CINXE.COM
E=mc² - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="it" dir="ltr"> <head> <meta charset="UTF-8"> <title>E=mc² - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )itwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gennaio","febbraio","marzo","aprile","maggio","giugno","luglio","agosto","settembre","ottobre","novembre","dicembre"],"wgRequestId":"ee7e61a4-7a06-420a-a8b6-45563ebd3526","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"E=mc²","wgTitle":"E=mc²","wgCurRevisionId":142185127,"wgRevisionId":142185127,"wgArticleId":282699,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Voci con modulo citazione e parametro pagine","Voci con modulo citazione e parametro pagina","P1417 letta da Wikidata","P3123 letta da Wikidata","Relatività ristretta","Equazioni nella fisica","Energia","Albert Einstein"],"wgPageViewLanguage":"it","wgPageContentLanguage":"it","wgPageContentModel":"wikitext","wgRelevantPageName":"E=mc²","wgRelevantArticleId":282699,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"it","pageLanguageDir":"ltr","pageVariantFallbacks":"it"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q35875","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.coloriDarkMode-default":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.MainPageWikiList","ext.gadget.stru-commonsupload","ext.gadget.HiddenCat","ext.gadget.ReferenceTooltips","ext.gadget.TitoloErrato","ext.gadget.NewSection","ext.gadget.RichiediRevisioneBozza","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=it&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=it&modules=ext.gadget.coloriDarkMode-default&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=it&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG/640px-Relativity4_Walk_of_Ideas_Berlin.JPG"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="E=mc² - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//it.m.wikipedia.org/wiki/E%3Dmc%C2%B2"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=E%3Dmc%C2%B2&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (it)"> <link rel="EditURI" type="application/rsd+xml" href="//it.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://it.wikipedia.org/wiki/E%3Dmc%C2%B2"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it"> <link rel="alternate" type="application/atom+xml" title="Feed Atom di Wikipedia" href="/w/index.php?title=Speciale:UltimeModifiche&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-E_mc² rootpage-E_mc² skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vai al contenuto</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principale" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principale</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principale</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">nascondi</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigazione </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Pagina_principale" title="Visita la pagina principale [z]" accesskey="z"><span>Pagina principale</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciale:UltimeModifiche" title="Elenco delle ultime modifiche del sito [r]" accesskey="r"><span>Ultime modifiche</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciale:PaginaCasuale" title="Mostra una pagina a caso [x]" accesskey="x"><span>Una voce a caso</span></a></li><li id="n-nearby-pages-title" class="mw-list-item"><a href="/wiki/Speciale:NelleVicinanze"><span>Nelle vicinanze</span></a></li><li id="n-vetrina" class="mw-list-item"><a href="/wiki/Wikipedia:Vetrina"><span>Vetrina</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aiuto:Aiuto" title="Pagine di aiuto"><span>Aiuto</span></a></li><li id="n-Sportello-informazioni" class="mw-list-item"><a href="/wiki/Aiuto:Sportello_informazioni"><span>Sportello informazioni</span></a></li> </ul> </div> </div> <div id="p-Comunità" class="vector-menu mw-portlet mw-portlet-Comunità" > <div class="vector-menu-heading"> Comunità </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Portale:Comunit%C3%A0" title="Descrizione del progetto, cosa puoi fare, dove trovare le cose"><span>Portale Comunità</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:Bar"><span>Bar</span></a></li><li id="n-wikipediano" class="mw-list-item"><a href="/wiki/Wikipedia:Wikipediano"><span>Il Wikipediano</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Wikipedia:Contatti"><span>Contatti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Pagina_principale" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="L'enciclopedia libera" src="/static/images/mobile/copyright/wikipedia-tagline-it.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciale:Ricerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca in Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ricerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca in Wikipedia" aria-label="Cerca in Wikipedia" autocapitalize="sentences" title="Cerca in Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciale:Ricerca"> </div> <button class="cdx-button cdx-search-input__end-button">Ricerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Strumenti personali"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifica la dimensione, la larghezza e il colore del testo" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspetto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspetto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it" class=""><span>Fai una donazione</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:CreaUtenza&returnto=E%3Dmc%C2%B2" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio" class=""><span>registrati</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciale:Entra&returnto=E%3Dmc%C2%B2" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o" class=""><span>entra</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Altre opzioni" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti personali" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Strumenti personali</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utente" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_it.wikipedia.org&uselang=it"><span>Fai una donazione</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:CreaUtenza&returnto=E%3Dmc%C2%B2" title="Si consiglia di registrarsi e di effettuare l'accesso, anche se non è obbligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>registrati</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciale:Entra&returnto=E%3Dmc%C2%B2" title="Si consiglia di effettuare l'accesso, anche se non è obbligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>entra</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pagine per utenti anonimi <a href="/wiki/Aiuto:Benvenuto" aria-label="Ulteriori informazioni sulla contribuzione"><span>ulteriori informazioni</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speciale:MieiContributi" title="Un elenco delle modifiche fatte da questo indirizzo IP [y]" accesskey="y"><span>contributi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speciale:MieDiscussioni" title="Discussioni sulle modifiche fatte da questo indirizzo IP [n]" accesskey="n"><span>discussioni</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sito"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indice" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indice</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">nascondi</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inizio</div> </a> </li> <li id="toc-Significato_dell'equazione" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Significato_dell'equazione"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Significato dell'equazione</span> </div> </a> <ul id="toc-Significato_dell'equazione-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conseguenze" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Conseguenze"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Conseguenze</span> </div> </a> <ul id="toc-Conseguenze-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Velocità_della_luce_come_limite" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Velocità_della_luce_come_limite"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Velocità della luce come limite</span> </div> </a> <ul id="toc-Velocità_della_luce_come_limite-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Approssimazione_per_basse_velocità" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Approssimazione_per_basse_velocità"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Approssimazione per basse velocità</span> </div> </a> <ul id="toc-Approssimazione_per_basse_velocità-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Massa_invariante" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Massa_invariante"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Massa invariante</span> </div> </a> <ul id="toc-Massa_invariante-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aspetti_storici" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Aspetti_storici"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Aspetti storici</span> </div> </a> <button aria-controls="toc-Aspetti_storici-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Attiva/disattiva la sottosezione Aspetti storici</span> </button> <ul id="toc-Aspetti_storici-sublist" class="vector-toc-list"> <li id="toc-Luce_e_materia_da_Newton_a_Soldner_(1704-1804)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Luce_e_materia_da_Newton_a_Soldner_(1704-1804)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Luce e materia da Newton a Soldner (1704-1804)</span> </div> </a> <ul id="toc-Luce_e_materia_da_Newton_a_Soldner_(1704-1804)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-L'etere_come_causa_dell'equivalenza_massa-energia_(1851-1904)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#L'etere_come_causa_dell'equivalenza_massa-energia_(1851-1904)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>L'etere come causa dell'equivalenza massa-energia (1851-1904)</span> </div> </a> <ul id="toc-L'etere_come_causa_dell'equivalenza_massa-energia_(1851-1904)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-La_massa_elettromagnetica_dell'elettrone_(1881-1906)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#La_massa_elettromagnetica_dell'elettrone_(1881-1906)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>La massa elettromagnetica dell'elettrone (1881-1906)</span> </div> </a> <ul id="toc-La_massa_elettromagnetica_dell'elettrone_(1881-1906)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-La_massa_della_radiazione_elettromagnetica:_Poincaré_(1900_e_1904)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#La_massa_della_radiazione_elettromagnetica:_Poincaré_(1900_e_1904)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>La massa della radiazione elettromagnetica: Poincaré (1900 e 1904)</span> </div> </a> <ul id="toc-La_massa_della_radiazione_elettromagnetica:_Poincaré_(1900_e_1904)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-La_massa_della_radiazione_di_corpo_nero:_Hasenöhrl_(1904-1905)_e_Planck_(1907)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#La_massa_della_radiazione_di_corpo_nero:_Hasenöhrl_(1904-1905)_e_Planck_(1907)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>La massa della radiazione di corpo nero: Hasenöhrl (1904-1905) e Planck (1907)</span> </div> </a> <ul id="toc-La_massa_della_radiazione_di_corpo_nero:_Hasenöhrl_(1904-1905)_e_Planck_(1907)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivazioni_relativistiche_di_Einstein_(1905_e_1907)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivazioni_relativistiche_di_Einstein_(1905_e_1907)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Derivazioni relativistiche di Einstein (1905 e 1907)</span> </div> </a> <ul id="toc-Derivazioni_relativistiche_di_Einstein_(1905_e_1907)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.7</span> <span>Derivazioni non relativistiche di Einstein (1906 e 1950)</span> </div> </a> <ul id="toc-Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivazione_non_relativistica_di_Rohrlich_(1990)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivazione_non_relativistica_di_Rohrlich_(1990)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.8</span> <span>Derivazione non relativistica di Rohrlich (1990)</span> </div> </a> <ul id="toc-Derivazione_non_relativistica_di_Rohrlich_(1990)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Note" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Note"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Note</span> </div> </a> <ul id="toc-Note-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voci_correlate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voci_correlate"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Voci correlate</span> </div> </a> <ul id="toc-Voci_correlate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Altri_progetti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Altri_progetti"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Altri progetti</span> </div> </a> <ul id="toc-Altri_progetti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Collegamenti_esterni" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Collegamenti_esterni"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Collegamenti esterni</span> </div> </a> <ul id="toc-Collegamenti_esterni-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indice" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Mostra/Nascondi l'indice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Mostra/Nascondi l'indice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">E=mc²</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vai a una voce in un'altra lingua. Disponibile in 74 lingue" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-74" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">74 lingue</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Massa-energieverband" title="Massa-energieverband - afrikaans" lang="af" hreflang="af" data-title="Massa-energieverband" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/%C3%84quivalenz_von_Masse_und_Energie" title="Äquivalenz von Masse und Energie - tedesco svizzero" lang="gsw" hreflang="gsw" data-title="Äquivalenz von Masse und Energie" data-language-autonym="Alemannisch" data-language-local-name="tedesco svizzero" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%83%D8%A7%D9%81%D8%A4_%D8%A7%D9%84%D9%83%D8%AA%D9%84%D8%A9_%D9%88%D8%A7%D9%84%D8%B7%D8%A7%D9%82%D8%A9" title="تكافؤ الكتلة والطاقة - arabo" lang="ar" hreflang="ar" data-title="تكافؤ الكتلة والطاقة" data-language-autonym="العربية" data-language-local-name="arabo" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Equivalencia_ente_masa_y_enerx%C3%ADa" title="Equivalencia ente masa y enerxía - asturiano" lang="ast" hreflang="ast" data-title="Equivalencia ente masa y enerxía" data-language-autonym="Asturianu" data-language-local-name="asturiano" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/K%C3%BCtl%C9%99_v%C9%99_enerjinin_ekvivalentliyi" title="Kütlə və enerjinin ekvivalentliyi - azerbaigiano" lang="az" hreflang="az" data-title="Kütlə və enerjinin ekvivalentliyi" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaigiano" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%AD%D0%BA%D0%B2%D1%96%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%B0%D1%81%D1%86%D1%8C_%D0%BC%D0%B0%D1%81%D1%8B_%D1%96_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%96" title="Эквівалентнасць масы і энергіі - bielorusso" lang="be" hreflang="be" data-title="Эквівалентнасць масы і энергіі" data-language-autonym="Беларуская" data-language-local-name="bielorusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%95%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%81%D0%B0_%D0%B8_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F" title="Еквивалентност на маса и енергия - bulgaro" lang="bg" hreflang="bg" data-title="Еквивалентност на маса и енергия" data-language-autonym="Български" data-language-local-name="bulgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AD%E0%A6%B0%E2%80%93%E0%A6%B6%E0%A6%95%E0%A7%8D%E0%A6%A4%E0%A6%BF_%E0%A6%B8%E0%A6%AE%E0%A6%A4%E0%A6%BE" title="ভর–শক্তি সমতা - bengalese" lang="bn" hreflang="bn" data-title="ভর–শক্তি সমতা" data-language-autonym="বাংলা" data-language-local-name="bengalese" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - bretone" lang="br" hreflang="br" data-title="E=mc²" data-language-autonym="Brezhoneg" data-language-local-name="bretone" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equival%C3%A8ncia_entre_massa_i_energia" title="Equivalència entre massa i energia - catalano" lang="ca" hreflang="ca" data-title="Equivalència entre massa i energia" data-language-autonym="Català" data-language-local-name="catalano" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DB%8C%DB%95%DA%A9%D8%B3%D8%A7%D9%86%DB%8C_%D8%A8%D8%A7%D8%B1%D8%B3%D8%AA%DB%95-%D9%88%D8%B2%DB%95" title="یەکسانی بارستە-وزە - curdo centrale" lang="ckb" hreflang="ckb" data-title="یەکسانی بارستە-وزە" data-language-autonym="کوردی" data-language-local-name="curdo centrale" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/E_%3D_mc%C2%B2" title="E = mc² - ceco" lang="cs" hreflang="cs" data-title="E = mc²" data-language-autonym="Čeština" data-language-local-name="ceco" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%BF%D0%B5_%D0%BC%D0%B0%D1%81%D1%81%D0%B0_%D1%8D%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BB%C4%83%D1%85%C4%95" title="Энергипе масса эквивалентлăхĕ - ciuvascio" lang="cv" hreflang="cv" data-title="Энергипе масса эквивалентлăхĕ" data-language-autonym="Чӑвашла" data-language-local-name="ciuvascio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - danese" lang="da" hreflang="da" data-title="E=mc²" data-language-autonym="Dansk" data-language-local-name="danese" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/%C3%84quivalenz_von_Masse_und_Energie" title="Äquivalenz von Masse und Energie - tedesco" lang="de" hreflang="de" data-title="Äquivalenz von Masse und Energie" data-language-autonym="Deutsch" data-language-local-name="tedesco" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - Zazaki" lang="diq" hreflang="diq" data-title="E=mc²" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%99%CF%83%CE%BF%CE%B4%CF%85%CE%BD%CE%B1%CE%BC%CE%AF%CE%B1_%CE%BC%CE%AC%CE%B6%CE%B1%CF%82-%CE%B5%CE%BD%CE%AD%CF%81%CE%B3%CE%B5%CE%B9%CE%B1%CF%82" title="Ισοδυναμία μάζας-ενέργειας - greco" lang="el" hreflang="el" data-title="Ισοδυναμία μάζας-ενέργειας" data-language-autonym="Ελληνικά" data-language-local-name="greco" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence" title="Mass–energy equivalence - inglese" lang="en" hreflang="en" data-title="Mass–energy equivalence" data-language-autonym="English" data-language-local-name="inglese" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Masenergia_ekvivalento" title="Masenergia ekvivalento - esperanto" lang="eo" hreflang="eo" data-title="Masenergia ekvivalento" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Equivalencia_entre_masa_y_energ%C3%ADa" title="Equivalencia entre masa y energía - spagnolo" lang="es" hreflang="es" data-title="Equivalencia entre masa y energía" data-language-autonym="Español" data-language-local-name="spagnolo" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/E_%3D_mc%C2%B2" title="E = mc² - estone" lang="et" hreflang="et" data-title="E = mc²" data-language-autonym="Eesti" data-language-local-name="estone" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu badge-Q17437796 badge-featuredarticle mw-list-item" title="voce in vetrina"><a href="https://eu.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - basco" lang="eu" hreflang="eu" data-title="E=mc²" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%87%D9%85%E2%80%8C%D8%A7%D8%B1%D8%B2%DB%8C_%D8%AC%D8%B1%D9%85_%D9%88_%D8%A7%D9%86%D8%B1%DA%98%DB%8C" title="همارزی جرم و انرژی - persiano" lang="fa" hreflang="fa" data-title="همارزی جرم و انرژی" data-language-autonym="فارسی" data-language-local-name="persiano" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - finlandese" lang="fi" hreflang="fi" data-title="E=mc²" data-language-autonym="Suomi" data-language-local-name="finlandese" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/E%3Dmc2" title="E=mc2 - francese" lang="fr" hreflang="fr" data-title="E=mc2" data-language-autonym="Français" data-language-local-name="francese" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-fy mw-list-item"><a href="https://fy.wikipedia.org/wiki/Massa-enerzjyrelaasje" title="Massa-enerzjyrelaasje - frisone occidentale" lang="fy" hreflang="fy" data-title="Massa-enerzjyrelaasje" data-language-autonym="Frysk" data-language-local-name="frisone occidentale" class="interlanguage-link-target"><span>Frysk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Coibh%C3%A9is_maise_is_fuinnimh" title="Coibhéis maise is fuinnimh - irlandese" lang="ga" hreflang="ga" data-title="Coibhéis maise is fuinnimh" data-language-autonym="Gaeilge" data-language-local-name="irlandese" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Equivalencia_masa-enerx%C3%ADa" title="Equivalencia masa-enerxía - galiziano" lang="gl" hreflang="gl" data-title="Equivalencia masa-enerxía" data-language-autonym="Galego" data-language-local-name="galiziano" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - ebraico" lang="he" hreflang="he" data-title="E=mc²" data-language-autonym="עברית" data-language-local-name="ebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A5%8D%E0%A4%B0%E0%A4%B5%E0%A5%8D%E0%A4%AF%E0%A4%AE%E0%A4%BE%E0%A4%A8-%E0%A4%8A%E0%A4%B0%E0%A5%8D%E0%A4%9C%E0%A4%BE_%E0%A4%B8%E0%A4%AE%E0%A4%A4%E0%A5%81%E0%A4%B2%E0%A5%8D%E0%A4%AF%E0%A4%A4%E0%A4%BE" title="द्रव्यमान-ऊर्जा समतुल्यता - hindi" lang="hi" hreflang="hi" data-title="द्रव्यमान-ऊर्जा समतुल्यता" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Ekvivalencija_mase_i_energije" title="Ekvivalencija mase i energije - croato" lang="hr" hreflang="hr" data-title="Ekvivalencija mase i energije" data-language-autonym="Hrvatski" data-language-local-name="croato" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/T%C3%B6meg-energia_ekvivalencia" title="Tömeg-energia ekvivalencia - ungherese" lang="hu" hreflang="hu" data-title="Tömeg-energia ekvivalencia" data-language-autonym="Magyar" data-language-local-name="ungherese" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B6%D5%A1%D5%B6%D5%A3%D5%BE%D5%A1%D5%AE%D5%AB_%D6%87_%D5%A7%D5%B6%D5%A5%D6%80%D5%A3%D5%AB%D5%A1%D5%B5%D5%AB_%D5%B0%D5%A1%D5%B4%D5%A1%D6%80%D5%AA%D5%A5%D6%84%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Զանգվածի և էներգիայի համարժեքություն - armeno" lang="hy" hreflang="hy" data-title="Զանգվածի և էներգիայի համարժեքություն" data-language-autonym="Հայերեն" data-language-local-name="armeno" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ekuivalensi_massa%E2%80%93energi" title="Ekuivalensi massa–energi - indonesiano" lang="id" hreflang="id" data-title="Ekuivalensi massa–energi" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiano" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%B3%AA%E9%87%8F%E3%81%A8%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC%E3%81%AE%E7%AD%89%E4%BE%A1%E6%80%A7" title="質量とエネルギーの等価性 - giapponese" lang="ja" hreflang="ja" data-title="質量とエネルギーの等価性" data-language-autonym="日本語" data-language-local-name="giapponese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - giavanese" lang="jv" hreflang="jv" data-title="E=mc²" data-language-autonym="Jawa" data-language-local-name="giavanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%81%D1%81%D0%B0-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F_%D1%8D%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D1%96" title="Масса-энергия эквиваленті - kazako" lang="kk" hreflang="kk" data-title="Масса-энергия эквиваленті" data-language-autonym="Қазақша" data-language-local-name="kazako" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9A%E1%9E%BC%E1%9E%94%E1%9E%98%E1%9E%93%E1%9F%92%E1%9E%8F%E1%9E%9F%E1%9E%98%E1%9E%98%E1%9E%BC%E1%9E%9B%E1%9E%98%E1%9F%89%E1%9E%B6%E1%9E%9F%E1%9F%8B-%E1%9E%90%E1%9E%B6%E1%9E%98%E1%9E%96%E1%9E%9B" title="រូបមន្តសមមូលម៉ាស់-ថាមពល - khmer" lang="km" hreflang="km" data-title="រូបមន្តសមមូលម៉ាស់-ថាមពល" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%88%EB%9F%89-%EC%97%90%EB%84%88%EC%A7%80_%EB%93%B1%EA%B0%80" title="질량-에너지 등가 - coreano" lang="ko" hreflang="ko" data-title="질량-에너지 등가" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Aequatio_massae_et_energiae" title="Aequatio massae et energiae - latino" lang="la" hreflang="la" data-title="Aequatio massae et energiae" data-language-autonym="Latina" data-language-local-name="latino" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lad mw-list-item"><a href="https://lad.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - giudeo-spagnolo" lang="lad" hreflang="lad" data-title="E=mc²" data-language-autonym="Ladino" data-language-local-name="giudeo-spagnolo" class="interlanguage-link-target"><span>Ladino</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%97%E0%BA%BD%E0%BA%9A%E0%BB%80%E0%BA%97%E0%BA%BB%E0%BB%88%E0%BA%B2%E0%BA%A1%E0%BA%A7%E0%BA%99-%E0%BA%9E%E0%BA%B0%E0%BA%A5%E0%BA%B1%E0%BA%87%E0%BA%87%E0%BA%B2%E0%BA%99" title="ທຽບເທົ່າມວນ-ພະລັງງານ - lao" lang="lo" hreflang="lo" data-title="ທຽບເທົ່າມວນ-ພະລັງງານ" data-language-autonym="ລາວ" data-language-local-name="lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Mas%C4%97s_ir_energijos_s%C4%85ry%C5%A1is" title="Masės ir energijos sąryšis - lituano" lang="lt" hreflang="lt" data-title="Masės ir energijos sąryšis" data-language-autonym="Lietuvių" data-language-local-name="lituano" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Masas%E2%80%94ener%C4%A3ijas_proporcionalit%C4%81te" title="Masas—enerģijas proporcionalitāte - lettone" lang="lv" hreflang="lv" data-title="Masas—enerģijas proporcionalitāte" data-language-autonym="Latviešu" data-language-local-name="lettone" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%95%D0%B4%D0%BD%D0%B0%D0%BA%D0%B2%D0%BE%D1%81%D1%82_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%81%D0%B0%D1%82%D0%B0_%D0%B8_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0%D1%82%D0%B0" title="Еднаквост на масата и енергијата - macedone" lang="mk" hreflang="mk" data-title="Еднаквост на масата и енергијата" data-language-autonym="Македонски" data-language-local-name="macedone" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/E_%3D_mc%C2%B2" title="E = mc² - malayalam" lang="ml" hreflang="ml" data-title="E = mc²" data-language-autonym="മലയാളം" data-language-local-name="malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - malese" lang="ms" hreflang="ms" data-title="E=mc²" data-language-autonym="Bahasa Melayu" data-language-local-name="malese" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nap mw-list-item"><a href="https://nap.