CINXE.COM
Search results for: soil depth
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: soil depth</title> <meta name="description" content="Search results for: soil depth"> <meta name="keywords" content="soil depth"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="soil depth" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="soil depth"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5935</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: soil depth</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5935</span> Experimental Investigation of Soil Corrosion and Electrical Resistance in Depth by Geoelectrical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining soil engineering properties is essential for geotechnical problems. In addition to high cost, invasive soil survey methods can be time-consuming, so geophysical methods can be an excellent choice to determine soil characteristics. In this study, geoelectric investigation using the Wenner arrangement method has been used to determine the amount of soil corrosion in soil layers in a project site as a case study. This study aims to assess the degree of corrosion of soil layers to a depth of 5 meters and find the variation of soil electrical resistance versus depth. For this purpose, the desired points in the study area were marked and specified, and all withdrawals were made within the specified points. The collected data have been processed by standard and accepted methods, and the results have been presented in the form of calculation tables and curves of electrical resistivity with depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenner%20array" title="Wenner array">Wenner array</a>, <a href="https://publications.waset.org/abstracts/search?q=geoelectric" title=" geoelectric"> geoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20corrosion" title=" soil corrosion"> soil corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20soil%20resistance" title=" electrical soil resistance"> electrical soil resistance</a> </p> <a href="https://publications.waset.org/abstracts/146292/experimental-investigation-of-soil-corrosion-and-electrical-resistance-in-depth-by-geoelectrical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5934</span> Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Constantin%20Topa">Denis Constantin Topa</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Gabriela%20Cara"> Irina Gabriela Cara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Jitareanu"> Gerard Jitareanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20tillage" title="minimum tillage">minimum tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tillage" title=" conventional tillage"> conventional tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20aggregation" title=" soil aggregation"> soil aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/194602/impact-of-different-tillage-practices-on-soil-health-status-carbon-storage-and-pools-soil-aggregation-and-nutrient-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5933</span> Comparison of Mean Monthly Soil Temperature at (5 and 30 cm) Depths at Compton Experimental Site, West Midlands (UK), between 1976-2008</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Mansur">Aminu Mansur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of soil temperature at (5 and 30 cm) depths at a research site over the period (1976-2008) was analyzed. Based on the statistical analysis of the database of (12,045) days of individual soil temperature measurements in sandy-loam of the (salwick series) soils, the mean soil temperature revealed a statistically significant increase of about -1.1 to 10.9°C at 5 cm depth in 1976 compared to 2008. Similarly, soil temperature at 30 cm depth increased by -0.1 to 2.1°C in 2008 compared to 1976. Although, rapid increase in soil temperature at all depths was observed during that period, but a thorough assessment of these conditions suggested that the soil temperature at 5 cm depth are progressively increasing over time. A typical example of those increases in soil temperature was provided for agriculture where Miscanthus (elephant) plant that grows within the study area is adversely affected by the mean soil temperature increase. The study concluded that these observations contribute to the growing mass of evidence of global warming and knowledge on secular trends. Therefore, there was statistically significant increase in soil temperature at Compton Experimental Site between 1976-2008. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20temperature" title="soil temperature">soil temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=warming%20trend" title=" warming trend"> warming trend</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20science" title=" environment science"> environment science</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20and%20atmospheric%20sciences" title=" climate and atmospheric sciences"> climate and atmospheric sciences</a> </p> <a href="https://publications.waset.org/abstracts/26304/comparison-of-mean-monthly-soil-temperature-at-5-and-30-cm-depths-at-compton-experimental-site-west-midlands-uk-between-1976-2008" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5932</span> Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abaoli">Mohammed Abaoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Kara"> Omer Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO<sub>3</sub>, gypsum (CaSO<sub>4</sub>), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm<sup>3</sup>. