{A_{1}^{2}+A_{2}^{2}} $$</span></div></div><p>i.e.,</p><div id="Equ202" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A'=((\omega _{n}^{2}-\omega ^{2})^{2}+\gamma ^{2}\omega ^{2})^{\frac{1}{2}} $$</span></div></div><p>and</p><div id="Equ203" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \phi =\tan ^{-1}\frac{A_{2}}{A_{1}}=\tan ^{-1}\frac{\gamma \omega }{(\omega ^{2}-\omega _{n}^{2})} $$</span></div></div><p>where <span class="mathjax-tex">\( 0\le \phi \le \pi \)</span>. Hence,</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} x=\displaystyle \frac{(^{F_{0}}/_{m})}{\sqrt{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}}}\cos (\omega t-\phi ) \end{aligned}$$</span></div><div class="c-article-equation__number"> (10.22) </div></div><p>If the driving force is applied for a long time compared with the time that the damped vibration dies out, then the system will eventually vibrate at the same frequency of the deriving force. Therefore, the general solution of Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ13">10.13</a> is called the transient solution since it approaches zero in a relativity short time whereas Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="#Equ21">10.21</a> is called the steady-state solution where the system oscillates with the same frequency as the deriving force. Therefore, the amplitude of a steady-state vibration is</p><div id="Equ204" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\frac{({F_{0}}/_{m})}{\sqrt{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}}} $$</span></div></div><p>When the deriving frequency <span class="mathjax-tex">\(\omega \)</span> approaches the natural frequency of the system <span class="mathjax-tex">\(\omega _{D}\)</span>, the amplitude of the resulting forced oscillation will increase. This is known as resonance. If the damping is very light, the amplitude reaches its peak when the deriving frequency is nearly equal to the natural frequency <span class="mathjax-tex">\(\omega _{n}\)</span>. As the damping becomes heavier, the maximum amplitude shifts to lower frequencies (see Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig25">10.25</a>). In the case where there is no damping at all <span class="mathjax-tex">\((b=0)\)</span>, the amplitude of resonance is infinite at <span class="mathjax-tex">\(\omega =\omega _{n}.\)</span></p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-25" data-title="Fig. 10.25"><figure><figcaption><b id="Fig25" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.25</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/25" rel="nofollow"><picture><img aria-describedby="Fig25" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig25_HTML.png" alt="figure 25" loading="lazy" width="685" height="576"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-25-desc"><p>When the deriving frequency <span class="mathjax-tex">\(\omega \)</span> approaches the natural frequency of the system <span class="mathjax-tex">\(\omega _{D}\)</span>, the amplitude of the resulting forced oscillation will increase. This is known as resonance. If the damping is very light the amplitude reaches its peak when the deriving frequency is nearly equal to the natural frequency <span class="mathjax-tex">\(\omega _{n}\)</span>. As the damping becomes heavier, the maximum amplitude shifts to lower frequencies</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/25" data-track-dest="link:Figure25 Full size image" aria-label="Full size image figure 25" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar37">Example 10.19</h3> <p>In Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="#FPar33">10.17</a>, if a driving force of the form <span class="mathjax-tex">\(F(t)=5\cos 4t\)</span> is applied to the system, find the steady-state displacement as a function of time.</p> <h3 class="c-article__sub-heading" id="FPar38">Solution 10.19</h3> <div id="Equ205" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\frac{({F_{0}}/_{m})}{\sqrt{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}}}=\frac{({5}/8)}{\sqrt{((4)^{2}-(1.9)^{2})^{2}+(2.5)^{2}(4)^{2}}}=0.04 \; \mathrm {m} $$</span></div></div> <div id="Equ206" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ \phi =\tan ^{-1}\frac{\gamma \omega }{(\omega ^{2}-\omega _{n}^{2})}=\tan ^{-1}\ \frac{(2.5)(4)}{((4)^{2}-(1.9)^{2})}=0.8^{\circ } $$</span></div></div><p>Hence,</p><div id="Equ207" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ x=0.04\cos (4t-0.8) $$</span></div></div><p>Therefore, the forced vibration has the same frequency as the deriving force but lag in phase by <span class="mathjax-tex">\(0.8^{\circ }\)</span></p> <h3 class="c-article__sub-heading" id="FPar39">Example 10.20</h3> <p>In Example (10.17), find the steady-state displacement as a function of time if there is no damping.</p> <h3 class="c-article__sub-heading" id="FPar40">Solution 10.20</h3> <p>The amplitude of the forced oscillation when the angular frequency <span class="mathjax-tex">\(\omega \)</span> of the deriving force is varied.</p><div id="Equ208" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ A=\frac{({F_{0}}/_{m})}{\sqrt{(\omega ^{2}-\omega _{n}^{2})^{2}+\gamma ^{2}\omega ^{2}}}=\frac{({5}/{8})}{\sqrt{((4)^{2}-(1.9)^{2})^{2}}}=0.05 \; \mathrm {m} $$</span></div></div><p><span class="mathjax-tex">\(x=0.05\cos 4t,\; \phi =0.\)</span></p> <p> <b>Problems</b> </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>A 2 kg block is fastened to a spring of force constant 98 <span class="mathjax-tex">\(\mathrm {N}/\mathrm {m}\)</span> on a horizontal frictionless surface. If the block is released a distance of 6 cm from its equilibrium position, find (a) the angular frequency, the frequency and the period of the resulting motion, (b) the time it takes the block to first reach <span class="mathjax-tex">\(x=-5\)</span> cm and its velocity at that time, (c) the maximum speed and maximum acceleration of the oscillating block, (d) the total mechanical energy of the oscillator.