CINXE.COM

Errors-in-variables models - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Errors-in-variables models - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"cecc63a7-7524-419c-9fe8-76feabb680cc","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Errors-in-variables_models","wgTitle":"Errors-in-variables models","wgCurRevisionId":1253925954,"wgRevisionId":1253925954,"wgArticleId":23531798,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from November 2015","Regression models","Least squares"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Errors-in-variables_models","wgRelevantArticleId":23531798,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[ ],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5395728","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/3b/Visualization_of_errors-in-variables_linear_regression.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/3/3b/Visualization_of_errors-in-variables_linear_regression.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Errors-in-variables models - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Errors-in-variables_models"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Errors-in-variables_models&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Errors-in-variables_models"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Errors-in-variables_models rootpage-Errors-in-variables_models skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Errors-in-variables+models" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Errors-in-variables+models" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Errors-in-variables+models" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Errors-in-variables+models" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Motivating_example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Motivating_example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Motivating example</span> </div> </a> <ul id="toc-Motivating_example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Specification" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Specification"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Specification</span> </div> </a> <button aria-controls="toc-Specification-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Specification subsection</span> </button> <ul id="toc-Specification-sublist" class="vector-toc-list"> <li id="toc-Terminology_and_assumptions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Terminology_and_assumptions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Terminology and assumptions</span> </div> </a> <ul id="toc-Terminology_and_assumptions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Linear_model" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Linear_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Linear model</span> </div> </a> <button aria-controls="toc-Linear_model-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Linear model subsection</span> </button> <ul id="toc-Linear_model-sublist" class="vector-toc-list"> <li id="toc-Simple_linear_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simple_linear_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Simple linear model</span> </div> </a> <ul id="toc-Simple_linear_model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariable_linear_model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multivariable_linear_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Multivariable linear model</span> </div> </a> <ul id="toc-Multivariable_linear_model-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Non-linear_models" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-linear_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Non-linear models</span> </div> </a> <button aria-controls="toc-Non-linear_models-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Non-linear models subsection</span> </button> <ul id="toc-Non-linear_models-sublist" class="vector-toc-list"> <li id="toc-Instrumental_variables_methods" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Instrumental_variables_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Instrumental variables methods</span> </div> </a> <ul id="toc-Instrumental_variables_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Repeated_observations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Repeated_observations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Repeated observations</span> </div> </a> <ul id="toc-Repeated_observations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Errors-in-variables models</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 2 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-2" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">2 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Fehler-in-den-Variablen-Modell" title="Fehler-in-den-Variablen-Modell – German" lang="de" hreflang="de" data-title="Fehler-in-den-Variablen-Modell" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AF%D9%84%E2%80%8C%D9%87%D8%A7%DB%8C_%D8%AE%D8%B7%D8%A7_%D8%AF%D8%B1_%D9%85%D8%AA%D8%BA%DB%8C%D8%B1%D9%87%D8%A7" title="مدل‌های خطا در متغیرها – Persian" lang="fa" hreflang="fa" data-title="مدل‌های خطا در متغیرها" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5395728#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Errors-in-variables_models" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Errors-in-variables_models" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Errors-in-variables_models"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Errors-in-variables_models"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Errors-in-variables_models" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Errors-in-variables_models" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;oldid=1253925954" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Errors-in-variables_models&amp;id=1253925954&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FErrors-in-variables_models"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FErrors-in-variables_models"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Errors-in-variables_models&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Errors-in-variables_models&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5395728" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Regression models accounting for possible errors in independent variables</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Visualization_of_errors-in-variables_linear_regression.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Visualization_of_errors-in-variables_linear_regression.png/260px-Visualization_of_errors-in-variables_linear_regression.png" decoding="async" width="260" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Visualization_of_errors-in-variables_linear_regression.png/390px-Visualization_of_errors-in-variables_linear_regression.png 1.5x, //upload.wikimedia.org/wikipedia/commons/3/3b/Visualization_of_errors-in-variables_linear_regression.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Illustration of <a href="/wiki/Regression_dilution" title="Regression dilution">regression dilution</a> (or attenuation bias) by a range of regression estimates in errors-in-variables models. Two regression lines (red) bound the range of linear regression possibilities. The shallow slope is obtained when the independent variable (or predictor) is on the x-axis. The steeper slope is obtained when the independent variable is on the y-axis. By convention, with the independent variable on the x-axis, the shallower slope is obtained. Green reference lines are averages within arbitrary bins along each axis. Note that the steeper green and red regression estimates are more consistent with smaller errors in the y-axis variable.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th></tr><tr><th class="sidebar-heading"> Models</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></li> <li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple regression</a></li> <li><a href="/wiki/Polynomial_regression" title="Polynomial regression">Polynomial regression</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></li> <li><a href="/wiki/Vector_generalized_linear_model" title="Vector generalized linear model">Vector generalized linear model</a></li> <li><a href="/wiki/Discrete_choice" title="Discrete choice">Discrete choice</a></li> <li><a href="/wiki/Binomial_regression" title="Binomial regression">Binomial regression</a></li> <li><a href="/wiki/Binary_regression" title="Binary regression">Binary regression</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Multinomial_logistic_regression" title="Multinomial logistic regression">Multinomial logistic regression</a></li> <li><a href="/wiki/Mixed_logit" title="Mixed logit">Mixed logit</a></li> <li><a href="/wiki/Probit_model" title="Probit model">Probit</a></li> <li><a href="/wiki/Multinomial_probit" title="Multinomial probit">Multinomial probit</a></li> <li><a href="/wiki/Ordered_logit" title="Ordered logit">Ordered logit</a></li> <li><a href="/wiki/Ordered_probit" class="mw-redirect" title="Ordered probit">Ordered probit</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Poisson</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Multilevel_model" title="Multilevel model">Multilevel model</a></li> <li><a href="/wiki/Fixed_effects_model" title="Fixed effects model">Fixed effects</a></li> <li><a href="/wiki/Random_effects_model" title="Random effects model">Random effects</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Linear mixed-effects model</a></li> <li><a href="/wiki/Nonlinear_mixed-effects_model" title="Nonlinear mixed-effects model">Nonlinear mixed-effects model</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Quantile_regression" title="Quantile regression">Quantile</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Principal_component_regression" title="Principal component regression">Principal components</a></li> <li><a href="/wiki/Least-angle_regression" title="Least-angle regression">Least angle</a></li> <li><a href="/wiki/Local_regression" title="Local regression">Local</a></li> <li><a href="/wiki/Segmented_regression" title="Segmented regression">Segmented</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a class="mw-selflink selflink">Errors-in-variables</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Estimation</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_squares" title="Least squares">Least squares</a></li> <li><a href="/wiki/Linear_least_squares" title="Linear least squares">Linear</a></li> <li><a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">Non-linear</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary</a></li> <li><a href="/wiki/Weighted_least_squares" title="Weighted least squares">Weighted</a></li> <li><a href="/wiki/Generalized_least_squares" title="Generalized least squares">Generalized</a></li> <li><a href="/wiki/Generalized_estimating_equation" title="Generalized estimating equation">Generalized estimating equation</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Partial_least_squares_regression" title="Partial least squares regression">Partial</a></li> <li><a href="/wiki/Total_least_squares" title="Total least squares">Total</a></li> <li><a href="/wiki/Non-negative_least_squares" title="Non-negative least squares">Non-negative</a></li> <li><a href="/wiki/Tikhonov_regularization" class="mw-redirect" title="Tikhonov regularization">Ridge regression</a></li> <li><a href="/wiki/Regularized_least_squares" title="Regularized least squares">Regularized</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Least_absolute_deviations" title="Least absolute deviations">Least absolute deviations</a></li> <li><a href="/wiki/Iteratively_reweighted_least_squares" title="Iteratively reweighted least squares">Iteratively reweighted</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian</a></li> <li><a href="/wiki/Bayesian_multivariate_linear_regression" title="Bayesian multivariate linear regression">Bayesian multivariate</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li></ul></td> </tr><tr><th class="sidebar-heading"> Background</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mean_and_predicted_response" class="mw-redirect" title="Mean and predicted response">Mean and predicted response</a></li> <li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></li> <li><a href="/wiki/Studentized_residual" title="Studentized residual">Studentized residual</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_theorem" title="Gauss–Markov theorem">Gauss–Markov theorem</a></li></ul></td> </tr><tr><td class="sidebar-below"> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></li></ul></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Regression_bar" title="Template:Regression bar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Regression_bar" title="Template talk:Regression bar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Regression_bar" title="Special:EditPage/Template:Regression bar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Statistics" title="Statistics">statistics</a>, <b>errors-in-variables models</b> or <b>measurement error models</b> are <a href="/wiki/Regression_model" class="mw-redirect" title="Regression model">regression models</a> that account for <a href="/wiki/Measurement_errors" class="mw-redirect" title="Measurement errors">measurement errors</a> in the <a href="/wiki/Independent_variables" class="mw-redirect" title="Independent variables">independent variables</a>. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the <a href="/wiki/Dependent_variables" class="mw-redirect" title="Dependent variables">dependent variables</a>, or responses.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (November 2015)">citation needed</span></a></i>&#93;</sup> </p><p>In the case when some regressors have been measured with errors, estimation based on the standard assumption leads to <a href="/wiki/Consistent_estimator" title="Consistent estimator">inconsistent</a> estimates, meaning that the parameter estimates do not tend to the true values even in very large samples. For <a href="/wiki/Simple_linear_regression" title="Simple linear regression">simple linear regression</a> the effect is an underestimate of the coefficient, known as the <i><a href="/wiki/Attenuation_bias" class="mw-redirect" title="Attenuation bias">attenuation bias</a></i>. In <a href="/wiki/Nonlinear_modelling" title="Nonlinear modelling">non-linear models</a> the direction of the bias is likely to be more complicated.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Motivating_example">Motivating example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=1" title="Edit section: Motivating example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a simple linear regression model of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t}\,,\quad t=1,\ldots ,T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t}\,,\quad t=1,\ldots ,T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c470fab7f4ed8bb36922c40e25599f347b0536cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.163ex; height:2.843ex;" alt="{\displaystyle y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t}\,,\quad t=1,\ldots ,T,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef6ab3529e2560f758ee27e532785fde9fd6d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:2.843ex;" alt="{\displaystyle x_{t}^{*}}"></span> denotes the <i>true</i> but <a href="/wiki/Latent_variable" class="mw-redirect" title="Latent variable">unobserved regressor</a>. Instead we observe this value with an error: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}=x_{t}^{*}+\eta _{t}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}=x_{t}^{*}+\eta _{t}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/830f7a3232f77b3461704bea6d8ed0d23e65cf02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.847ex; height:2.843ex;" alt="{\displaystyle x_{t}=x_{t}^{*}+\eta _{t}\,}"></span></dd></dl> <p>where the measurement error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta _{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta _{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c5c704deeb3d13eff0896f46d975a51e0352228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.981ex; height:2.176ex;" alt="{\displaystyle \eta _{t}}"></span> is assumed to be independent of the true value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef6ab3529e2560f758ee27e532785fde9fd6d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:2.843ex;" alt="{\displaystyle x_{t}^{*}}"></span>. <br />A practical application is the standard school science experiment for <a href="/wiki/Hooke%27s_Law" class="mw-redirect" title="Hooke&#39;s Law">Hooke's Law</a>, in which one estimates the relationship between the weight added to a spring and the amount by which the spring stretches. <br /> If the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe9554452b93508c9d2479414a45981ecc75a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.965ex; height:2.009ex;" alt="{\displaystyle y_{t}}"></span>′s are simply regressed on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f279a30bc8eabc788f3fe81c9cfb674e72e858db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle x_{t}}"></span>′s (see <a href="/wiki/Simple_linear_regression" title="Simple linear regression">simple linear regression</a>), then the estimator for the slope coefficient is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{x}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{x}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac1015bb744d961c52e0578345eb93ae3b4edf33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:31.405ex; height:8.176ex;" alt="{\displaystyle {\hat {\beta }}_{x}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}}}\,,}"></span></dd></dl> <p>which converges as the sample size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"></span> increases without bound: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{x}\xrightarrow {p} {\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}={\frac {\beta \sigma _{x^{*}}^{2}}{\sigma _{x^{*}}^{2}+\sigma _{\eta }^{2}}}={\frac {\beta }{1+\sigma _{\eta }^{2}/\sigma _{x^{*}}^{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mover> <mo>&#x2192;</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mi>p</mi> </mpadded> </mover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> <mrow> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B2;<!-- β --></mi> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B7;<!-- η --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{x}\xrightarrow {p} {\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}={\frac {\beta \sigma _{x^{*}}^{2}}{\sigma _{x^{*}}^{2}+\sigma _{\eta }^{2}}}={\frac {\beta }{1+\sigma _{\eta }^{2}/\sigma _{x^{*}}^{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e831a024ada7aa5567da4b62888168b73bb60e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.709ex; height:7.176ex;" alt="{\displaystyle {\hat {\beta }}_{x}\xrightarrow {p} {\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}={\frac {\beta \sigma _{x^{*}}^{2}}{\sigma _{x^{*}}^{2}+\sigma _{\eta }^{2}}}={\frac {\beta }{1+\sigma _{\eta }^{2}/\sigma _{x^{*}}^{2}}}\,.}"></span></dd></dl> <p>This is in contrast to the "true" effect of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>, estimated using the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef6ab3529e2560f758ee27e532785fde9fd6d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.384ex; height:2.843ex;" alt="{\displaystyle x_{t}^{*}}"></span>,: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})^{2}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})^{2}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25cc1bacd7930d956e3cacfcd3a207d5657cfe0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:30.461ex; height:8.176ex;" alt="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}^{*}-{\bar {x}})^{2}}}\,,}"></span></dd></dl> <p>Variances are non-negative, so that in the limit the estimated <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a218643a555a5df5dac242dc6c53ca2c184a2403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.624ex; height:3.343ex;" alt="{\displaystyle {\hat {\beta }}_{x}}"></span> is smaller than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efdb50e00928e4013750a476dab75eeb3cbd5799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.451ex; height:3.176ex;" alt="{\displaystyle {\hat {\beta }}}"></span>, an effect which statisticians call <i>attenuation</i> or <a href="/wiki/Regression_dilution" title="Regression dilution">regression dilution</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Thus the ‘naïve’ least squares estimator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a218643a555a5df5dac242dc6c53ca2c184a2403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.624ex; height:3.343ex;" alt="{\displaystyle {\hat {\beta }}_{x}}"></span> is an <a href="/wiki/Consistent_estimator" title="Consistent estimator">inconsistent</a> estimator for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>. However, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a218643a555a5df5dac242dc6c53ca2c184a2403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.624ex; height:3.343ex;" alt="{\displaystyle {\hat {\beta }}_{x}}"></span> is a <a href="/wiki/Consistent_estimator" title="Consistent estimator">consistent estimator</a> of the parameter required for a best linear predictor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> given the observed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f279a30bc8eabc788f3fe81c9cfb674e72e858db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle x_{t}}"></span>: in some applications this may be what is required, rather than an estimate of the ‘true’ regression coefficient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>, although that would assume that the variance of the errors in the estimation and prediction is identical. This follows directly from the result quoted immediately above, and the fact that the regression coefficient relating the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe9554452b93508c9d2479414a45981ecc75a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.965ex; height:2.009ex;" alt="{\displaystyle y_{t}}"></span>′s to the actually observed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f279a30bc8eabc788f3fe81c9cfb674e72e858db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle x_{t}}"></span>′s, in a simple linear regression, is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta _{x}={\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Cov</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> <mrow> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta _{x}={\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f85337e7adf5dc85f1151b5a21149c1549d60fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.36ex; height:6.509ex;" alt="{\displaystyle \beta _{x}={\frac {\operatorname {Cov} [\,x_{t},y_{t}\,]}{\operatorname {Var} [\,x_{t}\,]}}.}"></span></dd></dl> <p>It is this coefficient, rather than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span>, that would be required for constructing a predictor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> based on an observed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> which is subject to noise. </p><p>It can be argued that almost all existing data sets contain errors of different nature and magnitude, so that attenuation bias is extremely frequent (although in multivariate regression the direction of bias is ambiguous<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>). <a href="/wiki/Jerry_Hausman" class="mw-redirect" title="Jerry Hausman">Jerry Hausman</a> sees this as an <i>iron law of econometrics</i>: "The magnitude of the estimate is usually smaller than expected."<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Specification">Specification</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=2" title="Edit section: Specification"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Usually measurement error models are described using the <a href="/wiki/Latent_variable_model" title="Latent variable model">latent variables</a> approach. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> is the response variable and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> are observed values of the regressors, then it is assumed there exist some latent variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcfcfa0fbced647ea73759c68ffd7a028729d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.215ex; height:2.676ex;" alt="{\displaystyle y^{*}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> which follow the model's “true” <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functional relationship</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/421d5ab89ea154ac75586bdfb687db2160d1ea33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.572ex; height:2.843ex;" alt="{\displaystyle g(\cdot )}"></span>, and such that the observed quantities are their noisy observations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}y^{*}=g(x^{*}\!,w\,|\,\theta ),\\y=y^{*}+\varepsilon ,\\x=x^{*}+\eta ,\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mspace width="negativethinmathspace" /> <mo>,</mo> <mi>w</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>+</mo> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}y^{*}=g(x^{*}\!,w\,|\,\theta ),\\y=y^{*}+\varepsilon ,\\x=x^{*}+\eta ,\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c46da3b892f6cea3b744a933567009e9a012601d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:18.909ex; height:8.509ex;" alt="{\displaystyle {\begin{cases}y^{*}=g(x^{*}\!,w\,|\,\theta ),\\y=y^{*}+\varepsilon ,\\x=x^{*}+\eta ,\end{cases}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is the model's <a href="/wiki/Parameter" title="Parameter">parameter</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> are those regressors which are assumed to be error-free (for example when linear regression contains an intercept, the regressor which corresponds to the constant certainly has no "measurement errors"). Depending on the specification these error-free regressors may or may not be treated separately; in the latter case it is simply assumed that corresponding entries in the variance matrix of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span>'s are zero. </p><p>The variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> are all <i>observed</i>, meaning that the statistician possesses a <a href="/wiki/Data_set" title="Data set">data set</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> <a href="/wiki/Statistical_unit" title="Statistical unit">statistical