CINXE.COM
Search results for: laser metal deposition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: laser metal deposition</title> <meta name="description" content="Search results for: laser metal deposition"> <meta name="keywords" content="laser metal deposition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="laser metal deposition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="laser metal deposition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3938</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: laser metal deposition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3938</span> Comparison of Tribological and Mechanical Properties of White Metal Produced by Laser Cladding and Conventional Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Il%20Jeong">Jae-Il Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon-Jae%20Park"> Hoon-Jae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Woo%20Cho"> Jung-Woo Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Gon%20Kim"> Yang-Gon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Park"> Jin-Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Young%20Oh"> Joo-Young Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-Geun%20Choi"> Si-Geun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seock-Sam%20Kim"> Seock-Sam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Tae%20Cho"> Young Tae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Gyu%20Kim"> Chan Gyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hyoung%20Kim"> Jong-Hyoung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bearing component has strongly required to decrease vibration and wear to achieve high durability and life time. In the industry field, bearing durability is improved by surface treatment on the bearing surface by centrifugal casting or gravity casting production method. However, this manufacturing method has caused problems such as long processing time, defect rate, and health harmful effect. To solve this problem, there is a laser cladding deposition treatment, which provides fast processing and food adhesion. Therefore, optimum conditions of white metal laser deposition should be studied to minimize bearing contact axis wear using laser cladding techniques. In this study, we deposit a soft white metal layer on SCM440, which is mainly used for shaft and bolt. On laser deposition process, the laser power and powder feed rate and laser head speed factors are controlled to find out the optimal conditions. We also measure hardness using micro Vickers, analyze FE-SEM (Field Emission Scanning Electron Microscope) and EDS (Energy Dispersive Spectroscopy) to study the mechanical properties and surface characteristics with various parameters change. Furthermore, this paper suggests the optimum condition of laser cladding deposition to apply in industrial fields. This work was supported by the Industrial Innovation Project of the Korea Evaluation Institute of Industrial Technology (KEIT) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (Research no. 10051653). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20deposition" title="laser deposition">laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20metal" title=" white metal"> white metal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/89365/comparison-of-tribological-and-mechanical-properties-of-white-metal-produced-by-laser-cladding-and-conventional-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3937</span> An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiwo%20Ebenezer%20Abioye">Taiwo Ebenezer Abioye</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Medrano-Tellez"> Alexis Medrano-Tellez</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kayode%20Farayibi"> Peter Kayode Farayibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kayode%20Oke"> Peter Kayode Oke</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title="laser metal deposition">laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20tensile%20strength" title=" ultimate tensile strength"> ultimate tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=wall" title=" wall"> wall</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/45174/an-investigation-into-mechanical-properties-of-laser-fabricated-308lsi-stainless-steel-walls-by-wire-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3936</span> Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsuan%20Liu">Yu-Hsuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition%20process" title=" laser metal deposition process"> laser metal deposition process</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20region" title=" respiratory region"> respiratory region</a> </p> <a href="https://publications.waset.org/abstracts/71496/characteristics-of-the-particle-size-distribution-and-exposure-concentrations-of-nanoparticles-generated-from-the-laser-metal-deposition-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3935</span> Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samar%20Y.%20Al-Dabagh">Samar Y. Al-Dabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adawiya%20J.%20Haider"> Adawiya J. Haider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20D.%20Majed"> Mirvat D. Majed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition%20%28PLD%29" title="pulsed laser deposition (PLD)">pulsed laser deposition (PLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20doped%20thin%20films" title=" TiO2 doped thin films"> TiO2 doped thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/12159/effect-of-o2-pressure-of-fe-doped-tio2-nanostructure-on-morphology-properties-for-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3934</span> Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20A.%20Patil">Ranjit A. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20Liou"> Yung Liou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ron%20Ma"> Yuan-Ron Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nano%20particles" title="metal nano particles">metal nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth" title=" bismuth"> bismuth</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition%20%28PLD%29" title=" pulsed laser deposition (PLD)"> pulsed laser deposition (PLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20particles" title=" nano particles"> nano particles</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20assisted%20growth" title=" temperature assisted growth"> temperature assisted growth</a> </p> <a href="https://publications.waset.org/abstracts/25779/size-controlled-synthesis-of-bismuth-nanoparticles-by-temperature-assisted-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3933</span> Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilla%20G.