CINXE.COM

Search results for: pulsatile flow

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pulsatile flow</title> <meta name="description" content="Search results for: pulsatile flow"> <meta name="keywords" content="pulsatile flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pulsatile flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pulsatile flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4763</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pulsatile flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4763</span> Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jason%20P.%20Michaud">Jason P. Michaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Connor%20P.%20Speer"> Connor P. Speer</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Miller"> David A. Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20S.%20Nobes"> David S. Nobes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120&nbsp;mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of&nbsp; 50 &lt; Re &lt; 900. Water at 60&nbsp;&deg;C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5&nbsp;Hz &ndash; 2.5&nbsp;Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finned-tube%20heat%20exchangers" title="finned-tube heat exchangers">finned-tube heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20correlations" title=" heat transfer correlations"> heat transfer correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20radiators" title=" computer radiators"> computer radiators</a> </p> <a href="https://publications.waset.org/abstracts/59633/empirical-heat-transfer-correlations-of-finned-tube-heat-exchangers-in-pulsatile-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4762</span> A Mathematical Model of Pulsatile Blood Flow through a Bifurcated Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Srinivasacharya">D. Srinivasacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Madhava%20Rao"> G. Madhava Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the pulsatile flow of blood flow in bifurcated artery with mild stenosis is investigated. Blood is treated to be a micropolar fluid with constant density. The arteries forming bifurcation are assumed to be symmetric about its axes and straight cylinders of restricted length. As the geometry of the stenosed bifurcated artery is irregular, it is changed to regular geometry utilizing the appropriate transformations. The numerical solutions, using the finite difference method, are computed for the flow rate, the shear stress, and the impedance. The influence of time, coupling number, half of the bifurcated angle and Womersley number on shear stress, flow rate and impedance (resistance to the flow) on both sides of the flow divider is shown graphically. It has been observed that the shear stress and flow rate are increasing with increase in the values of Womersley number and bifurcation angle on both sides of the apex. The shear stress is increasing along the inner wall and decreasing along the outer wall of the daughter artery with an increase in the value of coupling number. Further, it has been noticed that the shear stress, flow rate, and impedance are perturbed largely near to the apex in the parent artery due to the presence of backflow near the apex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title="micropolar fluid">micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcated%20artery" title=" bifurcated artery"> bifurcated artery</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20flow" title=" back flow"> back flow</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Womersley%20number" title=" Womersley number"> Womersley number</a> </p> <a href="https://publications.waset.org/abstracts/86224/a-mathematical-model-of-pulsatile-blood-flow-through-a-bifurcated-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4761</span> The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Maddah">Soroush Maddah</a>, <a href="https://publications.waset.org/abstracts/search?q=Houra%20Asgarian"> Houra Asgarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Navidbakhsh"> Mahdi Navidbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20Lagrangian-Eulerian" title="arbitrary Lagrangian-Eulerian">arbitrary Lagrangian-Eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=Atenolol" title=" Atenolol"> Atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20blood%20flow" title=" pulsatile blood flow"> pulsatile blood flow</a> </p> <a href="https://publications.waset.org/abstracts/12914/the-exact-specification-for-consumption-of-blood-pressure-regulating-drugs-with-a-numerical-model-of-pulsatile-micropolar-fluid-flow-in-elastic-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4760</span> Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20A.%20Bu%20Sinnah">Zainab A. Bu Sinnah</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20I.%20Graham"> David I. Graham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title="Lattice Boltzmann method">Lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20relaxation%20time" title=" single relaxation time"> single relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20based%20boundary%20condition" title=" moment based boundary condition"> moment based boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/81002/implementation-of-a-lattice-boltzmann-method-for-pulsatile-flow-with-moment-based-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4759</span> Influence of a Pulsatile Electroosmotic Flow on the Dispersivity of a Non-Reactive Solute through a Microcapillary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Mu%C3%B1oz">Jaime Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Arcos"> José Arcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista%20Federico%20M%C3%A9ndez"> Oscar