units</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{y_{i},x_{i},w_{i}\right\}_{i=1,\dots ,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>{</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{y_{i},x_{i},w_{i}\right\}_{i=1,\dots ,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96488cbcb2b3d82d5ce730527b1644911cb7b0d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.652ex; height:3.176ex;" alt="{\displaystyle \left\{y_{i},x_{i},w_{i}\right\}_{i=1,\dots ,n}}"></span> which follow the <a href="/wiki/Data_collection" title="Data collection">data generating process</a> described above; the latent variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcfcfa0fbced647ea73759c68ffd7a028729d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.215ex; height:2.676ex;" alt="{\displaystyle y^{*}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> are not observed however. </p><p>This specification does not encompass all the existing errors-in-variables models. For example in some of them function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/421d5ab89ea154ac75586bdfb687db2160d1ea33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.572ex; height:2.843ex;" alt="{\displaystyle g(\cdot )}"></span> may be <a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">non-parametric</a> or semi-parametric. Other approaches model the relationship between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcfcfa0fbced647ea73759c68ffd7a028729d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.215ex; height:2.676ex;" alt="{\displaystyle y^{*}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> as distributional instead of functional, that is they assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcfcfa0fbced647ea73759c68ffd7a028729d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.215ex; height:2.676ex;" alt="{\displaystyle y^{*}}"></span> conditionally on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> follows a certain (usually parametric) distribution. </p> <div class="mw-heading mw-heading3"><h3 id="Terminology_and_assumptions">Terminology and assumptions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=3" title="Edit section: Terminology and assumptions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The observed variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> may be called the <i>manifest</i>, <i>indicator</i>, or <a href="/wiki/Proxy_(statistics)" title="Proxy (statistics)"><i>proxy</i> variable</a>.</li> <li>The unobserved variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> may be called the <i>latent</i> or <i>true</i> variable. It may be regarded either as an unknown constant (in which case the model is called a <i>functional model</i>), or as a random variable (correspondingly a <i>structural model</i>).<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li>The relationship between the measurement error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> and the latent variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> can be modeled in different ways: <ul><li><i>Classical errors</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \perp x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>&#x22A5;<!-- ⊥ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \perp x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53797574140ccdc49a3b8c5b952e03de6fbb174c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.652ex; height:2.843ex;" alt="{\displaystyle \eta \perp x^{*}}"></span> the errors are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a> of the latent variable. This is the most common assumption, it implies that the errors are introduced by the measuring device and their magnitude does not depend on the value being measured.</li> <li><i>Mean-independence</i>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\eta |x^{*}]\,=\,0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\eta |x^{*}]\,=\,0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f582199baa64e433bfbc070f6ca1cd14d582c8a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.759ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [\eta |x^{*}]\,=\,0,}"></span> the errors are mean-zero for every value of the latent regressor. This is a less restrictive assumption than the classical one,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> as it allows for the presence of <a href="/wiki/Heteroscedasticity" class="mw-redirect" title="Heteroscedasticity">heteroscedasticity</a> or other effects in the measurement errors.</li> <li><a href="/wiki/Berkson_error_model" title="Berkson error model"><i>Berkson's errors</i></a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta \,\perp \,x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mspace width="thinmathspace" /> <mo>&#x22A5;<!-- ⊥ --></mo> <mspace width="thinmathspace" /> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta \,\perp \,x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1c3843ceb867676b748e9bf63b39475ea3f0621" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.019ex; height:2.676ex;" alt="{\displaystyle \eta \,\perp \,x,}"></span> the errors are independent of the <i>observed</i> regressor <i>x</i>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> This assumption has very limited applicability. One example is round-off errors: for example if a person's <span style="font-variant:small-caps">age*</span> is a <a href="/wiki/Continuous_and_discrete_variables" class="mw-redirect" title="Continuous and discrete variables">continuous random variable</a>, whereas the observed <span style="font-variant:small-caps">age</span> is truncated to the next smallest integer, then the truncation error is approximately independent of the observed <span style="font-variant:small-caps">age</span>. Another possibility is with the fixed design experiment: for example if a scientist decides to make a measurement at a certain predetermined moment of time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, say at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=10s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>10</mn> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=10s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a39bdccc58b971f1dbbe6ce5fab83db52fe076d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.844ex; height:2.176ex;" alt="{\displaystyle x=10s}"></span>, then the real measurement may occur at some other value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> (for example due to her finite reaction time) and such measurement error will be generally independent of the "observed" value of the regressor.</li> <li><i>Misclassification errors</i>: special case used for the <a href="/wiki/Dummy_variable_(statistics)" title="Dummy variable (statistics)">dummy regressors</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> is an indicator of a certain event or condition (such as person is male/female, some medical treatment given/not, etc.), then the measurement error in such regressor will correspond to the incorrect classification similar to <a href="/wiki/Type_I_and_type_II_errors" title="Type I and type II errors">type I and type II errors</a> in statistical testing. In this case the error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> may take only 3 possible values, and its distribution conditional on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> is modeled with two parameters: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\operatorname {Pr} [\eta =-1|x^{*}=1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>Pr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\operatorname {Pr} [\eta =-1|x^{*}=1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aae13c5226fe0e441d7f99d96c73f7d90e9eb647" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.904ex; height:2.843ex;" alt="{\displaystyle \alpha =\operatorname {Pr} [\eta =-1|x^{*}=1]}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =\operatorname {Pr} [\eta =1|x^{*}=0]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>Pr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =\operatorname {Pr} [\eta =1|x^{*}=0]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df26f5a1c5afa4b64bc34a1225a30fdcaee4d0e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.941ex; height:2.843ex;" alt="{\displaystyle \beta =\operatorname {Pr} [\eta =1|x^{*}=0]}"></span>. The necessary condition for identification is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha +\beta &lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha +\beta &lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c65c4eabbd7861a50a195c57050f8d66bfd60d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.921ex; height:2.509ex;" alt="{\displaystyle \alpha +\beta &lt;1}"></span>, that is misclassification should not happen "too often". (This idea can be generalized to discrete variables with more than two possible values.)</li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="Linear_model">Linear model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=4" title="Edit section: Linear model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Linear errors-in-variables models were studied first, probably because <a href="/wiki/Linear_model" title="Linear model">linear models</a> were so widely used and they are easier than non-linear ones. Unlike standard <a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">least squares</a> regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simple_linear_model">Simple linear model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=5" title="Edit section: Simple linear model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The simple linear errors-in-variables model was already presented in the "motivation" section: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t},\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t},\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb06eba7b9a1555437de4e2dd093528754689606" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.999ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}y_{t}=\alpha +\beta x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t},\end{cases}}}"></span></dd></dl> <p>where all variables are <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a>. Here <i>α</i> and <i>β</i> are the parameters of interest, whereas <i>σ<sub>ε</sub></i> and <i>σ<sub>η</sub></i>—standard deviations of the error terms—are the <a href="/wiki/Nuisance_parameter" title="Nuisance parameter">nuisance parameters</a>. The "true" regressor <i>x*</i> is treated as a random variable (<i>structural</i> model), independent of the measurement error <i>η</i> (<i>classic</i> assumption). </p><p>This model is <a href="/wiki/Identifiable" class="mw-redirect" title="Identifiable">identifiable</a> in two cases: (1) either the latent regressor <i>x*</i> is <i>not</i> <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a>, (2) or <i>x*</i> has normal distribution, but neither <i>ε<sub>t</sub></i> nor <i>η<sub>t</sub></i> are divisible by a normal distribution.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> That is, the parameters <i>α</i>, <i>β</i> can be consistently estimated from the data set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle (x_{t},\,y_{t})_{t=1}^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle (x_{t},\,y_{t})_{t=1}^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e99f3e4c4d383c58bbeda2d464ea388c7b6bac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.514ex; height:2.509ex;" alt="{\displaystyle \scriptstyle (x_{t},\,y_{t})_{t=1}^{T}}"></span> without any additional information, provided the latent regressor is not Gaussian. </p><p>Before this identifiability result was established, statisticians attempted to apply the <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> technique by assuming that all variables are normal, and then concluded that the model is not identified. The suggested remedy was to <i>assume</i> that some of the parameters of the model are known or can be estimated from the outside source. Such estimation methods include<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><a href="/wiki/Deming_regression" title="Deming regression">Deming regression</a> — assumes that the ratio <i>δ</i> = <i>σ²<sub style="position:relative;left:-.4em">ε</sub></i>/<i>σ²<sub style="position:relative;left:-.4em">η</sub></i> is known. This could be appropriate for example when errors in <i>y</i> and <i>x</i> are both caused by measurements, and the accuracy of measuring devices or procedures are known. The case when <i>δ</i> = 1 is also known as the <a href="/wiki/Orthogonal_regression" class="mw-redirect" title="Orthogonal regression">orthogonal regression</a>.</li> <li>Regression with known <a href="/wiki/Reliability_(statistics)" title="Reliability (statistics)">reliability ratio</a> <i>λ</i> = <i>σ²</i><sub style="position:relative;left:-.6em">∗</sub>/ ( <i>σ²<sub style="position:relative;left:-.4em">η</sub></i> + <i>σ²</i><sub style="position:relative;left:-.6em">∗</sub>), where <i>σ²</i><sub style="position:relative;left:-.6em">∗</sub> is the variance of the latent regressor. Such approach may be applicable for example when repeating measurements of the same unit are available, or when the reliability ratio has been known from the independent study. In this case the consistent estimate of slope is equal to the least-squares estimate divided by <i>λ</i>.