%20Goncalves">Camilla G. Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedito%20Christ"> Benedito Christ</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Miyakawa"> Walter Miyakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20J.%20Abdalla"> Antonio J. Abdalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=DLC" title=" DLC"> DLC</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a> </p> <a href="https://publications.waset.org/abstracts/112763/characterization-of-a-pure-diamond-like-carbon-film-deposited-by-nanosecond-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3932</span> Evaluation of the Efficacy of Titanium Alloy Dental Implants Coated by Bio-ceramic Apatite Wollastonite (Aw) and Hydroxyapatite (Ha) by Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betsy%20S.%20Thomas">Betsy S. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjeet%20Marpara"> Manjeet Marpara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Bhat"> K. M. Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: After the initial enthusiasm and interest in hydroxyapatite products subsided due to dissolution of the coating and failure at the coating interface, this was a unique attempt to create a next generation of dental implant. Materials and Methods: The adhesion property of AW and HA coatings at various temperature by pulsed laser deposition was assessed on titanium plates. Moreover, AW/HA coated implants implanted in the femur of the rabbits was evaluated at various intervals. Results: Decohesion load was more for AW in scratch test and more bone formation around AW coated implants on histological evaluation. Discussion: AW coating by pulsed laser deposition was more adherent to the titanium surface and led to faster bone formation than HA. Conclusion: This experiment opined that AW coated by pulsed laser deposition seems to be a promising method in achieving bioactive coatings on titanium implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title="surface coating">surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=osseo%20integration" title=" osseo integration"> osseo integration</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/2446/evaluation-of-the-efficacy-of-titanium-alloy-dental-implants-coated-by-bio-ceramic-apatite-wollastonite-aw-and-hydroxyapatite-ha-by-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3931</span> Joining of Aluminum and Steel in Car Body Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Mohammadi">Mohammad Mahdi Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc-coated steel sheets have been joined with aluminum samples in an overlapping as well as in a butt-joint configuration. A bi-metal-wire composed from aluminum and steel was used for additional welding experiments. An advantage of the laser-assisted bi-metal-wire welding is that the welding process is simplified since the primary joint between aluminium and steel exists already and laser welding occurs only between similar materials. FEM-simulations of the process were chosen to determine the ideal dimensions with respect to the formability of the bi-metal-wire. A prototype demonstrated the feasibility of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20body" title="car body">car body</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20sheets" title=" steel sheets"> steel sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=formability%20of%20bi-metal-wire" title=" formability of bi-metal-wire"> formability of bi-metal-wire</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-assisted%20bi-metal-wire" title=" laser-assisted bi-metal-wire"> laser-assisted bi-metal-wire</a> </p> <a href="https://publications.waset.org/abstracts/1580/joining-of-aluminum-and-steel-in-car-body-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3930</span> Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siri%20Marthe%20Arbo">Siri Marthe Arbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Saai"> Afaf Saai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sture%20S%C3%B8rli"> Sture Sørli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mette%20Nedreberg"> Mette Nedreberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steel" title="duplex stainless steel">duplex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title=" laser metal deposition"> laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/140052/process-optimization-for-2205-duplex-stainless-steel-by-laser-metal-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3929</span> Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olawale%20S.%20Fatoba">Olawale S. Fatoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi"> Stephen A. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Gharehbaghi"> Rezvan Gharehbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Cu-Fe%20coating" title="Al-Cu-Fe coating">Al-Cu-Fe coating</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition" title=" laser metal deposition"> laser metal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V%20alloy" title=" Ti-6Al-4V alloy"> Ti-6Al-4V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/82571/effects-of-fe-addition-and-process-parameters-on-the-wear-and-corrosion-characteristics-of-icosahedral-al-cu-fe-coatings-on-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3928</span> Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Woo%20Park">Jin-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Soo%20Lee"> Sung-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nong-Moon%20Hwang"> Nong-Moon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition" title="chemical vapour deposition">chemical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20cluster%20model" title=" charged cluster model"> charged cluster model</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20of%20charged%20nanoparticles" title=" generation of charged nanoparticles"> generation of charged nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20behaviour" title=" deposition behaviour"> deposition behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=gan" title=" gan"> gan</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20transfer%20rate" title=" charged transfer rate"> charged transfer rate</a> </p> <a