Bautista Federico Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of a pulsatile electroosmotic flow (PEOF) at the rate of spread, or dispersivity, for a non-reactive solute released in a microcapillary with slippage at the boundary wall (modeled by the Navier-slip condition) is theoretically analyzed. Based on the flow velocity field developed under such conditions, the present study implements an analytical scheme of scaling known as the Theory of Homogenization, in order to obtain a mathematical expression for the dispersivity, valid at a large time scale where the initial transients have vanished and the solute spreads under the Taylor dispersion influence. Our results show the dispersivity is a function of a slip coefficient, the amplitude of the imposed electric field, the Debye length and the angular Reynolds number, highlighting the importance of the latter as an enhancement/detrimental factor on the dispersivity, which allows to promote the PEOF as a strong candidate for chemical species separation at lab-on-a-chip devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersivity" title="dispersivity">dispersivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapillary" title=" microcapillary"> microcapillary</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-slip%20condition" title=" Navier-slip condition"> Navier-slip condition</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20electroosmotic%20flow" title=" pulsatile electroosmotic flow"> pulsatile electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20dispersion" title=" Taylor dispersion"> Taylor dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=Theory%20of%20Homogenization" title=" Theory of Homogenization"> Theory of Homogenization</a> </p> <a href="https://publications.waset.org/abstracts/95021/influence-of-a-pulsatile-electroosmotic-flow-on-the-dispersivity-of-a-non-reactive-solute-through-a-microcapillary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4758</span> Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Kamboj">Karan Kamboj</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikramjeet%20Singh"> Vikramjeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometry%20of%20artery" title="geometry of artery">geometry of artery</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20blood%20flow" title=" pulsatile blood flow"> pulsatile blood flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerous%20stenosis" title=" numerous stenosis"> numerous stenosis</a> </p> <a href="https://publications.waset.org/abstracts/154359/geometrical-fluid-model-for-blood-rheology-and-pulsatile-flow-in-stenosed-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4757</span> CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Midiya%20Khademi">Midiya Khademi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nikoo"> Ali Nikoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Rahimnezhad%20Baghche%20Jooghi"> Shabnam Rahimnezhad Baghche Jooghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30&deg;, 45&deg;, and 60&deg; were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery" title="coronary artery">coronary artery</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20disease" title=" cardiovascular disease"> cardiovascular disease</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title=" atherosclerosis"> atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=artery%20wall%20shear%20stress" title=" artery wall shear stress"> artery wall shear stress</a> </p> <a href="https://publications.waset.org/abstracts/106497/cfd-analysis-of-the-blood-flow-in-left-coronary-bifurcation-with-variable-angulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Hsu">Yu-Chen Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang%20C.%20Lin"> Kuang C. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20lung" title="artificial lung">artificial lung</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20transport" title=" oxygen transport"> oxygen transport</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20flows" title=" non-Newtonian flows"> non-Newtonian flows</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsating%20flows" title=" pulsating flows"> pulsating flows</a> </p> <a href="https://publications.waset.org/abstracts/46560/oxygen-transport-in-blood-flows-pasts-staggered-fiber-arrays-a-computational-fluid-dynamics-study-of-an-oxygenator-in-artificial-lung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qianhui%20Li">Qianhui Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20H.%20Bruecker"> Christoph H. Bruecker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title="flow separation">flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20aortic%20flow" title=" helical aortic flow"> helical aortic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20heart%20valve" title=" mechanical heart valve"> mechanical heart valve</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a> </p> <a href="https://publications.waset.org/abstracts/110757/effect-of-helical-flow-on-separation-delay-in-the-aortic-arch-for-different-mechanical-heart-valve-prostheses-by-time-resolved-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Prashantha">B. Prashantha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anish"> S. Anish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerotic%20plaque" title="atherosclerotic plaque">atherosclerotic plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20shear%20index" title=" oscillatory shear index"> oscillatory shear index</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis%20nature" title=" stenosis nature"> stenosis nature</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a> </p> <a href="https://publications.waset.org/abstracts/48939/a-comparative-cfd-study-on-the-hemodynamics-of-flow-through-an-idealized-symmetric-and-asymmetric-stenosed-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> Pulsatile Drug Delivery System for Chronopharmacological Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Patil">S. S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20U.