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - napoletano" lang="nap" hreflang="nap" data-title="E=mc²" data-language-autonym="Napulitano" data-language-local-name="napoletano" class="interlanguage-link-target"><span>Napulitano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Massa-energierelatie" title="Massa-energierelatie - olandese" lang="nl" hreflang="nl" data-title="Massa-energierelatie" data-language-autonym="Nederlands" data-language-local-name="olandese" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Masseenergilova" title="Masseenergilova - norvegese nynorsk" lang="nn" hreflang="nn" data-title="Masseenergilova" data-language-autonym="Norsk nynorsk" data-language-local-name="norvegese nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Masseenergiloven" title="Masseenergiloven - norvegese bokmål" lang="nb" hreflang="nb" data-title="Masseenergiloven" data-language-autonym="Norsk bokmål" data-language-local-name="norvegese bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnowa%C5%BCno%C5%9B%C4%87_masy_i_energii" title="Równoważność masy i energii - polacco" lang="pl" hreflang="pl" data-title="Równoważność masy i energii" data-language-autonym="Polski" data-language-local-name="polacco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equival%C3%AAncia_massa%E2%80%93energia" title="Equivalência massa–energia - portoghese" lang="pt" hreflang="pt" data-title="Equivalência massa–energia" data-language-autonym="Português" data-language-local-name="portoghese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Echivalen%C8%9B%C4%83_mas%C4%83-energie" title="Echivalență masă-energie - rumeno" lang="ro" hreflang="ro" data-title="Echivalență masă-energie" data-language-autonym="Română" data-language-local-name="rumeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437798 badge-goodarticle mw-list-item" title="voce di qualità"><a href="https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D0%B2%D0%B8%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%BC%D0%B0%D1%81%D1%81%D1%8B_%D0%B8_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8" title="Эквивалентность массы и энергии - russo" lang="ru" hreflang="ru" data-title="Эквивалентность массы и энергии" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - siciliano" lang="scn" hreflang="scn" data-title="E=mc²" data-language-autonym="Sicilianu" data-language-local-name="siciliano" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Ekvivalentnost_mase_i_energije" title="Ekvivalentnost mase i energije - serbo-croato" lang="sh" hreflang="sh" data-title="Ekvivalentnost mase i energije" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbo-croato" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B7%8A%E0%B6%9A%E0%B6%B1%E0%B7%8A%E0%B6%B0%E2%80%93%E0%B7%81%E0%B6%9A%E0%B7%8A%E0%B6%AD%E0%B7%92_%E0%B6%AD%E0%B7%94%E0%B6%BD%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B6%AD%E0%B7%8F%E0%B7%80%E0%B6%BA" title="ස්කන්ධ–ශක්ති තුල්යතාවය - singalese" lang="si" hreflang="si" data-title="ස්කන්ධ–ශක්ති තුල්යතාවය" data-language-autonym="සිංහල" data-language-local-name="singalese" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Einsteinov_vz%C5%A5ah" title="Einsteinov vzťah - slovacco" lang="sk" hreflang="sk" data-title="Einsteinov vzťah" data-language-autonym="Slovenčina" data-language-local-name="slovacco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/E_%3D_mc%C2%B2" title="E = mc² - sloveno" lang="sl" hreflang="sl" data-title="E = mc²" data-language-autonym="Slovenščina" data-language-local-name="sloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%88%D0%B5%D0%B4%D0%BD%D0%B0%D0%BA%D0%BE%D1%81%D1%82_%D0%BC%D0%B0%D1%81%D0%B5_%D0%B8_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B5" title="Једнакост масе и енергије - serbo" lang="sr" hreflang="sr" data-title="Једнакост масе и енергије" data-language-autonym="Српски / srpski" data-language-local-name="serbo" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - sundanese" lang="su" hreflang="su" data-title="E=mc²" data-language-autonym="Sunda" data-language-local-name="sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/E_%3D_mc%C2%B2" title="E = mc² - svedese" lang="sv" hreflang="sv" data-title="E = mc²" data-language-autonym="Svenska" data-language-local-name="svedese" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%90%E0%AE%A9%E0%AF%8D%E0%AE%B8%E0%AF%8D%E0%AE%9F%E0%AF%80%E0%AE%A9%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%AA%E0%AF%8A%E0%AE%B0%E0%AF%81%E0%AE%A3%E0%AF%8D%E0%AE%AE%E0%AF%88_-_%E0%AE%86%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%B2%E0%AF%8D_%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாடு - tamil" lang="ta" hreflang="ta" data-title="ஐன்ஸ்டீனின் பொருண்மை - ஆற்றல் சமன்பாடு" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%AA%E0%B8%A1%E0%B8%A1%E0%B8%B9%E0%B8%A5%E0%B8%A1%E0%B8%A7%E0%B8%A5%E2%80%93%E0%B8%9E%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%87%E0%B8%B2%E0%B8%99" title="ความสมมูลมวล–พลังงาน - thailandese" lang="th" hreflang="th" data-title="ความสมมูลมวล–พลังงาน" data-language-autonym="ไทย" data-language-local-name="thailandese" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Pagkakatumbas_ng_masa_at_enerhiya" title="Pagkakatumbas ng masa at enerhiya - tagalog" lang="tl" hreflang="tl" data-title="Pagkakatumbas ng masa at enerhiya" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/K%C3%BCtle-enerji_e%C5%9Fde%C4%9Ferli%C4%9Fi" title="Kütle-enerji eşdeğerliği - turco" lang="tr" hreflang="tr" data-title="Kütle-enerji eşdeğerliği" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B8%D1%82%D0%B0%D0%BD%D0%BD%D1%8F_%D0%B5%D0%BA%D0%B2%D1%96%D0%B2%D0%B0%D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%96_%D0%BC%D0%B0%D1%81%D0%B8_%D1%82%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%97" title="Питання еквівалентності маси та енергії - ucraino" lang="uk" hreflang="uk" data-title="Питання еквівалентності маси та енергії" data-language-autonym="Українська" data-language-local-name="ucraino" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/E%3Dmc2" title="E=mc2 - urdu" lang="ur" hreflang="ur" data-title="E=mc2" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%B1_t%C6%B0%C6%A1ng_%C4%91%C6%B0%C6%A1ng_kh%E1%BB%91i_l%C6%B0%E1%BB%A3ng%E2%80%93n%C4%83ng_l%C6%B0%E1%BB%A3ng" title="Sự tương đương khối lượng–năng lượng - vietnamita" lang="vi" hreflang="vi" data-title="Sự tương đương khối lượng–năng lượng" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%B4%A8%E8%83%BD%E7%AD%89%E4%BB%B7" title="质能等价 - wu" lang="wuu" hreflang="wuu" data-title="质能等价" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/E%3Dmc%C2%B2" title="E=mc² - yiddish" lang="yi" hreflang="yi" data-title="E=mc²" data-language-autonym="ייִדיש" data-language-local-name="yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B3%AA%E8%83%BD%E7%AD%89%E5%83%B9" title="質能等價 - cinese" lang="zh" hreflang="zh" data-title="質能等價" data-language-autonym="中文" data-language-local-name="cinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%B3%AA%E8%83%BD%E7%AD%89%E5%83%B9" title="質能等價 - cantonese" lang="yue" hreflang="yue" data-title="質能等價" data-language-autonym="粵語" data-language-local-name="cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q35875#sitelinks-wikipedia" title="Modifica collegamenti interlinguistici" class="wbc-editpage">Modifica collegamenti</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespace"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/E%3Dmc%C2%B2" title="Vedi la voce [c]" accesskey="c"><span>Voce</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussione:E%3Dmc%C2%B2" rel="discussion" title="Vedi le discussioni relative a questa pagina [t]" accesskey="t"><span>Discussione</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambia versione linguistica" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">italiano</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visite"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/E%3Dmc%C2%B2"><span>Leggi</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&action=history" title="Versioni precedenti di questa pagina [h]" accesskey="h"><span>Cronologia</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Strumenti" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Strumenti</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Strumenti</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">nascondi</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Altre opzioni" > <div class="vector-menu-heading"> Azioni </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/E%3Dmc%C2%B2"><span>Leggi</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit" title="Modifica questa pagina [v]" accesskey="v"><span>Modifica</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit" title="Modifica il wikitesto di questa pagina [e]" accesskey="e"><span>Modifica wikitesto</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&action=history"><span>Cronologia</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generale </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciale:PuntanoQui/E%3Dmc%C2%B2" title="Elenco di tutte le pagine che sono collegate a questa [j]" accesskey="j"><span>Puntano qui</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciale:ModificheCorrelate/E%3Dmc%C2%B2" rel="nofollow" title="Elenco delle ultime modifiche alle pagine collegate a questa [k]" accesskey="k"><span>Modifiche correlate</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciale:PagineSpeciali" title="Elenco di tutte le pagine speciali [q]" accesskey="q"><span>Pagine speciali</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&oldid=142185127" title="Collegamento permanente a questa versione di questa pagina"><span>Link permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&action=info" title="Ulteriori informazioni su questa pagina"><span>Informazioni pagina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciale:Cita&page=E%3Dmc%C2%B2&id=142185127&wpFormIdentifier=titleform" title="Informazioni su come citare questa pagina"><span>Cita questa voce</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciale:UrlShortener&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FE%253Dmc%25C2%25B2"><span>Ottieni URL breve</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciale:QrCode&url=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FE%253Dmc%25C2%25B2"><span>Scarica codice QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Stampa/esporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciale:Libro&bookcmd=book_creator&referer=E%3Dmc%C2%B2"><span>Crea un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciale:DownloadAsPdf&page=E%3Dmc%C2%B2&action=show-download-screen"><span>Scarica come PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=E%3Dmc%C2%B2&printable=yes" title="Versione stampabile di questa pagina [p]" accesskey="p"><span>Versione stampabile</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In altri progetti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Einstein_formula" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://it.wikiquote.org/wiki/E%3Dmc%C2%B2" hreflang="it"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q35875" title="Collegamento all'elemento connesso dell'archivio dati [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Strumenti pagine"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspetto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspetto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">sposta nella barra laterale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">nascondi</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Da Wikipedia, l'enciclopedia libera.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="it" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r130658281">body:not(.skin-minerva) .mw-parser-output .hatnote.nota-disambigua{clear:both;margin-top:0;padding:.05em .5em}</style> <style data-mw-deduplicate="TemplateStyles:r139142988">.mw-parser-output .hatnote-content{align-items:center;display:flex}.mw-parser-output .hatnote-icon{flex-shrink:0}.mw-parser-output .hatnote-icon img{display:flex}.mw-parser-output .hatnote-text{font-style:italic}body:not(.skin-minerva) .mw-parser-output .hatnote{border:1px solid #CCC;display:flex;margin:.5em 0;padding:.2em .5em}body:not(.skin-minerva) .mw-parser-output .hatnote-text{padding-left:.5em}body.skin-minerva .mw-parser-output .hatnote-icon{padding-right:8px}body.skin-minerva .mw-parser-output .hatnote-icon img{height:auto;width:16px}body.skin--responsive .mw-parser-output .hatnote a.new{color:#d73333}body.skin--responsive .mw-parser-output .hatnote a.new:visited{color:#a55858}</style> <div class="hatnote noprint nota-disambigua"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Nota_disambigua.svg/18px-Nota_disambigua.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Nota_disambigua.svg/27px-Nota_disambigua.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Nota_disambigua.svg/36px-Nota_disambigua.svg.png 2x" data-file-width="200" data-file-height="200" /></span></span> <span class="hatnote-text"><a href="/wiki/Aiuto:Disambiguazione" title="Aiuto:Disambiguazione">Disambiguazione</a> – Se stai cercando altri significati, vedi <b><a href="/wiki/E%3Dmc%C2%B2_(disambigua)" class="mw-disambig" title="E=mc² (disambigua)">E=mc² (disambigua)</a></b>.</span></div> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Relativity4_Walk_of_Ideas_Berlin.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG/220px-Relativity4_Walk_of_Ideas_Berlin.JPG" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG/330px-Relativity4_Walk_of_Ideas_Berlin.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Relativity4_Walk_of_Ideas_Berlin.JPG/440px-Relativity4_Walk_of_Ideas_Berlin.JPG 2x" data-file-width="800" data-file-height="600" /></a><figcaption>Sesta e ultima scultura della "Berliner Walk of Ideas", realizzata in occasione del <a href="/wiki/Campionato_mondiale_di_calcio_2006" title="Campionato mondiale di calcio 2006">Campionato mondiale di calcio 2006</a> (<a href="/wiki/Berlino" title="Berlino">Berlino</a>, <a href="/wiki/Lustgarten" title="Lustgarten">Lustgarten</a>, di fronte all'<a href="/wiki/Altes_Museum" title="Altes Museum">Altes Museum</a>)</figcaption></figure> <p><i><b>E = mc<sup>2</sup></b></i> esprime la relazione tra l'<a href="/wiki/Energia" title="Energia">energia</a> e la <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> di un <a href="/wiki/Sistema_fisico" class="mw-redirect" title="Sistema fisico">sistema fisico</a>. <i>E</i> indica l'<a href="/wiki/Energia_totale_relativistica" title="Energia totale relativistica">energia totale relativistica</a> del sistema, <i>m</i> la sua <a href="/wiki/Massa_relativistica" title="Massa relativistica">massa relativistica</a> e <i>c</i> la costante <a href="/wiki/Velocit%C3%A0_della_luce" title="Velocità della luce">velocità della luce</a> nel vuoto. Se si considera un <a href="/wiki/Sistema_di_riferimento" title="Sistema di riferimento">sistema di riferimento</a> solidale a un corpo, in cui la velocità del corpo risulta nulla, l'equazione va riformulata come <i>E<sub>0</sub> = m<sub>0</sub> c<sup>2</sup></i>, in cui <i>m<sub>0</sub></i> è la <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> ed <i>E<sub>0</sub></i> l'energia di massa.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>Nota 1<span class="cite-bracket">]</span></a></sup> In questa forma, stabilisce un'equivalenza tra massa ed energia e, di conseguenza, un principio di conservazione massa-energia. Tale principio segna un superamento rivoluzionario della separazione tra la <a href="/wiki/Legge_della_conservazione_della_massa_(chimica)" title="Legge della conservazione della massa (chimica)">legge della conservazione della massa</a> e la <a href="/wiki/Legge_di_conservazione_dell%27energia" title="Legge di conservazione dell'energia">legge di conservazione dell'energia</a>. </p><p>Fu enunciata, in una forma diversa (vedi <a class="mw-selflink-fragment" href="#Derivazioni_relativistiche_di_Einstein_(1905_e_1907)">Derivazione relativistica di Einstein</a>), da <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> nell'ambito della <a href="/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta">relatività ristretta</a>. Tuttavia non fu pubblicata nel primo articolo dedicato alla teoria (<i><a href="/wiki/Sull%27elettrodinamica_dei_corpi_in_movimento" title="Sull'elettrodinamica dei corpi in movimento">Sull'elettrodinamica dei corpi in movimento</a></i>), del giugno 1905, ma in quello intitolato <i>L'inerzia di un corpo dipende dal suo contenuto di energia?</i>,<sup id="cite_ref-einstein_2-0" class="reference"><a href="#cite_note-einstein-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> del settembre dello stesso anno. Era già stata proposta precedentemente, ad esempio da <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> nel 1900 (vedi <a class="mw-selflink-fragment" href="#Aspetti_storici">Aspetti storici</a>), senza acquisire la valenza di principio generale, assunta dopo il 1905 grazie ad Einstein. </p><p>È probabilmente la più famosa formula della Fisica, grazie alla sua semplicità ed eleganza. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Significato_dell'equazione"><span id="Significato_dell.27equazione"></span>Significato dell'equazione</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=1" title="Modifica la sezione Significato dell'equazione" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=1" title="Edit section's source code: Significato dell'equazione"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Fino allo sviluppo della relatività ristretta si riteneva che <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> ed <a href="/wiki/Energia" title="Energia">energia</a> fossero due <a href="/wiki/Grandezza_fisica" title="Grandezza fisica">grandezze fisiche</a> distinte. L'equivalenza fra massa ed energia, introdotta con la relatività ristretta, sancisce invece che sono strettamente legate, e proporzionali tra loro tramite il quadrato della <a href="/wiki/Velocit%C3%A0_della_luce" title="Velocità della luce">velocità della luce</a> nel vuoto (c²). Esse possono essere considerate come due manifestazioni, espresse con <a href="/wiki/Unit%C3%A0_di_misura" title="Unità di misura">unità di misura</a> differenti, della stessa proprietà fisica. Di conseguenza, qualsiasi corpo materiale o <a href="/wiki/Particella_(fisica)" title="Particella (fisica)">particella</a> massiva possiede un'<a href="/wiki/Energia" title="Energia">energia</a> proporzionale alla sua <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> oltre, eventualmente, ad altra energia sotto forma di <a href="/wiki/Energia_potenziale" title="Energia potenziale">energia potenziale</a> o <a href="/wiki/Energia_cinetica" title="Energia cinetica">cinetica</a>. </p><p>L'equivalenza massa-energia può essere formulata in due modi, a seconda del significato che si dà ai termini di massa ed energia. La prima possibilità, sostenuta da Einstein<sup id="cite_ref-hecht_3-0" class="reference"><a href="#cite_note-hecht-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> nell'articolo del 1905 "L'inerzia di un corpo dipende dal suo contenuto di energia?",<sup id="cite_ref-einstein_2-1" class="reference"><a href="#cite_note-einstein-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> è quella d'interpretare l'equivalenza nei termini della <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span>, cioè la massa dell'oggetto nel sistema di riferimento in cui è in quiete: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e68c755740c0e7eda977c085429f6ea98d07654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.156ex; height:3.009ex;" alt="{\displaystyle m_{0}c^{2}}"></span> esprime quindi l'<i>energia di massa</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span> di un corpo. La seconda possibilità si basa sul concetto (oggi considerato obsoleto: vedi <a class="mw-selflink-fragment" href="#Massa_invariante">Massa invariante</a>) di <a href="/wiki/Massa_relativistica" title="Massa relativistica">massa relativistica</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>, dal quale si ricava che l'energia totale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> di un corpo è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span>. L'<a href="/wiki/Energia_totale_relativistica" title="Energia totale relativistica">energia relativistica totale</a> del corpo comprende sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}"></span> (riferita alla massa a riposo <i>m<sub>0</sub></i>), sia l'<a href="/wiki/Energia_cinetica" title="Energia cinetica">energia cinetica</a> <i>K</i> (dovuta al moto del corpo con velocità <i>v</i>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=E_{0}+K=m_{0}c^{2}+(\gamma -1)\,m_{0}c^{2}=\gamma \,m_{0}c^{2}=mc^{2}={\sqrt {p^{2}c^{2}\,+\,m_{0}^{2}c^{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>K</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <msubsup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=E_{0}+K=m_{0}c^{2}+(\gamma -1)\,m_{0}c^{2}=\gamma \,m_{0}c^{2}=mc^{2}={\sqrt {p^{2}c^{2}\,+\,m_{0}^{2}c^{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc549396b93dcbb61d2e000ba34bb18a82ff3640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:71.843ex; height:4.843ex;" alt="{\displaystyle E=E_{0}+K=m_{0}c^{2}+(\gamma -1)\,m_{0}c^{2}=\gamma \,m_{0}c^{2}=mc^{2}={\sqrt {p^{2}c^{2}\,+\,m_{0}^{2}c^{4}}}}"></span></dd></dl> <table class="wikitable floatright"> <tbody><tr> <th>Massa a riposo </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> </td></tr> <tr> <th>Massa relativistica </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=\gamma \,m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=\gamma \,m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f6444897c4965304f2a88f8e9e1b675361f2f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.883ex; height:2.176ex;" alt="{\displaystyle m=\gamma \,m_{0}}"></span> </td></tr> <tr> <th>Energia di massa </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span> </td></tr> <tr> <th>Energia totale </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}=\gamma \,m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}=\gamma \,m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40c5ec6c517acb66face61902034f013453e6979" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.879ex; height:3.176ex;" alt="{\displaystyle E=mc^{2}=\gamma \,m_{0}c^{2}}"></span> </td></tr></tbody></table> <p>in cui <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\gamma \,m_{0}v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\gamma \,m_{0}v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbdd07da63acf1faee512285191f529c59a9535c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:10.229ex; height:2.176ex;" alt="{\displaystyle p=\gamma \,m_{0}v}"></span> è la <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> relativistica, definita da <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a> nel 1906.<sup id="cite_ref-hecht_3-1" class="reference"><a href="#cite_note-hecht-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>La massa relativistica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> è legata alla massa a riposo tramite il <a href="/wiki/Fattore_di_Lorentz" title="Fattore di Lorentz">fattore di Lorentz</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=\gamma \,m_{0}={\frac {1}{\sqrt {1-(v/c)^{2}}}}\;m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=\gamma \,m_{0}={\frac {1}{\sqrt {1-(v/c)^{2}}}}\;m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7168b3f53e2424c3345322ca87fa8843262bce1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.044ex; height:6.509ex;" alt="{\displaystyle m=\gamma \,m_{0}={\frac {1}{\sqrt {1-(v/c)^{2}}}}\;m_{0}}"></span></dd></dl> <p>e appare nella versione relativistica del <a href="/wiki/Secondo_principio_della_dinamica" class="mw-redirect" title="Secondo principio della dinamica">secondo principio della dinamica</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}={\frac {d}{dt}}(\gamma m_{0}{\vec {v}})={\frac {d}{dt}}(m{\vec {v}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}={\frac {d}{dt}}(\gamma m_{0}{\vec {v}})={\frac {d}{dt}}(m{\vec {v}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53fb3a77528638e1e57bca14a293ca3eec0ab73d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.118ex; height:5.509ex;" alt="{\displaystyle {\vec {F}}={\frac {d}{dt}}(\gamma m_{0}{\vec {v}})={\frac {d}{dt}}(m{\vec {v}})}"></span>.</dd></dl> <p>Poiché la massa relativistica dipende dalla velocità, il concetto classico di <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> risulta modificato, non coincidendo più con la definizione <a href="/wiki/Isaac_Newton" title="Isaac Newton">newtoniana</a> di <a href="/wiki/Costante_di_proporzionalit%C3%A0" class="mw-redirect" title="Costante di proporzionalità">costante di proporzionalità</a> fra la <a href="/wiki/Forza" title="Forza">forza</a> applicata a un corpo e l'<a href="/wiki/Accelerazione" title="Accelerazione">accelerazione</a> risultante, ma divenendo una grandezza dinamica proporzionale all'energia complessiva del corpo. Di conseguenza, la massa relativistica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> (che dipende da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>) e la massa a riposo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> (che <i>non</i> dipende da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span>) sono concettualmente diverse. Quindi <i>non</i> è fisicamente corretto considerare l'energia di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span> come il limite per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \to 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \to 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4f4ddc77d733a0302350ee6a93907b7c6a80c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.039ex; height:2.676ex;" alt="{\displaystyle \gamma \to 1}"></span> (ovvero per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6dfe7594dad76d17234051348e85bc41784807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.904ex; height:2.176ex;" alt="{\displaystyle v\to 0}"></span> ) dell'energia relativistica totale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma \,m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma \,m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ceb71fa54e467d1fe81bca70c3d745a9b20d35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.679ex; height:3.176ex;" alt="{\displaystyle E=\gamma \,m_{0}c^{2}}"></span>. </p><p>Nella <a href="/wiki/Fisica_classica" title="Fisica classica">fisica classica</a> <a href="/wiki/XIX_secolo" title="XIX secolo">ottocentesca</a> esistevano due leggi (o princìpi) di conservazione ben distinte e separate: la <a href="/wiki/Legge_della_conservazione_della_massa_(fisica)" title="Legge della conservazione della massa (fisica)">legge di conservazione della massa</a>, scoperta da <a href="/wiki/Lavoisier" class="mw-redirect" title="Lavoisier">Lavoisier</a> (<i>«In natura nulla si crea e nulla si distrugge, ma tutto si trasforma»</i>) e la <a href="/wiki/Legge_di_conservazione_dell%27energia" title="Legge di conservazione dell'energia">legge di conservazione dell'energia</a>, o <a href="/wiki/Primo_principio_della_termodinamica" title="Primo principio della termodinamica">primo principio della termodinamica</a>, alla cui scoperta hanno contribuito, nel corso dell'Ottocento, diversi scienziati (<a href="/wiki/Julius_Robert_von_Mayer" title="Julius Robert von Mayer">Mayer</a>, <a href="/wiki/James_Prescott_Joule" title="James Prescott Joule">Joule</a>, <a href="/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot" title="Nicolas Léonard Sadi Carnot">Carnot</a>, <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Thomson</a>, <a href="/wiki/Rudolf_Clausius" title="Rudolf Clausius">Clausius</a>, <a href="/wiki/Michael_Faraday" title="Michael Faraday">Faraday</a>). </p><p>A partire dai primi anni del <a href="/wiki/XX_secolo" title="XX secolo">Novecento</a>, la conservazione dell'<a href="/wiki/Energia_meccanica" title="Energia meccanica">energia meccanica</a> comprende invece, oltre all'<a href="/wiki/Energia_cinetica" title="Energia cinetica">energia cinetica</a> e all'<a href="/wiki/Energia_potenziale" title="Energia potenziale">energia potenziale</a> (dovuta alla presenza di masse esterne), anche un contributo proporzionale alla massa a riposo <i>m<sub>0</sub></i> quale ulteriore forma di energia. <a href="/wiki/Einstein" class="mw-redirect" title="Einstein">Einstein</a> ha quindi unificato le due leggi pre-esistenti in un unico <a href="/wiki/Principio_di_conservazione" class="mw-redirect" title="Principio di conservazione">principio di conservazione</a>, che coinvolge unitariamente tutti i processi fisici di trasformazione della massa in energia e viceversa, dato che l'una può trasformarsi nell'altra secondo la relazione <i>E<sub>0</sub> = m<sub>0</sub> c²</i>. Ciò che resta sempre costante, nei singoli sistemi fisici come nell'intero universo, è la somma di massa ed energia: il <i>principio di conservazione <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>-<a href="/wiki/Energia" title="Energia">energia</a></i>. La concezione einsteiniana getta una luce unificante sulla realtà fisica: con l'<i>equivalenza <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>-<a href="/wiki/Energia" title="Energia">energia</a></i>, la massa diventa una forma di energia. In determinati processi, la massa può essere trasformata in altre forme d'energia (<a href="/wiki/Annichilazione" title="Annichilazione">annichilazioni</a> <a href="/wiki/Particella_(fisica)" title="Particella (fisica)">particella</a>-<a href="/wiki/Antiparticella" title="Antiparticella">antiparticella</a>, <a href="/wiki/Reazioni_nucleari" class="mw-redirect" title="Reazioni nucleari">reazioni nucleari</a>, <a href="/wiki/Radioattivit%C3%A0" title="Radioattività">decadimenti radioattivi</a>, ecc.), così come l'energia può trasformarsi in massa, come si verifica negli <a href="/wiki/Acceleratore_di_particelle" title="Acceleratore di particelle">acceleratori di particelle</a> e nella <a href="/wiki/Produzione_di_coppia" title="Produzione di coppia">produzione di coppia</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd3b6a34d4a4a956ae778dd36c3fabcbec92879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.817ex; height:3.009ex;" alt="{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}"></span>. </p><p>L'equazione di Einstein è stata verificata sia per fenomeni fisici macroscopici, come ad esempio la produzione d'<a href="/wiki/Energia_solare" title="Energia solare">energia solare</a>, sia a livello subatomico. Si hanno varie classi di fenomeni subatomici in cui si verifica l'equivalenza massa-energia: </p> <ol><li><a href="/wiki/Produzione_di_coppia" title="Produzione di coppia">Produzione di una coppia</a> <a href="/wiki/Particella_(fisica)" title="Particella (fisica)">particella</a>-<a href="/wiki/Antiparticella" title="Antiparticella">antiparticella</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">→<!