href="https://publications.waset.org/abstracts/2530/generation-of-charged-nanoparticles-in-the-gas-phase-and-their-contribution-to-deposition-of-gan-films-and-nanostructures-during-atmospheric-pressure-chemical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3927</span> Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhasisa%20Nath">Subhasisa Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Waugh"> David Waugh</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Ormondroyd"> Graham Ormondroyd</a>, <a href="https://publications.waset.org/abstracts/search?q=Morwenna%20Spear"> Morwenna Spear</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Pitman"> Andy Pitman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mason"> Paul Mason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20Laser" title="CO2 Laser">CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3A%20YAG%20laser" title=" Nd: YAG laser"> Nd: YAG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=incision" title=" incision"> incision</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20characteristics" title=" hole characteristics"> hole characteristics</a> </p> <a href="https://publications.waset.org/abstracts/138450/hole-characteristics-of-percussion-and-single-pulse-laser-incised-radiata-pine-and-the-effects-of-wood-anatomy-on-laser-incision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3926</span> Enhanced Mechanical Properties and Corrosion Resistance of Fe-Based Thin Film Metallic Glasses via Pulsed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Obeydavi">Ali Obeydavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rahimi"> Majid Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the synthesis and characterization of Fe-Cr-Mo-Co-C-B-Si thin film metallic glasses fabricated using the pulsed laser deposition (PLD) technique on silicon wafer and 304 stainless steel substrates. it systematically varied the laser pulse numbers (20,000; 30,000; 40,000) and energies (130, 165, 190 mJ) to investigate their effects on the microstructural, mechanical, and corrosion properties of the deposited films. Comprehensive characterization techniques, including grazing incidence X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy with selected area electron diffraction, were utilized to assess the amorphous structure and surface morphology. Results indicated that increased pulse numbers and laser energies led to enhanced deposition rates and film thicknesses. Nanoindentation tests demonstrated that the hardness and elastic modulus of the amorphous thin films significantly surpassed those of the 304 stainless steel substrate. Additionally, electrochemical polarization and impedance spectroscopy revealed that the Fe-based metallic glass coatings exhibited superior corrosion resistance compared to the stainless steel substrate. The observed improvements in mechanical and corrosion properties are attributed to the unique amorphous structure achieved through the PLD process, highlighting the potential of these materials for protective coatings in aggressive environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20metallic%20glasses" title="thin film metallic glasses">thin film metallic glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a> </p> <a href="https://publications.waset.org/abstracts/191998/enhanced-mechanical-properties-and-corrosion-resistance-of-fe-based-thin-film-metallic-glasses-via-pulsed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3925</span> Evaluation of Mechanical Behavior of Laser Cladding in Various Tilting Pad Bearing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Si-Geun%20Choi">Si-Geun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon-Jae%20Park"> Hoon-Jae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Woo%20Cho"> Jung-Woo Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Lim"> Jin-Ho Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Park"> Jin-Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Young%20Oh"> Joo-Young Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Il%20Jeong%20Seock-Sam%20Kim"> Jae-Il Jeong Seock-Sam Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Tae%20Cho"> Young Tae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Gyu%20Kim"> Chan Gyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hyoung%20Kim"> Jong-Hyoung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tilting pad bearing is a kind of the fluid film bearing and it can contribute to the high speed and the high load performance compared to other bearings including the rolling element bearing. Furthermore, the tilting bearing has many advantages such as high stability at high-speed performance, long life, high damping, high impact resistance and low noise. Therefore, it mostly used in mid to large size turbomachines, despite the high price disadvantage. Recently, manufacture and process employing laser techniques advancing at a fast-growing rate in mechanical industry, the dissimilar metal weld process employing laser techniques is actively studied. Moreover, also, Industry fields try to apply for welding the white metal and the back metal using laser cladding method for high durability. Furthermore, it has followed that laser cladding method has a lot better bond strength, toughness, anti-abrasion and environment-friendly than centrifugal casting method through preceding research. Therefore, the laser cladding method has a lot better quality, cost reduction, eco-friendliness and permanence of technology than the centrifugal casting method or the gravity casting method. In this study, we compare the mechanical properties of different bearing materials by evaluating the behavior of laser cladding layer with various materials (i.e. SS400, SCM440, S20C) under the same parameters. Furthermore, we analyze the porosity of various tilting pad bearing materials which white metal treated on samples. SEM, EDS analysis and hardness tests of three materials are shown to understand the mechanical properties and tribological behavior. W/D ratio, surface roughness results with various materials are performed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20cladding" title="laser cladding">laser cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=tilting%20pad%20bearing" title=" tilting pad bearing"> tilting pad bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20metal" title=" white metal"> white metal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/89361/evaluation-of-mechanical-behavior-of-laser-cladding-in-various-tilting-pad-bearing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3924</span> To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Sawke">Kshitij Sawke</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradnyavant%20Kamble"> Pradnyavant Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Patil"> Shrikant Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20clad" title="laser clad">laser clad</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/76458/to-study-the-effect-of-optic-fibre-laser-cladding-of-cast-iron-with-silicon-carbide-on-wear-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3923</span> Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ingy%20N.