%20Janugade"> B. U. Janugade</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Patil"> S. V. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery thus increasing patient compliance. These systems are designed according to the circadian rhythm of the body. Chronotherapeutics is the discipline concerned with the delivery of drugs according to inherent activities of a disease over a certain period of time. It is becoming increasingly more evident that the specific time that patients take their medication may be even more significant than was recognized in the past. The tradition of prescribing medication at evenly spaced time intervals throughout the day, in an attempt to maintain constant drug levels throughout a 24-hour period, may be changing as researcher’s report that some medications may work better if their administration is coordinated with day-night patterns and biological rhythms. The potential benefits of chronotherapeutics have been demonstrated in the management of a number of diseases. In particular, there is a great deal of interest in how chronotherapy can particularly benefit patients suffering from allergic rhinitis, rheumatoid arthritis and related disorders, asthma, cancer, cardiovascular diseases, and peptic ulcer disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20drug%20delivery" title="pulsatile drug delivery">pulsatile drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=chronotherapeutics" title=" chronotherapeutics"> chronotherapeutics</a>, <a href="https://publications.waset.org/abstracts/search?q=circadian%20rhythm" title=" circadian rhythm"> circadian rhythm</a>, <a href="https://publications.waset.org/abstracts/search?q=asthma" title=" asthma"> asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=chronobiology" title=" chronobiology"> chronobiology</a> </p> <a href="https://publications.waset.org/abstracts/6994/pulsatile-drug-delivery-system-for-chronopharmacological-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Gholipour">Alireza Gholipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mergen%20H.%20Ghayesh"> Mergen H. Ghayesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Zander"> Anthony Zander</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20Nicholls"> Stephen J. Nicholls</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20%20Psaltis"> Peter J. Psaltis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction%E2%80%8E" title=" fluid-structure interaction‎"> fluid-structure interaction‎</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20arteries%E2%80%8E" title=" coronary arteries‎"> coronary arteries‎</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a> </p> <a href="https://publications.waset.org/abstracts/102251/shear-stress-and-effective-structural-stress-fields-of-an-atherosclerotic-coronary-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Numerical Study of a Ventilation Principle Based on Flow Pulsations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sattari">Amir Sattari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mac%20Panah"> Mac Panah</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeim%20Rashidfarokhi"> Naeim Rashidfarokhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20inflow" title=" pulsatile inflow"> pulsatile inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wall-jet" title=" wall-jet"> wall-jet</a> </p> <a href="https://publications.waset.org/abstracts/141242/numerical-study-of-a-ventilation-principle-based-on-flow-pulsations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eulerian" title="eulerian">eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=newton" title=" newton"> newton</a>, <a href="https://publications.waset.org/abstracts/search?q=valve" title=" valve"> valve</a> </p> <a href="https://publications.waset.org/abstracts/59566/fully-eulerian-finite-element-methodology-for-the-numerical-modeling-of-the-dynamics-of-heart-valves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Gu">Xi Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan%20Heng%20Yeoh"> Guan Heng Yeoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Timchenko"> Victoria Timchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation" title="Large Eddy Simulation">Large Eddy Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluid%20Structural%20Interaction" title=" Fluid Structural Interaction"> Fluid Structural Interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=constricted%20artery" title=" constricted artery"> constricted artery</a>, <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics" title=" Computational Fluid Dynamics"> Computational Fluid Dynamics</a> </p> <a href="https://publications.waset.org/abstracts/21203/three-dimensional-large-eddy-simulation-of-blood-flow-and-deformation-in-an-elastic-constricted-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Timofeeva">Mariia Timofeeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Ooi"> Andrew Ooi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20K.%20W.%20Poon"> Eric K. W. Poon</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Barlis"> Peter Barlis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery" title=" coronary artery"> coronary artery</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow%20reserve" title=" fractional flow reserve"> fractional flow reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20stenoses" title=" serial stenoses"> serial stenoses</a> </p> <a href="https://publications.waset.org/abstracts/139614/numerical-simulation-of-the-fractional-flow-reserve-in-the-coronary-artery-with-serial-stenoses-of-varying-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Blythman">R. Blythman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jeffers"> N. Jeffers</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Persoons"> T. Persoons</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B.