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO<sub>3</sub> and CaSO<sub>4</sub> concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO<sub>2</sub><sup>-4</sup> and HCO<sup>-3</sup> were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commiphora%20species" title="commiphora species">commiphora species</a>, <a href="https://publications.waset.org/abstracts/search?q=dryland%20vegetation" title=" dryland vegetation"> dryland vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20significance" title=" ecological significance"> ecological significance</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality" title=" soil quality"> soil quality</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20problem" title=" salinity problem"> salinity problem</a> </p> <a href="https://publications.waset.org/abstracts/123086/soil-quality-status-under-dryland-vegetation-of-yabello-district-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5931</span> Soil Stress State under Tractive Tire and Compaction Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prathuang%20Usaborisut">Prathuang Usaborisut</a>, <a href="https://publications.waset.org/abstracts/search?q=Dithaporn%20Thungsotanon"> Dithaporn Thungsotanon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=draft%20force" title="draft force">draft force</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction%20model" title=" soil compaction model"> soil compaction model</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20state" title=" stress state"> stress state</a>, <a href="https://publications.waset.org/abstracts/search?q=tractive%20tire" title=" tractive tire"> tractive tire</a> </p> <a href="https://publications.waset.org/abstracts/65988/soil-stress-state-under-tractive-tire-and-compaction-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5930</span> Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Twin%20Aji%20Kusumagiani">Twin Aji Kusumagiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonora%20Agustine"> Eleonora Agustine</a>, <a href="https://publications.waset.org/abstracts/search?q=Dini%20Fitriani"> Dini Fitriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EC" title="EC">EC</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=VWC" title=" VWC"> VWC</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20water%20content" title=" volume water content"> volume water content</a>, <a href="https://publications.waset.org/abstracts/search?q=NPK%20fertilizer" title=" NPK fertilizer"> NPK fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20soil" title=" volcanic soil"> volcanic soil</a> </p> <a href="https://publications.waset.org/abstracts/65179/delineation-of-soil-physical-properties-using-electrical-conductivity-case-study-volcanic-soil-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5929</span> Peat Soil Stabilization Methods: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saberian">Mohammad Saberian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Rahgozar"> Mohammad Ali Rahgozar</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Porhoseini"> Reza Porhoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peat%20soil" title="peat soil">peat soil</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=depth" title=" depth"> depth</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength%20%28USC%29" title=" unconfined compressive strength (USC)"> unconfined compressive strength (USC)</a> </p> <a href="https://publications.waset.org/abstracts/36737/peat-soil-stabilization-methods-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5928</span> Effect of Various Tillage Systems on Soil Compaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar">Sushil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Jain"> Mukesh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Rani"> Vijaya Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage" title="tillage">tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20tillage" title=" no tillage"> no tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator" title=" rotavator"> rotavator</a>, <a href="https://publications.waset.org/abstracts/search?q=subsoiler" title=" subsoiler"> subsoiler</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a> </p> <a href="https://publications.waset.org/abstracts/92819/effect-of-various-tillage-systems-on-soil-compaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5927</span> On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouzai">L. Mouzai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20resistance" title="flow resistance">flow resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20experiments" title=" laboratory experiments"> laboratory experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20simulator" title=" rainfall simulator"> rainfall simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20concentration" title=" sediment concentration"> sediment concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20velocity" title=" shear velocity"> shear velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/82400/on-the-fixed-rainfall-intensity-effects-on-overland-flow-resistance-shear-velocity-and-on-soil-erosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5926</span> Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Sadeghian">Mahdi Sadeghian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hassanlourad"> Mahmoud Hassanlourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Ardakani"> Alireza Ardakani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Dinarvand"> Reza Dinarvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Depth%20of%20fixity" title="Depth of fixity">Depth of fixity</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateral%20bearing%20capacity" title=" Lateral bearing capacity"> Lateral bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Oblique%20pile" title=" Oblique pile"> Oblique pile</a>, <a href="https://publications.waset.org/abstracts/search?q=Pile%20group" title=" Pile group"> Pile group</a>, <a href="https://publications.waset.org/abstracts/search?q=Soil-structure%20interaction" title=" Soil-structure interaction"> Soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/104879/numerical-investigations-on-group-piles-lateral-bearing-capacity-considering-interaction-of-soil-and-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5925</span> Soil Compaction by a Forwarder in Timber Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juang%20R.%20Matangaran">Juang R. Matangaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Erianto%20I.%20Putra"> Erianto I. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Iis%20Diatin"> Iis Diatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mujahid"> Muhammad Mujahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Adlan"> Qi Adlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial plantation forest is the producer of logs in Indonesia. Several companies of industrial plantation forest have been successfully planted with fast-growing species, and it entered their annual harvesting period. Heavy machines such as forwarders are used in timber harvesting to extract logs from stump to landing site. The negative impact of using such machines are loss of topsoil and soil compaction. Compacted soil is considered unfavorable for plant growth. The research objectives were to analyze the soil bulk density, rut, and cone index of the soil caused by a forwarder passes, to analyze the relation between several times of forwarder passes to the increase of soil bulk density. A Valmet forwarder was used in this research. Soil bulk density at soil surface and cone index from the soil surface to the 50 cm depth of soil were measured at the harvested area. The result showed that soil bulk density increase with the increase of the Valmet forwarder passes. Maximum soil bulk density occurred after 5 times forwarder Valmet passed. The cone index tended to increase from the surface until 50 cm depth of soil. Rut formed and high soil bulk density indicated the soil compaction occurred by the forwarder operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=forwarder%20Valmet" title=" forwarder Valmet"> forwarder Valmet</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forest" title=" plantation forest"> plantation forest</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20harvesting" title=" timber harvesting"> timber harvesting</a> </p> <a href="https://publications.waset.org/abstracts/111245/soil-compaction-by-a-forwarder-in-timber-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5924</span> Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanamariam%20Mekonnen">Hanamariam Mekonnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=kasiry%20micro-watershed" title=" kasiry micro-watershed"> kasiry micro-watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=kiln%20site" title=" kiln site"> kiln site</a>, <a href="https://publications.waset.org/abstracts/search?q=none-kiln%20site" title=" none-kiln site"> none-kiln site</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a> </p> <a href="https://publications.waset.org/abstracts/170998/soil-properties-and-crop-productivity-of-kiln-sites-in-the-highlands-of-north-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5923</span> Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20A.%20Oyinkanola">L. O. A. Oyinkanola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.A.%20%20Fajemiroye"> J.A. Fajemiroye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corrosion" title="Corrosion">Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a> </p> <a href="https://publications.waset.org/abstracts/2366/corellation-between-soil-electrical-resistivity-and-metal-corrosion-based-on-soil-types-for-structure-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5922</span> Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Alhaji">M. M. Alhaji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alhassan"> M. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Yahaya"> A. M. Yahaya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gneiss%20basement%20complex" title="Gneiss basement complex">Gneiss basement complex</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical%20properties" title=" mineralogical properties"> mineralogical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Central%20Nigeria" title=" North Central Nigeria"> North Central Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20properties" title=" physico-chemical properties"> physico-chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=overburden%20soil" title=" overburden soil"> overburden soil</a> </p> <a href="https://publications.waset.org/abstracts/110729/variation-with-depth-of-physico-chemical-mineralogical-and-physical-properties-of-overburden-over-gneiss-basement-complex-in-minna-metropolis-north-central-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5921</span> Effect of Slag Application to Soil Chemical Properties and Rice Yield on Acid Sulphate Soils with Different Pyrite Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richardo%20Y.%20E.%20Sihotang">Richardo Y. E. Sihotang</a>, <a href="https://publications.waset.org/abstracts/search?q=Atang%20Sutandi"> Atang Sutandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Ginting"> Joshua Ginting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expansion of marginal soil such as acid sulphate soils for the development of staple crops, including rice was unavoidable. However, acid sulphate soils were less suitable for rice field due to the low fertility and the threats of pyrite oxidation. An experiment using Randomized Complete Block Design was designed to investigate the effect of slag in stabilizing soil reaction (pH), improving soil fertility and rice yield. Experiments were conducted in two locations with different pyrite depth. The results showed that slag application was able to decrease the exchangeable Al and available iron (Fe) as well as increase the soil pH, available-P, soil exchangeable Ca2+, Mg2+, and K+. Furthermore, the slag application increased the plant nutrient uptakes, particularly N, P, K, followed by the increasing of rice yield significantly. Nutrients availability, nutrient uptake, and rice yield were higher in the shallow pyrite soil instead of the deep pyrite soil. In addition, slag application was economically feasible due to the ability to reduce standard fertilizer requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sulphate%20soils" title="acid sulphate soils">acid sulphate soils</a>, <a href="https://publications.waset.org/abstracts/search?q=available%20nutrients" title=" available nutrients"> available nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a> </p> <a href="https://publications.waset.org/abstracts/78540/effect-of-slag-application-to-soil-chemical-properties-and-rice-yield-on-acid-sulphate-soils-with-different-pyrite-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5920</span> Soil Carbon Stock in Sub-Optimal Land for the Development of Cymbopogon Nardus L. At Simawang Village, West Sumatera, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juniarti">Juniarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusniwati"> Yusniwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar.%20A"> Anwar. A</a>, <a href="https://publications.waset.org/abstracts/search?q=Armansyah"> Armansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Febriamansyah"> Febriamansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=R."> R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20 – 40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 t ha-1 at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20changes" title="climate changes">climate changes</a>, <a href="https://publications.waset.org/abstracts/search?q=sereh%20wangi%20%28Cymbopogon%20nardus%20L.%29" title=" sereh wangi (Cymbopogon nardus L.)"> sereh wangi (Cymbopogon nardus L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon%20stock" title=" soil carbon stock"> soil carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20optimal%20land" title=" sub optimal land "> sub optimal land </a> </p> <a href="https://publications.waset.org/abstracts/23405/soil-carbon-stock-in-sub-optimal-land-for-the-development-of-cymbopogon-nardus-l-at-simawang-village-west-sumatera-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5919</span> Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juniarti%20Yuni">Juniarti Yuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20changes" title="climate changes">climate changes</a>, <a href="https://publications.waset.org/abstracts/search?q=sereh%20wangi%20%28Cymbopogon%20nardus%20L.%29" title=" sereh wangi (Cymbopogon nardus L.)"