</li> <li>Regression with known <i>σ²<sub style="position:relative;left:-.4em">η</sub></i> may occur when the source of the errors in <i>x'</i>s is known and their variance can be calculated. This could include rounding errors, or errors introduced by the measuring device. When <i>σ²<sub style="position:relative;left:-.4em">η</sub></i> is known we can compute the reliability ratio as <i>λ</i> = ( <i>σ²<sub style="position:relative;left:-.4em">x</sub></i> − <i>σ²<sub style="position:relative;left:-.4em">η</sub></i>) / <i>σ²<sub style="position:relative;left:-.4em">x</sub></i> and reduce the problem to the previous case.</li></ul> <p>Estimation methods that do not assume knowledge of some of the parameters of the model, include </p> <div><ul><li>Method of moments — the <a href="/wiki/Generalized_method_of_moments" title="Generalized method of moments">GMM</a> estimator based on the third- (or higher-) order joint <a href="/wiki/Cumulant" title="Cumulant">cumulants</a> of observable variables. The slope coefficient can be estimated from <sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\frac {{\hat {K}}(n_{1},n_{2}+1)}{{\hat {K}}(n_{1}+1,n_{2})}},\quad n_{1},n_{2}&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>K</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>K</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\frac {{\hat {K}}(n_{1},n_{2}+1)}{{\hat {K}}(n_{1}+1,n_{2})}},\quad n_{1},n_{2}&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c5e617bc9c9a20b527153f69657c76ee2d1abe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.392ex; height:7.509ex;" alt="{\displaystyle {\hat {\beta }}={\frac {{\hat {K}}(n_{1},n_{2}+1)}{{\hat {K}}(n_{1}+1,n_{2})}},\quad n_{1},n_{2}&gt;0,}"></span></dd></dl> <p>where (<i>n</i><sub>1</sub>,<i>n</i><sub>2</sub>) are such that <i>K</i>(<i>n</i><sub>1</sub>+1,<i>n</i><sub>2</sub>) — the joint <a href="/wiki/Cumulant" title="Cumulant">cumulant</a> of (<i>x</i>,<i>y</i>) — is not zero. In the case when the third central moment of the latent regressor <i>x*</i> is non-zero, the formula reduces to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})^{2}}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}(y_{t}-{\bar {y}})}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})^{2}}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}(y_{t}-{\bar {y}})}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0d9ab208c6d478822b7732dc36e8efb0a33454" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:31.48ex; height:8.176ex;" alt="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})(y_{t}-{\bar {y}})^{2}}{{\tfrac {1}{T}}\sum _{t=1}^{T}(x_{t}-{\bar {x}})^{2}(y_{t}-{\bar {y}})}}\ .}"></span></dd></dl></li><li><a href="/wiki/Instrumental_variables" class="mw-redirect" title="Instrumental variables">Instrumental variables</a> — a regression which requires that certain additional data variables <i>z</i>, called <i>instruments</i>, were available. These variables should be uncorrelated with the errors in the equation for the dependent (outcome) variable (<i>valid</i>), and they should also be correlated (<i>relevant</i>) with the true regressors <i>x*</i>. If such variables can be found then the estimator takes form <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(x_{t}-{\bar {x}})}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mstyle> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(x_{t}-{\bar {x}})}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6774c1183800d9e6fe69b0c4067ddc6d3b2c802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:30.362ex; height:8.176ex;" alt="{\displaystyle {\hat {\beta }}={\frac {{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(y_{t}-{\bar {y}})}{{\tfrac {1}{T}}\sum _{t=1}^{T}(z_{t}-{\bar {z}})(x_{t}-{\bar {x}})}}\ .}"></span></dd></li><li>The geometric mean functional relationship. This treats both variables as having the same reliability. The resulting slope is the geometric mean of the ordinary least squares slope and the reverse least squares slope, i.e. the two red lines in the diagram.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li></ul></div> <div class="mw-heading mw-heading3"><h3 id="Multivariable_linear_model">Multivariable linear model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=6" title="Edit section: Multivariable linear model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The multivariable model looks exactly like the simple linear model, only this time <i>β</i>, <i>η</i><sub><i>t</i></sub>, <i>x</i><sub><i>t</i></sub> and <i>x*</i><sub style="position:relative;left:-.4em"><i>t</i></sub> are <i>k×</i>1 vectors. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}y_{t}=\alpha +\beta 'x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2032;</mo> </msup> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}y_{t}=\alpha +\beta 'x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf49a6a6f2ce01110b9cff1dfa41fe741a63a2e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.689ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}y_{t}=\alpha +\beta &#039;x_{t}^{*}+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}"></span></dd></dl> <p>In the case when (<i>ε</i><sub><i>t</i></sub>,<i>η</i><sub><i>t</i></sub>) is jointly normal, the parameter <i>β</i> is not identified if and only if there is a non-singular&#160;<i>k×k</i> block matrix [<i>a A</i>], where <i>a</i> is a <i>k×</i>1 vector such that <i>a′x*</i>&#160;is distributed normally and independently of&#160;<i>A′x*</i>.&#160;In the case when <i>ε</i><sub><i>t</i></sub>, <i>η</i><sub><i>t1</i></sub>,..., <i>η</i><sub><i>tk</i></sub> are mutually independent, the parameter&#160;<i>β</i>&#160;is not identified if and only if in addition to the conditions above some of the errors can be written as the sum of two independent variables one of which is normal.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some of the estimation methods for multivariable linear models are </p> <div><ul><li><a href="/wiki/Total_least_squares" title="Total least squares">Total least squares</a> is an extension of <a href="/wiki/Deming_regression" title="Deming regression">Deming regression</a> to the multivariable setting. When all the <i>k</i>+1 components of the vector (<i>ε</i>,<i>η</i>) have equal variances and are independent, this is equivalent to running the orthogonal regression of <i>y</i> on the vector <i>x</i> — that is, the regression which minimizes the sum of squared distances between points (<i>y<sub>t</sub></i>,<i>x<sub>t</sub></i>) and the <i>k</i>-dimensional hyperplane of "best fit".</li><li>The <a href="/wiki/Generalized_method_of_moments" title="Generalized method of moments">method of moments</a> estimator <sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> can be constructed based on the moment conditions E[<i>z<sub>t</sub></i>·(<i>y<sub>t</sub></i> − <i>α</i> − <i>β'x<sub>t</sub></i>)] = 0, where the (5<i>k</i>+3)-dimensional vector of instruments <i>z<sub>t</sub></i> is defined as <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;z_{t}=\left(1\ z_{t1}'\ z_{t2}'\ z_{t3}'\ z_{t4}'\ z_{t5}'\ z_{t6}'\ z_{t7}'\right)',\quad {\text{where}}\\&amp;z_{t1}=x_{t}\circ x_{t}\\&amp;z_{t2}=x_{t}y_{t}\\&amp;z_{t3}=y_{t}^{2}\\&amp;z_{t4}=x_{t}\circ x_{t}\circ x_{t}-3{\big (}\operatorname {E} [x_{t}x_{t}']\circ I_{k}{\big )}x_{t}\\&amp;z_{t5}=x_{t}\circ x_{t}y_{t}-2{\big (}\operatorname {E} [y_{t}x_{t}']\circ I_{k}{\big )}x_{t}-y_{t}{\big (}\operatorname {E} [x_{t}x_{t}']\circ I_{k}{\big )}\iota _{k}\\&amp;z_{t6}=x_{t}y_{t}^{2}-\operatorname {E} [y_{t}^{2}]x_{t}-2y_{t}\operatorname {E} [x_{t}y_{t}]\\&amp;z_{t7}=y_{t}^{3}-3y_{t}\operatorname {E} [y_{t}^{2}]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>1</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>2</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>3</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>4</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>5</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>6</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <mtext>&#xA0;</mtext> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>7</mn> </mrow> <mo>&#x2032;</mo> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>where</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>4</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">]</mo> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>5</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">]</mo> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo stretchy="false">]</mo> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <msub> <mi>&#x03B9;<!-- ι --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>6</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mn>7</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;z_{t}=\left(1\ z_{t1}'\ z_{t2}'\ z_{t3}'\ z_{t4}'\ z_{t5}'\ z_{t6}'\ z_{t7}'\right)',\quad {\text{where}}\\&amp;z_{t1}=x_{t}\circ x_{t}\\&amp;z_{t2}=x_{t}y_{t}\\&amp;z_{t3}=y_{t}^{2}\\&amp;z_{t4}=x_{t}\circ x_{t}\circ x_{t}-3{\big (}\operatorname {E} [x_{t}x_{t}']\circ I_{k}{\big )}x_{t}\\&amp;z_{t5}=x_{t}\circ x_{t}y_{t}-2{\big (}\operatorname {E} [y_{t}x_{t}']\circ I_{k}{\big )}x_{t}-y_{t}{\big (}\operatorname {E} [x_{t}x_{t}']\circ I_{k}{\big )}\iota _{k}\\&amp;z_{t6}=x_{t}y_{t}^{2}-\operatorname {E} [y_{t}^{2}]x_{t}-2y_{t}\operatorname {E} [x_{t}y_{t}]\\&amp;z_{t7}=y_{t}^{3}-3y_{t}\operatorname {E} [y_{t}^{2}]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17ecb7ca4ed41a50e2b152d1f7e7fca5a40d909b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.379ex; margin-bottom: -0.292ex; width:55.758ex; height:26.509ex;" alt="{\displaystyle {\begin{aligned}&amp;z_{t}=\left(1\ z_{t1}&#039;\ z_{t2}&#039;\ z_{t3}&#039;\ z_{t4}&#039;\ z_{t5}&#039;\ z_{t6}&#039;\ z_{t7}&#039;\right)&#039;,\quad {\text{where}}\\&amp;z_{t1}=x_{t}\circ x_{t}\\&amp;z_{t2}=x_{t}y_{t}\\&amp;z_{t3}=y_{t}^{2}\\&amp;z_{t4}=x_{t}\circ x_{t}\circ x_{t}-3{\big (}\operatorname {E} [x_{t}x_{t}&#039;]\circ I_{k}{\big )}x_{t}\\&amp;z_{t5}=x_{t}\circ x_{t}y_{t}-2{\big (}\operatorname {E} [y_{t}x_{t}&#039;]\circ I_{k}{\big )}x_{t}-y_{t}{\big (}\operatorname {E} [x_{t}x_{t}&#039;]\circ I_{k}{\big )}\iota _{k}\\&amp;z_{t6}=x_{t}y_{t}^{2}-\operatorname {E} [y_{t}^{2}]x_{t}-2y_{t}\operatorname {E} [x_{t}y_{t}]\\&amp;z_{t7}=y_{t}^{3}-3y_{t}\operatorname {E} [y_{t}^{2}]\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \circ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2218;<!-- ∘ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \circ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99add39d2b681e2de7ff62422c32704a05c7ec31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.125ex; margin-bottom: -0.297ex; width:1.162ex; height:1.509ex;" alt="{\displaystyle \circ }"></span> designates the <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a> of matrices, and variables <i>x<sub>t</sub></i>, <i>y<sub>t</sub></i> have been preliminarily de-meaned. The authors of the method suggest to use Fuller's modified IV estimator.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><br /> </p> This method can be extended to use moments higher than the third order, if necessary, and to accommodate variables measured without error.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></li><li>The <a href="/wiki/Instrumental_variables" class="mw-redirect" title="Instrumental variables">instrumental variables</a> approach requires us to find additional data variables <i>z<sub>t</sub></i> that serve as <i>instruments</i> for the mismeasured regressors <i>x<sub>t</sub></i>. This method is the simplest from the implementation point of view, however its disadvantage is that it requires collecting additional data, which may be costly or even impossible. When the instruments can be found, the estimator takes standard form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\big (}X'Z(Z'Z)^{-1}Z'X{\big )}^{-1}X'Z(Z'Z)^{-1}Z'y.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> <mi>Z</mi> <mo stretchy="false">(</mo> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mi>Z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>X</mi> <mo>&#x2032;</mo> </msup> <mi>Z</mi> <mo stretchy="false">(</mo> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mi>Z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>Z</mi> <mo>&#x2032;</mo> </msup> <mi>y</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\big (}X'Z(Z'Z)^{-1}Z'X{\big )}^{-1}X'Z(Z'Z)^{-1}Z'y.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/385d5060b8f31a20e1dd61c8996aa253459e0620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.736ex; height:3.676ex;" alt="{\displaystyle {\hat {\beta }}={\big (}X&#039;Z(Z&#039;Z)^{-1}Z&#039;X{\big )}^{-1}X&#039;Z(Z&#039;Z)^{-1}Z&#039;y.}"></span></dd></dl></li><li>The impartial fitting approach treats all variables in the same way by assuming equal reliability, and does not require any distinction between explanatory and response variables as the resulting equation can be rearranged. It is the simplest measurement error model, and is a generalization of the geometric mean functional relationship mentioned above for two variables. It only requires covariances to be computed, and so can be estimated using basic spreadsheet functions. <sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="Non-linear_models">Non-linear models</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=7" title="Edit section: Non-linear models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A generic non-linear measurement error model takes form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}y_{t}=g(x_{t}^{*})+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}y_{t}=g(x_{t}^{*})+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ee81dfcb1b719b92d014ffe69b17e16e85671e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.264ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}y_{t}=g(x_{t}^{*})+\varepsilon _{t},\\x_{t}=x_{t}^{*}+\eta _{t}.