-- → --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd3b6a34d4a4a956ae778dd36c3fabcbec92879" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.817ex; height:3.009ex;" alt="{\displaystyle (\gamma +\gamma \to e^{+}+e^{-})}"></span></li> <li><a href="/wiki/Annichilazione" title="Annichilazione">Annichilazioni</a> <a href="/wiki/Particella_(fisica)" title="Particella (fisica)">particella</a>-<a href="/wiki/Antiparticella" title="Antiparticella">antiparticella</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (e^{+}+e^{-}\to \gamma +\gamma \quad ;\quad q+{\bar {q}}\to \gamma +\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mspace width="1em" /> <mo>;</mo> <mspace width="1em" /> <mi>q</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (e^{+}+e^{-}\to \gamma +\gamma \quad ;\quad q+{\bar {q}}\to \gamma +\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09e8231f9b9ae672e3f5371fda3dd4436a8fbb0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.763ex; height:3.009ex;" alt="{\displaystyle (e^{+}+e^{-}\to \gamma +\gamma \quad ;\quad q+{\bar {q}}\to \gamma +\gamma )}"></span></li> <li><a href="/wiki/Decadimento_particellare" title="Decadimento particellare">Decadimenti particellari</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\pi ^{0}\to \gamma +\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\pi ^{0}\to \gamma +\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5801b22fdcfaffc08b17042247152fe10f787e86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.177ex; height:3.176ex;" alt="{\displaystyle (\pi ^{0}\to \gamma +\gamma )}"></span></li> <li><a href="/wiki/Trasmutazione" title="Trasmutazione">Trasmutazioni</a> o <a href="/wiki/Radioattivit%C3%A0" title="Radioattività">decadimenti radioattivi</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\to C+D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\to C+D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d8addd44f72ef3ff9a3cc859cc2a92a169db3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.697ex; height:2.843ex;" alt="{\displaystyle (A\to C+D)}"></span></li> <li><a href="/wiki/Reazioni_nucleari" class="mw-redirect" title="Reazioni nucleari">Reazioni nucleari</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A+B\to C+D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A+B\to C+D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a22d72cd57b0135cf239f299a4505d5e37a7d804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.302ex; height:2.843ex;" alt="{\displaystyle (A+B\to C+D)}"></span></li> <li><a href="/wiki/Fissione_nucleare" title="Fissione nucleare">Fissione nucleare</a> (divisione di un nucleo pesante in due o più nuclei leggeri)</li> <li><a href="/wiki/Fusione_nucleare" title="Fusione nucleare">Fusione nucleare</a> (unione di due nuclei leggeri in uno più pesante)</li></ol> <p>Nella produzione di coppia si può avere una totale conversione d'energia in materia. La completa conversione di massa in energia si verifica invece nell'annichilazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{+}+e^{-}\to \gamma +\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{+}+e^{-}\to \gamma +\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d341f99db221b489eb46bb2f95e4df788c334ba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.008ex; height:3.009ex;" alt="{\displaystyle e^{+}+e^{-}\to \gamma +\gamma }"></span>. In generale, nel caso di annichilazione particella-antiparticella, solo una coppia <a href="/wiki/Quark_(particella)" title="Quark (particella)">quark</a>-<a href="/wiki/Antiquark" title="Antiquark">antiquark</a> si annichila <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q+{\bar {q}}\to \gamma +\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q+{\bar {q}}\to \gamma +\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c61aa0fa82db66ee9714aa03199e4c2e610ca0c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.075ex; height:2.843ex;" alt="{\displaystyle (q+{\bar {q}}\to \gamma +\gamma )}"></span>, mentre i restanti quark formano nuove particelle (<a href="/wiki/Mesone" title="Mesone">mesoni</a>). Quando un <a href="/wiki/Protone" title="Protone">protone</a> collide con un <a href="/wiki/Antiprotone" title="Antiprotone">antiprotone</a> (e in generale quando qualsiasi <a href="/wiki/Barione" title="Barione">barione</a> collide con un antibarione), la reazione non è semplice come l'annichilazione elettrone-positrone. A differenza dell'elettrone, il protone non è una particella elementare: è composto da tre <a href="/wiki/Quark_(particella)" title="Quark (particella)">quark</a> di valenza e da un numero indeterminato di quark <i>del mare</i>, legati dai <a href="/wiki/Gluone" title="Gluone">gluoni</a>. Nella collisione tra un protone e un antiprotone, uno dei quark di valenza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> del protone può annichilirsi con un <a href="/wiki/Antiquark" title="Antiquark">antiquark</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df40aaaa5f6213d6e896be45f87eabeb7bfd4806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.377ex; height:2.343ex;" alt="{\displaystyle {\bar {q}}}"></span> dell'antiprotone, mentre i quark e antiquark restanti si risistemeranno in <a href="/wiki/Mesone" title="Mesone">mesoni</a> (principalmente <a href="/wiki/Pione" title="Pione">pioni</a> e <a href="/wiki/Kaone" title="Kaone">kaoni</a>) che si allontaneranno dal punto in cui è avvenuta l'annichilazione. I mesoni creati sono particelle instabili che decadranno. </p><p>Negli ultimi quattro casi elencati, la conversione della massa in energia non è completa e l'energia prodotta risulta dal calcolo della <i>difetto di massa</i>. Nelle reazioni che producono energia (esoenergetiche), le masse dei <a href="/wiki/Reagenti" class="mw-redirect" title="Reagenti">reagenti</a> devono quindi essere maggiori delle masse dei <a href="/wiki/Prodotto_(chimica)" title="Prodotto (chimica)">prodotti</a>. Usando l'esempio delle reazioni nucleari, che implicano solitamente 2 reagenti (<i>A</i> e <i>B</i>) e 2 prodotti (<i>C</i> e <i>D</i>), il bilancio di massa determina quale sia il <i>difetto di massa</i> Δ<i>m</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m=(m_{A}+m_{B})-(m_{C}+m_{D})>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>m</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m=(m_{A}+m_{B})-(m_{C}+m_{D})>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bc2784cb85b6a93648abb0288b0e03e05ce9032" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.656ex; height:2.843ex;" alt="{\displaystyle \Delta m=(m_{A}+m_{B})-(m_{C}+m_{D})>0}"></span></dd></dl> <p>L'energia liberata nel singolo processo nucleare sotto forma d'<a href="/wiki/Energia_cinetica" title="Energia cinetica">energia cinetica</a>, <a href="/wiki/Radiazione_elettromagnetica" title="Radiazione elettromagnetica">radiazione elettromagnetica</a>, <a href="/wiki/Calore" title="Calore">calore</a> o altra forma d'energia risulta essere </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E=\Delta m\,c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>E</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E=\Delta m\,c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1441f220ddb30a39c12b4bf560e45ba0f80bc4f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.234ex; height:2.676ex;" alt="{\displaystyle \Delta E=\Delta m\,c^{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Conseguenze">Conseguenze</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=2" title="Modifica la sezione Conseguenze" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=2" title="Edit section's source code: Conseguenze"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Misurando la massa di diversi <a href="/wiki/Nucleo_atomico" title="Nucleo atomico">nuclei atomici</a> si può ottenere una stima dell'<a href="/wiki/Energia_di_legame" title="Energia di legame">energia di legame</a> disponibile all'interno di un nucleo atomico. È quindi possibile stimare la quantità d'energia di legame che può essere rilasciata in un processo nucleare. Si consideri il seguente esempio: un nucleo di <a href="/wiki/Uranio" title="Uranio">uranio</a>-238 può decadere naturalmente formando un nucleo di torio-234 e uno di elio-4 (<a href="/wiki/Particella_%CE%B1" title="Particella α">Particella α</a>). Sommando la <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> dei due nuovi nuclei si rileva che essa è minore del nucleo originario di uranio. Risulta una <i>difetto di massa</i> Δ<i>m</i> = <span class="nowrap"><span data-sort-value="6970760000000000000♠"></span>7,6<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−30</sup> <a href="/wiki/Chilogrammo" title="Chilogrammo">kg</a></span>, che si è trasformata in <a href="/wiki/Energia" title="Energia">energia</a>. L'equazione di Einstein consente di determinare quanta <a href="/wiki/Energia" title="Energia">energia</a> è stata liberata dal <a href="/wiki/Decadimento_radioattivo" class="mw-redirect" title="Decadimento radioattivo">decadimento radioattivo</a> di un nucleo di uranio: Δ<i>E</i> = Δ<i>mc</i><sup>2</sup> = (<span class="nowrap"><span data-sort-value="6970760000000000000♠"></span>7,6<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−30</sup> <a href="/wiki/Chilogrammo" title="Chilogrammo">kg</a></span>) × (<span class="nowrap"><span data-sort-value="7016900000000000000♠"></span>9<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>16</sup></span>m²/s²) = <span class="nowrap"><span data-sort-value="6987684000000000000♠"></span>6,84<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−13</sup></span>J. </p><p>L'energia prodotta in una centrale nucleare da una singola fissione è data dalla differenza tra le masse dei nuclei iniziali (<a href="/wiki/Uranio" title="Uranio">uranio</a> + <a href="/wiki/Neutrone" title="Neutrone">neutrone</a>) e le masse nucleari dei prodotti di fissione. La conversione massa-energia fu cruciale anche nello sviluppo della <a href="/wiki/Bomba_atomica" title="Bomba atomica">bomba atomica</a>. La <a href="/wiki/Bombardamento_atomico_di_Hiroshima_e_Nagasaki" class="mw-redirect" title="Bombardamento atomico di Hiroshima e Nagasaki">bomba di Hiroshima</a> era di 13 <a href="/wiki/Kilotone" class="mw-redirect" title="Kilotone">kilotoni</a>, pari a 54,6 TJ (13 × 4,2 × 10<sup>12</sup> J). Questa energia equivale a quella teoricamente sprigionata dalla completa conversione di soli 0,60 grammi di materia (54 TJ). L'<a href="/wiki/Uranio" title="Uranio">uranio</a>-238, di per sé non fissile, costituisce oltre il 99% dell'uranio che si trova in natura; solo lo 0,7% dell'uranio reperibile naturalmente è uranio-235, necessario per la fissione nucleare. Per tale motivo l'uranio-238 viene arricchito dell'<a href="/wiki/Isotopo" title="Isotopo">isotopo</a> 235 prima di essere usato per usi civili (centrali nucleari) o militari. </p><p>Durante una reazione nucleare il <a href="/wiki/Numero_di_massa" title="Numero di massa">numero di massa</a> <b>A</b> (numero dei <a href="/wiki/Nucleoni" class="mw-redirect" title="Nucleoni">nucleoni</a> = <a href="/wiki/Protoni" class="mw-redirect" title="Protoni">protoni</a> + <a href="/wiki/Neutroni" class="mw-redirect" title="Neutroni">neutroni</a>) e il <a href="/wiki/Numero_atomico" title="Numero atomico">numero atomico</a> <b>Z</b> (numero dei <a href="/wiki/Protoni" class="mw-redirect" title="Protoni">protoni</a>) sono conservati, cioè rimangono costanti. Ad esempio, nella reazione nucleare </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {^{14}_{~7}N} +\mathrm {^{4}_{2}He} \to \mathrm {^{17}_{~8}O} +\mathrm {^{1}_{1}p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>7</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msubsup> <mi mathvariant="normal">N</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msubsup> <mi mathvariant="normal">O</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi mathvariant="normal">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {^{14}_{~7}N} +\mathrm {^{4}_{2}He} \to \mathrm {^{17}_{~8}O} +\mathrm {^{1}_{1}p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf89f3bdbed06ffdaebcd00890cc7ec7d837795c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.775ex; height:3.176ex;" alt="{\displaystyle \mathrm {^{14}_{~7}N} +\mathrm {^{4}_{2}He} \to \mathrm {^{17}_{~8}O} +\mathrm {^{1}_{1}p} }"></span></dd></dl> <p>si ha la conservazione di <b>A</b>: 14 + 4 = 17 + 1 e di <b>Z</b>: 7 + 2 = 8 + 1. Nonostante ciò, la somma delle masse dei reagenti <i>non</i> è conservata in quanto varia, dopo la reazione, l'<a href="/wiki/Energia_di_legame" title="Energia di legame">energia di legame</a> con cui i singoli <a href="/wiki/Nucleoni" class="mw-redirect" title="Nucleoni">nucleoni</a> sono legati all'interno dei vari nuclei. Le masse dei reagenti e dei prodotti, espresse in <a href="/wiki/Unit%C3%A0_di_massa_atomica" title="Unità di massa atomica">unità di massa atomica</a> (dalton, <a href="/wiki/Unit%C3%A0_di_massa_atomica" title="Unità di massa atomica">Da</a>) sono rispettivamente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} =14{,}003074+4{,}002603=18{,}005677{\text{ Da}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>7</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msubsup> <mi mathvariant="normal">N</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>14,003</mn> <mn>074</mn> <mo>+</mo> <mn>4,002</mn> <mn>603</mn> <mo>=</mo> <mn>18,005</mn> <mn>677</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> Da</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} =14{,}003074+4{,}002603=18{,}005677{\text{ Da}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67814e5e066e172d2cbff555742471cfc0ac2e58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:59.222ex; height:3.176ex;" alt="{\displaystyle m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} =14{,}003074+4{,}002603=18{,}005677{\text{ Da}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\mathrm {(_{~8}^{17}O)} +m\mathrm {(_{1}^{1}p)} =16{,}999132+1{,}008665=18{,}007797{\text{ Da}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msubsup> <mi mathvariant="normal">O</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi mathvariant="normal">p</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>16,999</mn> <mn>132</mn> <mo>+</mo> <mn>1,008</mn> <mn>665</mn> <mo>=</mo> <mn>18,007</mn> <mn>797</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> Da</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\mathrm {(_{~8}^{17}O)} +m\mathrm {(_{1}^{1}p)} =16{,}999132+1{,}008665=18{,}007797{\text{ Da}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a676f9bfea9ecbe034b4e526f8f59faac2e713d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:57.804ex; height:3.176ex;" alt="{\displaystyle m\mathrm {(_{~8}^{17}O)} +m\mathrm {(_{1}^{1}p)} =16{,}999132+1{,}008665=18{,}007797{\text{ Da}}}"></span></dd></dl> <p>In questo caso, il <i>difetto di massa</i> è negativo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m=m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} -m\mathrm {(_{~8}^{17}O)} -m\mathrm {(_{1}^{1}p)} =-2,12\times 10^{-3}\;\mathrm {Da} =-3,52\times 10^{-30}\;\mathrm {kg} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>m</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>7</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>14</mn> </mrow> </msubsup> <mi mathvariant="normal">N</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> <mo stretchy="false">)</mo> </mrow> <mo>−<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>17</mn> </mrow> </msubsup> <mi mathvariant="normal">O</mi> <mo stretchy="false">)</mo> </mrow> <mo>−<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi mathvariant="normal">p</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>12</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> <mi mathvariant="normal">a</mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mn>52</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>30</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m=m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} -m\mathrm {(_{~8}^{17}O)} -m\mathrm {(_{1}^{1}p)} =-2,12\times 10^{-3}\;\mathrm {Da} =-3,52\times 10^{-30}\;\mathrm {kg} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c511a92c6714142e1d23baeef368d4f03b486a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:85.767ex; height:3.343ex;" alt="{\displaystyle \Delta m=m\mathrm {(_{~7}^{14}N)} +m\mathrm {(_{2}^{4}He)} -m\mathrm {(_{~8}^{17}O)} -m\mathrm {(_{1}^{1}p)} =-2,12\times 10^{-3}\;\mathrm {Da} =-3,52\times 10^{-30}\;\mathrm {kg} }"></span></dd></dl> <p>La reazione è endoenergetica, ovvero necessita d'energia esterna per avvenire. Oltre all'<a href="/wiki/Energia_di_barriera" class="mw-redirect" title="Energia di barriera">energia di barriera</a>, necessaria per vincere la repulsione coulombiana, l'energia minima perché tale reazione possa avvenire è </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E=\Delta m\,c^{2}=(-3,52\times 10^{-30}\;\mathrm {kg} )\times (9\times 10^{16}\;\mathrm {m^{2}/s^{2}} )=-3,17\times 10^{-13}\;\mathrm {J} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>E</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mn>52</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>30</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mn>9</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>16</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi mathvariant="normal">s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo>,</mo> <mn>17</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>13</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">J</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E=\Delta m\,c^{2}=(-3,52\times 10^{-30}\;\mathrm {kg} )\times (9\times 10^{16}\;\mathrm {m^{2}/s^{2}} )=-3,17\times 10^{-13}\;\mathrm {J} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c023524c4da045c12c6cec49845a61389756bfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:75.037ex; height:3.176ex;" alt="{\displaystyle \Delta E=\Delta m\,c^{2}=(-3,52\times 10^{-30}\;\mathrm {kg} )\times (9\times 10^{16}\;\mathrm {m^{2}/s^{2}} )=-3,17\times 10^{-13}\;\mathrm {J} }"></span>.</dd></dl> <p>Tale energia viene fornita dall'<a href="/wiki/Energia_cinetica" title="Energia cinetica">energia cinetica</a> del nucleo di elio (particella α) che va a collidere col nucleo d'azoto. La velocità minima della particella α dev'essere </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\sqrt {\frac {-2\Delta E}{m\mathrm {(_{2}^{4}He)} }}}={\sqrt {\frac {6,34\times 10^{-13}}{4\times 1,67\times 10^{-27}}}}={\sqrt {95\times 10^{12}}}\simeq 9,75\times 10^{6}\;\mathrm {m/s} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>E</mi> </mrow> <mrow> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">e</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>6</mn> <mo>,</mo> <mn>34</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>13</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <mo>×<!-- × --></mo> <mn>1</mn> <mo>,</mo> <mn>67</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>27</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>95</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> </msqrt> </mrow> <mo>≃<!-- ≃ --></mo> <mn>9</mn> <mo>,</mo> <mn>75</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">s</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v={\sqrt {\frac {-2\Delta E}{m\mathrm {(_{2}^{4}He)} }}}={\sqrt {\frac {6,34\times 10^{-13}}{4\times 1,67\times 10^{-27}}}}={\sqrt {95\times 10^{12}}}\simeq 9,75\times 10^{6}\;\mathrm {m/s} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47184a32c308a84f4eb5b1078d16afbd0e612f5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:71.456ex; height:7.843ex;" alt="{\displaystyle v={\sqrt {\frac {-2\Delta E}{m\mathrm {(_{2}^{4}He)} }}}={\sqrt {\frac {6,34\times 10^{-13}}{4\times 1,67\times 10^{-27}}}}={\sqrt {95\times 10^{12}}}\simeq 9,75\times 10^{6}\;\mathrm {m/s} }"></span></dd></dl> <p>equivalente al 3,25% della velocità della luce. </p><p>Anche il processo di <a href="/wiki/Fusione_nucleare" title="Fusione nucleare">fusione nucleare</a>, come tutti i processi fisici di trasformazione della massa in energia e viceversa, avviene rispettando il <i>principio di conservazione della massa–energia</i>. Nel <a href="/wiki/Sole" title="Sole">Sole</a>, che ha una temperatura interna di 15 milioni di <a href="/wiki/Kelvin" title="Kelvin">kelvin</a>, mediante le reazioni di fusione termonucleare (fusione <a href="/wiki/Protone" title="Protone">protone</a>-protone dei nuclei di idrogeno), ogni secondo 600 milioni di tonnellate d'<a href="/wiki/Idrogeno" title="Idrogeno">idrogeno</a> si trasformano in 595,5 milioni tonnellate di <a href="/wiki/Elio" title="Elio">elio</a>. Quindi, dopo questa trasformazione, mancano ogni secondo 4,5 milioni di tonnellate (pari allo 0,75% della massa iniziale). Questo <i>difetto di massa</i> si è trasformato direttamente in <a href="/wiki/Radiazione_elettromagnetica" title="Radiazione elettromagnetica">radiazione elettromagnetica</a>, ossia in energia, secondo l'equazione <i>E</i> = <i>mc</i><sup>2</sup>. Tutta la potenza del Sole è dovuta alla conversione in energia di questa massa mancante, paragonabile approssimativamente alla massa di un piccolo gruppo di montagne sulla Terra. La massa convertita in energia durante 10 miliardi di anni di fusione termonucleare è pari a 1,26 × 10<sup>27</sup> kg. Siccome la massa del Sole è di 2 × 10<sup>30</sup> kg, 10 miliardi di anni di fusione consumano solo lo 0,063 % della massa solare. Inserendo il valore della massa mancante ogni secondo nell'equazione di Einstein (dove l'energia è espressa in <a href="/wiki/Joule" title="Joule">joule</a> = Ws, la massa in kg e <i>c</i> in m/s), si calcola che a esso corrisponde una potenza pari a (4,5 × 10<sup>9</sup> kg) × (9 × 10<sup>16</sup> m<sup>2</sup>/s<sup>2</sup>) / 1 s = 4 × 10<sup>26</sup> W (<a href="/wiki/Watt" title="Watt">watt</a>), ossia a 4 × 10<sup>14</sup> TW (<a href="/wiki/Terawatt" class="mw-redirect" title="Terawatt">terawatt</a>). Per capire l'enormità di questa energia, che espressa in <a href="/wiki/Wattora" title="Wattora">wattora</a> equivale a 1,125 × 10<sup>11</sup> <a href="/wiki/TWh" class="mw-redirect" title="TWh">TWh</a>, un dato che può fungere da termine di paragone è la produzione mondiale di <a href="/wiki/Energia_elettrica" title="Energia elettrica">energia elettrica</a>, che nel 2005 è stata di 17 907 <a href="/wiki/TWh" class="mw-redirect" title="TWh">TWh</a> (equivalenti a 716,28 kg di massa). Per eguagliare l'energia prodotta dal Sole in un solo secondo, tutti gli impianti di produzione di energia elettrica del nostro pianeta dovrebbero funzionare a pieno regime per i prossimi 6 282 459 anni. </p><p>La completa conversione di 1 <a href="/wiki/Chilogrammo" title="Chilogrammo">chilogrammo</a> di <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> equivarrebbe a: </p> <ul><li>89 875 517 873 681 760 <a href="/wiki/Joule" title="Joule">joule</a> (circa <span class="nowrap"><span data-sort-value="7016900000000000000♠"></span>90<span style="margin-left:.25em;">000</span> <a href="/wiki/Joule" title="Joule">TJ</a></span>);</li> <li>24 965 421 632 000 <a href="/wiki/Wattora" title="Wattora">wattora</a> (circa 25 TWh, equivalenti al consumo d'energia elettrica in Italia nel 2017 in 4 settimane);</li> <li>21,48076431 <a href="/wiki/Megaton" class="mw-redirect" title="Megaton">megaton</a>;</li> <li>8,51900643 x 10<sup>13</sup> <a href="/wiki/British_thermal_unit" title="British thermal unit">BTU</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Velocità_della_luce_come_limite"><span id="Velocit.C3.A0_della_luce_come_limite"></span>Velocità della luce come limite</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=3" title="Modifica la sezione Velocità della luce come limite" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=3" title="Edit section's source code: Velocità della luce come limite"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r130657691">body:not(.skin-minerva) .mw-parser-output .vedi-anche{font-size:95%}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Meccanica_relativistica" title="Meccanica relativistica">Meccanica relativistica</a></b>.</span></div> </div> <p>La velocità della luce non può essere raggiunta o superata da un corpo per la natura del termine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cd8989942d56291d999af7a46fb6a55b0009b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:17.684ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}"></span>.</dd></dl> <p>Infatti se </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\to c\;\;\Longrightarrow \;\;(v/c)^{2}\to 1\;\;\Longrightarrow \;\;{\sqrt {1-(v/c)^{2}}}\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\to c\;\;\Longrightarrow \;\;(v/c)^{2}\to 1\;\;\Longrightarrow \;\;{\sqrt {1-(v/c)^{2}}}\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3352f82791452788e84569c94f187dabfeec8a3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:49.302ex; height:4.843ex;" alt="{\displaystyle v\to c\;\;\Longrightarrow \;\;(v/c)^{2}\to 1\;\;\Longrightarrow \;\;{\sqrt {1-(v/c)^{2}}}\to 0}"></span></dd></dl> <p>e di conseguenza </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{v\to c}\gamma (v)=\lim _{v\to c}{\frac {1}{\sqrt {1-(v/c)^{2}}}}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{v\to c}\gamma (v)=\lim _{v\to c}{\frac {1}{\sqrt {1-(v/c)^{2}}}}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fb84ce252ff09d0ede7a73d5b5b38cee1f29502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.276ex; height:6.509ex;" alt="{\displaystyle \lim _{v\to c}\gamma (v)=\lim _{v\to c}{\frac {1}{\sqrt {1-(v/c)^{2}}}}=\infty }"></span>.</dd></dl> <p>Alla velocità della luce, la massa relativistica e l'energia totale diverrebbero infinite: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{v\to c}\,m(v)=\lim _{v\to c}\,\gamma (v)\,m_{0}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mspace width="thinmathspace" /> <mi>m</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mspace width="thinmathspace" /> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{v\to c}\,m(v)=\lim _{v\to c}\,\gamma (v)\,m_{0}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/895814e152f8d0cfe81431780846fbe918c64eda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.186ex; height:3.843ex;" alt="{\displaystyle \lim _{v\to c}\,m(v)=\lim _{v\to c}\,\gamma (v)\,m_{0}=\infty }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{v\to c}\,E(v)=\lim _{v\to c}\,m(v)\,c^{2}=\lim _{v\to c}\,\gamma (v)\,m_{0}c^{2}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mspace width="thinmathspace" /> <mi>E</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mspace width="thinmathspace" /> <mi>m</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mi>c</mi> </mrow> </munder> <mspace width="thinmathspace" /> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{v\to c}\,E(v)=\lim _{v\to c}\,m(v)\,c^{2}=\lim _{v\to c}\,\gamma (v)\,m_{0}c^{2}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ebc1dc2d86e896f773c8772b5cc84c1190a8fa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:45.51ex; height:4.176ex;" alt="{\displaystyle \lim _{v\to c}\,E(v)=\lim _{v\to c}\,m(v)\,c^{2}=\lim _{v\to c}\,\gamma (v)\,m_{0}c^{2}=\infty }"></span></dd></dl> <p>In altre parole, per accelerare un corpo alla velocità della luce serve una quantità infinita di energia. Tale fatto viene spiegato dal punto di vista dinamico con l'aumento dell'<a href="/wiki/Inerzia" title="Inerzia">inerzia</a> al crescere della velocità. </p> <div class="mw-heading mw-heading2"><h2 id="Approssimazione_per_basse_velocità"><span id="Approssimazione_per_basse_velocit.C3.A0"></span>Approssimazione per basse velocità</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=4" title="Modifica la sezione Approssimazione per basse velocità" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=4" title="Edit section's source code: Approssimazione per basse velocità"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r130657691"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139142988"> <div class="hatnote noprint vedi-anche"> <div class="hatnote-content"><span class="noviewer hatnote-icon" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/18px-Magnifying_glass_icon_mgx2.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/27px-Magnifying_glass_icon_mgx2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Magnifying_glass_icon_mgx2.svg/36px-Magnifying_glass_icon_mgx2.svg.png 2x" data-file-width="286" data-file-height="280" /></span></span> <span class="hatnote-text">Lo stesso argomento in dettaglio: <b><a href="/wiki/Meccanica_relativistica" title="Meccanica relativistica">Meccanica relativistica</a></b>.</span></div> </div> <p>L'<a href="/wiki/Energia_totale_relativistica" title="Energia totale relativistica">energia relativistica totale</a> comprende anche l'energia di massa del corpo, dipendente solo dalla <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span>, che non compare invece nella definizione classica dell'<a href="/wiki/Energia" title="Energia">energia</a>. L'<a href="/wiki/Energia_cinetica" title="Energia cinetica">energia cinetica</a> relativistica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> è, di conseguenza, data dalla differenza tra l'energia relativistica totale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> e l'<a href="/wiki/Energia_a_riposo" class="mw-redirect" title="Energia a riposo">energia a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=E-E_{0}=mc^{2}-m_{0}c^{2}=\gamma \,m_{0}c^{2}-m_{0}c^{2}=\left(\gamma -1\right)\,m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>E</mi> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=E-E_{0}=mc^{2}-m_{0}c^{2}=\gamma \,m_{0}c^{2}-m_{0}c^{2}=\left(\gamma -1\right)\,m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a87d7b41d2862716cb14a965ee7b74778968fd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.749ex; height:3.176ex;" alt="{\displaystyle K=E-E_{0}=mc^{2}-m_{0}c^{2}=\gamma \,m_{0}c^{2}-m_{0}c^{2}=\left(\gamma -1\right)\,m_{0}c^{2}}"></span></dd></dl> <p>che per piccole velocità (<i>v</i> << <i>c</i>) è approssimativamente uguale all'espressione classica dell'energia cinetica, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {1}{2}}\,m_{0}v^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {1}{2}}\,m_{0}v^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db7d1b8d005c359a2121fad782fabb4b7674af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.827ex; height:5.176ex;" alt="{\displaystyle K={\frac {1}{2}}\,m_{0}v^{2}}"></span>.</dd></dl> <p>Si può mostrare che le due formule concordano espandendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \equiv {\frac {c}{\sqrt {c^{2}-v^{2}}}}={\frac {1}{\sqrt {1-(v/c)^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \equiv {\frac {c}{\sqrt {c^{2}-v^{2}}}}={\frac {1}{\sqrt {1-(v/c)^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d05878f022502b0a35fe3f4c32fc2f9e15c6cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.678ex; height:6.509ex;" alt="{\displaystyle \gamma \equiv {\frac {c}{\sqrt {c^{2}-v^{2}}}}={\frac {1}{\sqrt {1-(v/c)^{2}}}}={\frac {1}{\sqrt {1-\beta ^{2}}}}}"></span></dd></dl> <p>in <a href="/wiki/Serie_di_Taylor" title="Serie di Taylor">serie di Taylor</a>, in funzione di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =v/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>β<!-- β --></mi> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =v/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c09197ac61cf6c55baab7eaaf25cbde57010efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.727ex; height:2.843ex;" alt="{\displaystyle \beta =v/c}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (\beta )=1+{\frac {1}{2}}\beta ^{2}+{\frac {3}{8}}\beta ^{4}+{\frac {5}{16}}\beta ^{6}+{\frac {35}{128}}\beta ^{8}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> </mrow> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>16</mn> </mfrac> </mrow> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>35</mn> <mn>128</mn> </mfrac> </mrow> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (\beta )=1+{\frac {1}{2}}\beta ^{2}+{\frac {3}{8}}\beta ^{4}+{\frac {5}{16}}\beta ^{6}+{\frac {35}{128}}\beta ^{8}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70d7c499ec6cc9c17330da6c925d4dd55a8c8f2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:46.636ex; height:5.176ex;" alt="{\displaystyle \gamma (\beta )=1+{\frac {1}{2}}\beta ^{2}+{\frac {3}{8}}\beta ^{4}+{\frac {5}{16}}\beta ^{6}+{\frac {35}{128}}\beta ^{8}+\cdots }"></span></dd></dl> <p>Arrestando lo sviluppo al prim'ordine </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \,\simeq \,1+{\frac {1}{2}}\beta ^{2}=1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mo>≃<!-- ≃ --></mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \,\simeq \,1+{\frac {1}{2}}\beta ^{2}=1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08f23ad5c64facdc5dfabe9413207b16771695a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.421ex; height:5.176ex;" alt="{\displaystyle \gamma \,\simeq \,1+{\frac {1}{2}}\beta ^{2}=1+{\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}}"></span></dd></dl> <p>ed inserendolo nell'equazione iniziale, si ottiene un'approssimazione all'espressione classica dell'energia cinetica: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\left(\gamma -1\right)\,m_{0}c^{2}\simeq {\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}m_{0}c^{2}\simeq {\frac {1}{2}}\,m_{0}v^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>v</mi> <mi>c</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\left(\gamma -1\right)\,m_{0}c^{2}\simeq {\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}m_{0}c^{2}\simeq {\frac {1}{2}}\,m_{0}v^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95336ae35bf195c62b5e4fedaec3733761717fca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.976ex; height:5.176ex;" alt="{\displaystyle K=\left(\gamma -1\right)\,m_{0}c^{2}\simeq {\frac {1}{2}}\left({\frac {v}{c}}\right)^{2}m_{0}c^{2}\simeq {\frac {1}{2}}\,m_{0}v^{2}}"></span>.</dd></dl> <p>L'espressione dell'energia cinetica relativistica è quindi equivalente a quella classica per basse velocità <i>v</i> rispetto a <i>c</i>. Questo mostra come la relatività ristretta sia una teoria più generale rispetto alla meccanica classica, che rientra nella meccanica relativistica come caso particolare. </p> <div class="mw-heading mw-heading2"><h2 id="Massa_invariante">Massa invariante</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=5" title="Modifica la sezione Massa invariante" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=5" title="Edit section's source code: Massa invariante"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r139517313">.mw-parser-output .itwiki-template-citazione{margin-bottom:.5em;font-size:95%;padding-left:2.4em;padding-right:1.2em}.mw-parser-output .itwiki-template-citazione-doppia{display:flex;gap:1.2em}.mw-parser-output .itwiki-template-citazione-doppia>div{width:0;flex:1 1 0}.mw-parser-output .itwiki-template-citazione-footer{padding:0 1.2em 0 0;margin:0}</style><div class="itwiki-template-citazione"> <div class="itwiki-template-citazione-singola"> <p>«<i>All’inizio Einstein abbracciò l’idea </i>[di Lorentz]<i> di una massa dipendente dalla velocità, ma cambiò idea nel 1906 e da allora in poi evitò accuratamente quella nozione. Evitò, e rifiutò esplicitamente, quella che in seguito divenne nota come “massa relativistica”. </i>[...]