> sereh wangi (Cymbopogon nardus L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon%20stock" title=" soil carbon stock"> soil carbon stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20optimal%20land" title=" sub optimal land"> sub optimal land</a> </p> <a href="https://publications.waset.org/abstracts/25187/soil-carbon-stock-in-sub-optimal-land-due-to-climate-change-on-development-cymbopogon-nardus-l-at-simawang-village-west-sumatera-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5918</span> Chemical Characteristics of Soils Based on Toposequence Under Wet Tropical Area Bukit Sarasah Padang</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yulnafatmawita">Y. Yulnafatmawita</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hermansah"> H. Hermansah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topography is a factor affecting soil characteristics. Chemical characteristics of a soil is a factor determining the productivity of the land. A research was conducted in Bukit Sarasah Padang, an area receiving > 5000 mm rainfall annually. The purpose of this research was to determine the chemical characteristics of soils at sequence topography in hill-slope of Bukit Sarasah. Soils were sampled at 3 different altitudes in the research area from 315 m – 515 m asl with 100 m interval. At each location, soil samples were taken from two depths (0-20 cm and 30-50 cm) for soil chemical characteristics (pH, CEC, organic-C, N-total, C/N, Ca-, Mg-, K-, Na-, Al-, and H-exchangeable). Based on the data resulted, it was found that there was a tendency of decreasing soil organic matter (SOC) content by increasing location from 315 to 515 m asl as well as from the top 0-20 cm to 30-50 cm soil depth. The same tendency was also found for the CEC, pH, N-total, and C/N ratio of the soil. On the other hand, exchangeable-Al and -H tended to increase by increasing elevation in Bukit Sarasah. There was no significant difference found for the concentration of exchangeable cations among the elevations and between the depths. The soil chemical characteristics on the top 20 cm were generally better than those on 30-50 cm soil depth, however, different elevation did not gave significant difference of the concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20characteristics" title="soil chemical characteristics">soil chemical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20depths" title=" soil depths"> soil depths</a>, <a href="https://publications.waset.org/abstracts/search?q=topo-sequence" title=" topo-sequence"> topo-sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20tropical%20area" title=" wet tropical area"> wet tropical area</a> </p> <a href="https://publications.waset.org/abstracts/23801/chemical-characteristics-of-soils-based-on-toposequence-under-wet-tropical-area-bukit-sarasah-padang" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5917</span> Agroforestry Practices on Soil Microbial Biomass Carbon and Organic Carbon in Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebiyou%20Masebo">Nebiyou Masebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid conversion of an old aged agroforestry (AF) based agricultural system to monocropping farming system in southern Ethiopia is increasing. The consequence of this, combined with climate change, has been impaired biodiversity, soil microbial biomass carbon (MBC), and soil organic carbon (SOC). The AF system could curb such problems due it is an ecologically and economically sustainable strategies. This study was aimed to investigate different agroforestry practices (AFPs) on MBC and SOC in southern Ethiopia. Soil samples were collected from homegarden based agroforestry practice (HAFP), crop land based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP), and trees on soil and water conservation based agroforestry practice (TSWAFP) using two depth layer (0-30 & 30-60 cm) by systematic sampling. Moreover, woody species inventorywas also collected. The chloroform fumigation extraction method was employed to determine MBC from different AFP types. In this study, the value of MBC and SOC decreased significantly with soil depth (p< 0.05). Besides, AFP type, soil depth, woody species diversity, and key soil properties also strongly influenced MBC and SOC (p< 0.05). In this study, the MBC was the highest (786 mg kg⁻¹ soil) in HAFP, followed by WlAFP (592 mg kg⁻¹ soil), TSWAFP (421 mg kg⁻¹ soil), and ClAFP (357 mg kg⁻¹ soil). The highest mean value of SOC (43.5Mg C ha⁻¹) was recorded in HAFP, followed by WlAFP (35.1Mg C ha⁻¹), TSWAFP (22.3 Mg C ha⁻¹), while the lowest (21.8 Mg C ha⁻¹) was recorded in ClAFP. The HAFP had high woody species diversity, and the lowest was recorded in ClAFP. The finding indicated that SOC and MBC were significantly affected by land management practices, and HAFP has the potential to improve MBC and SOC through good management practices of AFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry%20practices" title="agroforestry practices">agroforestry practices</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biomass%20carbon" title=" microbial biomass carbon"> microbial biomass carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20carbon" title=" soil carbon"> soil carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20conversion" title=" rapid conversion"> rapid conversion</a> </p> <a href="https://publications.waset.org/abstracts/151750/agroforestry-practices-on-soil-microbial-biomass-carbon-and-organic-carbon-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5916</span> Sandy Soil Properties under Different Plant Cover