%20Murray"> D. B. Murray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20transfer%20enhancement" title="Heat transfer enhancement">Heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20and%20time-resolved%20velocity" title=" localized and time-resolved velocity"> localized and time-resolved velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=photonics%20and%20electronics%20cooling" title=" photonics and electronics cooling"> photonics and electronics cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsating%20%EF%AC%82ow" title=" pulsating flow"> pulsating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Richardson%E2%80%99s%20annular%20effect" title=" Richardson’s annular effect"> Richardson’s annular effect</a> </p> <a href="https://publications.waset.org/abstracts/36180/localized-and-time-resolved-velocity-measurements-of-pulsatile-flow-in-a-rectangular-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ardabil" title="ardabil">ardabil</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20flow" title=" environmental flow"> environmental flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20duration%20curve" title=" flow duration curve"> flow duration curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20river" title=" Gharasou river"> Gharasou river</a> </p> <a href="https://publications.waset.org/abstracts/22653/flow-duration-curve-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">683</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kanta%C5%9F">F. Kantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Boyac%C4%B1"> D. Boyacı</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Din%C3%A7"> C. Dinç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust" title="exhaust">exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flow" title=" gas flow"> gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow "> external flow </a> </p> <a href="https://publications.waset.org/abstracts/17975/investigation-effect-of-external-flow-to-exhaust-gas-flow-at-heavy-commercial-vehicle-with-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hazwan%20bin%20Yusof">Mohd Hazwan bin Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Katanoda"> Hiroshi Katanoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title="flow visualization">flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20measurement" title=" pressure measurement"> pressure measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20flow" title=" reverse flow"> reverse flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/10289/measurement-of-reverse-flow-generated-at-cold-exit-of-vortex-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Estimation and Forecasting Debris Flow Phenomena on the Highway of the &#039;TRACECA&#039; Corridor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levan%20Tsulukidze">Levan Tsulukidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper considers debris flow phenomena and forecasting of them in the corridor of ‘TRACECA’ on the example of river Naokhrevistkali, as well as the debris flow -type channel passing between the villages of Vale-2 and Naokhrevi. As a result of expeditionary and reconnaissance investigations, as well as using empiric dependencies, the debris flow expenditure has been estimated in case of different debris flow provisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title="debris flow">debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Traceca%20corridor" title=" Traceca corridor"> Traceca corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Naokhrevistkali" title=" river Naokhrevistkali"> river Naokhrevistkali</a> </p> <a href="https://publications.waset.org/abstracts/47669/estimation-and-forecasting-debris-flow-phenomena-on-the-highway-of-the-traceca-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elshobaki">Mohamed Elshobaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Valiani"> Alessandro Valiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerio%20Caleffi"> Valerio Caleffi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20flow" title=" junction flow"> junction flow</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-critical%20flow" title=" sub-critical flow"> sub-critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=super-critical%20flow" title=" super-critical flow"> super-critical flow</a> </p> <a href="https://publications.waset.org/abstracts/44090/numerical-solution-of-1-d-shallow-water-equations-at-junction-for-sub-critical-and-super-critical-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Nazari">A. J. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Honma"> S. Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21<sup>st</sup>, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20flow" title="fractional flow">fractional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20displacement" title=" oil displacement"> oil displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneously%20flow" title=" simultaneously flow"> simultaneously flow</a> </p> <a href="https://publications.waset.org/abstracts/59190/oil-displacement-by-water-in-hauterivian-sandstone-reservoir-of-kashkari-oil-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Numerical Simulations for Nitrogen Flow in Piezoelectric Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Flaszynski">Pawel Flaszynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Doerffer"> Piotr Doerffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Holnicki-Szulc"> Jan Holnicki-Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Mikulowski"> Grzegorz Mikulowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20valve" title="pneumatic valve">pneumatic valve</a>, <a href="https://publications.waset.org/abstracts/search?q=transonic%20flow" title=" transonic flow"> transonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20valve" title=" piezoelectric valve"> piezoelectric valve</a> </p> <a href="https://publications.waset.org/abstracts/29877/numerical-simulations-for-nitrogen-flow-in-piezoelectric-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.Galerkin">Y.Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solovieva"> O. Solovieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vaneless%20diffuser" title="vaneless diffuser">vaneless diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20width" title=" relative width"> relative width</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20angle" title=" flow angle"> flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20criteria" title=" similarity criteria"> similarity criteria</a> </p> <a href="https://publications.waset.org/abstracts/15996/flow-behavior-and-performances-of-centrifugal-compressor-stage-vaneless-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadashi%20Watanabe">Tadashi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinya%20Katsuyama"> Jinya Katsuyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Mano"> Akihiro Mano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flow" title=" critical flow"> critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=leak" title=" leak"> leak</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/114282/comparison-of-two-phase-critical-flow-models-for-estimation-of-leak-flow-rate-through-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineddine%20Bouyahiaoui">Zineddine Bouyahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Haoui"> Rabah Haoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blunt%20body" title="blunt body">blunt body</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20flow" title=" hypersonic flow"> hypersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a> </p> <a href="https://publications.waset.org/abstracts/85387/hypersonic-flow-of-co2-n2-mixture-around-a-spacecraft-during-the-atmospheric-reentry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> Flow Visualization around a Rotationally Oscillating Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cemre%20Polat">Cemre Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Soyler"> Mustafa Soyler</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Yaniktepe"> Bulent Yaniktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Coskun%20Ozalp"> Coskun Ozalp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it was aimed to control the flow actively by giving an oscillating rotational motion to a vertically placed cylinder, and flow characteristics were determined. In the study, firstly, the flow structure around the flat cylinder was investigated with dye experiments, and then the cylinders with different oscillation angles (θ = 60°, θ = 120°, and θ = 180°) and different rotation speeds (15 rpm and 30 rpm) the flow structure around it was examined. Thus, the effectiveness of oscillation and rotation speed in flow control has been investigated. In the dye experiments, the dye/water mixture obtained by mixing Rhodamine 6G in powder form with water, which shines under laser light and allows detailed observation of the flow structure, was used. During the experiments, the dye was injected into the flow with the help of a thin needle at a distance that would not affect the flow from the front of the cylinder. In dye experiments, 100 frames per second were taken with a Canon brand EOS M50 (24MP) digital mirrorless camera at a resolution of 1280 * 720 pixels. Then, the images taken were analyzed, and the pictures representing the flow structure for each experiment were obtained. As a result of the study, it was observed that no separation points were formed at 180° swing angle at 15 rpm speed, 120° and 180° swing angle at 30 rpm, and the flow was controlled according to the fixed cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control" title="active flow control">active flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization%20rotationally%20oscillating" title=" flow visualization rotationally oscillating"> flow visualization rotationally oscillating</a> </p> <a href="https://publications.waset.org/abstracts/130645/flow-visualization-around-a-rotationally-oscillating-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4734</span> Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Fuladipanah">Mehdi Fuladipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jorabloo"> Mehdi Jorabloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gharasou%20River" title="Gharasou River">Gharasou River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20flow%20management" title=" water flow management"> water flow management</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniformity%20distribution" title=" non-uniformity distribution"> non-uniformity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20flow%20requirement" title=" ecosystem flow requirement"> ecosystem flow requirement</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20alteration" title=" hydraulic alteration"> hydraulic alteration</a> </p> <a href="https://publications.waset.org/abstracts/22677/hydrological-method-to-evaluate-environmental-flow-case-study-of-gharasou-river-ardabil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10