<i> Egli ha costantemente messo in relazione l'“energia a riposo” di un sistema con la sua massa inerziale invariante.</i>» </p> </div><p class="itwiki-template-citazione-footer">(<small>Eugene Hecht,<sup id="cite_ref-hecht_3-2" class="reference"><a href="#cite_note-hecht-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> 2009</small>)</p></div> <p>La <a href="/wiki/Massa_relativistica" title="Massa relativistica">massa relativistica</a> non è più usata nel linguaggio relativistico odierno, in quanto potenziale espressione dell'errore concettuale per cui la <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>, piuttosto che l'<a href="/wiki/Inerzia" title="Inerzia">inerzia</a>,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>Nota 2<span class="cite-bracket">]</span></a></sup> vari con la velocità. Per questa ragione oggi si indica con <i>m</i> (che coincide numericamente con la <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span>) la <i>massa invariante</i> a ogni velocità <i>v</i> < <i>c</i> in un dato <a href="/wiki/Sistema_di_riferimento_inerziale" title="Sistema di riferimento inerziale">sistema di riferimento inerziale</a> <i>S</i>. Essendo <i>relativisticamente invariante</i>, tale massa <i>m</i> conserva il proprio valore non solo nel <a href="/wiki/Sistema_di_riferimento_inerziale" title="Sistema di riferimento inerziale">sistema di riferimento inerziale</a> <i>S</i>, ma anche in qualsiasi altro sistema di riferimento inerziale <i>S'</i> in moto a velocità costante <i>v'</i> rispetto a <i>S</i>. Nel sistema di riferimento <i>S</i> l'equivalenza massa-energia si scrive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma \,mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma \,mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1102f717979c8dd60e9f8eac7f62283014c708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.625ex; height:3.176ex;" alt="{\displaystyle E=\gamma \,mc^{2}}"></span> per un oggetto in moto con velocità <i>v</i> < <i>c</i> oppure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c817d727d88d16ad580951c6c13b40834a634746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.969ex; height:3.009ex;" alt="{\displaystyle E_{0}=mc^{2}}"></span> se in quiete (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5682ebb86d6f024a15f4a2c1c7cb08412720bcaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma =1}"></span>).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable floatright"> <tbody><tr> <th>Massa invariante </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> </td></tr> <tr> <th>Energia a riposo </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c817d727d88d16ad580951c6c13b40834a634746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.969ex; height:3.009ex;" alt="{\displaystyle E_{0}=mc^{2}}"></span> </td></tr> <tr> <th>Energia totale </th> <td align="center"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma \,mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma \,mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1102f717979c8dd60e9f8eac7f62283014c708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.625ex; height:3.176ex;" alt="{\displaystyle E=\gamma \,mc^{2}}"></span> </td></tr></tbody></table> <p>Poiché la massa invariante, a differenza di quella relativistica, non dipende dalla velocità del corpo, il concetto classico di <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>, coincidente con la definizione <a href="/wiki/Isaac_Newton" title="Isaac Newton">newtoniana</a> di <a href="/wiki/Costante_di_proporzionalit%C3%A0" class="mw-redirect" title="Costante di proporzionalità">costante di proporzionalità</a> fra la <a href="/wiki/Forza" title="Forza">forza</a> applicata a un corpo e l'<a href="/wiki/Accelerazione" title="Accelerazione">accelerazione</a> risultante, è nuovamente appropriato. La versione relativistica del <a href="/wiki/Secondo_principio_della_dinamica" class="mw-redirect" title="Secondo principio della dinamica">secondo principio della dinamica</a> diventa ora </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}=m\,{\frac {d}{dt}}(\gamma {\vec {v}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}=m\,{\frac {d}{dt}}(\gamma {\vec {v}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39e618df4bdb012cf0f04bcef25b2b9a6e5bd41c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.435ex; height:5.509ex;" alt="{\displaystyle {\vec {F}}=m\,{\frac {d}{dt}}(\gamma {\vec {v}})}"></span>.</dd></dl> <p>Avendo riunificato, con l'introduzione della massa invariante, il concetto di <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>, è concettualmente legittimo interpretare l'energia a riposo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c817d727d88d16ad580951c6c13b40834a634746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.969ex; height:3.009ex;" alt="{\displaystyle E_{0}=mc^{2}}"></span> come il limite per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \to 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \to 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4f4ddc77d733a0302350ee6a93907b7c6a80c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.039ex; height:2.676ex;" alt="{\displaystyle \gamma \to 1}"></span> (ovvero per <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6dfe7594dad76d17234051348e85bc41784807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.904ex; height:2.176ex;" alt="{\displaystyle v\to 0}"></span> ) dell'<a href="/wiki/Energia_totale_relativistica" title="Energia totale relativistica">energia relativistica totale</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\gamma \,mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\gamma \,mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1102f717979c8dd60e9f8eac7f62283014c708" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.625ex; height:3.176ex;" alt="{\displaystyle E=\gamma \,mc^{2}}"></span>. La relazione tra queste due energie e la <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> relativistica (definita<sup id="cite_ref-hecht_3-3" class="reference"><a href="#cite_note-hecht-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> nel 1906 da <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a> come <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\gamma \,mv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\gamma \,mv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2288d5a39620d6c82651f3c9ff2509b2339b725e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.175ex; height:2.176ex;" alt="{\displaystyle p=\gamma \,mv}"></span>) è data da </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=E_{0}+K=mc^{2}+(\gamma -1)\,mc^{2}=\gamma \,m\,c^{2}={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>K</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=E_{0}+K=mc^{2}+(\gamma -1)\,mc^{2}=\gamma \,m\,c^{2}={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca67df4410155b8a66a9d3c6aa0ae8b6efba76ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:61.093ex; height:4.843ex;" alt="{\displaystyle E=E_{0}+K=mc^{2}+(\gamma -1)\,mc^{2}=\gamma \,m\,c^{2}={\sqrt {p^{2}c^{2}+m^{2}c^{4}}}}"></span></dd></dl> <p>Questa notazione è sempre più diffusa tra i fisici contemporanei, mentre quella con la <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> e la <a href="/wiki/Massa_relativistica" title="Massa relativistica">massa relativistica</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> dipendente dalla velocità riveste un significato prevalentemente storico. Lo stesso Einstein utilizzò la formula con la massa invariante </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E={\frac {mc^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E={\frac {mc^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/523a7acf0e899f7483a1c99d597d88b508949582" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:14.502ex; height:8.509ex;" alt="{\displaystyle E={\frac {mc^{2}}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}"></span></dd></dl> <p>in un manoscritto del 1912.<sup id="cite_ref-manoscritto_1912_7-0" class="reference"><a href="#cite_note-manoscritto_1912-7"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> In una lettera del 19 giugno 1948 all'editore Lincoln Burnett (autore di un'introduzione divulgativa alla relatività dal titolo <i>The Universe and Doctor Einstein</i>), Einstein scrisse: «Non è bene introdurre il concetto di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=m/(1-v^{2}/c^{2})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=m/(1-v^{2}/c^{2})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af13d60ccba577f86aba6739e0207702d114c981" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.659ex; height:3.343ex;" alt="{\displaystyle M=m/(1-v^{2}/c^{2})^{1/2}}"></span> di un corpo in movimento, perché di essa non può essere data una definizione chiara. È meglio non parlare di altri concetti di massa che non siano quello della massa a riposo m. Piuttosto che introdurre M, è meglio menzionare l'espressione della quantità di moto e dell'energia di un corpo in movimento».<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Aspetti_storici">Aspetti storici</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=6" title="Modifica la sezione Aspetti storici" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=6" title="Edit section's source code: Aspetti storici"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Einstein non fu il solo né il primo ad aver messo in relazione l'energia con la massa, ma fu il primo a presentare questa relazione come parte di una teoria generale e ad aver dedotto tale formula nel quadro della <a href="/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta">relatività ristretta</a>. Va tuttavia osservato che alcune derivazioni di <a href="#Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)">Einstein (1906 e 1950)</a>, <a href="#La_massa_della_radiazione_di_corpo_nero:_Hasenöhrl_(1904-1905)_e_Planck_(1907)">Planck (1907)</a> e <a href="#Derivazione_non_relativistica_di_Rohrlich_(1990)">Rohrlich (1990)</a> non richiedono alcun concetto relativistico, essendo l'equazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span> ottenibile anche combinando risultati della meccanica classica e dell'elettromagnetismo. </p> <div class="mw-heading mw-heading3"><h3 id="Luce_e_materia_da_Newton_a_Soldner_(1704-1804)"><span id="Luce_e_materia_da_Newton_a_Soldner_.281704-1804.29"></span>Luce e materia da Newton a Soldner (1704-1804)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=7" title="Modifica la sezione Luce e materia da Newton a Soldner (1704-1804)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=7" title="Edit section's source code: Luce e materia da Newton a Soldner (1704-1804)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'idea di un'equivalenza, convertibilità o effetto della materia sulla radiazione risale già a <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>. Nel quesito 30 dell'<i><a href="/wiki/Opticks" title="Opticks">Opticks</a></i><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> scrisse: <i>«I corpi pesanti e la luce sono convertibili gli uni negli altri.»</i> (<i>«Gross bodies and light are convertible into one another.»</i>).<sup id="cite_ref-ricker_10-0" class="reference"><a href="#cite_note-ricker-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> Sempre nell'<i><a href="/wiki/Opticks" title="Opticks">Opticks</a></i> disse di credere che la gravità possa deflettere la luce. Queste affermazioni non risultano stupefacenti se si considera che Newton riteneva la luce formata da corpuscoli materiali (<a href="/wiki/Teoria_corpuscolare_della_luce" title="Teoria corpuscolare della luce">teoria corpuscolare della luce</a>). </p><p>Nel <a href="/wiki/1783" title="1783">1783</a> <a href="/wiki/John_Michell" title="John Michell">John Michell</a>, docente a <a href="/wiki/Universit%C3%A0_di_Cambridge" title="Università di Cambridge">Cambridge</a>, suggerì in una lettera a <a href="/wiki/Henry_Cavendish" title="Henry Cavendish">Henry Cavendish</a> (successivamente pubblicata nei rendiconti della <a href="/wiki/Royal_Society" title="Royal Society">Royal Society</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup>) che stelle sufficientemente massive e compatte avrebbero trattenuto la luce a causa del loro intenso campo gravitazionale. La <a href="/wiki/Velocit%C3%A0_di_fuga" title="Velocità di fuga">velocità di fuga</a> dal corpo celeste sarebbe potuta risultare superiore alla velocità della luce, dando luogo a quella che egli chiamò una "stella oscura" (<i>dark star</i>), oggi nota come <a href="/wiki/Buco_nero" title="Buco nero">buco nero</a>. Nel <a href="/wiki/1798" title="1798">1798</a> <a href="/wiki/Pierre-Simon_Laplace" class="mw-redirect" title="Pierre-Simon Laplace">Pierre-Simon de Laplace</a> riportò quest'idea nella prima edizione del suo <i>Traité de mécanique céleste</i>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Johann_von_Soldner" title="Johann von Soldner">Johann von Soldner</a> fu tra i primi ad avanzare l'ipotesi che la <a href="/wiki/Luce" title="Luce">luce</a>, in base alla <a href="/wiki/Teoria_corpuscolare_della_luce" title="Teoria corpuscolare della luce">teoria corpuscolare</a> di <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a>, possa subire una deviazione quando passa in prossimità di un corpo celeste.<sup id="cite_ref-ricker_10-1" class="reference"><a href="#cite_note-ricker-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In un articolo del 1801, pubblicato nel 1804,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> calcolò il valore della deviazione di un raggio luminoso proveniente da una <a href="/wiki/Stella" title="Stella">stella</a> quando passa in prossimità del <a href="/wiki/Sole" title="Sole">Sole</a>. Il valore angolare da lui trovato era la metà<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> di quello calcolato da Einstein nel 1915 utilizzando la <a href="/wiki/Relativit%C3%A0_generale" title="Relatività generale">relatività generale</a>. Sulla misura di tale effetto durante un'eclisse totale di Sole si baserà la più importante conferma sperimentale della relatività generale, ottenuta da <a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Arthur Eddington</a> nel 1919. </p> <div class="mw-heading mw-heading3"><h3 id="L'etere_come_causa_dell'equivalenza_massa-energia_(1851-1904)"><span id="L.27etere_come_causa_dell.27equivalenza_massa-energia_.281851-1904.29"></span>L'etere come causa dell'equivalenza massa-energia (1851-1904)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=8" title="Modifica la sezione L'etere come causa dell'equivalenza massa-energia (1851-1904)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=8" title="Edit section's source code: L'etere come causa dell'equivalenza massa-energia (1851-1904)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Julius_Robert_von_Mayer" title="Julius Robert von Mayer">Julius Robert von Mayer</a> (1814 - 1878) usò <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e4e95f7216bad6eab483ef0072d531a965962b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.101ex; height:2.676ex;" alt="{\displaystyle mc^{2}}"></span> nel 1851 per esprimere la pressione esercitata dell'<a href="/wiki/Etere_(fisica)" class="mw-redirect" title="Etere (fisica)">etere</a> su un corpo di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>: <i>«Se una massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>, originariamente a riposo, mentre attraversa lo spazio efficace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>, sotto l'influenza e nella direzione della pressione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, acquisisce la velocità <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>, abbiamo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ps=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>s</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ps=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e3154d415ee9e50554476c3eeb75156a64d7b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:9.549ex; height:3.009ex;" alt="{\displaystyle ps=mc^{2}}"></span>. Tuttavia, poiché ogni produzione di movimento implica l'esistenza di una pressione (o di una trazione) e uno spazio efficace (e anche l'esaurimento di almeno uno di questi fattori, lo spazio effettivo), ne consegue che il movimento non può mai entrare in esistenza tranne al costo di questo prodotto, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ps=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>s</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ps=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e3154d415ee9e50554476c3eeb75156a64d7b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:9.549ex; height:3.009ex;" alt="{\displaystyle ps=mc^{2}}"></span>.»</i><sup id="cite_ref-ricker_10-2" class="reference"><a href="#cite_note-ricker-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p><a href="/w/index.php?title=Samuel_Tolver_Preston&action=edit&redlink=1" class="new" title="Samuel Tolver Preston (la pagina non esiste)">Samuel Tolver Preston</a> (1844 - 1917), ingegnere e fisico inglese, pubblicò nel 1875 il libro <i>Physics of the Ether</i> con l'intento di sostituire la nozione newtoniana d'<a href="/wiki/Azione_a_distanza_(fisica)" title="Azione a distanza (fisica)">azione a distanza</a>, ritenuta <i>spiritualistica</i>, con il concetto meccanico di <a href="/wiki/Etere_(fisica)" class="mw-redirect" title="Etere (fisica)">etere</a>. L'energia implicata nel seguente esempio citato da Preston equivale<sup id="cite_ref-ricker_10-3" class="reference"><a href="#cite_note-ricker-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e4e95f7216bad6eab483ef0072d531a965962b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.101ex; height:2.676ex;" alt="{\displaystyle mc^{2}}"></span>: <i>«Per dare un'idea, in primo luogo, dell'enorme intensità del deposito di energia raggiungibile per mezzo di quell'esteso stato di suddivisione della materia che rende praticabile un'alta velocità normale, si può calcolare che [...] una quantità di materia che rappresenta una massa di un chicco munita della velocità delle particelle di etere, racchiude una quantità di energia che, se interamente utilizzata, sarebbe capace di proiettare un peso di centomila tonnellate ad un'altezza di quasi due miglia (1,9 miglia).»</i><sup id="cite_ref-ricker_10-4" class="reference"><a href="#cite_note-ricker-10"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Olinto_de_Pretto" class="mw-redirect" title="Olinto de Pretto">Olinto de Pretto</a> (1857 - 1921), agronomo, geologo e astronomo italiano, nel novembre del 1903 presentò al <a href="/wiki/Istituto_veneto_di_scienze,_lettere_ed_arti" title="Istituto veneto di scienze, lettere ed arti">Reale Istituto Veneto di Scienze, Lettere ed Arti</a> un saggio dal titolo <i>Ipotesi dell'etere nella vita dell'universo</i>, pubblicato il 27 febbraio 1904, assieme ad una lettera dell'astronomo <a href="/wiki/Giovanni_Schiaparelli" title="Giovanni Schiaparelli">Giovanni Schiaparelli</a>.<sup id="cite_ref-DePretto_17-0" class="reference"><a href="#cite_note-DePretto-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bartocci_18-0" class="reference"><a href="#cite_note-Bartocci-18"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> Nella memoria si tentava, con diverse argomentazioni, di dare una spiegazione teorica alla natura dell'<a href="/wiki/Etere_(fisica)" class="mw-redirect" title="Etere (fisica)">etere</a> e alla <a href="/wiki/Forza_gravitazionale" class="mw-redirect" title="Forza gravitazionale">forza gravitazionale</a>, riprendendo quasi integralmente le tesi di George-Louis Lesage.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Tra gli argomenti trattati figurano l'energia dell'etere e l'energia latente nella materia. È stato osservato che «<i>De Pretto </i>[...]<i> non va considerato né un precursore della relatività </i>[...]<i> né esattamente della <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span> </i>[...]<i> ma </i>[...]<i> comunque esprimente appieno l'intuizione dell'esistenza di un'energia latente nella materia</i>»<sup id="cite_ref-risposta_20-0" class="reference"><a href="#cite_note-risposta-20"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> proporzionale al quadrato della velocità della luce nel vuoto. </p> <div class="mw-heading mw-heading3"><h3 id="La_massa_elettromagnetica_dell'elettrone_(1881-1906)"><span id="La_massa_elettromagnetica_dell.27elettrone_.281881-1906.29"></span>La massa elettromagnetica dell'elettrone (1881-1906)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=9" title="Modifica la sezione La massa elettromagnetica dell'elettrone (1881-1906)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=9" title="Edit section's source code: La massa elettromagnetica dell'elettrone (1881-1906)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nei primi anni del XX secolo molti fisici aderirono ad una <i>teoria elettromagnetica della natura</i>, che riteneva le leggi dell'elettromagnetismo di <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">Maxwell</a> più fondamentali di quelle meccaniche di <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> In questo contesto vennero svolte ricerche per attribuire ad effetti elettromagnetici l'origine della <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> della <a href="/wiki/Materia_(fisica)" title="Materia (fisica)">materia</a>. </p><p>Oggetti <a href="/wiki/Carica_elettrica" title="Carica elettrica">carichi</a> possiedono una <a href="/wiki/Inerzia" title="Inerzia">inerzia</a> maggiore rispetto agli stessi corpi scarichi. Ciò si spiega con una interazione delle cariche elettriche in moto con il campo da esse stesse generato, detta <i>reazione di campo</i>; l'effetto è interpretabile come un aumento della massa inerziale del <a href="/wiki/Corpo_(fisica)" title="Corpo (fisica)">corpo</a> ed è ricavabile dalle <a href="/wiki/Equazioni_di_Maxwell" title="Equazioni di Maxwell">equazioni di Maxwell</a>. Nel 1881 <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Joseph John Thomson</a>, che nel 1896 scoprirà l'<a href="/wiki/Elettrone" title="Elettrone">elettrone</a>, fece un primo tentativo di calcolare il contributo elettromagnetico alla <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>.<sup id="cite_ref-thomson_22-0" class="reference"><a href="#cite_note-thomson-22"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Una sfera carica in moto nello spazio (che si riteneva riempito dall'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere luminifero</a>, con una sua <a href="/wiki/Induttanza" title="Induttanza">induttanza</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>) risulta più difficile da mettere in moto rispetto a un corpo privo di carica (caso analogo all'inerzia dei corpi nei <a href="/wiki/Fluidi" class="mw-redirect" title="Fluidi">fluidi</a>,<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> studiata da <a href="/wiki/George_Gabriel_Stokes" class="mw-redirect" title="George Gabriel Stokes">George Gabriel Stokes</a> nel 1843). A causa dell'auto-induzione, l'energia elettrostatica sembra mostrare una sua <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> e una <i>massa elettromagnetica</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> che fa aumentare la <a href="/wiki/Massa_a_riposo" title="Massa a riposo">massa a riposo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> dei corpi carichi in movimento. Thomson calcolò il campo magnetico generato da una sfera elettricamente carica in movimento, mostrando che tale campo induce un'inerzia (<a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>) sulla sfera stessa. Il risultato di Thomson dipende dal raggio, dalla carica e dalla <a href="/wiki/Permeabilit%C3%A0_magnetica" title="Permeabilità magnetica">permeabilità magnetica</a> della sfera. Nel 1889 <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a> generalizzò il risultato di Thomson,<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> mostrando che la massa elettromagnetica risulta essere </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3450f67614df7553e6a26daf2bd5d21d0bd6f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.738ex; height:5.509ex;" alt="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}"></span>,</dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd823cf284d9a655f462b27dac93194bb28c25fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.046ex; height:2.509ex;" alt="{\displaystyle E_{\rm {em}}}"></span> è l'energia del campo elettrico della sfera. Chiaramente questo risultato si applica solo ad oggetti carichi e in movimento, quindi non ad ogni corpo dotato di massa. Fu tuttavia il primo serio tentativo di connettere massa ed energia.<sup id="cite_ref-rothman_1_25-0" class="reference"><a href="#cite_note-rothman_1-25"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-rothman_2_26-0" class="reference"><a href="#cite_note-rothman_2-26"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Ulteriori lavori, che contribuirono a definire la <i>massa elettromagnetica dell'elettrone</i> (classicamente visto come una piccola sfera carica elettricamente), vennero da <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Joseph John Thomson</a> (1893), <a href="/w/index.php?title=George_Frederick_Charles_Searle&action=edit&redlink=1" class="new" title="George Frederick Charles Searle (la pagina non esiste)">George Frederick Charles Searle</a> (1864 - 1954), fisico inglese, (1897), <a href="/wiki/Walter_Kaufmann_(fisico)" title="Walter Kaufmann (fisico)">Walter Kaufmann</a> (1901), <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a> (1902, 1904 e 1905) ed <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a> (1892,<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> 1899 e 1904). </p><p>Nel 1893 <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Joseph John Thomson</a> notò che l'energia e quindi la massa dei corpi carichi dipendono dalla loro velocità, e che la velocità della luce costituisce una velocità limite: <i>«una sfera carica che si muove alla velocità della luce si comporta come se la sua massa fosse infinita [...] in altre parole è impossibile aumentare la velocità di un corpo carico che si muove in un dielettrico oltre quella della luce.»</i><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> Nel 1897 il fisico inglese <a href="/w/index.php?title=George_Frederick_Charles_Searle&action=edit&redlink=1" class="new" title="George Frederick Charles Searle (la pagina non esiste)">George Frederick Charles Searle</a> (1864 - 1954) fornì una formula per l'energia elettromagnetica di una sfera carica in movimento,<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> confermando le conclusioni di Thomson. <a href="/wiki/Walter_Kaufmann_(fisico)" title="Walter Kaufmann (fisico)">Walter Kaufmann</a><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> nel 1901 e <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a><sup id="cite_ref-abraham_31-0" class="reference"><a href="#cite_note-abraham-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> nel 1902 calcolarono la massa elettromagnetica di corpi carichi in movimento. Abraham si accorse però che tale risultato era valido solo nella direzione di moto longitudinale rispetto all'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere</a> e definì quindi anche una massa elettromagnetica <i>trasversale</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2767d339e0bb9818b1057574bed41e54d9ece4d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.43ex; height:2.009ex;" alt="{\displaystyle m_{T}}"></span> oltre a quella <i>longitudinale</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf14310dd2a7deca3dda34583f8c1d7279a0a57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.392ex; height:2.009ex;" alt="{\displaystyle m_{L}}"></span>. <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a>, nel 1899<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> e nel 1904,<sup id="cite_ref-elet_lorentz_33-0" class="reference"><a href="#cite_note-elet_lorentz-33"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> produsse due articoli sulla <i>teoria dell'elettrone di Lorentz</i>, che prevedeva una <a href="/wiki/Contrazione_delle_lunghezze" title="Contrazione delle lunghezze">contrazione delle lunghezze</a> nella direzione del moto. La massa longitudinale e quella trasversale dipendevano (Lorentz 1904<sup id="cite_ref-elet_lorentz_33-1" class="reference"><a href="#cite_note-elet_lorentz-33"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup>) dalla velocità in due modi diversi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}},\quad m_{T}=\gamma \,m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msub> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}},\quad m_{T}=\gamma \,m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/764d704624befeb495a9aa1a2c70ac73238298df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.489ex; height:3.176ex;" alt="{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}},\quad m_{T}=\gamma \,m_{\rm {em}}}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> è il <a href="/wiki/Fattore_di_Lorentz" title="Fattore di Lorentz">fattore di Lorentz</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cd8989942d56291d999af7a46fb6a55b0009b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:17.684ex; height:6.509ex;" alt="{\displaystyle \gamma ={\frac {1}{\sqrt {1-(v/c)^{2}}}}}"></span>.