</p> </li> <li> <span class="u-custom-list-number">2.</span> <p>A 10 kg block is attached to a light spring of force constant 200 <span class="mathjax-tex">\(\mathrm {N}/\mathrm {m}\)</span> on a smooth horizontal surface. Find the amplitude of motion if at <span class="mathjax-tex">\(x=0.06 \; \mathrm {m}\)</span> the velocity of the block is <span class="mathjax-tex">\(v=0.5 \; \mathrm {m}/\mathrm {s}.\)</span></p> </li> <li> <span class="u-custom-list-number">3.</span> <p>A particle rotate counterclockwise in a circle of radius 0.2 <span class="mathjax-tex">\(\mathrm {m}\)</span> with a constant angular speed of 2 <span class="mathjax-tex">\(\mathrm {r}\mathrm {a}\mathrm {d}/\mathrm {s}\)</span>. If at <span class="mathjax-tex">\(t=0\)</span> the <span class="mathjax-tex">\(\mathrm {x}\)</span>-coordinate of the particle is 0.14 <span class="mathjax-tex">\(\mathrm {m}\)</span>, find the displacement, velocity and acceleration of the particle at any time.</p> </li> <li> <span class="u-custom-list-number">4.</span> <p>If a simple pendulum has a period of 2 <span class="mathjax-tex">\(\mathrm {s}\)</span>, find its period when its length is increased by <span class="mathjax-tex">\(20\%\)</span>.</p> </li> <li> <span class="u-custom-list-number">5.</span> <p>A simple pendulum of length lm and mass of 0.4 kg oscillates in a region where <span class="mathjax-tex">\(g=9.8 \; \mathrm {m}/\mathrm {s}^{2}\)</span>. If the amplitude of oscillation is <span class="mathjax-tex">\(10^{\circ }\)</span>, find (a) the angular displacement, angular velocity and angular acceleration of the pendulum as a function of time.</p> </li> <li> <span class="u-custom-list-number">6.</span> <p>A uniform solid cylinder of radius <i>R</i> and mass <i>M</i> rolls without slipping on a track of radius 4<i>R</i> as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig26">10.26</a>. Find the period of oscillation when the cylinder is displaced slightly from its equilibrium position.</p> </li> <li> <span class="u-custom-list-number">7.</span> <p>A planer body of mass 3 kg oscillates as a physical pendulum. If the period of oscillation is 3 <span class="mathjax-tex">\(\mathrm {s}\)</span> and if the pivot point is at 0.2 <span class="mathjax-tex">\(\mathrm {m}\)</span> from the center of mass, find the moment of inertia of the body.</p> </li> <li> <span class="u-custom-list-number">8.</span> <p>A uniform hollow cylinder of radius <i>R</i> and mass <i>M</i> is suspended at its midpoint from a wire and form a torsional pendulum. If the period of motion is <i>T</i>, find the torsion constant.</p> </li> <li> <span class="u-custom-list-number">9.</span> <p>For the system shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig27">10.27</a>, determine the displacement of the block at any time if at <span class="mathjax-tex">\(t=0, x=0\)</span> and <span class="mathjax-tex">\(v=0.\,(k=200 \; \mathrm {N}/\mathrm {m},\ b=200 \; \mathrm {N}\,\mathrm {s}/\mathrm {m})\)</span>.</p> </li> <li> <span class="u-custom-list-number">10.</span> <p>For the system shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig28">10.28</a>, find the steady-state displacement as a function of time.</p> </li> </ol> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-26" data-title="Fig. 10.26"><figure><figcaption><b id="Fig26" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.26</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/26" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig26_HTML.png?as=webp"><img aria-describedby="Fig26" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig26_HTML.png" alt="figure 26" loading="lazy" width="358" height="621"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-26-desc"><p>A uniform solid cylinder of radius <i>R</i> and mass <i>M</i> rolls without slipping on a track of radius 4<i>R</i></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/26" data-track-dest="link:Figure26 Full size image" aria-label="Full size image figure 26" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-27" data-title="Fig. 10.27"><figure><figcaption><b id="Fig27" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.27</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/27" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig27_HTML.png?as=webp"><img aria-describedby="Fig27" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig27_HTML.png" alt="figure 27" loading="lazy" width="685" height="244"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-27-desc"><p>A damped oscillator</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/27" data-track-dest="link:Figure27 Full size image" aria-label="Full size image figure 27" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-28" data-title="Fig. 10.28"><figure><figcaption><b id="Fig28" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10.28</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/28" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig28_HTML.png?as=webp"><img aria-describedby="Fig28" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-030-15195-9_10/MediaObjects/459974_1_En_10_Fig28_HTML.png" alt="figure 28" loading="lazy" width="685" height="206"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-28-desc"><p>A forced oscillator</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-030-15195-9_10/figures/28" data-track-dest="link:Figure28 Full size image" aria-label="Full size image figure 28" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> </div></div></section> </div> <div id="MagazineFulltextChapterBodySuffix"></div><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 id="author-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff20"><p class="c-article-author-affiliation__address">Thuwal, Saudi Arabia</p><p class="c-article-author-affiliation__authors-list">Salma Alrasheed</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Salma-Alrasheed"><span class="c-article-authors-search__title u-h3 js-search-name">Salma Alrasheed</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Salma%20Alrasheed" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Salma%20Alrasheed" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Salma%20Alrasheed%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:salma.alrasheed@kaust.edu.sa">Salma Alrasheed </a>.