\end{cases}}}"></span></dd></dl> <p>Here function <i>g</i> can be either parametric or non-parametric. When function <i>g</i> is parametric it will be written as <i>g</i>(<i>x</i>*, <i>β</i>). </p><p>For a general vector-valued regressor <i>x*</i> the conditions for model <a href="/wiki/Identifiability" title="Identifiability">identifiability</a> are not known. However in the case of scalar <i>x*</i> the model is identified unless the function <i>g</i> is of the "log-exponential" form <sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x^{*})=a+b\ln {\big (}e^{cx^{*}}+d{\big )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x^{*})=a+b\ln {\big (}e^{cx^{*}}+d{\big )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95afaa8635ba8dd0fdcb4d55bfef1ef3016a3e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.175ex; height:3.509ex;" alt="{\displaystyle g(x^{*})=a+b\ln {\big (}e^{cx^{*}}+d{\big )}}"></span></dd></dl> <p>and the latent regressor <i>x*</i> has density </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{x^{*}}(x)={\begin{cases}Ae^{-Be^{Cx}+CDx}(e^{Cx}+E)^{-F},&amp;{\text{if}}\ d&gt;0\\Ae^{-Bx^{2}+Cx}&amp;{\text{if}}\ d=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>C</mi> <mi>D</mi> <mi>x</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>E</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>F</mi> </mrow> </msup> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>d</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>C</mi> <mi>x</mi> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>d</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{x^{*}}(x)={\begin{cases}Ae^{-Be^{Cx}+CDx}(e^{Cx}+E)^{-F},&amp;{\text{if}}\ d&gt;0\\Ae^{-Bx^{2}+Cx}&amp;{\text{if}}\ d=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79748216cf418e3c8fede8d0999b3388bbf87451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.184ex; height:7.509ex;" alt="{\displaystyle f_{x^{*}}(x)={\begin{cases}Ae^{-Be^{Cx}+CDx}(e^{Cx}+E)^{-F},&amp;{\text{if}}\ d&gt;0\\Ae^{-Bx^{2}+Cx}&amp;{\text{if}}\ d=0\end{cases}}}"></span></dd></dl> <p>where constants <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>,<i>F</i> may depend on <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>. </p><p>Despite this optimistic result, as of now no methods exist for estimating non-linear errors-in-variables models without any extraneous information. However there are several techniques which make use of some additional data: either the instrumental variables, or repeated observations. </p> <div class="mw-heading mw-heading3"><h3 id="Instrumental_variables_methods">Instrumental variables methods</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=8" title="Edit section: Instrumental variables methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div><ul><li><b>Newey's simulated moments method</b><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> for parametric models — requires that there is an additional set of observed <i>predictor variables</i> <i>z<sub>t</sub></i>, such that the true regressor can be expressed as <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t}^{*}=\pi _{0}'z_{t}+\sigma _{0}\zeta _{t},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mo>&#x2032;</mo> </msubsup> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t}^{*}=\pi _{0}'z_{t}+\sigma _{0}\zeta _{t},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8495c79e574c490ef4f7b94b1689e106b3061aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.482ex; height:2.843ex;" alt="{\displaystyle x_{t}^{*}=\pi _{0}&#039;z_{t}+\sigma _{0}\zeta _{t},}"></span></dd></dl> <p>where <i>π</i><sub>0</sub> and <i>σ</i><sub>0</sub> are (unknown) constant matrices, and <i>ζ<sub>t</sub></i> ⊥ <i>z<sub>t</sub></i>. The coefficient <i>π</i><sub>0</sub> can be estimated using standard <a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">least squares</a> regression of <i>x</i> on <i>z</i>. The distribution of <i>ζ<sub>t</sub></i> is unknown, however we can model it as belonging to a flexible parametric family — the <a href="/wiki/Edgeworth_series" title="Edgeworth series">Edgeworth series</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\zeta }(v;\,\gamma )=\phi (v)\,\textstyle \sum _{j=1}^{J}\!\gamma _{j}v^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo>;</mo> <mspace width="thinmathspace" /> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </munderover> <mspace width="negativethinmathspace" /> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\zeta }(v;\,\gamma )=\phi (v)\,\textstyle \sum _{j=1}^{J}\!\gamma _{j}v^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c1f51371a0f71c744db7348c6fa340c07fee9cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:25.576ex; height:3.843ex;" alt="{\displaystyle f_{\zeta }(v;\,\gamma )=\phi (v)\,\textstyle \sum _{j=1}^{J}\!\gamma _{j}v^{j}}"></span></dd></dl> <p>where <i>ϕ</i> is the <a href="/wiki/Standard_normal" class="mw-redirect" title="Standard normal">standard normal</a> distribution. </p><p>Simulated moments can be computed using the <a href="/wiki/Importance_sampling" title="Importance sampling">importance sampling</a> algorithm: first we generate several random variables {<i>v<sub>ts</sub></i> ~ <i>ϕ</i>, <i>s</i> = 1,…,<i>S</i>, <i>t</i> = 1,…,<i>T</i>} from the standard normal distribution, then we compute the moments at <i>t</i>-th observation as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{t}(\theta )=A(z_{t}){\frac {1}{S}}\sum _{s=1}^{S}H(x_{t},y_{t},z_{t},v_{ts};\theta )\sum _{j=1}^{J}\!\gamma _{j}v_{ts}^{j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>S</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </munderover> <mi>H</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </munderover> <mspace width="negativethinmathspace" /> <msub> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{t}(\theta )=A(z_{t}){\frac {1}{S}}\sum _{s=1}^{S}H(x_{t},y_{t},z_{t},v_{ts};\theta )\sum _{j=1}^{J}\!\gamma _{j}v_{ts}^{j},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a0962d6a4265472c051194453c88ba1ab3c95e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:47.868ex; height:7.676ex;" alt="{\displaystyle m_{t}(\theta )=A(z_{t}){\frac {1}{S}}\sum _{s=1}^{S}H(x_{t},y_{t},z_{t},v_{ts};\theta )\sum _{j=1}^{J}\!\gamma _{j}v_{ts}^{j},}"></span></dd></dl> <p>where <i>θ</i> = (<i>β</i>, <i>σ</i>, <i>γ</i>), <i>A</i> is just some function of the instrumental variables <i>z</i>, and <i>H</i> is a two-component vector of moments </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;H_{1}(x_{t},y_{t},z_{t},v_{ts};\theta )=y_{t}-g({\hat {\pi }}'z_{t}+\sigma v_{ts},\beta ),\\&amp;H_{2}(x_{t},y_{t},z_{t},v_{ts};\theta )=z_{t}y_{t}-({\hat {\pi }}'z_{t}+\sigma v_{ts})g({\hat {\pi }}'z_{t}+\sigma v_{ts},\beta )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x2032;</mo> </msup> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;H_{1}(x_{t},y_{t},z_{t},v_{ts};\theta )=y_{t}-g({\hat {\pi }}'z_{t}+\sigma v_{ts},\beta ),\\&amp;H_{2}(x_{t},y_{t},z_{t},v_{ts};\theta )=z_{t}y_{t}-({\hat {\pi }}'z_{t}+\sigma v_{ts})g({\hat {\pi }}'z_{t}+\sigma v_{ts},\beta )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a1fb4839704fcaf86964a342b86d091378b3065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.074ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}&amp;H_{1}(x_{t},y_{t},z_{t},v_{ts};\theta )=y_{t}-g({\hat {\pi }}&#039;z_{t}+\sigma v_{ts},\beta ),\\&amp;H_{2}(x_{t},y_{t},z_{t},v_{ts};\theta )=z_{t}y_{t}-({\hat {\pi }}&#039;z_{t}+\sigma v_{ts})g({\hat {\pi }}&#039;z_{t}+\sigma v_{ts},\beta )\end{aligned}}}"></span></dd></dl> With moment functions <i>m<sub>t</sub></i> one can apply standard <a href="/wiki/Generalized_method_of_moments" title="Generalized method of moments">GMM</a> technique to estimate the unknown parameter <i>θ</i>.</li></ul></div> <div class="mw-heading mw-heading3"><h3 id="Repeated_observations">Repeated observations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=9" title="Edit section: Repeated observations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this approach two (or maybe more) repeated observations of the regressor <i>x*</i> are available. Both observations contain their own measurement errors, however those errors are required to be independent: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45cdd619f6a3e4f78e8592a00149863956cd0f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.245ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}"></span></dd></dl> <p>where <i>x*</i> ⊥ <i>η</i><sub>1</sub> ⊥ <i>η</i><sub>2</sub>. Variables <i>η</i><sub>1</sub>, <i>η</i><sub>2</sub> need not be identically distributed (although if they are efficiency of the estimator can be slightly improved). With only these two observations it is possible to consistently estimate the density function of <i>x*</i> using Kotlarski's <a href="/wiki/Deconvolution" title="Deconvolution">deconvolution</a> technique.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <div><ul><li><b>Li's conditional density method</b> for parametric models.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> The regression equation can be written in terms of the observable variables as <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\,y_{t}|x_{t}\,]=\int g(x_{t}^{*},\beta )f_{x^{*}|x}(x_{t}^{*}|x_{t})dx_{t}^{*},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>d</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\,y_{t}|x_{t}\,]=\int g(x_{t}^{*},\beta )f_{x^{*}|x}(x_{t}^{*}|x_{t})dx_{t}^{*},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27918e2a9b583e2315d252b3d42b6875f6a67eda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.556ex; height:5.676ex;" alt="{\displaystyle \operatorname {E} [\,y_{t}|x_{t}\,]=\int g(x_{t}^{*},\beta )f_{x^{*}|x}(x_{t}^{*}|x_{t})dx_{t}^{*},}"></span></dd></dl> <p>where it would be possible to compute the integral if we knew the conditional density function <i>ƒ<sub>x*|x</sub></i>. If this function could be known or estimated, then the problem turns into standard non-linear regression, which can be estimated for example using the <a href="/wiki/NLLS" class="mw-redirect" title="NLLS">NLLS</a> method.<br /> Assuming for simplicity that <i>η</i><sub>1</sub>, <i>η</i><sub>2</sub> are identically distributed, this conditional density can be computed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{x^{*}|x}(x^{*}|x)={\frac {{\hat {f}}_{x^{*}}(x^{*})}{{\hat {f}}_{x}(x)}}\prod _{j=1}^{k}{\hat {f}}_{\eta _{j}}{\big (}x_{j}-x_{j}^{*}{\big )},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{x^{*}|x}(x^{*}|x)={\frac {{\hat {f}}_{x^{*}}(x^{*})}{{\hat {f}}_{x}(x)}}\prod _{j=1}^{k}{\hat {f}}_{\eta _{j}}{\big (}x_{j}-x_{j}^{*}{\big )},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5305f695b1e9586e7537ef68b682074131dbcf11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.548ex; height:7.676ex;" alt="{\displaystyle {\hat {f}}_{x^{*}|x}(x^{*}|x)={\frac {{\hat {f}}_{x^{*}}(x^{*})}{{\hat {f}}_{x}(x)}}\prod _{j=1}^{k}{\hat {f}}_{\eta _{j}}{\big (}x_{j}-x_{j}^{*}{\big )},}"></span></dd></dl> <p>where with slight abuse of notation <i>x<sub>j</sub></i> denotes the <i>j</i>-th component of a vector.<br /> All densities in this formula can be estimated using inversion of the empirical <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic functions</a>. In particular, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\hat {\varphi }}_{\eta _{j}}(v)={\frac {{\hat {\varphi }}_{x_{j}}(v,0)}{{\hat {\varphi }}_{x_{j}^{*}}(v)}},\quad {\text{where }}{\hat {\varphi }}_{x_{j}}(v_{1},v_{2})={\frac {1}{T}}\sum _{t=1}^{T}e^{iv_{1}x_{1tj}+iv_{2}x_{2tj}},\\{\hat {\varphi }}_{x_{j}^{*}}(v)=\exp \int _{0}^{v}{\frac {\partial {\hat {\varphi }}_{x_{j}}(0,v_{2})/\partial v_{1}}{{\hat {\varphi }}_{x_{j}}(0,v_{2})}}dv_{2},\\&amp;{\hat {\varphi }}_{x}(u)={\frac {1}{2T}}\sum _{t=1}^{T}{\Big (}e^{iu'x_{1t}}+e^{iu'x_{2t}}{\Big )},\quad {\hat {\varphi }}_{x^{*}}(u)={\frac {{\hat {\varphi }}_{x}(u)}{\prod _{j=1}^{k}{\hat {\varphi }}_{\eta _{j}}(u_{j})}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>where&#xA0;</mtext> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>d</mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>T</mi> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\hat {\varphi }}_{\eta _{j}}(v)={\frac {{\hat {\varphi }}_{x_{j}}(v,0)}{{\hat {\varphi }}_{x_{j}^{*}}(v)}},\quad {\text{where }}{\hat {\varphi }}_{x_{j}}(v_{1},v_{2})={\frac {1}{T}}\sum _{t=1}^{T}e^{iv_{1}x_{1tj}+iv_{2}x_{2tj}},\\{\hat {\varphi }}_{x_{j}^{*}}(v)=\exp \int _{0}^{v}{\frac {\partial {\hat {\varphi }}_{x_{j}}(0,v_{2})/\partial v_{1}}{{\hat {\varphi }}_{x_{j}}(0,v_{2})}}dv_{2},\\&amp;{\hat {\varphi }}_{x}(u)={\frac {1}{2T}}\sum _{t=1}^{T}{\Big (}e^{iu'x_{1t}}+e^{iu'x_{2t}}{\Big )},\quad {\hat {\varphi }}_{x^{*}}(u)={\frac {{\hat {\varphi }}_{x}(u)}{\prod _{j=1}^{k}{\hat {\varphi }}_{\eta _{j}}(u_{j})}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/621145f562b411f987122c05008cc75776449753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.167ex; margin-bottom: -0.337ex; width:100.795ex; height:24.009ex;" alt="{\displaystyle {\begin{aligned}&amp;{\hat {\varphi }}_{\eta _{j}}(v)={\frac {{\hat {\varphi }}_{x_{j}}(v,0)}{{\hat {\varphi }}_{x_{j}^{*}}(v)}},\quad {\text{where }}{\hat {\varphi }}_{x_{j}}(v_{1},v_{2})={\frac {1}{T}}\sum _{t=1}^{T}e^{iv_{1}x_{1tj}+iv_{2}x_{2tj}},\\{\hat {\varphi }}_{x_{j}^{*}}(v)=\exp \int _{0}^{v}{\frac {\partial {\hat {\varphi }}_{x_{j}}(0,v_{2})/\partial v_{1}}{{\hat {\varphi }}_{x_{j}}(0,v_{2})}}dv_{2},\\&amp;{\hat {\varphi }}_{x}(u)={\frac {1}{2T}}\sum _{t=1}^{T}{\Big (}e^{iu&#039;x_{1t}}+e^{iu&#039;x_{2t}}{\Big )},\quad {\hat {\varphi }}_{x^{*}}(u)={\frac {{\hat {\varphi }}_{x}(u)}{\prod _{j=1}^{k}{\hat {\varphi }}_{\eta _{j}}(u_{j})}}.