</dd></dl> <p>Nell'ambito della <i>teoria elettromagnetica della natura</i>, <a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wilhelm Wien</a><sup id="cite_ref-wien_34-0" class="reference"><a href="#cite_note-wien-34"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> (noto per i suoi lavori del 1896 sullo <a href="/wiki/Spettro_elettromagnetico" title="Spettro elettromagnetico">spettro</a> del <a href="/wiki/Corpo_nero" title="Corpo nero">corpo nero</a>) nel 1900 e <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a><sup id="cite_ref-abraham_31-1" class="reference"><a href="#cite_note-abraham-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> nel 1902 giunsero indipendentemente alla conclusione che l'<i>intera massa</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> dei corpi è dovuta ad effetti elettromagnetici, e coincide quindi con la <i>massa elettromagnetica</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span>. Nel 1906 <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> sostenne<sup id="cite_ref-poinc_35-0" class="reference"><a href="#cite_note-poinc-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> che la massa è un effetto del campo elettrico che agisce nell'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere luminifero</a>, implicando che non esiste realmente alcuna massa. Quindi, siccome la <a href="/wiki/Materia_(fisica)" title="Materia (fisica)">materia</a> è inseparabilmente connessa alla sua <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>, secondo Poincaré anche la <a href="/wiki/Materia_(fisica)" title="Materia (fisica)">materia</a> non esiste: gli elettroni sarebbero solamente <i>concavità nell'etere</i>. Tuttavia ben presto si dovette rinunciare all'idea di una massa puramente elettromagnetica dell'elettrone. Nel 1904 <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a> sostenne che era necessaria anche un'energia non elettromagnetica (in misura pari ad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1/3)E_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1/3)E_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9376401ec5e7df963a4fc6c76c74d3d58574a13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.343ex; height:2.843ex;" alt="{\displaystyle (1/3)E_{\rm {em}}}"></span>) per evitare che l'elettrone contrattile di Lorentz esplodesse<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup>. L'anno dopo - contraddicendo le sue tesi del 1902 - dubitò della possibilità di sviluppare un modello consistente dell'elettrone su basi esclusivamente elettromagnetiche.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>Per risolvere i problemi della teoria dell'elettrone di Lorentz, nel 1905<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> e nel 1906<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> introdusse un termine correttivo ("Poincaré stresses") di natura non elettromagnetica. Come già sostenuto da Abraham, il contributo non elettromagnetico secondo Poincaré risulta pari a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {po}}={\frac {1}{3}}\,E_{\rm {em}}={\frac {1}{4}}\,E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {po}}={\frac {1}{3}}\,E_{\rm {em}}={\frac {1}{4}}\,E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47481ebe6cfa017fc435062514014f4b8b029503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.468ex; height:5.176ex;" alt="{\displaystyle E_{\rm {po}}={\frac {1}{3}}\,E_{\rm {em}}={\frac {1}{4}}\,E_{0}}"></span>.</dd></dl> <p>Lo stress di Poincaré - che risolve il problema dell'instabilità dell'elettrone di Lorentz - resta inalterato per <a href="/wiki/Trasformazione_di_Lorentz" title="Trasformazione di Lorentz">trasformazioni di Lorentz</a> (ovvero è Lorentz invariante). Era interpretato come la ragione dinamica della <a href="/wiki/Contrazione_delle_lunghezze" title="Contrazione delle lunghezze">contrazione</a> di <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a>-<a href="/wiki/George_Francis_FitzGerald" title="George Francis FitzGerald">FitzGerald</a> della dimensione longitudinale dell'elettrone. Restava da capire l'origine del fattore 4/3 che compare nella massa elettromagnetica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> di <a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Heaviside</a>, derivabile anche dalle equazioni di <a href="/wiki/Max_Abraham" title="Max Abraham">Abraham</a>–<a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a> dell'elettrone. Se si calcola il contributo puramente elettrostatico alla massa elettromagnetica dell'elettrone, il termine 4/3 scompare: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {es}}={\frac {E_{\rm {em}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {es}}={\frac {E_{\rm {em}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1710f26be97cc47cb604ad828bf354fce3a085fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.632ex; height:5.509ex;" alt="{\displaystyle m_{\rm {es}}={\frac {E_{\rm {em}}}{c^{2}}}}"></span>,</dd></dl> <p>mettendo in luce l'origine dinamica del contributo non elettromagnetico <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {po}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {po}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2163213b88d6469cf1cdc2e526ef8111965c0517" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.683ex; height:2.843ex;" alt="{\displaystyle E_{\rm {po}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}-m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}-{\frac {E_{\rm {em}}}{c^{2}}}={\frac {1}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {po}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}-m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}-{\frac {E_{\rm {em}}}{c^{2}}}={\frac {1}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {po}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42292329a2056d3c523e67529b59220a1253b605" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:46.937ex; height:5.843ex;" alt="{\displaystyle m_{\rm {em}}-m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}-{\frac {E_{\rm {em}}}{c^{2}}}={\frac {1}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {po}}}{c^{2}}}}"></span>.</dd></dl> <p>Tenendo conto del termine non elettromagnetico di Poincaré, le relazioni tra le diverse masse ed energie diventano:<sup id="cite_ref-miller_40-0" class="reference"><a href="#cite_note-miller-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-macklenburg_41-0" class="reference"><a href="#cite_note-macklenburg-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {em}}+{\frac {E_{\rm {em}}}{3}}}{c^{2}}}={\frac {E_{\rm {em}}+E_{\rm {po}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mn>3</mn> </mfrac> </mrow> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {em}}+{\frac {E_{\rm {em}}}{3}}}{c^{2}}}={\frac {E_{\rm {em}}+E_{\rm {po}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d4bd7eb1d360e80188578330bdd2440aac507d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:59.82ex; height:7.009ex;" alt="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,m_{\rm {es}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{\rm {em}}+{\frac {E_{\rm {em}}}{3}}}{c^{2}}}={\frac {E_{\rm {em}}+E_{\rm {po}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}"></span>.</dd></dl> <p>Quindi il fattore 4/3 compare quando la massa elettromagnetica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> viene riferita all'energia elettromagnetica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd823cf284d9a655f462b27dac93194bb28c25fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.046ex; height:2.509ex;" alt="{\displaystyle E_{\rm {em}}}"></span>, mentre scompare se si considera l'energia a riposo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91bc33e3e735d762c01390dcfe911c4f1e8e9830" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.442ex; height:5.676ex;" alt="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}={\frac {E_{0}}{c^{2}}}}"></span></dd></dl> <p>Le formule precedenti - nonostante contengano il termine non elettromagnetico <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {po}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {po}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2163213b88d6469cf1cdc2e526ef8111965c0517" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.683ex; height:2.843ex;" alt="{\displaystyle E_{\rm {po}}}"></span> - identificano, come sostenuto da Poincaré,<sup id="cite_ref-poinc_35-1" class="reference"><a href="#cite_note-poinc-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> la massa a riposo dell'elettrone con la massa elettromagnetica: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}=E_{0}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}=E_{0}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f762d8da6106313f891cad486270024db99317ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.463ex; height:3.176ex;" alt="{\displaystyle m_{\rm {em}}=E_{0}/c^{2}}"></span> e presentano quindi un evidente problema interpretativo, che richiederà molti anni per essere risolto. </p><p><a href="/wiki/Max_von_Laue" title="Max von Laue">Max von Laue</a> nel 1911<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> mostrò che, a causa del fattore 4/3, il <a href="/wiki/Quadrimpulso" title="Quadrimpulso">quadrimpulso</a> relativistico non si comporta come un <a href="/wiki/Quadrivettore" title="Quadrivettore">quadrivettore</a> nello <a href="/wiki/Spaziotempo_di_Minkowski" title="Spaziotempo di Minkowski">spaziotempo di Minkowski</a>. Anche von Laue utilizzò lo stress di Poincaré <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {po}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">o</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {po}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2163213b88d6469cf1cdc2e526ef8111965c0517" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.683ex; height:2.843ex;" alt="{\displaystyle E_{\rm {po}}}"></span>, ma dimostrò con un formalismo rigorosamente relativistico che vi sono ulteriori componenti di stress e forze. Per sistemi spazialmente estesi come l'elettrone di Lorentz, in cui si hanno sia energie elettromagnetiche sia non elettromagnetiche, il risultato complessivo è che forze e momenti si trasformano correttamente come quadrivettori che formano un <i>sistema chiuso</i>. Nel formalismo di von Laue il fattore 4/3 si manifesta solo se si considera la massa elettromagnetica: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3450f67614df7553e6a26daf2bd5d21d0bd6f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.738ex; height:5.509ex;" alt="{\displaystyle m_{\rm {em}}={\frac {4}{3}}\,{\frac {E_{\rm {em}}}{c^{2}}}}"></span>.</dd></dl> <p>Invece nel sistema complessivo la massa a riposo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6ff51ee949104fe6fae553cfbdfba29d5fac1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{0}}"></span> e l'energia risultano connesse dalla formula di Einstein,<sup id="cite_ref-macklenburg_41-1" class="reference"><a href="#cite_note-macklenburg-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> il cui fattore è uguale a 1: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}={\frac {E_{0}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}={\frac {E_{0}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b40307322b15fe27b9f81f66fe93ebdb5abc2273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:9.799ex; height:5.676ex;" alt="{\displaystyle m_{0}={\frac {E_{0}}{c^{2}}}}"></span>.</dd></dl> <p>La definitiva soluzione al problema dei 4/3 fu trovata, nell'arco di oltre 60 anni, da ben quattro autori diversi: <a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Enrico Fermi</a> (1922),<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> (1938),<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> <a href="/w/index.php?title=Fritz_Rohrlich&action=edit&redlink=1" class="new" title="Fritz Rohrlich (la pagina non esiste)">Fritz Rohrlich</a> (1921 - 2018), fisico americano, (1960),<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Julian_Schwinger" title="Julian Schwinger">Julian Schwinger</a> (1983).<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> Divenne chiaro che la stabilità dell'elettrone e la presenza del fattore 4/3 nella massa elettromagnetica sono problemi diversi. Venne inoltre dimostrato che le precedenti definizioni dei <a href="/wiki/Quadrimpulso" title="Quadrimpulso">quadrimpulsi</a> erano intrinsecamente non relativistiche. Ridefinendoli nella forma relativisticamente corretta di <a href="/wiki/Quadrivettore" title="Quadrivettore">quadrivettori</a>, anche la massa elettromagnetica viene scritta come </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8330fabdfcbf072e88a646ba653863fbbac5e2e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.353ex; height:5.509ex;" alt="{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}"></span></dd></dl> <p>e quindi il fattore 4/3 scompare completamente.<sup id="cite_ref-macklenburg_41-2" class="reference"><a href="#cite_note-macklenburg-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Ora non solo il <i>sistema chiuso</i> nella sua totalità, ma ogni parte del sistema si trasforma correttamente come un <a href="/wiki/Quadrivettore" title="Quadrivettore">quadrivettore</a>. Forze di legame come gli stress di Poincaré sono ancora necessarie per evitare che, per repulsione coulombiana, l'elettrone esploda. Ma si tratta ora di un problema di stabilità dinamica, del tutto distinto dalle formule d'equivalenza massa-energia. </p> <div class="mw-heading mw-heading3"><h3 id="La_massa_della_radiazione_elettromagnetica:_Poincaré_(1900_e_1904)"><span id="La_massa_della_radiazione_elettromagnetica:_Poincar.C3.A9_.281900_e_1904.29"></span>La massa della radiazione elettromagnetica: Poincaré (1900 e 1904)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=10" title="Modifica la sezione La massa della radiazione elettromagnetica: Poincaré (1900 e 1904)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=10" title="Edit section's source code: La massa della radiazione elettromagnetica: Poincaré (1900 e 1904)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La <a href="/wiki/Pressione_di_radiazione" title="Pressione di radiazione">pressione di radiazione</a> o tensione del campo elettromagnetico </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P={\frac {\phi (E)}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P={\frac {\phi (E)}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a88144718b3e8e8bf535714d38960da4e25eb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.65ex; height:5.676ex;" alt="{\displaystyle P={\frac {\phi (E)}{c}}}"></span>,</dd></dl> <p>con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/026491b9b8ae27b0626d3a3b6e4cdd2ca6db615f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.97ex; height:2.843ex;" alt="{\displaystyle \phi (E)}"></span> <a href="/wiki/Flusso" title="Flusso">flusso</a> d'<a href="/wiki/Energia" title="Energia">energia</a> elettromagnetica, fu introdotta da <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> nel 1874 e da <a href="/wiki/Adolfo_Bartoli_(fisico)" title="Adolfo Bartoli (fisico)">Adolfo Bartoli</a> nel 1876. </p><p>Nel 1895 <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a> riconobbe che tali tensioni del campo elettromagnetico si debbono manifestare anche nella teoria dell'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere luminifero</a> stazionario da lui proposta.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Ma se l'etere è in grado di mettere in moto dei corpi, per il <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a> anche l'etere deve essere messo in moto dai corpi materiali. Tuttavia il moto di parti dell'etere è in contraddizione con la caratteristica fondamentale dell'etere, che deve essere immobile. Quindi, per mantenere l'immobilità dell'etere, Lorentz ammetteva esplicitamente un'eccezione al <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a>. </p><p>Nel 1900 <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> analizzò il conflitto tra il <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a> e l'etere di Lorentz.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> Mediante l'<a href="/wiki/Esperimento_mentale" title="Esperimento mentale">esperimento mentale</a> della <i>scatola di Poincaré</i> (descritta nella Sezione <a href="/wiki/E%3Dmc%5E2#Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)" class="mw-redirect" title="E=mc^2">Derivazioni non relativistiche di Einstein (1906 e 1950)</a>) cercò di capire se il baricentro o <a href="/wiki/Centro_di_massa" title="Centro di massa">centro di massa</a> di un corpo si muova ancora a velocità uniforme quando sono coinvolti campo elettromagnetico e radiazione. Notò che il <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a> non vale per la sola materia, in quanto il campo elettromagnetico ha una sua <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> (già derivata anche da <a href="/wiki/Joseph_John_Thomson" title="Joseph John Thomson">Joseph John Thomson</a> nel 1893,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> ma in maniera più complicata). Poicaré concluse che il campo elettromagnetico agisce come un <a href="/wiki/Fluido" title="Fluido">fluido</a> <i>fittizio</i> con una <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a> equivalente a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8330fabdfcbf072e88a646ba653863fbbac5e2e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.353ex; height:5.509ex;" alt="{\displaystyle m_{\rm {em}}={\frac {E_{\rm {em}}}{c^{2}}}}"></span>.</dd></dl> <p>Se il <a href="/wiki/Centro_di_massa" title="Centro di massa">centro di massa</a> è definito usando sia la massa <i>m</i> della materia sia la massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> del fluido <i>fittizio</i>, e se quest'ultimo non viene né creato né distrutto, allora il moto del <a href="/wiki/Centro_di_massa" title="Centro di massa">centro di massa</a> risulta uniforme. Ma il fluido elettromagnetico non è indistruttibile, in quanto può essere assorbito dalla materia (per questo motivo Poincaré aveva chiamato il fluido <i>fittizio</i> anziché <i>reale</i>). Quindi il <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a> verrebbe ancora violato dall'etere di Lorentz. La soluzione al problema (equivalenza <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>-<a href="/wiki/Energia" title="Energia">energia</a>) sarà trovata da Einstein col suo articolo<sup id="cite_ref-einstein_2-2" class="reference"><a href="#cite_note-einstein-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> del 1905: la massa del campo elettromagnetico viene trasferita alla materia nel processo d'assorbimento. Ma Poincaré formulò invece una diversa ipotesi, assumendo che in ogni punto dello spazio esista un fluido immobile d'energia non-elettromagnetica, dotato di una massa proporzionale alla sua energia. Quando il fluido fittizio elettromagnetico è emesso o assorbito, la sua massa/energia non è emessa o assorbita dalla materia, ma viene invece trasferita al fluido non-elettromagnetico, rimanendo esattamente nella stessa posizione. Con questa improbabile ipotesi, il moto del <a href="/wiki/Centro_di_massa" title="Centro di massa">centro di massa</a> del sistema (materia + fluido <i>fittizio</i> elettromagnetico + fluido <i>fittizio</i> non-elettromagnetico) risulta uniforme. </p><p>Tuttavia - siccome solo la materia e la radiazione elettromagnetica, ma non il fluido non-elettromagnetico, sono direttamente osservabili in un esperimento - quando si considera empiricamente un processo d'emissione o assorbimento, la soluzione proposta da Poicaré viola ancora il <a href="/wiki/Principi_della_dinamica" title="Principi della dinamica">principio d'azione e reazione</a>. Ciò conduce ad esiti paradossali quando si cambia il <a href="/wiki/Sistema_di_riferimento" title="Sistema di riferimento">sistema di riferimento</a>. Studiando l'emissione di radiazione da un corpo e il rinculo dovuto alla <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> del fluido <i>fittizio</i>, Poincaré notò che una <a href="/wiki/Trasformazione_di_Lorentz" title="Trasformazione di Lorentz">trasformazione di Lorentz</a> (al primo ordine in <i>v/c</i>) dal sistema di riferimento del laboratorio al sistema di riferimento del corpo in movimento risulta conservare l'<a href="/wiki/Energia" title="Energia">energia</a>, ma non la <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a>. Ciò comporterebbe la possibilità di un <a href="/wiki/Moto_perpetuo" title="Moto perpetuo">moto perpetuo</a>, ovviamente impossibile. Inoltre le leggi di natura sarebbero differenti nei due diversi <a href="/wiki/Sistema_di_riferimento" title="Sistema di riferimento">sistemi di riferimento</a>, ed il principio di relatività sarebbe violato. Concluse quindi che nell'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere</a> debba agire un altro sistema di compensazione, diverso da quello dei <a href="/wiki/Fluidi" class="mw-redirect" title="Fluidi">fluidi</a> <i>fittizi</i>.<sup id="cite_ref-miller_40-1" class="reference"><a href="#cite_note-miller-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Poincaré tornò sull'argomento nel 1904,<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> rifiutando la soluzione da lui proposta nel 1900 che movimenti nell'<a href="/wiki/Etere_luminifero" title="Etere luminifero">etere</a> possano compensare il moto di corpi materiali, perché simili ipotesi sono sperimentalmente inosservabili e quindi scientificamente inutili. Abbandonò inoltre l'idea di un'equivalenza <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>-<a href="/wiki/Energia" title="Energia">energia</a> e a proposito del rinculo dei corpi materiali che emettono radiazione elettromagnetica scrisse: <i>«L'apparato rinculerà come se un cannone avesse sparato un proiettile, contraddicendo il principio di <a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a>, poiché il proiettile in questo caso non è <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>, è <a href="/wiki/Energia" title="Energia">energia</a>.»</i> </p> <div class="mw-heading mw-heading3"><h3 id="La_massa_della_radiazione_di_corpo_nero:_Hasenöhrl_(1904-1905)_e_Planck_(1907)"><span id="La_massa_della_radiazione_di_corpo_nero:_Hasen.C3.B6hrl_.281904-1905.29_e_Planck_.281907.29"></span>La massa della radiazione di corpo nero: Hasenöhrl (1904-1905) e Planck (1907)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=11" title="Modifica la sezione La massa della radiazione di corpo nero: Hasenöhrl (1904-1905) e Planck (1907)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=11" title="Edit section's source code: La massa della radiazione di corpo nero: Hasenöhrl (1904-1905) e Planck (1907)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'idea di Poincaré d'associare una massa e una <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> alla radiazione elettromagnetica si dimostrò feconda. Nel 1902 <a href="/wiki/Max_Abraham" title="Max Abraham">Max Abraham</a> introdusse<sup id="cite_ref-abraham_31-2" class="reference"><a href="#cite_note-abraham-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> il termine "momento elettromagnetico" con densità di campo pari a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {em}}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {em}}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8114d3fb94b6a8c5bc75ee118f28e35894b835f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.27ex; height:3.176ex;" alt="{\displaystyle E_{\rm {em}}/c^{2}}"></span> per cm³ e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\rm {em}}/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\rm {em}}/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e11b37c29dc127923333db293403dcbc2595fbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.216ex; height:2.843ex;" alt="{\displaystyle E_{\rm {em}}/c}"></span> per cm<sup>2</sup>. Al contrario di Lorentz e Poincaré, che lo consideravano <i>fittizio</i>, Abraham sostenne che fosse un ente fisico <i>reale</i>, che consentiva la conservazione complessiva della quantità di moto. </p><p>Nel 1904 <a href="/wiki/Friedrich_Hasen%C3%B6hrl" title="Friedrich Hasenöhrl">Friedrich Hasenöhrl</a>, studiando la dinamica di un <a href="/wiki/Corpo_nero" title="Corpo nero">corpo nero</a> in movimento, associò il concetto d'<a href="/wiki/Inerzia" title="Inerzia">inerzia</a> alla radiazione elettromagnetica della cavità.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Hasenöhrl suggerì che parte della massa del corpo (che denominò <i>massa apparente</i>) può essere attribuita alla radiazione che rimbalza dentro la cavità. Siccome ogni corpo riscaldato emette radiazione elettromagnetica, la <i>massa apparente</i> della radiazione dipende dalla temperatura e risulta proporzionale alla sua <a href="/wiki/Energia" title="Energia">energia</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {ap}}=(8/3)E/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo stretchy="false">)</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {ap}}=(8/3)E/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5570e3441596dcd8779341d612b54d439ef5f56a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.403ex; height:3.343ex;" alt="{\displaystyle m_{\rm {ap}}=(8/3)E/c^{2}}"></span>. Abraham corresse questo risultato di Hasenöhrl: in base alla definizione del "momento elettromagnetico" e della massa elettromagnetica longitudinale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ce1dc495c1abab0dd90b1c322bd3cc944d6b39d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.583ex; height:3.176ex;" alt="{\displaystyle m_{L}={\gamma }^{3}\,m_{\rm {em}}}"></span>, il valore della costante di proporzionalità avrebbe dovuto essere 4/3: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {ap}}={\frac {4}{3}}\,{\frac {E}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {ap}}={\frac {4}{3}}\,{\frac {E}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5503cbd66437f26a7f53c45c9f4c7d27ae027753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.39ex; height:5.509ex;" alt="{\displaystyle m_{\rm {ap}}={\frac {4}{3}}\,{\frac {E}{c^{2}}}}"></span>,</dd></dl> <p>come per la massa elettromagnetica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> di un corpo elettricamente carico in movimento. Nel 1905 Hasenöhrl rifece i calcoli, confermando il risultato di Abraham. Notò inoltre la similarità tra la <i>massa apparente</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {ap}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">p</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {ap}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b0fe3624aec161ef8b71e6e1fe042cf0ad7b367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.009ex; height:2.343ex;" alt="{\displaystyle m_{\rm {ap}}}"></span> di un <a href="/wiki/Corpo_nero" title="Corpo nero">corpo nero</a> e quella elettromagnetica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{\rm {em}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{\rm {em}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ddfc919bf2e455fe83077e7a64de1e81ac9f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.372ex; height:2.009ex;" alt="{\displaystyle m_{\rm {em}}}"></span> di un corpo carico.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> Circa il termine 4/3 e la sua successiva eliminazione, si veda la parte finale della Sezione <a href="#La_massa_elettromagnetica_dell'elettrone_(1881-1906)"><i>La massa elettromagnetica dell'elettrone (1881-1906)</i></a>. </p><p>Nel 1907 <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a>, generalizzando il lavoro di Hasenöhrl, fornì una derivazione non relativistica della formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta E=\Delta m\,c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>E</mi> <mo>=</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi>m</mi> <mspace width="thinmathspace" /> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta E=\Delta m\,c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1441f220ddb30a39c12b4bf560e45ba0f80bc4f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.234ex; height:2.676ex;" alt="{\displaystyle \Delta E=\Delta m\,c^{2}}"></span>: <i>«mediante ogni assorbimento o emissione di calore la massa inerziale di un corpo si modifica, e l'incremento di massa è sempre uguale alla quantità di calore [...] divisa per il quadrato della velocità della luce nel vuoto.»</i><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Derivazioni_relativistiche_di_Einstein_(1905_e_1907)"><span id="Derivazioni_relativistiche_di_Einstein_.281905_e_1907.29"></span>Derivazioni relativistiche di Einstein (1905 e 1907)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=12" title="Modifica la sezione Derivazioni relativistiche di Einstein (1905 e 1907)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=12" title="Edit section's source code: Derivazioni relativistiche di Einstein (1905 e 1907)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139517313"><div class="itwiki-template-citazione"> <div class="itwiki-template-citazione-singola"> <p>«<i>[...] molti libri di testo e articoli gli attribuiscono la relazione</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span>, <i>dove</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> <i>è l'energia totale,</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> <i>la massa relativistica e</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> <i>è la velocità della luce nel vuoto. Einstein non ha mai derivato questa relazione, almeno non con quella interpretazione del significato dei suoi termini. Egli ha costantemente messo in relazione l'"energia a riposo" di un sistema con la sua massa inerziale invariante.</i>» </p> </div><p class="itwiki-template-citazione-footer">(<small>Eugene Hecht,<sup id="cite_ref-hecht_3-4" class="reference"><a href="#cite_note-hecht-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> 2009</small>)</p></div> <p>Nel suo articolo del 1905 "<i>L'inerzia di un corpo dipende dal suo contenuto di energia?</i>"<sup id="cite_ref-einstein_2-3" class="reference"><a href="#cite_note-einstein-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> (entrato a far parte della raccolta chiamata <a href="/wiki/Annus_Mirabilis_Papers" title="Annus Mirabilis Papers">Annus Mirabilis Papers</a>), Einstein non utilizzò i simboli che diverranno usuali solo dal 1912.<sup id="cite_ref-manoscritto_1912_7-1" class="reference"><a href="#cite_note-manoscritto_1912-7"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-farmelo_56-0" class="reference"><a href="#cite_note-farmelo-56"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> In quell'articolo esaminò la diminuzione dell'energia di un corpo in quiete per emissione di radiazione in due direzioni opposte (al fine di garantire la conservazione della quantità di moto totale). Giunse all'equazione: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m_{0}=-{\frac {L}{V^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>L</mi> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m_{0}=-{\frac {L}{V^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cfcf3c7cb638995dfcaca9740ba2d87aea39b39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.744ex; height:5.509ex;" alt="{\displaystyle \Delta m_{0}=-{\frac {L}{V^{2}}}}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> è la velocità della luce nel vuoto ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> rappresenta l'energia elettromagnetica irraggiata, proporzionale alla perdita di massa da parte del corpo immobile. Nel formalismo relativistico successivo al 1912 tale relazione sarebbe stata scritta come: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m_{0}=-{\frac {E_{em}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m_{0}=-{\frac {E_{em}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44ade76f0f3a591079218bd7375d8c2e1605eb37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.93ex; height:5.509ex;" alt="{\displaystyle \Delta m_{0}=-{\frac {E_{em}}{c^{2}}}}"></span></dd></dl> <p>Einstein generalizzò quindi il concetto affermando che: «<i>Se un corpo perde energia L sotto forma di radiazioni, la sua massa diminuisce di L/V². Il fatto che l'energia sottratta al corpo diventi energia di radiazione non fa alcuna differenza, perciò siamo portati alla più generale conclusione che la massa di qualunque corpo è la misura del suo contenuto di energia; se l'energia varia di L, la massa varia nello stesso senso di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\,/\,(9\times 10^{20})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>9</mn> <mo>×<!