%20Bkrey">Ingy N. Bkrey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Moniem"> Ahmed A. Moniem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrode%20deposition" title="electrode deposition">electrode deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible" title=" flexible"> flexible</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20CO2%20Laser" title=" high power CO2 Laser"> high power CO2 Laser</a>, <a href="https://publications.waset.org/abstracts/search?q=MnO2" title=" MnO2"> MnO2</a> </p> <a href="https://publications.waset.org/abstracts/12964/flexible-laser-reduced-graphene-oxidemno2-electrode-for-supercapacitor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3922</span> Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid%20Alamgir">M. Khalid Alamgir</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Ahsan%20Bhatti"> Javed Ahsan Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zafarullah%20Khan"> M. Zafarullah Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DLC" title="DLC">DLC</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=EDX" title=" EDX"> EDX</a> </p> <a href="https://publications.waset.org/abstracts/29422/deposition-of-diamond-like-carbon-thin-film-by-pulse-laser-deposition-for-surgical-instruments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3921</span> Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-Uv and E-Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Iwayama">Tsutomu Iwayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayuki%20Hama"> Takayuki Hama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ion%20implantation" title="Ion implantation">Ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20laser%20deposition" title=" pulsed laser deposition"> pulsed laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20thermal%20anneal" title=" rapid thermal anneal"> rapid thermal anneal</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20nanocrystals" title=" Si nanocrystals"> Si nanocrystals</a> </p> <a href="https://publications.waset.org/abstracts/31471/luminescent-si-nanocrystals-synthesized-by-si-ion-implantation-and-reactive-pulsed-laser-deposition-the-effects-of-rta-excimer-uv-and-e-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3920</span> A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alhajeri">Ali Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Makki"> Tarig Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosa%20Almutahhar"> Mosa Almutahhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed"> Mohammed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPBF" title="LPBF">LPBF</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-5553" title=" Ti-5553"> Ti-5553</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20powder" title=" metal powder"> metal powder</a>, <a href="https://publications.waset.org/abstracts/search?q=AM" title=" AM"> AM</a> </p> <a href="https://publications.waset.org/abstracts/151600/a-brief-review-of-titanium-powders-used-in-laser-powder-bed-fusion-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3919</span> Simulation of Laser Structuring by Three Dimensional Heat Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassim%20Shaheen%20Bachy">Bassim Shaheen Bachy</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Franke"> Jörg Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title="laser structuring">laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a> </p> <a href="https://publications.waset.org/abstracts/12614/simulation-of-laser-structuring-by-three-dimensional-heat-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3918</span> Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Esmaeili">Sajjad Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Krause"> Robert Krause</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Gerlich"> Lukas Gerlich</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mohammadian%20Kia"> Alireza Mohammadian Kia</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Uhlig"> Benjamin Uhlig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cobalt%20MOCVD" title="Cobalt MOCVD">Cobalt MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20Cu%20electrochemical%20deposition%20%28ECD%29" title=" direct Cu electrochemical deposition (ECD)"> direct Cu electrochemical deposition (ECD)</a>, <a href="https://publications.waset.org/abstracts/search?q=metallization%20technology" title=" metallization technology"> metallization technology</a>, <a href="https://publications.waset.org/abstracts/search?q=through-silicon-via%20%28TSV%29" title=" through-silicon-via (TSV)"> through-silicon-via (TSV)</a> </p> <a href="https://publications.waset.org/abstracts/96811/metal-organic-chemical-vapor-deposition-mocvd-process-investigation-for-co-thin-film-as-a-tsv-alternative-seed-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3917</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3916</span> Applications of Nanoparticles via Laser Ablation in Liquids: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawaz%20%20M.%20Abdullah">Fawaz M. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Al-Ahmari"> Abdulrahman M. Al-Ahmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rafaqat"> Madiha Rafaqat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title=" laser ablation"> laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20NPs" title=" titanium NPs"> titanium NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/105599/applications-of-nanoparticles-via-laser-ablation-in-liquids-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Lin">Jing Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zou%20Yiming"> Zou Yiming</a>, <a href="https://publications.waset.org/abstracts/search?q=Goei%20Ronn"> Goei Ronn</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Yun"> Li Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Ong%20Jiamin"> Amanda Ong Jiamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Tok%20Iing%20Yoong"> Alfred Tok Iing Yoong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-entropy%20alloy" title="high-entropy alloy">high-entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film" title=" thin-film"> thin-film</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition" title=" atomic layer deposition"> atomic layer deposition</a> </p> <a href="https://publications.waset.org/abstracts/150935/conformal-noble-metal-high-entropy-alloy-nanofilms-by-atomic-layer-deposition-for-enhanced-hydrogen-evolution-reactionoxygen-evolution-reaction-electrocatalysis-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edison%20A.