Types in Drylands, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayan%20Elsiddig%20Eltaib">Rayan Elsiddig Eltaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamanaka%20Norikazu"> Yamanaka Norikazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20Abdelrahman%20Abdalla"> Mubarak Abdelrahman Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of Acacia Senegal, Calotropis procera, Leptadenia pyrotechnica, Ziziphus spina Christi, Balanites aegyptiaca, Indigofera oblongigolia, Arachis hypogea and Sesimum indicum grown in the western region of White Nile State on soil properties of the 0-10, 10-30, 30-60 and 60-90 cm depths. Soil properties were: pH(paste), electrical conductivity of the saturation extract (ECe), total N (TN), organic carbon (OC), soluble K, available P, aggregate stability and water holding capacity. Triplicate Soil samples were collected after the end of the rainy season using 5 cm diameter auger. Results indicated that pH, ECe and TN were not significantly different among plant cover types. In the top 10-30 cm depth, OC under all types was significantly higher than the control (4.1 to 7.7 fold). The highest (0.085%) OC was found under the Z. spina Christi and A. Senegal whereas the lowest (0.045%) was reported under the A. hypogea. In the 10-30 cm depth, with the exception of A. hypogea, Z. spina christi and S. indicum, P content was almost similar but significantly higher than the control by 72 to 129%. In the 10-30 cm depth, K content under the S. indicum (0.46 meq/L) was exceptionally high followed by Z. spina christi (0.102 meq/L) as compared to the control (0.029 meq/L). Water holding capacity and aggregate stability of the top 0-10 cm depth were not significantly different among plant cover types. Based on the fact that accumulation of organic matter in the soil profile of any ecosystem is an important indicator of soil quality, results of this study may conclude that (1) cultivation of A.senegal, B.aegyptiaca and Z. spina Christi improved soil quality whereas (2) cultivation of A. hypogea or soil that is solely invaded with C. procera and L.pyrotechnica may induce soil degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy" title="canopy">canopy</a>, <a href="https://publications.waset.org/abstracts/search?q=crops" title=" crops"> crops</a>, <a href="https://publications.waset.org/abstracts/search?q=shrubs" title=" shrubs"> shrubs</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=trees" title=" trees"> trees</a> </p> <a href="https://publications.waset.org/abstracts/48162/sandy-soil-properties-under-different-plant-cover-types-in-drylands-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5915</span> Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Suhail">Bushra Suhail</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20Kadim"> Laith Kadim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20reamed" title=" under reamed"> under reamed</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20geotechnical%20engineering" title=" structural and geotechnical engineering"> structural and geotechnical engineering</a> </p> <a href="https://publications.waset.org/abstracts/3327/wetting-drying-cycles-effect-on-piles-embedded-in-a-very-high-expansive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5914</span> Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramli%20Nazir">Ramli Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Moayedi"> Hossein Moayedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion%20control" title="erosion control">erosion control</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20confinement" title=" soil confinement"> soil confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/6822/soil-mass-loss-reduction-during-rainfalls-by-reinforcing-the-slopes-with-the-surficial-confinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">842</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5913</span> Impact of Organic Farming on Soil Fertility and Microbial Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menuka%20Maharjan">Menuka Maharjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=micobial%20biomas" title=" micobial biomas"> micobial biomas</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a> </p> <a href="https://publications.waset.org/abstracts/124928/impact-of-organic-farming-on-soil-fertility-and-microbial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5912</span> Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuewen%20Chen">Xuewen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Aizhen%20Liang"> Aizhen Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Zhang"> Xiaoping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=row" title="row">row</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20penetration%20resistance" title=" soil penetration resistance"> soil penetration resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage%20practice" title=" tillage practice"> tillage practice</a> </p> <a href="https://publications.waset.org/abstracts/106975/soil-penetration-resistance-and-water-content-spatial-distribution-following-different-tillage-and-crop-rotation-in-a-chinese-mollisol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5911</span> Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebone%20E.