-- × --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\,/\,(9\times 10^{20})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/958273ec719540546211266c09a410abcb306893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.533ex; height:3.176ex;" alt="{\displaystyle L\,/\,(9\times 10^{20})}"></span>, misurando l'energia in erg e la massa in grammi.</i>» In queste parole c'è la chiara consapevolezza di Einstein circa la validità universale della sua scoperta. </p><p>Nella parte finale dell'articolo, Einstein suggerì d'indagare il <a href="/wiki/Radio_(elemento_chimico)" title="Radio (elemento chimico)">radio</a>, un elemento radioattivo, per verificare l'equivalenza massa-energia nel caso d'<a href="/wiki/Radioattivit%C3%A0" title="Radioattività">emissione radioattiva</a>: <i>«Non è impossibile che nei corpi nei quali il contenuto in energia sia variabile in sommo grado (per esempio nei <a href="/wiki/Cloruro_di_radio" title="Cloruro di radio">sali di radio</a>) la teoria possa essere sperimentata con successo.»</i>. In effetti, sarà proprio nel campo della fisica nucleare che si avranno sistematiche conferme della validità delle equazioni <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}=m_{0}c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}=m_{0}c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ae011565cb0d1d597cb47ef91c4b425e66efc8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.024ex; height:3.009ex;" alt="{\displaystyle E_{0}=m_{0}c^{2}}"></span>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r139517313"><div class="itwiki-template-citazione"> <div class="itwiki-template-citazione-singola"> <p>«<i>Il fatto che il procedimento seguito da Einstein, [...] quale fu pubblicato nel suo articolo su "Annalen der Physik", fosse fondamentalmente errato, rappresenta un curioso incidente nella storia del pensiero scientifico. Infatti quella formula [...] non era altro che il risultato di una </i>petitio principii<i>, la conclusione cioè dell'aver posto il quesito. Quest'affermazione non intende, naturalmente, sminuire l'importanza del contributo dato da Einstein su questo punto, dal momento che la relazione fra massa ed energia è una conseguenza necessaria della teoria della relatività e si può dedurre dalle ipotesi fondamentali della teoria con vari metodi, e non soltanto con quello impiegato da Einstein nella sua pubblicazione originale. L'illegittimità logica della deduzione fattane da Einstein fu dimostrata da <a href="/wiki/Herbert_Eugene_Ives" title="Herbert Eugene Ives">Ives</a>.</i><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>Nota 3<span class="cite-bracket">]</span></a></sup>» </p> </div><p class="itwiki-template-citazione-footer">(<small><a href="/wiki/Max_Jammer" title="Max Jammer">Max Jammer</a>,<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> 1961</small>)</p></div> <p>Nel 1907 Einstein tornò sulla derivazione relativistica dell'equivalenza massa-energia,<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> a riprova del fatto che non considerasse quella del 1905 come definitiva. La formula che viene ricavata in diverse situazioni d'interesse fisico è </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ={\frac {E_{0}}{V^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ={\frac {E_{0}}{V^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f0f228ac3dd2f5158b4ee31eb9bb3947f42092b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:8.307ex; height:5.676ex;" alt="{\displaystyle \mu ={\frac {E_{0}}{V^{2}}}}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> è la velocità della luce nel vuoto e «<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> <i>denota la massa (nel senso usuale del termine) di un corpo rigido</i>». Nel formalismo relativistico successivo al 1912,<sup id="cite_ref-farmelo_56-1" class="reference"><a href="#cite_note-farmelo-56"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> tale relazione diventa </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{inv}={\frac {E_{0}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{inv}={\frac {E_{0}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e290b2e6ceba719898178b51ccc353281f332d37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.328ex; height:5.676ex;" alt="{\displaystyle m_{inv}={\frac {E_{0}}{c^{2}}}}"></span></dd></dl> <p>in cui si fa esplicito riferimento all'energia a riposo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/411d268de7b1cf300d7481e3fe59f3b20887e0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.769ex; height:2.509ex;" alt="{\displaystyle E_{0}}"></span> e alla <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa newtoniana</a>, ovvero alla <a href="/wiki/E%3Dmc%5E2#Massa_invariante" class="mw-redirect" title="E=mc^2">massa invariante</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{inv}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{inv}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae6d30604303e6e7d1c3dd7dd98612d59fe45fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.624ex; height:2.009ex;" alt="{\displaystyle m_{inv}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Derivazioni_non_relativistiche_di_Einstein_(1906_e_1950)"><span id="Derivazioni_non_relativistiche_di_Einstein_.281906_e_1950.29"></span>Derivazioni non relativistiche di Einstein (1906 e 1950)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=13" title="Modifica la sezione Derivazioni non relativistiche di Einstein (1906 e 1950)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=13" title="Edit section's source code: Derivazioni non relativistiche di Einstein (1906 e 1950)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nel 1906 Einstein fornì una derivazione non relativistica,<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> basata solo sulle leggi della meccanica e dell'elettromagnetismo, della formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m_{0}=-E_{em}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m_{0}=-E_{em}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bf020665a31bbcf56941cb51f00f17055073623" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.317ex; height:3.176ex;" alt="{\displaystyle \Delta m_{0}=-E_{em}/c^{2}}"></span> pubblicata l'anno precedente. La dimostrazione utilizzava la <i>scatola di Poincaré</i> (introdotta da <a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Henri Poincaré</a> nel 1900) e il nuovo risultato risulta approssimato al prim'ordine in (v/c). La derivazione di Einstein fu modificata da <a href="/wiki/Max_Born" title="Max Born">Max Born</a> in due suoi libri, pubblicati rispettivamente nel 1920<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> e nel 1925.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> La dimostrazione di Born viene qui riportata in una versione elaborata dai fisici italiani Enrico Smargiassi<sup id="cite_ref-smargiassi_64-0" class="reference"><a href="#cite_note-smargiassi-64"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> e Gianluca Introzzi (intermittenza dell'emettitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> e formalismo più dettagliato), in modo da introdurre il <a href="/wiki/Moto_perpetuo" title="Moto perpetuo">moto perpetuo</a> come esito paradossale che richiede l'equivalenza massa-energia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}=E_{em}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}=E_{em}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4b10fe00aa485028625a33f09ceb134c3cdac71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.96ex; height:3.176ex;" alt="{\displaystyle m_{em}=E_{em}/c^{2}}"></span> per essere eliminato. </p><p>Si abbia una scatola a forma di parallelepipedo isolata, non soggetta a forze o attriti esterni e ferma rispetto ad un riferimento inerziale. All'interno sono fissati, sulle due pareti minori, una sorgente direzionale di luce intermittente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> a sinistra ed un assorbitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> a destra, di ugual massa e distanti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span> tra loro. La massa complessiva del sistema scatola, emettitore e assorbitore sia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{em}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{em}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e2f5a223a20f904cd1f8d84551e58f05f68605" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.156ex; height:2.509ex;" alt="{\displaystyle E_{em}}"></span> è l'energia di un segnale luminoso, il momento associato risulta essere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=E_{em}/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=E_{em}/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9fdbda7ef79a1cc0814cb8915c68d23759b7d71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:10.683ex; height:2.843ex;" alt="{\displaystyle p=E_{em}/c}"></span> (si veda la seconda dimostrazione, più sotto, per la sua derivazione). L'emissione del segnale luminoso verso destra da parte della sorgente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> produce un rinculo della scatola verso sinistra. Il momento lineare della scatola è <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=Mv}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mi>M</mi> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=Mv}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59279ebf09d37c9ef72bfe8990ab790d3b9302c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.738ex; height:2.509ex;" alt="{\displaystyle q=Mv}"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> è la sua velocità di spostamento. La scatola continuerà a muoversi verso sinistra, fino a che il segnale luminoso non sarà assorbito dall'assorbitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Il momento lineare <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> trasferito dalla luce all'assorbitore compenserà esattamente quello <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> della scatola, arrestando il movimento del sistema. Il risultato netto sarà uno spostamento della scatola verso sinistra di una distanza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=v\,t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=v\,t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ef88b0d03fb4d1899cd0796281a973adc848cc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.782ex; height:2.009ex;" alt="{\displaystyle x=v\,t}"></span>. </p><p>Dalla conservazione della quantità di moto ( <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}+{\vec {q}}=p-q=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}+{\vec {q}}=p-q=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fbb07d891e95c42b286a10e84aa24d2a76eb392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:18.002ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}+{\vec {q}}=p-q=0}"></span>) scritta esplicitamente: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {E_{em}}{c}}-Mv=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>M</mi> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {E_{em}}{c}}-Mv=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/450ac347617fe08a3c9a518a4f01d966f3f7fb60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.664ex; height:5.176ex;" alt="{\displaystyle {\frac {E_{em}}{c}}-Mv=0}"></span></dd></dl> <p>si ricava la velocità della scatola: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v={\frac {E_{em}}{cM}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mrow> <mi>c</mi> <mi>M</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v={\frac {E_{em}}{cM}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeec8a7cd160efbc63e05037903042f4f6a01a8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.219ex; height:5.176ex;" alt="{\displaystyle v={\frac {E_{em}}{cM}}}"></span>.</dd></dl> <p>Il tempo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> è quello di volo del segnale luminoso dalla sorgente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> all'assorbitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t={\frac {l-x}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>l</mi> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t={\frac {l-x}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07da82e75aa030ad5da219e54ce56c86d2d1ff33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.638ex; height:5.343ex;" alt="{\displaystyle t={\frac {l-x}{c}}}"></span>.</dd></dl> <p>Approssimare il suo valore con </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\simeq {\frac {l}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>l</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\simeq {\frac {l}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff695f0210d204ae277c46acb382e51ca3035c9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.781ex; height:5.343ex;" alt="{\displaystyle t\simeq {\frac {l}{c}}}"></span></dd></dl> <p>equivale ad assumere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (l-x)/l=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>l</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (l-x)/l=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daa4c32d2f422f86e93618fd930e78bf6e3070ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.789ex; height:2.843ex;" alt="{\displaystyle (l-x)/l=1}"></span>, quindi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c-v)/c=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c-v)/c=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dadba85f33df4e063d2e03bc8ce853b3210cab00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.214ex; height:2.843ex;" alt="{\displaystyle (c-v)/c=1}"></span>, ovvero a trascurare termini correttivi dell'ordine di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v/c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v/c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd5fbfe05e197127354e233f6c813e6b5d846672" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.297ex; height:2.843ex;" alt="{\displaystyle v/c}"></span>. Allora in un'approssimazione al prim'ordine si ha: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=v\,t\simeq {\frac {l}{M}}\,{\frac {E_{em}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>v</mi> <mspace width="thinmathspace" /> <mi>t</mi> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>l</mi> <mi>M</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=v\,t\simeq {\frac {l}{M}}\,{\frac {E_{em}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01fcda83a054ad2237ba3f4f62f1ad4d9acc0167" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.539ex; height:5.676ex;" alt="{\displaystyle x=v\,t\simeq {\frac {l}{M}}\,{\frac {E_{em}}{c^{2}}}}"></span>.</dd></dl> <p>Tale risultato è paradossale: un sistema isolato fermo in un riferimento inerziale non può spostare il proprio centro di massa (sarebbe equivalente ad uscire dalle <a href="/wiki/Sabbie_mobili" title="Sabbie mobili">sabbie mobili</a> tirandosi per i propri capelli, come raccontava d'aver fatto il <a href="/wiki/Barone_di_M%C3%BCnchhausen" title="Barone di Münchhausen">barone di Münchhausen</a>). L'emissione di un secondo segnale luminoso sposterà ulteriormente la scatola a sinistra di una lunghezza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. Continuando l'emissione e l'assorbimento di segnali luminosi nella scatola, sembrerebbe possibile ottenerne lo spostamento per distanze arbitrariamente grandi, senza che nessun altro cambiamento avvenga dentro la scatola o nelle sue vicinanze. Sarebbe la realizzazione del <a href="/wiki/Moto_perpetuo" title="Moto perpetuo">moto perpetuo</a>, ovviamente impossibile. I due apparenti paradossi (spostamento del centro di massa e moto perpetuo) scompaiono se si tien conto dell'equivalenza massa-energia di Einstein. Con l'emissione del segnale luminoso, l'emettitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> perde l'energia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{em}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{em}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e2f5a223a20f904cd1f8d84551e58f05f68605" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.156ex; height:2.509ex;" alt="{\displaystyle E_{em}}"></span>, e quindi si ha una differenza di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82fa0f0908db8f06cab7d46d990b6d2fd97a07cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.031ex; height:2.509ex;" alt="{\displaystyle \Delta m_{0}}"></span> (per ora incognita, ma certamente negativa). Similmente, l'energia e quindi la massa dell'assorbitore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> aumentano delle stesse quantità dopo l'assorbimento. Definiamo la massa associata alla radiazione emessa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (m_{em}>0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (m_{em}>0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de834b629d6f8230e4b47fb0e7d209fdbe5d219a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.552ex; height:2.843ex;" alt="{\displaystyle (m_{em}>0)}"></span> a partire dal difetto di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Delta m_{0}<0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo><</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Delta m_{0}<0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/176cfff11550c4780c797d90c5a5e24a00706432" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.101ex; height:2.843ex;" alt="{\displaystyle (\Delta m_{0}<0)}"></span> della sorgente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}=-\Delta m_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}=-\Delta m_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e14b91bd464f51be213f21d41fffc35478963b68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.419ex; height:2.509ex;" alt="{\displaystyle m_{em}=-\Delta m_{0}}"></span>.</dd></dl> <p>Per la conservazione della quantità di moto, il momento lineare totale dovuto allo spostamento delle due masse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> ed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf9dac78fc06913b3bc246555b1d249963983cd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.482ex; height:2.009ex;" alt="{\displaystyle m_{em}}"></span> durante il tempo di volo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> della luce deve essere nullo: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}c-Mv=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mi>c</mi> <mo>−<!-- − --></mo> <mi>M</mi> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}c-Mv=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f55cdcc55099bc297f1d4591e6db41a86f29772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.16ex; height:2.509ex;" alt="{\displaystyle m_{em}c-Mv=0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}{\frac {l}{t}}-M{\frac {x}{t}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>l</mi> <mi>t</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>t</mi> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}{\frac {l}{t}}-M{\frac {x}{t}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dd87588e6d6c30d590e2a413f479974461fd246" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.867ex; height:5.343ex;" alt="{\displaystyle m_{em}{\frac {l}{t}}-M{\frac {x}{t}}=0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}l-Mx=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mi>l</mi> <mo>−<!-- − --></mo> <mi>M</mi> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}l-Mx=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a5dd1ab1d819f4ae3656bbedc6db24cc80fd519" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.048ex; height:2.509ex;" alt="{\displaystyle m_{em}l-Mx=0}"></span></dd></dl> <p>da cui si ricava </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}={\frac {M}{l}}\,x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>M</mi> <mi>l</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}={\frac {M}{l}}\,x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cda48cf2d109b440c340fa8a7d57e736823f0f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.575ex; height:5.343ex;" alt="{\displaystyle m_{em}={\frac {M}{l}}\,x}"></span>.</dd></dl> <p>Lo spostamento <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> dovuto alle due masse deve uguagliare esattamente quello prodotto dall'impulso della radiazione. Sostituendo nella relazione precedente il valore approssimato di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, dovuto all'impulso radiativo, si ottiene infine </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{em}\simeq {\frac {E_{em}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{em}\simeq {\frac {E_{em}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0da947497a2f0d24f48ab56612d968112411b32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:12.573ex; height:5.509ex;" alt="{\displaystyle m_{em}\simeq {\frac {E_{em}}{c^{2}}}}"></span></dd></dl> <p>ovvero </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta m_{0}\simeq -{\frac {E_{em}}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>≃<!-- ≃ --></mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>m</mi> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta m_{0}\simeq -{\frac {E_{em}}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dce79aef81bff1508167eb41796be67dc79b809" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.93ex; height:5.509ex;" alt="{\displaystyle \Delta m_{0}\simeq -{\frac {E_{em}}{c^{2}}}}"></span>.</dd></dl> <p>Va osservato che tutti i risultati formali ottenuti da Einstein nel 1906 erano già stati anticipati da Poincaré sei anni prima (vedi <a href="/wiki/E%3Dmc%5E2#La_massa_della_radiazione_elettromagnetica:_Poincaré_(1900_e_1904)" class="mw-redirect" title="E=mc^2">La massa della radiazione elettromagnetica: Poincaré (1900 e 1904)</a>). Tuttavia, anche per l'equivalenza massa-energia, si è ripetuto quanto avvenuto nel 1905 per l'etere: Poincaré aveva svolto e pubblicato prima di Einstein i calcoli relativi alla cinematica relativistica, fermandosi però ad un passo dall'affermare la non esistenza dell'etere. Quel passo, decisivo e rischioso ad un tempo, sarà fatto da Einstein nell'articolo del 1905 <i><a href="/wiki/Sull%27elettrodinamica_dei_corpi_in_movimento" title="Sull'elettrodinamica dei corpi in movimento">Sull'elettrodinamica dei corpi in movimento</a></i>: «<i>L'introduzione di un "etere luminifero" si rivelerà superflua in quanto, secondo l'interpretazione sviluppata, non si introduce uno "spazio assoluto in quiete" dotato di proprietà speciali [...]</i>» La stessa dinamica si ripete con l'equivalenza massa-energia: Poincaré dopo il 1904 preferisce convivere con esiti paradossali (possibilità del moto perpetuo, non conservazione della quantità di moto, violazione del principio di relatività) pur di mantenere la tradizionale distinzione tra massa ed energia. La scelta risolutiva di unificare i due concetti, fatta da Einsten col lavoro del 1905 "<i>L'inerzia di un corpo dipende dal suo contenuto di energia?</i>",<sup id="cite_ref-einstein_2-4" class="reference"><a href="#cite_note-einstein-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> sarà da lui ribadita nel 1906 utilizzando come <a href="/wiki/Esperimento_mentale" title="Esperimento mentale">esperimento mentale</a> proprio quella <i>scatola di Poincaré</i> introdotta nel 1900 dal fisico-matematico francese. </p><p>Un altro modo di derivare l'<i>equivalenza <a href="/wiki/Massa_(fisica)" title="Massa (fisica)">massa</a>-<a href="/wiki/Energia" title="Energia">energia</a></i> è basato sulla <a href="/wiki/Pressione_di_radiazione" title="Pressione di radiazione">pressione di radiazione</a> o tensione del campo elettromagnetico, introdotta da <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> nel 1874 e da <a href="/wiki/Adolfo_Bartoli_(fisico)" title="Adolfo Bartoli (fisico)">Adolfo Bartoli</a> nel 1876. Nel 1950 <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> attribuì l'origine della formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> alle equazioni di campo di Maxwell.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> La pressione di radiazione è </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P={\frac {\phi (E)}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P={\frac {\phi (E)}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a88144718b3e8e8bf535714d38960da4e25eb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.65ex; height:5.676ex;" alt="{\displaystyle P={\frac {\phi (E)}{c}}}"></span></dd></dl> <p>dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/026491b9b8ae27b0626d3a3b6e4cdd2ca6db615f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.97ex; height:2.843ex;" alt="{\displaystyle \phi (E)}"></span> è il <a href="/wiki/Flusso" title="Flusso">flusso</a> d'<a href="/wiki/Energia" title="Energia">energia</a> elettromagnetica. Siccome </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P={\frac {F}{S}}={\frac {1}{cS}}\,{\frac {dE}{dt}}={\frac {\phi (E)}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>F</mi> <mi>S</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mi>S</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P={\frac {F}{S}}={\frac {1}{cS}}\,{\frac {dE}{dt}}={\frac {\phi (E)}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad8cbdc4e9513b3a6b335887141d6724294b957" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.981ex; height:5.843ex;" alt="{\displaystyle P={\frac {F}{S}}={\frac {1}{cS}}\,{\frac {dE}{dt}}={\frac {\phi (E)}{c}}}"></span></dd></dl> <p>con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dE/dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dE/dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/194442e6e77c3daf76c2a1bc9dc7d5189129bacf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.209ex; height:2.843ex;" alt="{\displaystyle dE/dt}"></span> tasso di variazione dell'<a href="/wiki/Energia" title="Energia">energia</a> ricevuta dal corpo, la forza <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> esercitata su un corpo assorbente della radiazione elettromagnetica risulta essere </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F={\frac {1}{c}}\,{\frac {dE}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F={\frac {1}{c}}\,{\frac {dE}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8509034b53f5f53209e34c3e030280ca55a6ff9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.053ex; height:5.509ex;" alt="{\displaystyle F={\frac {1}{c}}\,{\frac {dE}{dt}}}"></span>.</dd></dl> <p>D'altra parte, per la <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> assorbita dal corpo, vale </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F={\frac {dp}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>p</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F={\frac {dp}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/854492559000ecb866fb39f6d7db233703c10eb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.061ex; height:5.509ex;" alt="{\displaystyle F={\frac {dp}{dt}}}"></span>.</dd></dl> <p>Dal confronto tra le due equazioni si ricava </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dp}{dt}}={\frac {1}{c}}\,{\frac {dE}{dt}}\quad \Longrightarrow \quad p={\frac {E}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>p</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>E</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="1em" /> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dp}{dt}}={\frac {1}{c}}\,{\frac {dE}{dt}}\quad \Longrightarrow \quad p={\frac {E}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae04d1db6bcea6c4755bccaa1342fe3e3ec20a9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.154ex; height:5.509ex;" alt="{\displaystyle {\frac {dp}{dt}}={\frac {1}{c}}\,{\frac {dE}{dt}}\quad \Longrightarrow \quad p={\frac {E}{c}}}"></span></dd></dl> <p>Se la <a href="/wiki/Quantit%C3%A0_di_moto" title="Quantità di moto">quantità di moto</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> viene scritta come prodotto della massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> acquisita dal corpo assorbendo la radiazione per la velocità <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> della radiazione incidente (ipotesi <i>ad hoc</i> necessaria per ottenere il risultato voluto), si ricava </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=mc={\frac {E}{c}}\quad \Longrightarrow \quad m={\frac {E}{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>m</mi> <mi>c</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi>c</mi> </mfrac> </mrow> <mspace width="1em" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="1em" /> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=mc={\frac {E}{c}}\quad \Longrightarrow \quad m={\frac {E}{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47443fd0c75f3b02a797c25e665fad10f7e87f4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-left: -0.089ex; width:30.892ex; height:5.509ex;" alt="{\displaystyle p=mc={\frac {E}{c}}\quad \Longrightarrow \quad m={\frac {E}{c^{2}}}}"></span></dd></dl> <p>Va specificato che l'implicazione sopra indicata <i>non</i> costituisce una prova della relazione <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> e che l'equivalenza <i>ad hoc</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=mc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>m</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=mc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d36f672b91869bae3f3710a60c6b0cd8dae76b06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.405ex; height:2.009ex;" alt="{\displaystyle p=mc}"></span> non si trova né in Maxwell né in Bartoli, ma è stata proposta solo <i>a posteriori</i> (nel 1950) da Einstein. </p> <div class="mw-heading mw-heading3"><h3 id="Derivazione_non_relativistica_di_Rohrlich_(1990)"><span id="Derivazione_non_relativistica_di_Rohrlich_.281990.29"></span>Derivazione non relativistica di Rohrlich (1990)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=14" title="Modifica la sezione Derivazione non relativistica di Rohrlich (1990)" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=14" title="Edit section's source code: Derivazione non relativistica di Rohrlich (1990)"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Il fisico americano <a href="/w/index.php?title=Fritz_Rohrlich&action=edit&redlink=1" class="new" title="Fritz Rohrlich (la pagina non esiste)">Fritz Rohrlich</a> (1921 - 2018) è riuscito a dimostrare nel 1990 la formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span> senza servirsi di relazioni di tipo relativistico, basandosi esclusivamente sulle leggi della fisica classica, quali il principio di <a href="/wiki/Conservazione_della_quantit%C3%A0_di_moto" class="mw-redirect" title="Conservazione della quantità di moto">conservazione della quantità di moto</a> e l'<a href="/wiki/Effetto_Doppler" title="Effetto Doppler">effetto Doppler</a>.