%20Bonifaz">Edison A. Bonifaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20series" title="event series">event series</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycles" title=" thermal cycles"> thermal cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-pass%20welding" title=" multi-pass welding"> multi-pass welding</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus%20am%20modeler" title=" abaqus am modeler"> abaqus am modeler</a> </p> <a href="https://publications.waset.org/abstracts/171297/a-thermo-mechanical-finite-element-model-to-predict-thermal-cycles-and-residual-stresses-in-directed-energy-deposition-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Geringswald">D. Geringswald</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hintze"> B. Hintze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H<sub>2</sub>:N<sub>2</sub>). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20aspect%20ratio" title=" high aspect ratio"> high aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=PE-MOCVD" title=" PE-MOCVD"> PE-MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN" title=" TiN"> TiN</a> </p> <a href="https://publications.waset.org/abstracts/50360/approximation-of-pe-mocvd-to-ald-for-tin-concerning-resistivity-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ferguson">Matthew Ferguson</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Konkova"> Tatyana Konkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Violatos"> Ioannis Violatos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20energy%20deposition" title=" direct energy deposition"> direct energy deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20back-scattered%20diffraction" title=" electron back-scattered diffraction"> electron back-scattered diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20718" title=" inconel 718"> inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20microscopy" title=" optical microscopy"> optical microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate-deposit%20interface%20region" title=" substrate-deposit interface region"> substrate-deposit interface region</a> </p> <a href="https://publications.waset.org/abstracts/137537/microstructural-evolution-of-an-interface-region-in-a-nickel-based-superalloy-joint-produced-by-direct-energy-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Clemente">Claudio Clemente</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Gargiulo"> Valentina Gargiulo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessio%20Occhicone"> Alessio Occhicone</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Piero%20Pepe"> Giovanni Piero Pepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Ausanio"> Giovanni Ausanio</a>, <a href="https://publications.waset.org/abstracts/search?q=Michela%20Alf%C3%A8"> Michela Alfè</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemiresistors" title="chemiresistors">chemiresistors</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title=" gas sensors"> gas sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20related%20materials" title=" graphene related materials"> graphene related materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20deposition" title=" laser deposition"> laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=MAPLE" title=" MAPLE"> MAPLE</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20performance" title=" sensing performance"> sensing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transduction%20mechanism" title=" transduction mechanism"> transduction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/184645/metal-organic-frameworks-based-materials-for-volatile-organic-compounds-sensing-applications-strategies-to-improve-sensing-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S%20Lee">C. S Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Hsu"> W. C. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Liu"> H. Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Lin"> C. J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Yao"> S. C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Shen"> Y. T. Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Lin"> Y. C. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backside%20metal-trench" title="backside metal-trench">backside metal-trench</a>, <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FAlN%2FGaN" title=" InAlN/AlN/GaN"> InAlN/AlN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=MOS-HFET" title=" MOS-HFET"> MOS-HFET</a>, <a href="https://publications.waset.org/abstracts/search?q=non-vacuum%20ultrasonic%20spray%20pyrolysis%20deposition" title=" non-vacuum ultrasonic spray pyrolysis deposition"> non-vacuum ultrasonic spray pyrolysis deposition</a> </p> <a href="https://publications.waset.org/abstracts/85398/in018al082nalngansi-metal-oxide-semiconductor-heterostructure-field-effect-transistors-with-backside-metal-trench-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Raj">Ravi Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Louis%20Chiu"> Louis Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Marla"> Deepak Marla</a>, <a href="https://publications.waset.org/abstracts/search?q=Aijun%20Huang"> Aijun Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directed%20laser%20deposition" title="directed laser deposition">directed laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20in-situ%20rolling" title=" hybrid in-situ rolling"> hybrid in-situ rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20model" title=" thermo-mechanical model"> thermo-mechanical model</a> </p> <a href="https://publications.waset.org/abstracts/155143/investigation-of-residual-stress-relief-by-in-situ-rolling-deposited-bead-in-directed-laser-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laser%20metal%20deposition&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>