%20Mashapa">Rebone E. Mashapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Phesheya%20E.%20Dlamini"> Phesheya E. Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandile%20S.%20Mthimkhulu"> Sandile S. Mthimkhulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20depth" title="soil depth">soil depth</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20physical%20properties" title=" soil physical properties"> soil physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=vertic%20soils" title=" vertic soils"> vertic soils</a>, <a href="https://publications.waset.org/abstracts/search?q=woody%20plant%20encroachment" title=" woody plant encroachment"> woody plant encroachment</a> </p> <a href="https://publications.waset.org/abstracts/111260/woody-plant-encroachment-effects-on-the-physical-properties-of-vertic-soils-in-bela-bela-limpopo-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5910</span> Investigation of Zinc Corrosion in Tropical Soil Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lebrini">M. Lebrini</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Salhi"> L. Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Deyrat"> C. Deyrat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Roos"> C. Roos</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Nait-Rabah"> O. Nait-Rabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20corrosion" title="soil corrosion">soil corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanized%20steel" title=" galvanized steel"> galvanized steel</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20technique" title=" electrochemical technique"> electrochemical technique</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20and%20EDX" title=" SEM and EDX"> SEM and EDX</a> </p> <a href="https://publications.waset.org/abstracts/153148/investigation-of-zinc-corrosion-in-tropical-soil-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5909</span> Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Alireza%20Farrokhzad">Seyed Alireza Farrokhzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Alavi"> Seyed Amin Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Panahpour"> Ebrahim Panahpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20properties" title=" soil chemical properties"> soil chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=loamy%20texture" title=" loamy texture"> loamy texture</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20space" title=" land space"> land space</a> </p> <a href="https://publications.waset.org/abstracts/176378/investigating-the-effect-of-industrial-wastewater-application-on-the-concentration-of-nitrate-and-phosphate-in-the-soil-of-the-land-space-of-chaharmahal-and-bakhtiari-sefid-dasht-steel-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5908</span> Effect of Land Use on Soil Organic Carbon Stock and Aggregate Dynamics of Degraded Ultisol in Nsukka, Southeastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuebuka%20Vincent%20Azuka">Chukwuebuka Vincent Azuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Chidimma%20Peace%20Odoh"> Chidimma Peace Odoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in agricultural practices and land use influence the storage and release of soil organic carbon and soil structural dynamics. To investigate this in Nsukka, southeastern Nigeria, soil samples were collected at 0-10 cm, 10-20 cm and 20-30 cm from three locations; Ovoko (OV), Obukpa (OB) and University of Nigeria, Nsukka (UNN) and three land use types; cultivated land (CL), forest land (FL) and grassland (GL)). Data were subjected to analysis of variance (ANOVA) using SPSS. Also, correlations between organic carbon stock, structural stability indices and other soil properties were established. The result showed that Ksat was significantly (p < 0.05) influenced by location with mean values of 68 cmhr⁻¹,121.63 cmhr⁻¹, 8.42 cmhr⁻¹ in OV, OB and UNN respectively. The MWD and aggregate stability (AS) were significantly (p < 0.05) influenced by land use and depth. The mean values of MWD are 0.85 (CL), 1.35 (FL) and 1.45 (GL), and 1.66 at 0-10 cm, 1.08 at 10-20 cm and 0.88 mm at 20-30 cm. The mean values of AS are; 27.66% (CL), 46.39% (FL) and 49.81% (GL), and 53.96% at 0-10cm, 40.22% at 10-20cm and 29.57% at 20-30cm. Clay flocculation (CFI) and dispersion indices (CDI) differed significantly (p < 0.05) among the land use. Soil pH differed significantly (p < 0.05) across the land use and locations with mean values ranging from 3.90-6.14. Soil organic carbon (SOC) significantly (p < 0.05) differed across locations and depths. SOC decreases as depth increases depth with mean values of 15.6 gkg⁻¹, 10.1 gkg⁻¹, and 8.6 gkg⁻¹ at 0-10 cm, 10-20 cm, and 20-30 cm respectively. SOC in the three land use was 8.8 g kg-1, 15.2 gkg⁻¹ and 10.4 gkg⁻¹ at CL, FL, and GL respectively. The highest aggregate-associated carbon was recorded in 0.5 mm across the land use and depth except in cultivated land and at 20-30 cm which recorded their highest SOC at 1mm. SOC stock, total nitrogen (TN) and CEC were significantly (p < 0.05) different across the locations with highest values of 23.43 t/ha, 0.07g/kg and 14.27 Cmol/kg respectively recorded in UNN. SOC stock was significantly (p < 0.05) influenced by depth as follows; 0-10>10-20>20-30 cm. TN was low with mean values ranging from 0.03-0.07 across the locations, land use and depths. The mean values of CEC ranged from 9.96-14.27 Cmol kg⁻¹ across the locations and land use. SOC stock showed correlation with silt, coarse sand, N and CEC (r = 0.40*, -0.39*, -0.65** and 0.64** respectively. AS showed correlation with BD, Ksat, pH in water and KCl, and SOC (r = -0.42*, 0.54**, -0.44*, -0.45* and 0.49** respectively. Thus, land use and location play a significant role in sustainable management of soil resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20practices" title="agricultural practices">agricultural practices</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamics" title=" structural dynamics"> structural dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sequestration" title=" sequestration"> sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20resources" title=" soil resources"> soil resources</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/97010/effect-of-land-use-on-soil-organic-carbon-stock-and-aggregate-dynamics-of-degraded-ultisol-in-nsukka-southeastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5907</span> Assessing Vertical Distribution of Soil Organic Carbon Stocks in Westleigh Soil under Shrub Encroached Rangeland, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abel%20L.%20Masotla">Abel L. Masotla</a>, <a href="https://publications.waset.org/abstracts/search?q=Phesheya%20E.%20Dlamini"> Phesheya E. Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Vusumuzi%20E.%20Mbanjwa"> Vusumuzi E. Mbanjwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate quantification of the vertical distribution of soil organic carbon (SOC) in relation to land cover transformations, associated with shrub encroachment is crucial because deeper lying horizons have been shown to have greater capacity to sequester SOC. Despite this, in-depth soil carbon dynamics remain poorly understood, especially in arid and semi-arid rangelands. The objective of this study was to quantify and compare the vertical distribution of soil organic carbon stocks (SOCs) in shrub-encroached and open grassland sites. To achieve this, soil samples were collected vertically at 10 cm depth intervals under both sites. The results showed that SOC was on average 19% and 13% greater in the topsoil and subsoil respectively, under shrub-encroached grassland compared to open grassland. In both topsoil and subsoil, lower SOCs were found under shrub-encroached (4.53 kg m⁻² and 3.90 kgm⁻²) relative to open grassland (4.39 kgm⁻² and 3.67 kgm⁻²). These results demonstrate that deeper soil horizon play a critical role in the storage of SOC in savanna grassland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=savanna%20grasslands" title="savanna grasslands">savanna grasslands</a>, <a href="https://publications.waset.org/abstracts/search?q=shrub-encroachment" title=" shrub-encroachment"> shrub-encroachment</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20distribution" title=" vertical distribution"> vertical distribution</a> </p> <a href="https://publications.waset.org/abstracts/111178/assessing-vertical-distribution-of-soil-organic-carbon-stocks-in-westleigh-soil-under-shrub-encroached-rangeland-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5906</span> Foundation Settlement Determination: A Simplified Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewoyin%20O.%20Olusegun">Adewoyin O. Olusegun</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20O.%20Joshua"> Emmanuel O. Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Marvel%20L.%20Akinyemi"> Marvel L. Akinyemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heterogeneous nature of the subsurface requires the use of factual information to deal with rather than assumptions or generalized equations. Therefore, there is need to determine the actual rate of settlement possible in the soil before structures are built on it. This information will help in determining the type of foundation design and the kind of reinforcement that will be necessary in constructions. This paper presents a simplified and a faster approach for determining foundation settlement in any type of soil using real field data acquired from seismic refraction techniques and cone penetration tests. This approach was also able to determine the depth of settlement of each strata of soil. The results obtained revealed the different settlement time and depth of settlement possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title="heterogeneous">heterogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a> </p> <a href="https://publications.waset.org/abstracts/37473/foundation-settlement-determination-a-simplified-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=197">197</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=198">198</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20depth&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>