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p><p>Si consideri un corpo materiale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31aafa60e48d39ccce922404c0b80340b2cc777a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{1}}"></span> che si muova rispetto a un osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> con la velocità costante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> molto bassa rispetto a quella della luce. Inoltre si prenda in considerazione un secondo osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bdcdf8643c26a7ebf3943c09dfe072e4767dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.509ex;" alt="{\displaystyle O_{c}}"></span> in quiete rispetto a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. Si supponga che a un certo istante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> il corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> emetta due fotoni con la stessa energia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=h\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>h</mi> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=h\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c0386dc6d9530519404f95570fcc8548ed2326" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.445ex; height:2.176ex;" alt="{\displaystyle E=h\nu }"></span>, dove <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> è la costante di Planck e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span> la frequenza dei fotoni osservata da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bdcdf8643c26a7ebf3943c09dfe072e4767dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.509ex;" alt="{\displaystyle O_{c}}"></span>, in quiete rispetto a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>. I due fotoni sono emessi uno nella direzione del moto, l'altro in direzione opposta. Tenendo conto dell'effetto Doppler, l'osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> misurerà invece una frequenza pari a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu '=\nu \left(1+{\frac {v_{1}}{c}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ν<!-- ν --></mi> <mo>′</mo> </msup> <mo>=</mo> <mi>ν<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu '=\nu \left(1+{\frac {v_{1}}{c}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8286cbda18638327bfa6acd9b0f1669326b97a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.456ex; height:4.843ex;" alt="{\displaystyle \nu '=\nu \left(1+{\frac {v_{1}}{c}}\right)}"></span></dd></dl> <p>per il fotone emesso in direzione del moto e pari a </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu ''=\nu \left(1-{\frac {v_{1}}{c}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ν<!-- ν --></mi> <mo>″</mo> </msup> <mo>=</mo> <mi>ν<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu ''=\nu \left(1-{\frac {v_{1}}{c}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45a0da099e6a461361466d185134bf4214f10fce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.909ex; height:4.843ex;" alt="{\displaystyle \nu ''=\nu \left(1-{\frac {v_{1}}{c}}\right)}"></span></dd></dl> <p>per quello emesso in direzione opposta. </p><p>L'energia radiante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> emessa all'istante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> che è osservata da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> sarà dunque </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=h\nu \left(1+{\frac {v_{1}}{c}}\right)+h\nu \left(1-{\frac {v_{1}}{c}}\right)=2h\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>h</mi> <mi>ν<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mi>ν<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>h</mi> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=h\nu \left(1+{\frac {v_{1}}{c}}\right)+h\nu \left(1-{\frac {v_{1}}{c}}\right)=2h\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efbbdf0ada7c3313e5ce432462a1f63966b770bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:40.056ex; height:4.843ex;" alt="{\displaystyle E=h\nu \left(1+{\frac {v_{1}}{c}}\right)+h\nu \left(1-{\frac {v_{1}}{c}}\right)=2h\nu }"></span></dd></dl> <p>Inoltre, per il principio di conservazione, la quantità di moto del corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> osservata da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> prima dell'emissione deve essere pari alla somma delle quantità di moto di <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> e dei due fotoni dopo l'emissione (si noti che la quantità di moto del secondo fotone, poiché emesso in direzione contraria al moto, va presa col segno negativo), quindi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{1}v_{1}=m_{2}v_{2}+q'-q''=m_{2}v_{2}+{\frac {h\nu }{c}}\left(1+{\frac {v_{1}}{c}}\right)-{\frac {h\nu }{c}}\left(1-{\frac {v_{1}}{c}}\right)=m_{2}v_{2}+v_{1}\,{\frac {2h\nu }{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>q</mi> <mo>′</mo> </msup> <mo>−<!-- − --></mo> <msup> <mi>q</mi> <mo>″</mo> </msup> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mi>ν<!-- ν --></mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>h</mi> <mi>ν<!-- ν --></mi> </mrow> <mi>c</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>h</mi> <mi>ν<!-- ν --></mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{1}v_{1}=m_{2}v_{2}+q'-q''=m_{2}v_{2}+{\frac {h\nu }{c}}\left(1+{\frac {v_{1}}{c}}\right)-{\frac {h\nu }{c}}\left(1-{\frac {v_{1}}{c}}\right)=m_{2}v_{2}+v_{1}\,{\frac {2h\nu }{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dee5d6667d06b589f294ed460cd2c26ec2ab837" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:82.904ex; height:5.676ex;" alt="{\displaystyle m_{1}v_{1}=m_{2}v_{2}+q'-q''=m_{2}v_{2}+{\frac {h\nu }{c}}\left(1+{\frac {v_{1}}{c}}\right)-{\frac {h\nu }{c}}\left(1-{\frac {v_{1}}{c}}\right)=m_{2}v_{2}+v_{1}\,{\frac {2h\nu }{c^{2}}}}"></span></dd></dl> <p>dove: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31aafa60e48d39ccce922404c0b80340b2cc777a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{1}}"></span> = massa del corpo C prima dell'emissione</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> = velocità del corpo C prima dell'emissione</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ecebe334d5cadc3ffcf245eb02919034d7a2ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle m_{2}}"></span> = massa del corpo C dopo l'emissione</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb04c423c2cb809c30cac725befa14ffbf4c85f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{2}}"></span> = velocità del corpo C dopo l'emissione</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/912405e5d416048908ea7978929975843d2ee4e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.764ex; height:2.843ex;" alt="{\displaystyle q'}"></span> = quantità di moto del fotone emesso in direzione del moto</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mo>″</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46bd61322618f638d67f20a848f1c63bb8b99e3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.217ex; height:2.843ex;" alt="{\displaystyle q''}"></span> = quantità di moto del fotone emesso in direzione contraria a quella del moto</li></ul> <p>Data la natura simmetrica dell'effetto, l'osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bdcdf8643c26a7ebf3943c09dfe072e4767dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.509ex;" alt="{\displaystyle O_{c}}"></span> non rileverà dopo l'emissione dei due fotoni alcun cambiamento di moto del corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>, che continuerà quindi a trovarsi in quiete rispetto a lui. Quindi per l'osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> dopo l'emissione sia l'osservatore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O_{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O_{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bdcdf8643c26a7ebf3943c09dfe072e4767dd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.718ex; height:2.509ex;" alt="{\displaystyle O_{c}}"></span>, sia il corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> continueranno a muoversi con velocità <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> invariata. Perciò si conclude che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}=v_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}=v_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc7b1c1c6e5c372b46a4030d1239b0513a7f6692" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.462ex; height:2.009ex;" alt="{\displaystyle v_{1}=v_{2}}"></span>. Sostituendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb04c423c2cb809c30cac725befa14ffbf4c85f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{2}}"></span> con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> nell'equazione sulla quantità di moto ed introducendo la riduzione di massa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> del corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> dopo l'emissione pari a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=m_{1}-m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=m_{1}-m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afa715e010fed1a8dfc4a81d872dc65463ab97b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.169ex; height:2.343ex;" alt="{\displaystyle m=m_{1}-m_{2}}"></span>, dopo facili passaggi algebrici dalla si ottiene: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=m_{1}-m_{2}={\frac {1}{v_{1}}}\,v_{1}\,{\frac {2h\nu }{c^{2}}}={\frac {2h\nu }{c^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>h</mi> <mi>ν<!-- ν --></mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>h</mi> <mi>ν<!-- ν --></mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=m_{1}-m_{2}={\frac {1}{v_{1}}}\,v_{1}\,{\frac {2h\nu }{c^{2}}}={\frac {2h\nu }{c^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30d148200383b0d7eb71b0aae3153ae0e1a27cba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:35.479ex; height:5.676ex;" alt="{\displaystyle m=m_{1}-m_{2}={\frac {1}{v_{1}}}\,v_{1}\,{\frac {2h\nu }{c^{2}}}={\frac {2h\nu }{c^{2}}}}"></span></dd></dl> <p>da cui, tenendo presente che <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=2h\nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mn>2</mn> <mi>h</mi> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=2h\nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9869230a75b04fd548da38eb82af6b42611ab803" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.608ex; height:2.176ex;" alt="{\displaystyle E=2h\nu }"></span>, si ottiene: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=mc^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=mc^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73dbd37a0cac34406ee89057fa1b36a1e6a18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.976ex; height:2.676ex;" alt="{\displaystyle E=mc^{2}}"></span></dd></dl> <p>ovvero che l'energia <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> irradiata dal corpo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> è pari alla perdita di massa subita da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> in seguito all'emissione, moltiplicata per il quadrato della velocità della luce nel vuoto. </p> <div class="mw-heading mw-heading2"><h2 id="Note">Note</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=15" title="Modifica la sezione Note" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=15" title="Edit section's source code: Note"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Approfondimenti</dt></dl> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><a href="#cite_ref-1"><b>^</b></a> <span class="reference-text">In <a href="/wiki/Meccanica_classica" title="Meccanica classica">meccanica classica</a>, un corpo fermo e posto al livello zero dell'<a href="/wiki/Energia_potenziale" title="Energia potenziale">energia potenziale</a> ha energia nulla. In <a href="/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta">relatività ristretta</a>, tale corpo risulta invece dotato di un'enorme <i>energia di massa</i>: <i>E<sub>0</sub> = m<sub>0</sub> c<sup>2</sup></i>.</span> </li> <li id="cite_note-4"><a href="#cite_ref-4"><b>^</b></a> <span class="reference-text">Per inerzia s'intende la resistenza di un corpo a mutare la propria accelerazione <b>a</b> per effetto di una forza esterna <b>F</b>. Con l'introduzione del concetto di <i>massa invariante</i>, la massa <i>m</i> non dipende più dalla velocità del corpo, come accadeva per la <i>massa relativistica</i>. Invece l'inerzia, definita ora come <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \,m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \,m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d02ef00bb89a093fd3df9c8dbd2dd9b4e19ffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.69ex; height:2.176ex;" alt="{\displaystyle \gamma \,m}"></span>, risulta essere una funzione della velocità <i>v</i> tramite il fattore di Lorentz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>.</span> </li> <li id="cite_note-58"><a href="#cite_ref-58"><b>^</b></a> <span class="reference-text">Una discussione approfondita degli argomenti di Ives contro la dimostrazione di Einstein e dei commenti, sia favorevoli sia contrari alle tesi di Ives, si trova nel 3º capitolo (<i>The Mass-Energy Relation</i>) del libro di <cite class="citation libro" style="font-style:normal"> M. Jammer, <span style="font-style:italic;">Concepts of Mass in Contemporary Physics and Philosophy</span>, Princeton, 1999.</cite> Come lì riportato, Albert Einstein, che morì nell'aprile 1955, non replicò mai all'articolo di <a href="/wiki/Herbert_Eugene_Ives" title="Herbert Eugene Ives">Ives</a> del 1952.</span> </li> </ol></div> <dl><dt>Fonti</dt></dl> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-einstein-2"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-einstein_2-0">a</a></i></sup> <sup><i><a href="#cite_ref-einstein_2-1">b</a></i></sup> <sup><i><a href="#cite_ref-einstein_2-2">c</a></i></sup> <sup><i><a href="#cite_ref-einstein_2-3">d</a></i></sup> <sup><i><a href="#cite_ref-einstein_2-4">e</a></i></sup></span> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal"> A. Einstein, <span style="font-style:italic;">Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?</span> [<span style="font-style:italic;">L'inerzia di un corpo dipende dal suo contenuto di energia?</span>], in <span style="font-style:italic;">Annalen der Physik</span>, vol. 18, 1905, pp. 639-641.</cite> Traduzione italiana in <cite class="citation libro" style="font-style:normal"> A. Einstein, <span style="font-style:italic;">Opere scelte</span>, a cura di E. Bellone, Torino, Bollati Boringhieri, 1988, pp. 178-180.</cite></span> </li> <li id="cite_note-hecht-3"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-hecht_3-0">a</a></i></sup> <sup><i><a href="#cite_ref-hecht_3-1">b</a></i></sup> <sup><i><a href="#cite_ref-hecht_3-2">c</a></i></sup> <sup><i><a href="#cite_ref-hecht_3-3">d</a></i></sup> <sup><i><a href="#cite_ref-hecht_3-4">e</a></i></sup></span> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) E. Hecht, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1119/1.3160671"><span style="font-style:italic;">Einstein on mass and energy</span></a>, in <span style="font-style:italic;">American Journal of Physics</span>, vol. 77, n. 9, 2009, pp. 799-806, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1119%2F1.3160671">10.1119/1.3160671</a>, <a href="/wiki/ISSN" title="ISSN">ISSN</a> 0002-9505<span class="noprint plainlinks"> (<span title="Ricerca su WorldCat"><a rel="nofollow" class="external text" href="http://worldcat.org/issn/0002-9505&lang=it">WC</a></span> · <span title="Ricerca sul Catalogo Italiano dei Periodici"><a rel="nofollow" class="external text" href="https://acnpsearch.unibo.it/search?issn=0002-9505">ACNP</a></span>)</span>.</cite></span> </li> <li id="cite_note-5"><a href="#cite_ref-5"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Lev B. Okun, <span style="font-style:italic;">The concept of mass</span>, in <span style="font-style:italic;">Physics Today</span>, vol. 42, 1989, pp. 31-36.</cite></span> </li> <li id="cite_note-6"><a href="#cite_ref-6"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal"> Elio Fabri, <a rel="nofollow" class="external text" href="http://www.sagredo.eu/articoli/dialogo-mr.pdf"><span style="font-style:italic;">Dialogo sulla massa relativistica</span></a> (<span style="font-weight: bolder; font-size:80%"><abbr title="documento in formato PDF">PDF</abbr></span>), in <span style="font-style:italic;">La Fisica nella Scuola</span>, vol. 14, n. 25, 1981.</cite></span> </li> <li id="cite_note-manoscritto_1912-7"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-manoscritto_1912_7-0">a</a></i></sup> <sup><i><a href="#cite_ref-manoscritto_1912_7-1">b</a></i></sup></span> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> A. Einstein, <span style="font-style:italic;">Einstein's 1912 Manuscript on the Special Theory of Relativity: A Facsimile</span>, George Braziller, 2000, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/9780807614174" title="Speciale:RicercaISBN/9780807614174">9780807614174</a>.</cite></span> </li> <li id="cite_note-8"><a href="#cite_ref-8"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal"> Pasquale Tucci, <a rel="nofollow" class="external text" href="https://www.asimmetrie.it/as-radici-da-newton-a-higgins"><span style="font-style:italic;">Da Newton a Higgs, breve storia della massa</span></a>, su <span style="font-style:italic;">asimmetrie.it</span>, giugno 2009. <small>URL consultato il 13 ottobre 2023</small>.</cite></span> </li> <li id="cite_note-9"><a href="#cite_ref-9"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) I. Newton, <span style="font-style:italic;">Opticks: or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light</span>, 3 volumi, London, 1704.</cite></span> </li> <li id="cite_note-ricker-10"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-ricker_10-0">a</a></i></sup> <sup><i><a href="#cite_ref-ricker_10-1">b</a></i></sup> <sup><i><a href="#cite_ref-ricker_10-2">c</a></i></sup> <sup><i><a href="#cite_ref-ricker_10-3">d</a></i></sup> <sup><i><a href="#cite_ref-ricker_10-4">e</a></i></sup></span> <span class="reference-text"><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://www.naturalphilosophy.org/site/harryricker/2015/05/23/the-origin-of-the-equation-e-mc2/"><span style="font-style:italic;">The Origin of the Equation E = mc2</span></a>, su <span style="font-style:italic;">naturalphilosophy.org</span>. <small>URL consultato il 4 giugno 2019</small>.</cite></span> </li> <li id="cite_note-11"><a href="#cite_ref-11"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) J. Michell, <span style="font-style:italic;">On the means of discovering the distance, magnitude etc. of the fixed stars</span>, in <span style="font-style:italic;">Philosophical Transactions of the Royal Society</span>, 1784.</cite></span> </li> <li id="cite_note-12"><a href="#cite_ref-12"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) P.-S. Laplace, <span style="font-style:italic;">Traité de mécanique céleste</span> [<span style="font-style:italic;">Trattato di meccanica celeste</span>], 5 volumi, Paris, 1798–1825.</cite></span> </li> <li id="cite_note-13"><a href="#cite_ref-13"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) J. von Soldner, <span style="font-style:italic;">Über die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung</span> [<span style="font-style:italic;">Sulla deflessione di un raggio di luce dal suo movimento rettilineo</span>], in <span style="font-style:italic;">Berliner Astronomisches Jahrbuch</span>, 1804, pp. 161-172.</cite></span> </li> <li id="cite_note-14"><a href="#cite_ref-14"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="http://www.infinitoteatrodelcosmo.it/2016/08/20/soldner-la-relativita-generale-a-meta/"><span style="font-style:italic;">Soldner: la relatività generale a metà</span></a>, su <span style="font-style:italic;">infinitoteatrodelcosmo.it</span>. <small>URL consultato il 14 maggio 2020</small>.</cite></span> </li> <li id="cite_note-15"><a href="#cite_ref-15"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) J. R. von Mayer, <span style="font-style:italic;">Bemerkungen über das mechanische Aequivalent der Wärme</span> [<span style="font-style:italic;">Osservazioni sull'equivalente meccanico del calore</span>], in <span style="font-style:italic;">Pamphlet</span>, Heilbronn, Leipzig, 1851.</cite></span> </li> <li id="cite_note-16"><a href="#cite_ref-16"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) S. T. Preston, <span style="font-style:italic;">Physics of the ether</span>, London, E. & F. N. Spon, 1875, p. 165.</cite></span> </li> <li id="cite_note-DePretto-17"><a href="#cite_ref-DePretto_17-0"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal"> O. De Pretto, <span style="font-style:italic;">Ipotesi dell'Etere nella Vita dell'Universo</span>, in <span style="font-style:italic;">Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti</span>, LXIII, 1903-1904, pp. 439-500.</cite></span> </li> <li id="cite_note-Bartocci-18"><a href="#cite_ref-Bartocci_18-0"><b>^</b></a> <span class="reference-text">Il testo della memoria è reperibile al sito <a rel="nofollow" class="external text" href="http://www.cartesio-episteme.net">sito web di Umberto Bartocci</a>: <a rel="nofollow" class="external text" href="http://www.cartesio-episteme.net/st/mem-depr-vf.htm"><i>Ipotesi dell'Etere nella Vita dell'Universo</i></a></span> </li> <li id="cite_note-19"><a href="#cite_ref-19"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="https://www.treccani.it/enciclopedia/georges-louis-lesage/"><span style="font-style:italic;">Lesage, Georges-Louis</span></a>, su <span style="font-style:italic;">treccani.it</span>.</cite></span> </li> <li id="cite_note-risposta-20"><a href="#cite_ref-risposta_20-0"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="http://www.cartesio-episteme.net/st/DEPR-003.htm"><span style="font-style:italic;">Risposta di Umberto Bartocci all'intervista a Ignazio Marchioro</span></a>, su <span style="font-style:italic;">cartesio-episteme.net</span>.</cite></span> </li> <li id="cite_note-21"><a href="#cite_ref-21"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> C. Tarsitani, <span style="font-style:italic;">Il dilemma onda-corpuscolo da Maxwell a Planck e Einstein</span>, Torino, Loescher, 1983, pp. 173-178.</cite></span> </li> <li id="cite_note-thomson-22"><a href="#cite_ref-thomson_22-0"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) J. J. Thomson, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1080/14786448108627008"><span style="font-style:italic;">On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies</span></a>, in <span style="font-style:italic;">Philosophical Magazine</span>, 5, vol. 11, n. 68, 1881, pp. 229-249, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080%2F14786448108627008">10.1080/14786448108627008</a>.</cite></span> </li> <li id="cite_note-23"><a href="#cite_ref-23"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) G. G. Stokes, <span style="font-style:italic;">On some cases of fluid motion</span>, in <span style="font-style:italic;">Transactions of the Cambridge Philosophical Society</span>, vol. 8, n. 1, 1844, pp. 105-137.</cite></span> </li> <li id="cite_note-24"><a href="#cite_ref-24"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) O.Heaviside, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1080/14786448908628362"><span style="font-style:italic;">On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric</span></a>, in <span style="font-style:italic;">Philosophical Magazine</span>, 5, vol. 27, n. 167, 1889, pp. 324-339, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080%2F14786448908628362">10.1080/14786448908628362</a>.</cite></span> </li> <li id="cite_note-rothman_1-25"><a href="#cite_ref-rothman_1_25-0"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/was-einstein-the-first-to-invent-e-mc2/?redirect=1"><span style="font-style:italic;">Was Einstein the First to Invent E = mc^2?</span></a>, su <span style="font-style:italic;">scientificamerican.com</span>. <small>URL consultato il 5 giugno 2019</small>.</cite></span> </li> <li id="cite_note-rothman_2-26"><a href="#cite_ref-rothman_2_26-0"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) T. Rothman, <span style="font-style:italic;">Did Einstein Really Invent E = mc^2?</span>, in <span style="font-style:italic;">Scientific American</span>, vol. 313, n. 3, Settembre 2015.</cite></span> </li> <li id="cite_note-27"><a href="#cite_ref-27"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) H. A. Lorentz, <span style="font-style:italic;">La Théorie electromagnétique de Maxwell et son application aux corps mouvants</span> [<span style="font-style:italic;">La teoria elettromagnetica di Maxwell e la sua applicazione ai corpi in movimento</span>], in <span style="font-style:italic;">Archives Néerlandaises des Sciences Exactes et Naturelles</span>, vol. 25, 1892, pp. 363-552.</cite></span> </li> <li id="cite_note-28"><a href="#cite_ref-28"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) J. J. Thomson, <span style="font-style:italic;">Notes on recent researches in electricity and magnetism</span>, Oxford, Clarendon Press, 1893, p. 21.</cite></span> </li> <li id="cite_note-29"><a href="#cite_ref-29"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) G. F. C. Searle, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1080/14786449708621072"><span style="font-style:italic;">On the Steady Motion of an Electrified Ellipsoid</span></a>, in <span style="font-style:italic;">Philosophical Magazine</span>, 5, vol. 44, n. 269, 1897, pp. 329-341, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080%2F14786449708621072">10.1080/14786449708621072</a>.</cite></span> </li> <li id="cite_note-30"><a href="#cite_ref-30"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) W. Kaufmann, <span style="font-style:italic;">Die elektromagnetische Masse des Elektrons</span> [<span style="font-style:italic;">La massa elettromagnetica degli elettroni</span>], in <span style="font-style:italic;">Physikalische Zeitschrift</span>, vol. 4, 1b, 1902, pp. 54-56.</cite></span> </li> <li id="cite_note-abraham-31"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-abraham_31-0">a</a></i></sup> <sup><i><a href="#cite_ref-abraham_31-1">b</a></i></sup> <sup><i><a href="#cite_ref-abraham_31-2">c</a></i></sup></span> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) M. Abraham, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1002/andp.19013100703"><span style="font-style:italic;">Prinzipien der Dynamik des Elektrons</span> [<span style="font-style:italic;">Principi della dinamica degli elettroni</span>]</a>, in <span style="font-style:italic;">Annalen der Physik</span>, vol. 315, n. 1, 1903, pp. 105-179, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002%2Fandp.19013100703">10.1002/andp.19013100703</a>.</cite></span> </li> <li id="cite_note-32"><a href="#cite_ref-32"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) H. A. Lorentz, <span style="font-style:italic;">Simplified Theory of Electrical and Optical Phenomena in Moving Systems</span>, in <span style="font-style:italic;">Proceedings of the Royal Netherlands Academy of Arts and Sciences</span>, vol. 1, 1899, pp. 427-442.</cite></span> </li> <li id="cite_note-elet_lorentz-33"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-elet_lorentz_33-0">a</a></i></sup> <sup><i><a href="#cite_ref-elet_lorentz_33-1">b</a></i></sup></span> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) H. A. Lorentz, <span style="font-style:italic;">Electromagnetic phenomena in a system moving with any velocity smaller than that of light</span>, in <span style="font-style:italic;">Proceedings of the Royal Netherlands Academy of Arts and Sciences</span>, vol. 6, 1904, pp. 809-831.</cite></span> </li> <li id="cite_note-wien-34"><a href="#cite_ref-wien_34-0"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) W. Wien, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1002/andp.19013100703"><span style="font-style:italic;">Über die Möglichkeit einer elektromagnetischen Begründung der Mechanik</span> [<span style="font-style:italic;">Sulla possibilità di una fondazione elettromagnetica della meccanica</span>]</a>, in <span style="font-style:italic;">Annalen der Physik</span>, vol. 310, n. 7, 1900, pp. 501-513, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1002%2Fandp.19013100703">10.1002/andp.19013100703</a>.</cite></span> </li> <li id="cite_note-poinc-35"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-poinc_35-0">a</a></i></sup> <sup><i><a href="#cite_ref-poinc_35-1">b</a></i></sup></span> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) H. Poincaré, <span style="font-style:italic;">La fin de la matière</span> [<span style="font-style:italic;">La fine della materia</span>], in <span style="font-style:italic;">Athenæum</span>, 1906.</cite></span> </li> <li id="cite_note-36"><a href="#cite_ref-36"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) M. Abraham, <span style="font-style:italic;">Die Grundhypothesen der Elektronentheorie</span> [<span style="font-style:italic;">Le ipotesi fondamentali della teoria degli elettroni</span>], in <span style="font-style:italic;">Physikalische Zeitschrift</span>, vol. 5, 1904, pp. 576-579.</cite></span> </li> <li id="cite_note-37"><a href="#cite_ref-37"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) M. Abraham, <a rel="nofollow" class="external text" href="https://archive.org/details/theoriederelekt04fpgoog"><span style="font-style:italic;">Theorie der Elektrizität: Elektromagnetische Theorie der Strahlung</span> [<span style="font-style:italic;">Teoria dell'elettricità: teoria elettromagnetica della radiazione</span>]</a>, Leipzig, Teubner, 1905, pp. 201-208.</cite></span> </li> <li id="cite_note-38"><a href="#cite_ref-38"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) H. Poincaré, <span style="font-style:italic;">Sur la dynamique de l'électron</span> [<span style="font-style:italic;">Sulla dinamica dell'elettrone</span>], in <span style="font-style:italic;">Comptes Rendus</span>, vol. 140, 1905, pp. 1504-1508.</cite></span> </li> <li id="cite_note-39"><a href="#cite_ref-39"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) H. Poincaré, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1007/BF03013466"><span style="font-style:italic;">Sur la dynamique de l'électron</span> [<span style="font-style:italic;">Sulla dinamica dell'elettrone</span>]</a>, in <span style="font-style:italic;">Rendiconti del Circolo Matematico di Palermo</span>, vol. 21, 1906, pp. 129-176, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF03013466">10.1007/BF03013466</a>.