\end{aligned}}}"></span></dd></dl> <p>In order to invert these characteristic function one has to apply the inverse Fourier transform, with a trimming parameter <i>C</i> needed to ensure the numerical stability. For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {f}}_{x}(x)={\frac {1}{(2\pi )^{k}}}\int _{-C}^{C}\cdots \int _{-C}^{C}e^{-iu'x}{\hat {\varphi }}_{x}(u)du.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msubsup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <mi>x</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>u</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {f}}_{x}(x)={\frac {1}{(2\pi )^{k}}}\int _{-C}^{C}\cdots \int _{-C}^{C}e^{-iu'x}{\hat {\varphi }}_{x}(u)du.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbf8b8dce3d16f6b7965c170dc383f708e4bcc46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.326ex; height:6.676ex;" alt="{\displaystyle {\hat {f}}_{x}(x)={\frac {1}{(2\pi )^{k}}}\int _{-C}^{C}\cdots \int _{-C}^{C}e^{-iu&#039;x}{\hat {\varphi }}_{x}(u)du.}"></span></dd></dl></li><li><b>Schennach's estimator</b> for a parametric linear-in-parameters nonlinear-in-variables model.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> This is a model of the form <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}y_{t}=\textstyle \sum _{j=1}^{k}\beta _{j}g_{j}(x_{t}^{*})+\sum _{j=1}^{\ell }\beta _{k+j}w_{jt}+\varepsilon _{t},\\x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munderover> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}y_{t}=\textstyle \sum _{j=1}^{k}\beta _{j}g_{j}(x_{t}^{*})+\sum _{j=1}^{\ell }\beta _{k+j}w_{jt}+\varepsilon _{t},\\x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f23b260da0c652edb603a5c23cde60e950d3e04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:43.786ex; height:9.843ex;" alt="{\displaystyle {\begin{cases}y_{t}=\textstyle \sum _{j=1}^{k}\beta _{j}g_{j}(x_{t}^{*})+\sum _{j=1}^{\ell }\beta _{k+j}w_{jt}+\varepsilon _{t},\\x_{1t}=x_{t}^{*}+\eta _{1t},\\x_{2t}=x_{t}^{*}+\eta _{2t},\end{cases}}}"></span></dd> <p>where <i>w<sub>t</sub></i> represents variables measured without errors. The regressor <i>x*</i> here is scalar (the method can be extended to the case of vector <i>x*</i> as well).<br /> If not for the measurement errors, this would have been a standard <a href="/wiki/Linear_model" title="Linear model">linear model</a> with the estimator </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}={\big (}{\hat {\operatorname {E} }}[\,\xi _{t}\xi _{t}'\,]{\big )}^{-1}{\hat {\operatorname {E} }}[\,\xi _{t}y_{t}\,],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}={\big (}{\hat {\operatorname {E} }}[\,\xi _{t}\xi _{t}'\,]{\big )}^{-1}{\hat {\operatorname {E} }}[\,\xi _{t}y_{t}\,],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34f3ff27dccb72aa60aa497f76cbd82a2f1bc3ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.459ex; height:3.676ex;" alt="{\displaystyle {\hat {\beta }}={\big (}{\hat {\operatorname {E} }}[\,\xi _{t}\xi _{t}&#039;\,]{\big )}^{-1}{\hat {\operatorname {E} }}[\,\xi _{t}y_{t}\,],}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi _{t}'=(g_{1}(x_{t}^{*}),\cdots ,g_{k}(x_{t}^{*}),w_{1,t},\cdots ,w_{l,t}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mo>&#x2032;</mo> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi _{t}'=(g_{1}(x_{t}^{*}),\cdots ,g_{k}(x_{t}^{*}),w_{1,t},\cdots ,w_{l,t}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ee9b197426718b87e2f8cc44509078b0b1d31fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.744ex; height:3.009ex;" alt="{\displaystyle \xi _{t}&#039;=(g_{1}(x_{t}^{*}),\cdots ,g_{k}(x_{t}^{*}),w_{1,t},\cdots ,w_{l,t}).}"></span></dd></dl> <p>It turns out that all the expected values in this formula are estimable using the same deconvolution trick. In particular, for a generic observable <i>w<sub>t</sub></i> (which could be 1, <i>w</i><sub>1<i>t</i></sub>, …, <i>w</i><sub><i>ℓ &#160;t</i></sub>, or <i>y<sub>t</sub></i>) and some function <i>h</i> (which could represent any <i>g<sub>j</sub></i> or <i>g<sub>i</sub>g<sub>j</sub></i>) we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\,w_{t}h(x_{t}^{*})\,]={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{h}(-u)\psi _{w}(u)du,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>h</mi> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>u</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>u</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\,w_{t}h(x_{t}^{*})\,]={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{h}(-u)\psi _{w}(u)du,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c77215b400b8a31c6083ae054e5eb0885cb4f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.223ex; height:6.009ex;" alt="{\displaystyle \operatorname {E} [\,w_{t}h(x_{t}^{*})\,]={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{h}(-u)\psi _{w}(u)du,}"></span></dd></dl> <p>where <i>φ<sub>h</sub></i> is the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of <i>h</i>(<i>x*</i>), but using the same convention as for the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic functions</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{h}(u)=\int e^{iux}h(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>u</mi> <mi>x</mi> </mrow> </msup> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{h}(u)=\int e^{iux}h(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e4e37d1c57b03abdb851864f1dace530ee37b77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.305ex; height:5.676ex;" alt="{\displaystyle \varphi _{h}(u)=\int e^{iux}h(x)dx}"></span>,</dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{w}(u)=\operatorname {E} [\,w_{t}e^{iux^{*}}\,]={\frac {\operatorname {E} [w_{t}e^{iux_{1t}}]}{\operatorname {E} [e^{iux_{1t}}]}}\exp \int _{0}^{u}i{\frac {\operatorname {E} [x_{2t}e^{ivx_{1t}}]}{\operatorname {E} [e^{ivx_{1t}}]}}dv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>u</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </msup> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>u</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>u</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msubsup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>t</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>v</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>v</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>t</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{w}(u)=\operatorname {E} [\,w_{t}e^{iux^{*}}\,]={\frac {\operatorname {E} [w_{t}e^{iux_{1t}}]}{\operatorname {E} [e^{iux_{1t}}]}}\exp \int _{0}^{u}i{\frac {\operatorname {E} [x_{2t}e^{ivx_{1t}}]}{\operatorname {E} [e^{ivx_{1t}}]}}dv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10012101ed93d980603ae2b70bb8f2f6115cea6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:57.395ex; height:6.676ex;" alt="{\displaystyle \psi _{w}(u)=\operatorname {E} [\,w_{t}e^{iux^{*}}\,]={\frac {\operatorname {E} [w_{t}e^{iux_{1t}}]}{\operatorname {E} [e^{iux_{1t}}]}}\exp \int _{0}^{u}i{\frac {\operatorname {E} [x_{2t}e^{ivx_{1t}}]}{\operatorname {E} [e^{ivx_{1t}}]}}dv}"></span></dd></dl> The resulting estimator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\hat {\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\hat {\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4490e8b3450c3c28b77e2f842b6d595c9acb824a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.083ex; height:2.509ex;" alt="{\displaystyle \scriptstyle {\hat {\beta }}}"></span> is consistent and asymptotically normal.</li><li><b>Schennach's estimator</b> for a nonparametric model.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> The standard <a href="/wiki/Nadaraya%E2%80%93Watson_estimator" class="mw-redirect" title="Nadaraya–Watson estimator">Nadaraya–Watson estimator</a> for a nonparametric model takes form <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {g}}(x)={\frac {{\hat {\operatorname {E} }}[\,y_{t}K_{h}(x_{t}^{*}-x)\,]}{{\hat {\operatorname {E} }}[\,K_{h}(x_{t}^{*}-x)\,]}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">E</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">[</mo> <mspace width="thinmathspace" /> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {g}}(x)={\frac {{\hat {\operatorname {E} }}[\,y_{t}K_{h}(x_{t}^{*}-x)\,]}{{\hat {\operatorname {E} }}[\,K_{h}(x_{t}^{*}-x)\,]}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be0ab49c7a4dad7b326a206f00968cf528eb1302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.083ex; height:7.509ex;" alt="{\displaystyle {\hat {g}}(x)={\frac {{\hat {\operatorname {E} }}[\,y_{t}K_{h}(x_{t}^{*}-x)\,]}{{\hat {\operatorname {E} }}[\,K_{h}(x_{t}^{*}-x)\,]}},}"></span></dd></dl> for a suitable choice of the <a href="/wiki/Kernel_(statistics)" title="Kernel (statistics)">kernel</a> <i>K</i> and the bandwidth <i>h</i>. Both expectations here can be estimated using the same technique as in the previous method.</li></ul></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGrilichesRingstad1970" class="citation journal cs1">Griliches, Zvi; Ringstad, Vidar (1970). "Errors-in-the-variables bias in nonlinear contexts". <i><a href="/wiki/Econometrica" title="Econometrica">Econometrica</a></i>. <b>38</b> (2): 368–370. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1913020">10.2307/1913020</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1913020">1913020</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometrica&amp;rft.atitle=Errors-in-the-variables+bias+in+nonlinear+contexts&amp;rft.volume=38&amp;rft.issue=2&amp;rft.pages=368-370&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.2307%2F1913020&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1913020%23id-name%3DJSTOR&amp;rft.aulast=Griliches&amp;rft.aufirst=Zvi&amp;rft.au=Ringstad%2C+Vidar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChesher1991" class="citation journal cs1">Chesher, Andrew (1991). "The effect of measurement error". <i><a href="/wiki/Biometrika" title="Biometrika">Biometrika</a></i>. <b>78</b> (3): 451–462. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F78.3.451">10.1093/biomet/78.3.451</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2337015">2337015</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=The+effect+of+measurement+error&amp;rft.volume=78&amp;rft.issue=3&amp;rft.pages=451-462&amp;rft.date=1991&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F78.3.451&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2337015%23id-name%3DJSTOR&amp;rft.aulast=Chesher&amp;rft.aufirst=Andrew&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarrollRuppertStefanskiCrainiceanu2006" class="citation book cs1">Carroll, Raymond J.; Ruppert, David; Stefanski, Leonard A.; Crainiceanu, Ciprian (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9kBx5CPZCqkC&amp;pg=PA41"><i>Measurement Error in Nonlinear Models: A Modern Perspective</i></a> (Second&#160;ed.). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-58488-633-4" title="Special:BookSources/978-1-58488-633-4"><bdi>978-1-58488-633-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measurement+Error+in+Nonlinear+Models%3A+A+Modern+Perspective&amp;rft.edition=Second&amp;rft.date=2006&amp;rft.isbn=978-1-58488-633-4&amp;rft.aulast=Carroll&amp;rft.aufirst=Raymond+J.&amp;rft.au=Ruppert%2C+David&amp;rft.au=Stefanski%2C+Leonard+A.&amp;rft.au=Crainiceanu%2C+Ciprian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9kBx5CPZCqkC%26pg%3DPA41&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreene2003" class="citation book cs1">Greene, William H. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JJkWAQAAMAAJ"><i>Econometric Analysis</i></a> (5th&#160;ed.). New Jersey: Prentice Hall. Chapter 5.6.1. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-066189-0" title="Special:BookSources/978-0-13-066189-0"><bdi>978-0-13-066189-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Econometric+Analysis&amp;rft.place=New+Jersey&amp;rft.pages=Chapter+5.6.1&amp;rft.edition=5th&amp;rft.pub=Prentice+Hall&amp;rft.date=2003&amp;rft.isbn=978-0-13-066189-0&amp;rft.aulast=Greene&amp;rft.aufirst=William+H.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJJkWAQAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWansbeek_and_Meijer2000" class="citation book cs1">Wansbeek, T.; Meijer, E. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xs55E7FsMHMC&amp;pg=PA162">"Measurement Error and Latent Variables"</a>. In Baltagi, B. H. (ed.). <i>A Companion to Theoretical Econometrics</i>. Blackwell. pp.&#160;162–179. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fb.9781405106764.2003.00013.x">10.1111/b.9781405106764.2003.00013.x</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781405106764" title="Special:BookSources/9781405106764"><bdi>9781405106764</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Measurement+Error+and+Latent+Variables&amp;rft.btitle=A+Companion+to+Theoretical+Econometrics&amp;rft.pages=162-179&amp;rft.pub=Blackwell&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1111%2Fb.9781405106764.2003.00013.x&amp;rft.isbn=9781405106764&amp;rft.aulast=Wansbeek&amp;rft.aufirst=T.&amp;rft.au=Meijer%2C+E.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dxs55E7FsMHMC%26pg%3DPA162&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHausman2001" class="citation journal cs1">Hausman, Jerry A. (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1257%2Fjep.15.4.57">"Mismeasured variables in econometric analysis: problems from the right and problems from the left"</a>. <i><a href="/wiki/Journal_of_Economic_Perspectives" title="Journal of Economic Perspectives">Journal of Economic Perspectives</a></i>. <b>15</b> (4): 57–67 [p. 58]. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1257%2Fjep.15.4.57">10.1257/jep.15.4.57</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2696516">2696516</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Economic+Perspectives&amp;rft.atitle=Mismeasured+variables+in+econometric+analysis%3A+problems+from+the+right+and+problems+from+the+left&amp;rft.volume=15&amp;rft.issue=4&amp;rft.pages=57-67+p.+58&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1257%2Fjep.15.4.57&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2696516%23id-name%3DJSTOR&amp;rft.aulast=Hausman&amp;rft.aufirst=Jerry+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1257%252Fjep.15.4.57&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuller1987" class="citation book cs1">Fuller, Wayne A. (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Nalc0DkAJRYC&amp;pg=PA2"><i>Measurement Error Models</i></a>. John Wiley &amp; Sons. p.&#160;2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-86187-4" title="Special:BookSources/978-0-471-86187-4"><bdi>978-0-471-86187-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measurement+Error+Models&amp;rft.pages=2&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1987&amp;rft.isbn=978-0-471-86187-4&amp;rft.aulast=Fuller&amp;rft.aufirst=Wayne+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNalc0DkAJRYC%26pg%3DPA2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayashi2000" class="citation book cs1">Hayashi, Fumio (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QyIW8WUIyzcC&amp;pg=PA7"><i>Econometrics</i></a>. Princeton University Press. pp.&#160;7–8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1400823833" title="Special:BookSources/978-1400823833"><bdi>978-1400823833</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Econometrics&amp;rft.pages=7-8&amp;rft.pub=Princeton+University+Press&amp;rft.date=2000&amp;rft.isbn=978-1400823833&amp;rft.aulast=Hayashi&amp;rft.aufirst=Fumio&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQyIW8WUIyzcC%26pg%3DPA7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoulSong2008" class="citation journal cs1">Koul, Hira; Song, Weixing (2008). "Regression model checking with Berkson measurement errors". <i>Journal of Statistical Planning and Inference</i>. <b>138</b> (6): 1615–1628. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jspi.2007.05.048">10.1016/j.jspi.2007.05.048</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Statistical+Planning+and+Inference&amp;rft.atitle=Regression+model+checking+with+Berkson+measurement+errors&amp;rft.volume=138&amp;rft.issue=6&amp;rft.pages=1615-1628&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jspi.2007.05.048&amp;rft.aulast=Koul&amp;rft.aufirst=Hira&amp;rft.au=Song%2C+Weixing&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Tofallis, C. (2023). Fitting an Equation to Data Impartially. Mathematics, 11(18), 3957. <a rel="nofollow" class="external free" href="https://ssrn.com/abstract=4556739">https://ssrn.com/abstract=4556739</a> <a rel="nofollow" class="external free" href="https://doi.org/10.3390/math11183957">https://doi.org/10.3390/math11183957</a></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReiersøl1950" class="citation journal cs1">Reiersøl, Olav (1950). "Identifiability of a linear relation between variables which are subject to error". <i><a href="/wiki/Econometrica" title="Econometrica">Econometrica</a></i>. <b>18</b> (4): 375–389 [p. 383]. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1907835">10.2307/1907835</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1907835">1907835</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometrica&amp;rft.atitle=Identifiability+of+a+linear+relation+between+variables+which+are+subject+to+error&amp;rft.volume=18&amp;rft.issue=4&amp;rft.pages=375-389+p.+383&amp;rft.date=1950&amp;rft_id=info%3Adoi%2F10.2307%2F1907835&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1907835%23id-name%3DJSTOR&amp;rft.aulast=Reiers%C3%B8l&amp;rft.aufirst=Olav&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span> A somewhat more restrictive result was established earlier by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeary1942" class="citation journal cs1">Geary, R. C. (1942). "Inherent relations between random variables". <i><a href="/wiki/Proceedings_of_the_Royal_Irish_Academy" title="Proceedings of the Royal Irish Academy">Proceedings of the Royal Irish Academy</a></i>. <b>47</b>: 63–76. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20488436">20488436</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Irish+Academy&amp;rft.atitle=Inherent+relations+between+random+variables&amp;rft.volume=47&amp;rft.pages=63-76&amp;rft.date=1942&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20488436%23id-name%3DJSTOR&amp;rft.aulast=Geary&amp;rft.aufirst=R.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span> He showed that under the additional assumption that (<i>ε, η</i>) are jointly normal, the model is not identified if and only if <i>x*</i>s are normal.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuller1987" class="citation book cs1">Fuller, Wayne A. (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Nalc0DkAJRYC&amp;pg=PA1">"A Single Explanatory Variable"</a>. <i>Measurement Error Models</i>. John Wiley &amp; Sons. pp.&#160;1–99. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-86187-4" title="Special:BookSources/978-0-471-86187-4"><bdi>978-0-471-86187-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Single+Explanatory+Variable&amp;rft.btitle=Measurement+Error+Models&amp;rft.pages=1-99&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1987&amp;rft.isbn=978-0-471-86187-4&amp;rft.aulast=Fuller&amp;rft.aufirst=Wayne+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNalc0DkAJRYC%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPal1980" class="citation journal cs1">Pal, Manoranjan (1980). "Consistent moment estimators of regression coefficients in the presence of errors in variables". <i><a href="/wiki/Journal_of_Econometrics" title="Journal of Econometrics">Journal of Econometrics</a></i>. <b>14</b> (3): 349–364 (pp. 360–361). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-4076%2880%2990032-9">10.1016/0304-4076(80)90032-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Econometrics&amp;rft.atitle=Consistent+moment+estimators+of+regression+coefficients+in+the+presence+of+errors+in+variables&amp;rft.volume=14&amp;rft.issue=3&amp;rft.pages=349-364+%28pp.+360-361%29&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1016%2F0304-4076%2880%2990032-9&amp;rft.aulast=Pal&amp;rft.aufirst=Manoranjan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXu2014" class="citation journal cs1">Xu, Shaoji (2014-10-02). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080/00031305.2014.962763">"A Property of Geometric Mean Regression"</a>. <i>The American Statistician</i>. <b>68</b> (4): 277–281. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.2014.962763">10.1080/00031305.2014.962763</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-1305">0003-1305</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Statistician&amp;rft.atitle=A+Property+of+Geometric+Mean+Regression&amp;rft.volume=68&amp;rft.issue=4&amp;rft.pages=277-281&amp;rft.date=2014-10-02&amp;rft_id=info%3Adoi%2F10.1080%2F00031305.2014.962763&amp;rft.issn=0003-1305&amp;rft.aulast=Xu&amp;rft.aufirst=Shaoji&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1080%2F00031305.2014.962763&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-Moshe2020" class="citation journal cs1">Ben-Moshe, Dan (2020). "Identification of linear regressions with errors in all variables". <i><a href="/wiki/Econometric_Theory" title="Econometric Theory">Econometric Theory</a></i>. <b>37</b> (4): 1–31. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1404.1473">1404.1473</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0266466620000250">10.1017/S0266466620000250</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225653359">225653359</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometric+Theory&amp;rft.atitle=Identification+of+linear+regressions+with+errors+in+all+variables&amp;rft.volume=37&amp;rft.issue=4&amp;rft.pages=1-31&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1404.1473&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225653359%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS0266466620000250&amp;rft.aulast=Ben-Moshe&amp;rft.aufirst=Dan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDagenaisDagenais1997" class="citation journal cs1">Dagenais, Marcel G.; Dagenais, Denyse L. (1997). "Higher moment estimators for linear regression models with errors in the variables". <i><a href="/wiki/Journal_of_Econometrics" title="Journal of Econometrics">Journal of Econometrics</a></i>. <b>76</b> (1–2): 193–221. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.669.8286">10.1.1.669.8286</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0304-4076%2895%2901789-5">10.1016/0304-4076(95)01789-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Econometrics&amp;rft.atitle=Higher+moment+estimators+for+linear+regression+models+with+errors+in+the+variables&amp;rft.volume=76&amp;rft.issue=1%E2%80%932&amp;rft.pages=193-221&amp;rft.date=1997&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.669.8286%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1016%2F0304-4076%2895%2901789-5&amp;rft.aulast=Dagenais&amp;rft.aufirst=Marcel+G.&amp;rft.au=Dagenais%2C+Denyse+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span> In the earlier paper <a href="#CITEREFPal1980">Pal (1980)</a> considered a simpler case when all components in vector (<i>ε</i>, <i>η</i>) are independent and symmetrically distributed.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFuller1987" class="citation book cs1">Fuller, Wayne A. (1987). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Nalc0DkAJRYC&amp;pg=PA184"><i>Measurement Error Models</i></a>. John Wiley &amp; Sons. p.&#160;184. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-86187-4" title="Special:BookSources/978-0-471-86187-4"><bdi>978-0-471-86187-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measurement+Error+Models&amp;rft.pages=184&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1987&amp;rft.isbn=978-0-471-86187-4&amp;rft.aulast=Fuller&amp;rft.aufirst=Wayne+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNalc0DkAJRYC%26pg%3DPA184&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEricksonWhited2002" class="citation journal cs1">Erickson, Timothy; Whited, Toni M. (2002). "Two-step GMM estimation of the errors-in-variables model using high-order moments". <i><a href="/wiki/Econometric_Theory" title="Econometric Theory">Econometric Theory</a></i>. <b>18</b> (3): 776–799. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs0266466602183101">10.1017/s0266466602183101</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3533649">3533649</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14729228">14729228</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometric+Theory&amp;rft.atitle=Two-step+GMM+estimation+of+the+errors-in-variables+model+using+high-order+moments&amp;rft.volume=18&amp;rft.issue=3&amp;rft.pages=776-799&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14729228%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3533649%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1017%2Fs0266466602183101&amp;rft.aulast=Erickson&amp;rft.aufirst=Timothy&amp;rft.au=Whited%2C+Toni+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Tofallis, C. (2023). Fitting an Equation to Data Impartially. Mathematics, 11(18), 3957. <a rel="nofollow" class="external free" href="https://ssrn.com/abstract=4556739">https://ssrn.com/abstract=4556739</a> <a rel="nofollow" class="external free" href="https://doi.org/10.3390/math11183957">https://doi.org/10.3390/math11183957</a></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchennachHuLewbel2007" class="citation journal cs1"><a href="/wiki/Susanne_Schennach" title="Susanne Schennach">Schennach, S.</a>; Hu, Y.; Lewbel, A. (2007). <a rel="nofollow" class="external text" href="http://escholarship.bc.edu/cgi/viewcontent.cgi?article=1433&amp;context=econ_papers">"Nonparametric identification of the classical errors-in-variables model without side information"</a>. <i>Working Paper</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Working+Paper&amp;rft.atitle=Nonparametric+identification+of+the+classical+errors-in-variables+model+without+side+information&amp;rft.date=2007&amp;rft.aulast=Schennach&amp;rft.aufirst=S.