</p></div></div></section><section data-title="Rights and permissions" lang="en"><div class="c-article-section" id="rightslink-section"><h2 id="rightslink" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.</p> <p>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</p> <p class="c-article-rights" data-test="rightslink-content"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?publisherName=SpringerNature&amp;orderBeanReset=true&amp;orderSource=SpringerLink&amp;title=Oscillatory%20Motion&amp;author=Salma%20Alrasheed&amp;contentID=10.1007%2F978-3-030-15195-9_10&amp;copyright=The%20Author%28s%29&amp;publication=eBook&amp;publicationDate=2019&amp;startPage=155&amp;endPage=171&amp;imprint=The%20Author%28s%29&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section data-title="Copyright information"><div class="c-article-section" id="copyright-information-section"><h2 id="copyright-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Copyright information</h2><div class="c-article-section__content" id="copyright-information-content"><p>© 2019 The Author(s)</p></div></div></section><section aria-labelledby="chapter-info" data-title="About this chapter" lang="en"><div class="c-article-section" id="chapter-info-section"><h2 id="chapter-info" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>About this chapter</h2><div class="c-article-section__content" id="chapter-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/978-3-030-15195-9_10" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15195-9_10" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this chapter</h3><p class="c-bibliographic-information__citation" data-test="bibliographic-information__cite_this_chapter">Alrasheed, S. (2019). Oscillatory Motion. In: Principles of Mechanics. Advances in Science, Technology &amp; Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-15195-9_10</p><h3 class="c-bibliographic-information__download-citation u-mb-8 u-mt-16 u-hide-print">Download citation</h3><ul class="c-bibliographic-information__download-citation-list"><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .RIS file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-15195-9_10?format=refman&amp;flavour=citation">.RIS<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .ENW file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-15195-9_10?format=endnote&amp;flavour=citation">.ENW<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .BIB file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-030-15195-9_10?format=bibtex&amp;flavour=citation">.BIB<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li></ul><ul class="c-bibliographic-information__list u-mb-24" data-test="publication-history"><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--chapter-doi"><p data-test="bibliographic-information__doi"><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/978-3-030-15195-9_10</span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2019-05-01">01 May 2019</time></span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__publisher-name"> Publisher Name<span class="u-hide">: </span><span class="c-bibliographic-information__value">Springer, Cham</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__pisbn"> Print ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-030-15194-2</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__eisbn"> Online ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-030-15195-9</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__package">eBook Packages<span class="u-hide">: </span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&amp;package=11646&amp;facet-start-year=2019&amp;facet-end-year=2019">Earth and Environmental Science</a></span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&amp;package=43711&amp;facet-start-year=2019&amp;facet-end-year=2019">Earth and Environmental Science (R0)</a></span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this chapter</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="chapter-info-list"></div></div></div></div></div></section><section aria-labelledby="publish-with-us" data-title="Publish with us" lang="en"><div class="c-article-section" id="publish-with-us-section"><h2 id="publish-with-us" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Publish with us</h2><div class="c-article-section__content" id="publish-with-us-content"><p><a class="app-article-policy-section-external-link" href="https://www.springernature.com/gp/policies/book-publishing-policies" data-track="click" data-track-action="publishing policies" data-track-label="link">Policies and ethics</a><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon app-article-policy-section-external-link-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use></svg></p></div></div></section> </div> </article> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"></div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature</p> </div> </div> </footer> </div> </div> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10