</cite></span> </li> <li id="cite_note-miller-40"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-miller_40-0">a</a></i></sup> <sup><i><a href="#cite_ref-miller_40-1">b</a></i></sup></span> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) A. I. Miller, <span style="font-style:italic;">Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911)</span>, Reading, Addison–Wesley, 1981, pp. 382-383, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/978-0-201-04679-3" title="Speciale:RicercaISBN/978-0-201-04679-3">978-0-201-04679-3</a>.</cite></span> </li> <li id="cite_note-macklenburg-41"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-macklenburg_41-0">a</a></i></sup> <sup><i><a href="#cite_ref-macklenburg_41-1">b</a></i></sup> <sup><i><a href="#cite_ref-macklenburg_41-2">c</a></i></sup></span> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) M. Janssen e M. Macklenburg, <span style="font-style:italic;">From classical to relativistic mechanics: Electromagnetic models of the electron</span>, a cura di V. F. Hendricks, <i>Interactions: Mathematics, Physics and Philosophy</i>, Dordrecht, Springer, 2007, pp. 65-134.</cite></span> </li> <li id="cite_note-42"><a href="#cite_ref-42"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) M. von Laue, <span style="font-style:italic;">Das Relativitätsprinzip</span> [<span style="font-style:italic;">Il principio di relatività</span>], Braunschweig, Vieweg, 1911.</cite></span> </li> <li id="cite_note-43"><a href="#cite_ref-43"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) E. Fermi, <span style="font-style:italic;">Über einen Widerspruch zwischen der elektrodynamischen und relativistischen Theorie der elektromagnetischen Masse</span> [<span style="font-style:italic;">A proposito di una contraddizione tra l'elettrodinamica e la teoria relativistica della massa elettromagnetica</span>], in <span style="font-style:italic;">Physikalische Zeitschrift</span>, vol. 23, 1922, pp. 340-344.</cite></span> </li> <li id="cite_note-44"><a href="#cite_ref-44"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) P. A. M. Dirac, <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k56260v/f164"><span style="font-style:italic;">Classical Theory of Radiating Electrons</span></a>, in <span style="font-style:italic;">Proceedings of the Royal Society of London A</span>, vol. 167, n. 929, 1938, pp. 148-169, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1098%2Frspa.1938.0124">10.1098/rspa.1938.0124</a>.</cite></span> </li> <li id="cite_note-45"><a href="#cite_ref-45"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) F. Rohrlich, Fritz, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1119/1.1935924"><span style="font-style:italic;">Self-Energy and Stability of the Classical Electron</span></a>, in <span style="font-style:italic;">American Journal of Physics</span>, vol. 28, n. 7, 1960, pp. 639-643, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1119%2F1.1935924">10.1119/1.1935924</a>.</cite></span> </li> <li id="cite_note-46"><a href="#cite_ref-46"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) J. Schwinger, <a rel="nofollow" class="external text" href="https://oadoi.org/10.1007/BF01906185"><span style="font-style:italic;">Electromagnetic mass revisited</span></a>, in <span style="font-style:italic;">Foundations of Physics</span>, vol. 13, n. 3, 1983, pp. 373-383, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF01906185">10.1007/BF01906185</a>.</cite></span> </li> <li id="cite_note-47"><a href="#cite_ref-47"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) H. A. Lorentz, <span style="font-style:italic;">Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern</span> [<span style="font-style:italic;">Tentativo di una teoria dei fenomeni elettrici e ottici nei corpi in movimento</span>], Leiden, E. J. Brill, 1895.</cite></span> </li> <li id="cite_note-48"><a href="#cite_ref-48"><b>^</b></a> <span class="reference-text"><cite class="citation testo" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="francese">FR</abbr></span>) H. Poincaré, <span style="font-style:italic;"><a href="https://it.wikisource.org/wiki/fr:La_th%C3%A9orie_de_Lorentz_et_le_principe_de_r%C3%A9action" class="extiw" title="s:fr:La théorie de Lorentz et le principe de réaction">La théorie de Lorentz et le principe de réaction</a></span> [<span style="font-style:italic;">La teoria di Lorentz e il principio di reazione</span>], in <span style="font-style:italic;">Archives Néerlandaises des Sciences Exactes et Naturelles</span>, vol. 5, 1900, pp. 252-278.</cite> Vedi anche la <a rel="nofollow" class="external text" href="http://www.physicsinsights.org/poincare-1900.pdf">traduzione inglese</a>.</span> </li> <li id="cite_note-49"><a href="#cite_ref-49"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) J. J. Thomson, <span style="font-style:italic;">Notes on recent researches in electricity and magnetism</span>, Oxford, Clarendon Press, 1893.</cite></span> </li> <li id="cite_note-50"><a href="#cite_ref-50"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) O. Darrigol, <a rel="nofollow" class="external text" href="http://www.bourbaphy.fr/darrigol2.pdf"><span style="font-style:italic;">The Genesis of the theory of relativity</span></a> (<span style="font-weight: bolder; font-size:80%"><abbr title="documento in formato PDF">PDF</abbr></span>), in <span style="font-style:italic;">Séminaire Poincaré</span>, vol. 1, 2005, pp. 1-22, <a href="/wiki/Digital_object_identifier" title="Digital object identifier">DOI</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F3-7643-7436-5_1">10.1007/3-7643-7436-5_1</a>, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/978-3-7643-7435-8" title="Speciale:RicercaISBN/978-3-7643-7435-8">978-3-7643-7435-8</a>.</cite></span> </li> <li id="cite_note-51"><a href="#cite_ref-51"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) H. Poincaré, <span style="font-style:italic;"><a href="https://it.wikisource.org/wiki/The_Principles_of_Mathematical_Physics" class="extiw" title="s:The Principles of Mathematical Physics">The Principles of Mathematical Physics</a></span>, in <span style="font-style:italic;">Congress of arts and science, universal exposition, St. Louis, 1904</span>, vol. 1, Boston and New York, Houghton, Mifflin and Co., 1904, pp. 604-622.</cite></span> </li> <li id="cite_note-52"><a href="#cite_ref-52"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) F. Hasenöhrl, <span style="font-style:italic;">Zur Theorie der Strahlung in bewegten Körpern</span> [<span style="font-style:italic;">Sulla teoria della radiazione nei corpi in movimento</span>], in <span style="font-style:italic;">Annalen der Physik</span>, vol. 320, n. 12, 1904, pp. 344-370.</cite></span> </li> <li id="cite_note-53"><a href="#cite_ref-53"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) F. Hasenöhrl, <span style="font-style:italic;">Zur Theorie der Strahlung in bewegten Körpern. Berichtigung</span> [<span style="font-style:italic;">Sulla teoria della radiazione nei corpi in movimento. Correzione</span>], in <span style="font-style:italic;">Annalen der Physik</span>, vol. 321, n. 3, 1905, pp. 589-592.</cite></span> </li> <li id="cite_note-54"><a href="#cite_ref-54"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) A. I. Miller, <span style="font-style:italic;">Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911)</span>, Reading, Addison–Wesley, 1981, pp. 359-360, <a href="/wiki/ISBN" title="ISBN">ISBN</a> <a href="/wiki/Speciale:RicercaISBN/978-0-201-04679-3" title="Speciale:RicercaISBN/978-0-201-04679-3">978-0-201-04679-3</a>.</cite></span> </li> <li id="cite_note-55"><a href="#cite_ref-55"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="tedesco">DE</abbr></span>) M. Planck, <span style="font-style:italic;">Sitzung der preusse Akademie der Wissenschaften (Berlin), Physikalische und Mathematische Klasse (13 Juni, 1907)</span> [<span style="font-style:italic;">Seduta dell'Accademia prussiana delle Scienze (Berlino), Classi di Fisica e Matematica (13 giugno 1907)</span>], 1907, pp. 542-570; in particolare 566.</cite></span> </li> <li id="cite_note-farmelo-56"><span class="mw-cite-backlink"><b>^</b> <sup><i><a href="#cite_ref-farmelo_56-0">a</a></i></sup> <sup><i><a href="#cite_ref-farmelo_56-1">b</a></i></sup></span> <span class="reference-text"><cite class="citation libro" style="font-style:normal"> P. Galison, <span style="font-style:italic;">L'equazione del sestante. E=mc²</span>.</cite> in <cite class="citation libro" style="font-style:normal"> G. Farmelo (a cura di), <span style="font-style:italic;">Equilibrio perfetto. Le grandi equazioni della scienza moderna</span>, Il Saggiatore, 2016, p. 109.</cite></span> </li> <li id="cite_note-57"><a href="#cite_ref-57"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) H. E. Ives, <span style="font-style:italic;">Derivation of the Mass-Energy Relation</span>, in <span style="font-style:italic;">Journal of the Optical Society of America</span>, vol. 42, 1952, pp. 540-543.</cite></span> </li> <li id="cite_note-59"><a href="#cite_ref-59"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) M. Jammer, <span style="font-style:italic;">Concept of Mass in Classical and Modern Physics</span>, Harvard University Press, 1961.</cite> Traduzione italiana: <cite class="citation libro" style="font-style:normal"> <span style="font-style:italic;">Storia del concetto di massa nella fisica classica e moderna</span>, Feltrinelli, 1974, p. 181.</cite></span> </li> <li id="cite_note-60"><a href="#cite_ref-60"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal"> A. Einstein, <span style="font-style:italic;">Die vom Relativitätsprinzip geforderte Trägheit der Energie</span> [<span style="font-style:italic;">L'inerzia dell'energia richiesta dal principio di relatività</span>], in <span style="font-style:italic;">Annalen der Physik</span>, vol. 23, 1907, pp. 371-384.</cite> Traduzione inglese in <cite class="citation web" style="font-style:normal"> A. Einstein, <a rel="nofollow" class="external text" href="https://einsteinpapers.press.princeton.edu/vol2-trans/252"><span style="font-style:italic;">On the inertia of energy required by the relativity principle</span></a>, su <span style="font-style:italic;">einsteinpapers.press.princeton.edu</span>. <small>URL consultato il 30 ottobre 2020</small>.</cite></span> </li> <li id="cite_note-61"><a href="#cite_ref-61"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal"> A. Einstein, <span style="font-style:italic;">Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie</span> [<span style="font-style:italic;">Il principio di conservazione del moto del centro di gravità e l'inerzia dell'energia</span>], in <span style="font-style:italic;">Annalen der Physik</span>, vol. 20, 1906, pp. 627-633.</cite> Traduzione inglese in <cite class="citation web" style="font-style:normal"> A. Einstein, <a rel="nofollow" class="external text" href="https://einsteinpapers.press.princeton.edu/vol2-trans/214"><span style="font-style:italic;">The principle of conservation of motion of the center of gravity and the inertia of energy</span></a>, su <span style="font-style:italic;">einsteinpapers.press.princeton.edu</span>. <small>URL consultato il 6 ottobre 2020</small>.</cite></span> </li> <li id="cite_note-62"><a href="#cite_ref-62"><b>^</b></a> <span class="reference-text">Max Born, <i>Die Relativitätstheorie Einsteins</i> [<i>La teoria della relatività di Einstein</i>], 1920. Traduzione italiana dell'edizione inglese <i>Einstein's Theory of Relativity</i> del 1922: <i>La sintesi einsteniana</i>, Bollati Boringhieri, 1969, pp. 334-338.</span> </li> <li id="cite_note-63"><a href="#cite_ref-63"><b>^</b></a> <span class="reference-text">Max Born, <i>Vorlesungen über Atommechanik</i> [<i>Lezioni sulla meccanica atomica</i>], 1925. Traduzione italiana: <i>Fisica atomica</i>, Bollati Boringhieri, 1968, pp. 78-79 e 403.</span> </li> <li id="cite_note-smargiassi-64"><a href="#cite_ref-smargiassi_64-0"><b>^</b></a> <span class="reference-text"><cite class="citation web" style="font-style:normal"> E. Smargiassi, <a rel="nofollow" class="external text" href="http://www-dft.ts.infn.it/~esmargia/physics/emc2.html"><span style="font-style:italic;">È possibile ricavare l'equazione E = mc^2 dalla fisica classica ?</span></a>, su <span style="font-style:italic;">www-dft.ts.infn.it</span>. <small>URL consultato il 14 luglio 2020</small>.</cite></span> </li> <li id="cite_note-65"><a href="#cite_ref-65"><b>^</b></a> <span class="reference-text"><cite class="citation libro" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) A. Einstein, <span style="font-style:italic;">Out of My Later Years</span>, New York, Philosophical Library, 1950.</cite></span> </li> <li id="cite_note-66"><a href="#cite_ref-66"><b>^</b></a> <span class="reference-text"><cite class="citation pubblicazione" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) F. Rohrlich, <span style="font-style:italic;">An elementary derivation of E=mc²</span>, in <span style="font-style:italic;">American Journal of Physics</span>, vol. 58, n. 4, aprile 1990, p. 348.</cite></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=16" title="Modifica la sezione Bibliografia" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=16" title="Edit section's source code: Bibliografia"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>V. Barone, <i>Relatività - Principi e applicazioni</i>, Bollati Boringhieri, Torino 2004.</li> <li>V. Barone, <i>E=mc² - La formula più famosa</i>, il Mulino, Bologna 2019.</li> <li>D. Bodanis, <i><a href="/wiki/E%3Dmc%C2%B2:_Biografia_dell%27equazione_che_ha_cambiato_il_mondo" title="E=mc²: Biografia dell'equazione che ha cambiato il mondo">E=mc²: Biografia dell'equazione che ha cambiato il mondo</a></i>, Mondadori, Milano 2005.</li> <li>G. Chinnici, <i>Assoluto e relativo - La relatività da Galileo ad Einstein e oltre</i>, Hoepli, Milano 2015.</li> <li>A. Einstein, E. Bellone (a cura di), <i>Opere scelte</i>, Bollati Boringhieri, Torino 1988.</li> <li>A. Einstein, <i>Relatività - Esposizione divulgativa e scritti classici su spazio geometria fisica</i>, Bollati Boringhieri, Torino 2011.</li> <li>C. Garfald, <i>Come capire E=mc²</i>, Bollati Boringhieri, Torino 2019.</li> <li>M. Guillen, <i>Le 5 equazioni che hanno cambiato il mondo - Potere e poesia della matematica</i>, TEA, Milano 2018.</li> <li>I. Stewart, <i>Le 17 equazioni che hanno cambiato il mondo</i>, Einaudi, Torino 2018.</li> <li>L. Susskind, <i>Relatività ristretta e teoria classica dei campi - Il minimo indispensabile per fare della (buona) fisica</i>, Raffaello Cortina, Milano 2018.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Voci_correlate">Voci correlate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=17" title="Modifica la sezione Voci correlate" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=17" title="Edit section's source code: Voci correlate"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Teoria_della_relativit%C3%A0" title="Teoria della relatività">Teoria della relatività</a></li> <li><a href="/wiki/Relativit%C3%A0_ristretta" title="Relatività ristretta">Relatività ristretta</a></li> <li><a href="/wiki/Relativit%C3%A0_generale" title="Relatività generale">Relatività generale</a></li> <li><a href="/wiki/Principio_di_relativit%C3%A0" title="Principio di relatività">Principio di relatività</a></li> <li><a href="/wiki/Principio_di_conservazione" class="mw-redirect" title="Principio di conservazione">Principio di conservazione</a></li> <li><a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo Galilei</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Energia_totale_relativistica" title="Energia totale relativistica">Energia totale relativistica</a></li> <li><a href="/wiki/Massa_(fisica)" title="Massa (fisica)">Massa (fisica)</a></li> <li><a href="/wiki/Energia" title="Energia">Energia</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Altri_progetti">Altri progetti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=18" title="Modifica la sezione Altri progetti" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=18" title="Edit section's source code: Altri progetti"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="interProject" class="toccolours" style="display: none; clear: both; margin-top: 2em"><p id="sisterProjects" style="background-color: #efefef; color: black; font-weight: bold; margin: 0"><span>Altri progetti</span></p><ul title="Collegamenti verso gli altri progetti Wikimedia"> <li class="" title=""><a href="https://it.wikiquote.org/wiki/E%3Dmc%C2%B2" class="extiw" title="q:E=mc²">Wikiquote</a></li> <li class="" title=""><span class="plainlinks" title="commons:Category:Einstein formula"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Einstein_formula?uselang=it">Wikimedia Commons</a></span></li></ul></div> <ul><li><span typeof="mw:File"><a href="https://it.wikiquote.org/wiki/" title="Collabora a Wikiquote"><img alt="Collabora a Wikiquote" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/18px-Wikiquote-logo.svg.png" decoding="async" width="18" height="21" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/27px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/36px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></a></span> <a href="https://it.wikiquote.org/wiki/" class="extiw" title="q:">Wikiquote</a> contiene citazioni di o su <b><a href="https://it.wikiquote.org/wiki/E%3Dmc%C2%B2" class="extiw" title="q:E=mc²">E=mc²</a></b></li> <li><span typeof="mw:File"><a href="https://commons.wikimedia.org/wiki/?uselang=it" title="Collabora a Wikimedia Commons"><img alt="Collabora a Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png" decoding="async" width="18" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/27px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/36px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/?uselang=it">Wikimedia Commons</a></span> contiene immagini o altri file su <b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Einstein_formula?uselang=it">E=mc²</a></span></b></li></ul> <div class="mw-heading mw-heading2"><h2 id="Collegamenti_esterni">Collegamenti esterni</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=E%3Dmc%C2%B2&veaction=edit&section=19" title="Modifica la sezione Collegamenti esterni" class="mw-editsection-visualeditor"><span>modifica</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=E%3Dmc%C2%B2&action=edit&section=19" title="Edit section's source code: Collegamenti esterni"><span>modifica wikitesto</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.ajuronline.org/uploads/Volume_13_1/AJUR_January_2016p5.pdf">Einstein’s 1905 Paper on E=mc2</a></li> <li class="mw-empty-elt"></li> <li><cite id="CITEREFBritannica.com_science/mass-energy-equivalence" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.britannica.com/science/mass-energy-equivalence"><span style="font-style:italic;">mass-energy equivalence</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q35875#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com_science/E-mc2-equation" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) Sidney Perkowitz, <a rel="nofollow" class="external text" href="https://www.britannica.com/science/E-mc2-equation"><span style="font-style:italic;">E = mc²</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q35875#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFBritannica.com_science/Einsteins-mass-energy-relation" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.britannica.com/science/Einsteins-mass-energy-relation"><span style="font-style:italic;">Einstein’s mass-energy relation</span></a>, su <span style="font-style:italic;"><a href="/wiki/Enciclopedia_Britannica" title="Enciclopedia Britannica">Enciclopedia Britannica</a></span>, Encyclopædia Britannica, Inc.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q35875#P1417" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li><cite id="CITEREFStanford_Encyclopedia_of_Philosophy" class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/equivME/"><span style="font-style:italic;">E=mc²</span></a>, su <span style="font-style:italic;"><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></span>.</cite> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q35875#P3123" title="Modifica su Wikidata"><img alt="Modifica su Wikidata" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/10px-Blue_pencil.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/15px-Blue_pencil.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/73/Blue_pencil.svg/20px-Blue_pencil.svg.png 2x" data-file-width="600" data-file-height="600" /></a></span></li> <li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://news.bbc.co.uk/2/hi/science/nature/4457020.stm">Happy 100th Birthday E=mc²</a> BBC</li> <li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://news.bbc.co.uk/2/hi/entertainment/4145797.stm">Einstein's E=mc² inspires ballet</a> BBC</li> <li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060104025546/http://www.rambert.org.uk/index.html"><span style="font-style:italic;">Rampart Dance Company: Constant Speed E=mc²</span></a>, su <span style="font-style:italic;">rambert.org.uk</span> <small>(archiviato dall'<abbr title="http://www.rambert.org.uk/index.html">url originale</abbr> il 4 gennaio 2006)</small>.</cite></li> <li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://web.archive.org/web/20051225230710/http://www.edwardmuller.com/right17.htm"><span style="font-style:italic;">Edward Muller's Homepage > Antimatter Calculator</span></a>, su <span style="font-style:italic;">edwardmuller.com</span> <small>(archiviato dall'<abbr title="http://www.edwardmuller.com/right17.htm">url originale</abbr> il 25 dicembre 2005)</small>.</cite></li> <li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://hypertextbook.com/facts/2000/MuhammadKaleem.shtml"><span style="font-style:italic;">Energy of a Nuclear Explosion</span></a>, su <span style="font-style:italic;">hypertextbook.com</span>.</cite></li> <li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://www.fourmilab.ch/etexts/einstein/E_mc2/www/"><span style="font-style:italic;">Albert Einstein’s Sep. 27, 1905 paper</span></a>, su <span style="font-style:italic;">fourmilab.ch</span>.</cite></li> <li><cite class="citation web" style="font-style:normal">(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="https://web.archive.org/web/20061002182826/http://www.symmetrymag.org/cms/?pid=1000067"><span style="font-style:italic;">Einstein's 1912 manuscript page displaying E=mc²</span></a>, su <span style="font-style:italic;">symmetrymag.org</span>. <small>URL consultato l'11 gennaio 2006</small> <small>(archiviato dall'<abbr title="http://www.symmetrymag.org/cms/?pid=1000067">url originale</abbr> il 2 ottobre 2006)</small>.</cite></li> <li>(<span style="font-weight:bolder; font-size:80%"><abbr title="inglese">EN</abbr></span>) <a rel="nofollow" class="external text" href="http://www.pbs.org/wgbh/nova/einstein/">NOVA - Einstein's Big Idea</a> (PBS Television)</li> <li><cite class="citation web" style="font-style:normal"> <a rel="nofollow" class="external text" href="http://www.cartesio-episteme.net/libro2.htm"><span style="font-style:italic;">Presentazione del libro di Umberto Bartocci</span></a>, su <span style="font-style:italic;">cartesio-episteme.net</span>.</cite></li></ul> <div class="noprint" style="width:100%; padding: 3px 0; display: flex; flex-wrap: wrap; row-gap: 4px; column-gap: 8px; box-sizing: border-box;"><div style="flex-basis: calc( 100% / 2 - 8px / 2 );"><style data-mw-deduplicate="TemplateStyles:r140555418">.mw-parser-output .itwiki-template-occhiello{width:100%;line-height:25px;border:1px solid #CCF;background-color:#F0EEFF;box-sizing:border-box}.mw-parser-output .itwiki-template-occhiello-progetto{background-color:#FAFAFA}@media screen{html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-night .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello{background-color:#202122;border-color:#54595D}html.skin-theme-clientpref-os .mw-parser-output .itwiki-template-occhiello-progetto{background-color:#282929}}</style><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal128-energy.svg" class="mw-file-description" title="Energia"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Crystal128-energy.svg/25px-Crystal128-energy.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Crystal128-energy.svg/38px-Crystal128-energy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Crystal128-energy.svg/50px-Crystal128-energy.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span> <b><a href="/wiki/Portale:Energia" title="Portale:Energia">Portale Energia</a></b></div></div><div style="flex-basis: calc( 100% / 2 - 8px / 2 );"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r140555418"><div class="itwiki-template-occhiello"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Gravitation_space_source_(elaboration).png" class="mw-file-description" title="Relatività"><img alt=" " src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitation_space_source_%28elaboration%29.png/25px-Gravitation_space_source_%28elaboration%29.png" decoding="async" width="25" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitation_space_source_%28elaboration%29.png/38px-Gravitation_space_source_%28elaboration%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Gravitation_space_source_%28elaboration%29.png/50px-Gravitation_space_source_%28elaboration%29.png 2x" data-file-width="200" data-file-height="100" /></a></span> <b><a href="/wiki/Portale:Relativit%C3%A0" title="Portale:Relatività">Portale Relatività</a></b></div></div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐57bb64bcc4‐txzjw Cached time: 20241119084856 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.849 seconds Real time usage: 1.205 seconds Preprocessor visited node count: 7136/1000000 Post‐expand include size: 80520/2097152 bytes Template argument size: 2796/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 69798/5000000 bytes Lua time usage: 0.351/10.000 seconds Lua memory usage: 6831805/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 633.878 1 -total 20.73% 131.380 1 Template:Collegamenti_esterni 16.44% 104.223 39 Template:Cita_pubblicazione 7.54% 47.795 15 Template:Cita_web 7.47% 47.336 17 Template:Cita_libro 7.13% 45.225 1 Template:Portale 6.41% 40.660 5 Template:M 6.21% 39.336 1 Template:Interprogetto 5.61% 35.592 1 Template:Nota_disambigua 4.40% 27.921 1 Template:Avviso_permanente --> <!-- Saved in parser cache with key itwiki:pcache:idhash:282699-0!canonical and timestamp 20241119084856 and revision id 142185127. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Estratto da "<a dir="ltr" href="https://it.wikipedia.org/w/index.php?title=E%3Dmc²&oldid=142185127">https://it.wikipedia.org/w/index.php?title=E%3Dmc²&oldid=142185127</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Categoria:Categorie" title="Categoria:Categorie">Categorie</a>: <ul><li><a href="/wiki/Categoria:Relativit%C3%A0_ristretta" title="Categoria:Relatività ristretta">Relatività ristretta</a></li><li><a href="/wiki/Categoria:Equazioni_nella_fisica" title="Categoria:Equazioni nella fisica">Equazioni nella fisica</a></li><li><a href="/wiki/Categoria:Energia" title="Categoria:Energia">Energia</a></li><li><a href="/wiki/Categoria:Albert_Einstein" title="Categoria:Albert Einstein">Albert Einstein</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorie nascoste: <ul><li><a href="/wiki/Categoria:Voci_con_modulo_citazione_e_parametro_pagine" title="Categoria:Voci con modulo citazione e parametro pagine">Voci con modulo citazione e parametro pagine</a></li><li><a href="/wiki/Categoria:Voci_con_modulo_citazione_e_parametro_pagina" title="Categoria:Voci con modulo citazione e parametro pagina">Voci con modulo citazione e parametro pagina</a></li><li><a href="/wiki/Categoria:P1417_letta_da_Wikidata" title="Categoria:P1417 letta da Wikidata">P1417 letta da Wikidata</a></li><li><a href="/wiki/Categoria:P3123_letta_da_Wikidata" title="Categoria:P3123 letta da Wikidata">P3123 letta da Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Questa pagina è stata modificata per l'ultima volta il 16 nov 2024 alle 02:45.</li> <li id="footer-info-copyright">Il testo è disponibile secondo la <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.it">licenza Creative Commons Attribuzione-Condividi allo stesso modo</a>; possono applicarsi condizioni ulteriori. Vedi le <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/it">condizioni d'uso</a> per i dettagli.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/it">Informativa sulla privacy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Sala_stampa/Wikipedia">Informazioni su Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Avvertenze_generali">Avvertenze</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codice di condotta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Sviluppatori</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/it.wikipedia.org">Statistiche</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Dichiarazione sui cookie</a></li> <li id="footer-places-mobileview"><a href="//it.m.wikipedia.org/w/index.php?title=E%3Dmc%C2%B2&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versione mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-jmw2b","wgBackendResponseTime":207,"wgPageParseReport":{"limitreport":{"cputime":"0.849","walltime":"1.205","ppvisitednodes":{"value":7136,"limit":1000000},"postexpandincludesize":{"value":80520,"limit":2097152},"templateargumentsize":{"value":2796,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":69798,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 633.878 1 -total"," 20.73% 131.380 1 Template:Collegamenti_esterni"," 16.44% 104.223 39 Template:Cita_pubblicazione"," 7.54% 47.795 15 Template:Cita_web"," 7.47% 47.336 17 Template:Cita_libro"," 7.13% 45.225 1 Template:Portale"," 6.41% 40.660 5 Template:M"," 6.21% 39.336 1 Template:Interprogetto"," 5.61% 35.592 1 Template:Nota_disambigua"," 4.40% 27.921 1 Template:Avviso_permanente"]},"scribunto":{"limitreport-timeusage":{"value":"0.351","limit":"10.000"},"limitreport-memusage":{"value":6831805,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-57bb64bcc4-txzjw","timestamp":"20241119084856","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"E=mc\u00b2","url":"https:\/\/it.wikipedia.org\/wiki\/E%3Dmc%C2%B2","sameAs":"http:\/\/www.wikidata.org\/entity\/Q35875","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q35875","author":{"@type":"Organization","name":"Contributori ai progetti Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-01-11T14:41:21Z","dateModified":"2024-11-16T01:45:00Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/13\/Relativity4_Walk_of_Ideas_Berlin.JPG","headline":"equazione fisica che stabilisce l'equivalenza tra l'energia e la massa di un sistema fisico"}</script> </body> </html>