&amp;rft.au=Hu%2C+Y.&amp;rft.au=Lewbel%2C+A.&amp;rft_id=http%3A%2F%2Fescholarship.bc.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1433%26context%3Decon_papers&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNewey2001" class="citation journal cs1">Newey, Whitney K. (2001). "Flexible simulated moment estimation of nonlinear errors-in-variables model". <i><a href="/wiki/Review_of_Economics_and_Statistics" class="mw-redirect" title="Review of Economics and Statistics">Review of Economics and Statistics</a></i>. <b>83</b> (4): 616–627. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2F003465301753237704">10.1162/003465301753237704</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F63613">1721.1/63613</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3211757">3211757</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:57566922">57566922</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Review+of+Economics+and+Statistics&amp;rft.atitle=Flexible+simulated+moment+estimation+of+nonlinear+errors-in-variables+model&amp;rft.volume=83&amp;rft.issue=4&amp;rft.pages=616-627&amp;rft.date=2001&amp;rft_id=info%3Ahdl%2F1721.1%2F63613&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A57566922%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3211757%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1162%2F003465301753237704&amp;rft.aulast=Newey&amp;rft.aufirst=Whitney+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiVuong1998" class="citation journal cs1">Li, Tong; Vuong, Quang (1998). <a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjmva.1998.1741">"Nonparametric estimation of the measurement error model using multiple indicators"</a>. <i><a href="/wiki/Journal_of_Multivariate_Analysis" title="Journal of Multivariate Analysis">Journal of Multivariate Analysis</a></i>. <b>65</b> (2): 139–165. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjmva.1998.1741">10.1006/jmva.1998.1741</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Multivariate+Analysis&amp;rft.atitle=Nonparametric+estimation+of+the+measurement+error+model+using+multiple+indicators&amp;rft.volume=65&amp;rft.issue=2&amp;rft.pages=139-165&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1006%2Fjmva.1998.1741&amp;rft.aulast=Li&amp;rft.aufirst=Tong&amp;rft.au=Vuong%2C+Quang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1006%252Fjmva.1998.1741&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLi2002" class="citation journal cs1">Li, Tong (2002). "Robust and consistent estimation of nonlinear errors-in-variables models". <i><a href="/wiki/Journal_of_Econometrics" title="Journal of Econometrics">Journal of Econometrics</a></i>. <b>110</b> (1): 1–26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0304-4076%2802%2900120-3">10.1016/S0304-4076(02)00120-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Econometrics&amp;rft.atitle=Robust+and+consistent+estimation+of+nonlinear+errors-in-variables+models&amp;rft.volume=110&amp;rft.issue=1&amp;rft.pages=1-26&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1016%2FS0304-4076%2802%2900120-3&amp;rft.aulast=Li&amp;rft.aufirst=Tong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchennach2004a" class="citation journal cs1"><a href="/wiki/Susanne_Schennach" title="Susanne Schennach">Schennach, Susanne M.</a> (2004). "Estimation of nonlinear models with measurement error". <i><a href="/wiki/Econometrica" title="Econometrica">Econometrica</a></i>. <b>72</b> (1): 33–75. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1468-0262.2004.00477.x">10.1111/j.1468-0262.2004.00477.x</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3598849">3598849</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometrica&amp;rft.atitle=Estimation+of+nonlinear+models+with+measurement+error&amp;rft.volume=72&amp;rft.issue=1&amp;rft.pages=33-75&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1468-0262.2004.00477.x&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3598849%23id-name%3DJSTOR&amp;rft.aulast=Schennach&amp;rft.aufirst=Susanne+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchennach2004b" class="citation journal cs1"><a href="/wiki/Susanne_Schennach" title="Susanne Schennach">Schennach, Susanne M.</a> (2004). "Nonparametric regression in the presence of measurement error". <i>Econometric Theory</i>. <b>20</b> (6): 1046–1093. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0266466604206028">10.1017/S0266466604206028</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123036368">123036368</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Econometric+Theory&amp;rft.atitle=Nonparametric+regression+in+the+presence+of+measurement+error&amp;rft.volume=20&amp;rft.issue=6&amp;rft.pages=1046-1093&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1017%2FS0266466604206028&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123036368%23id-name%3DS2CID&amp;rft.aulast=Schennach&amp;rft.aufirst=Susanne+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=11" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDougherty2011" class="citation book cs1">Dougherty, Christopher (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UXucAQAAQBAJ&amp;pg=PA300">"Stochastic Regressors and Measurement Errors"</a>. <i>Introduction to Econometrics</i> (Fourth&#160;ed.). Oxford University Press. pp.&#160;300–330. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-956708-9" title="Special:BookSources/978-0-19-956708-9"><bdi>978-0-19-956708-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Stochastic+Regressors+and+Measurement+Errors&amp;rft.btitle=Introduction+to+Econometrics&amp;rft.pages=300-330&amp;rft.edition=Fourth&amp;rft.pub=Oxford+University+Press&amp;rft.date=2011&amp;rft.isbn=978-0-19-956708-9&amp;rft.aulast=Dougherty&amp;rft.aufirst=Christopher&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUXucAQAAQBAJ%26pg%3DPA300&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKmenta1986" class="citation book cs1"><a href="/wiki/Jan_Kmenta" title="Jan Kmenta">Kmenta, Jan</a> (1986). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Bxq7AAAAIAAJ&amp;pg=PA346">"Estimation with Deficient Data"</a>. <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/elementsofeconom0003kmen/page/346"><i>Elements of Econometrics</i></a></span> (Second&#160;ed.). New York: Macmillan. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/elementsofeconom0003kmen/page/346">346–391</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-02-365070-3" title="Special:BookSources/978-0-02-365070-3"><bdi>978-0-02-365070-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Estimation+with+Deficient+Data&amp;rft.btitle=Elements+of+Econometrics&amp;rft.place=New+York&amp;rft.pages=346-391&amp;rft.edition=Second&amp;rft.pub=Macmillan&amp;rft.date=1986&amp;rft.isbn=978-0-02-365070-3&amp;rft.aulast=Kmenta&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DBxq7AAAAIAAJ%26pg%3DPA346&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchennach2013" class="citation book cs1"><a href="/wiki/Susanne_Schennach" title="Susanne Schennach">Schennach, Susanne</a> (2013). "Measurement Error in Nonlinear Models – A Review". In Acemoglu, Daron; Arellano, Manuel; Dekel, Eddie (eds.). <i>Advances in Economics and Econometrics</i>. Cambridge University Press. pp.&#160;296–337. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9781139060035.009">10.1017/CBO9781139060035.009</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10419%2F79526">10419/79526</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781107017214" title="Special:BookSources/9781107017214"><bdi>9781107017214</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Measurement+Error+in+Nonlinear+Models+%E2%80%93+A+Review&amp;rft.btitle=Advances+in+Economics+and+Econometrics&amp;rft.pages=296-337&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft_id=info%3Ahdl%2F10419%2F79526&amp;rft_id=info%3Adoi%2F10.1017%2FCBO9781139060035.009&amp;rft.isbn=9781107017214&amp;rft.aulast=Schennach&amp;rft.aufirst=Susanne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AErrors-in-variables+models" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Errors-in-variables_models&amp;action=edit&amp;section=12" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://mathsdemo.cf.ac.uk/maths/resources/Gillard_Tech_Report.pdf">An Historical Overview of Linear Regression with Errors in both Variables</a>, J.W. Gillard 2006</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=brTmzHE9Gvw&amp;index=11&amp;list=PLD15D38DC7AA3B737&amp;t=22m52s"><span class="plainlinks">Lecture on Econometrics (topic: Stochastic Regressors and Measurement Error)</span></a> on <a href="/wiki/YouTube_video_(identifier)" class="mw-redirect" title="YouTube video (identifier)">YouTube</a> by <a href="/wiki/Mark_Thoma" title="Mark Thoma">Mark Thoma</a>.</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f7b5ccf54‐lgq79 Cached time: 20241125153550 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.659 seconds Real time usage: 0.899 seconds Preprocessor visited node count: 2503/1000000 Post‐expand include size: 86943/2097152 bytes Template argument size: 2053/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 108099/5000000 bytes Lua time usage: 0.390/10.000 seconds Lua memory usage: 8201097/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 629.363 1 -total 44.56% 280.419 1 Template:Reflist 27.66% 174.104 17 Template:Cite_journal 23.22% 146.116 1 Template:Regression_bar 17.19% 108.218 1 Template:Short_description 15.66% 98.544 1 Template:Sidebar 12.71% 79.991 2 Template:Pagetype 8.27% 52.045 10 Template:Cite_book 6.12% 38.525 1 Template:Cn 5.94% 37.396 1 Template:Harvtxt --> <!-- Saved in parser cache with key enwiki:pcache:idhash:23531798-0!canonical and timestamp 20241125153550 and revision id 1253925954. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Errors-in-variables_models&amp;oldid=1253925954">https://en.wikipedia.org/w/index.php?title=Errors-in-variables_models&amp;oldid=1253925954</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Regression_models" title="Category:Regression models">Regression models</a></li><li><a href="/wiki/Category:Least_squares" title="Category:Least squares">Least squares</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2015" title="Category:Articles with unsourced statements from November 2015">Articles with unsourced statements from November 2015</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 October 2024, at 16:11<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Errors-in-variables_models&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-68775984f6-6sktt","wgBackendResponseTime":156,"wgPageParseReport":{"limitreport":{"cputime":"0.659","walltime":"0.899","ppvisitednodes":{"value":2503,"limit":1000000},"postexpandincludesize":{"value":86943,"limit":2097152},"templateargumentsize":{"value":2053,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":108099,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 629.363 1 -total"," 44.56% 280.419 1 Template:Reflist"," 27.66% 174.104 17 Template:Cite_journal"," 23.22% 146.116 1 Template:Regression_bar"," 17.19% 108.218 1 Template:Short_description"," 15.66% 98.544 1 Template:Sidebar"," 12.71% 79.991 2 Template:Pagetype"," 8.27% 52.045 10 Template:Cite_book"," 6.12% 38.525 1 Template:Cn"," 5.94% 37.396 1 Template:Harvtxt"]},"scribunto":{"limitreport-timeusage":{"value":"0.390","limit":"10.000"},"limitreport-memusage":{"value":8201097,"limit":52428800},"limitreport-logs":"table#1 {\n}\nanchor_id_list = table#1 {\n [\"CITEREFBen-Moshe2020\"] = 1,\n [\"CITEREFCarrollRuppertStefanskiCrainiceanu2006\"] = 1,\n [\"CITEREFChesher1991\"] = 1,\n [\"CITEREFDagenaisDagenais1997\"] = 1,\n [\"CITEREFDougherty2011\"] = 1,\n [\"CITEREFEricksonWhited2002\"] = 1,\n [\"CITEREFFuller1987\"] = 3,\n [\"CITEREFGeary1942\"] = 1,\n [\"CITEREFGreene2003\"] = 1,\n [\"CITEREFGrilichesRingstad1970\"] = 1,\n [\"CITEREFHausman2001\"] = 1,\n [\"CITEREFHayashi2000\"] = 1,\n [\"CITEREFKmenta1986\"] = 1,\n [\"CITEREFKoulSong2008\"] = 1,\n [\"CITEREFLi2002\"] = 1,\n [\"CITEREFLiVuong1998\"] = 1,\n [\"CITEREFNewey2001\"] = 1,\n [\"CITEREFPal1980\"] = 1,\n [\"CITEREFReiersøl1950\"] = 1,\n [\"CITEREFSchennach2004a\"] = 1,\n [\"CITEREFSchennach2004b\"] = 1,\n [\"CITEREFSchennach2013\"] = 1,\n [\"CITEREFSchennachHuLewbel2007\"] = 1,\n [\"CITEREFWansbeek_and_Meijer2000\"] = 1,\n [\"CITEREFXu2014\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"Cite book\"] = 10,\n [\"Cite journal\"] = 17,\n [\"Cn\"] = 1,\n [\"DEFAULTSORT:Errors-In-Variables Models\"] = 1,\n [\"Harvtxt\"] = 1,\n [\"Reflist\"] = 1,\n [\"Regression bar\"] = 1,\n [\"Short description\"] = 1,\n [\"Unordered list\"] = 4,\n [\"YouTube\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f7b5ccf54-lgq79","timestamp":"20241125153550","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Errors-in-variables models","url":"https:\/\/en.wikipedia.org\/wiki\/Errors-in-variables_models","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5395728","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5395728","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-07-08T03:04:11Z","dateModified":"2024-10-28T16:11:40Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3b\/Visualization_of_errors-in-variables_linear_regression.png","headline":"regression models accounting for possible errors in independent variables"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10