CINXE.COM
Search results for: hot embossing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hot embossing</title> <meta name="description" content="Search results for: hot embossing"> <meta name="keywords" content="hot embossing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hot embossing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hot embossing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hot embossing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Artistic and Technological Features of Bukhara Copper Embossing in the 20th Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zebiniso%20Mukhsinova">Zebiniso Mukhsinova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses the dynamics of the historical development of the Bukhara school of copper-stamped products. Copper embossing is one of the leading crafts of Uzbek decorative and applied art. A critical and analytical assessment of innovative ideas, artistic and technological features, which arose as a result of the inter-regional synthesis of a local school, is presented. The article includes a detailed analysis of exhibits in museum collections, a research of the scientific papers of leading art critics and differs from previous studies in this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=applied%20art" title="applied art">applied art</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20embossing" title=" copper embossing"> copper embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=metalwork" title=" metalwork"> metalwork</a>, <a href="https://publications.waset.org/abstracts/search?q=ewer" title=" ewer"> ewer</a>, <a href="https://publications.waset.org/abstracts/search?q=tray" title=" tray"> tray</a>, <a href="https://publications.waset.org/abstracts/search?q=Bukhara%20school" title=" Bukhara school"> Bukhara school</a> </p> <a href="https://publications.waset.org/abstracts/144559/artistic-and-technological-features-of-bukhara-copper-embossing-in-the-20th-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawa"> Muhammad Rabnawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20chloride%20dihydrate" title=" copper (II) chloride dihydrate"> copper (II) chloride dihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20hydroxide" title=" magnesium hydroxide"> magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leachable" title=" leachable"> leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20embossing" title=" thermal embossing"> thermal embossing</a> </p> <a href="https://publications.waset.org/abstracts/166090/fabrication-methodologies-for-anti-microbial-polypropylene-surfaces-with-leachable-and-non-leachable-anti-microbial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawaz"> Muhammad Rabnawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20chloride%20dihydrate" title=" copper (II) chloride dihydrate"> copper (II) chloride dihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20hydroxide" title=" magnesium hydroxide"> magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leachable" title=" leachable"> leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20embossing" title=" thermal embossing"> thermal embossing</a> </p> <a href="https://publications.waset.org/abstracts/165971/fabrication-methodologies-for-anti-microbial-polypropylene-surfaces-with-leachable-and-non-leachable-anti-microbial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuen-Ming%20Shu">Kuen-Ming Shu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Wei%20Chen"> Jyun-Wei Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encapsulated%20O-rings" title="encapsulated O-rings">encapsulated O-rings</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20vibration%20hot%20embossing" title=" ultrasonic vibration hot embossing"> ultrasonic vibration hot embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=flange%20making" title=" flange making"> flange making</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20horn" title=" acoustic horn"> acoustic horn</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/31506/the-design-of-acoustic-horns-for-ultrasonic-aided-tube-double-side-flange-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Prada">Jorge Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Cordes"> Christina Cordes</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Harms"> Carsten Harms</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Lang"> Walter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclo-olefin%20copolymer" title=" cyclo-olefin copolymer"> cyclo-olefin copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20embossing" title=" hot embossing"> hot embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bonding" title=" thermal bonding"> thermal bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title=" thermoplastics"> thermoplastics</a> </p> <a href="https://publications.waset.org/abstracts/90848/low-complex-high-fidelity-two-grades-cyclo-olefin-copolymer-coc-based-thermal-bonding-technique-for-sealing-a-thermoplastic-microfluidic-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Normally Closed Thermoplastic Microfluidic Valves with Microstructured Valve Seats: A Strategy to Avoid Permanently Bonded Valves during Channel Sealing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebin%20Li">Kebin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Morton"> Keith Morton</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Shiu"> Matthew Shiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Turcotte"> Karine Turcotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Lukic"> Luke Lukic</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodor%20Veres"> Teodor Veres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a normally closed thermoplastic microfluidic valve design that uses microstructured valve seats to locally prevent the membrane from bonding to the valve seat during microfluidic channel sealing. The microstructured valve seat reduces the adhesion force between the contact surfaces of the valve seat and the membrane locally, allowing valve open and close operations while simultaneously providing a permanent and robust bond elsewhere to cover and seal the microfluidic channel network. Dynamic valve operation including opening and closing times can be tuned by changing the valve seat diameter as well as the density of the microstructures on the valve seats. The influence of the microstructured valve seat on the general flow behavior through the microfluidic devices was also studied. A design window for the fabrication of valve structure is identified and discussed to minimize the fabrication complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-embossing" title="hot-embossing">hot-embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=microvalves" title=" microvalves"> microvalves</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20elastomer" title=" thermoplastic elastomer"> thermoplastic elastomer</a> </p> <a href="https://publications.waset.org/abstracts/104819/normally-closed-thermoplastic-microfluidic-valves-with-microstructured-valve-seats-a-strategy-to-avoid-permanently-bonded-valves-during-channel-sealing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Investigating Anti-bacterial and Anti-Covid-19 Virus Properties and Mode of Action of Mg(Oh)₂ and Copper-Infused Mg(Oh)₂ Nanoparticles on Coated Polypropylene Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alkarri">Saleh Alkarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Melinda%20Frame"> Melinda Frame</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Sharma"> Dimple Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Cairney"> John Cairney</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Maddan"> Lee Maddan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20H.%20Kim"> Jin H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20O.%20Rayner"> Jonathan O. Rayner</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20M.%20Bergholz"> Teresa M. Bergholz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rabnawaz"> Muhammad Rabnawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reported herein is an investigation of anti-bacterial and anti-virus properties, mode of action of Mg(OH)₂ and copper-infused Mg(OH)₂ nanoplatelets (NPs) on melt-compounded and thermally embossed polypropylene (PP) surfaces. The anti-viral activity for the NPs was studied in aqueous liquid suspensions against SARS-CoV-2, and the mode of action was investigated on neat NPs and PP samples that were thermally embossed with NPs. Anti-bacterial studies for melt-compounded NPs in PP confirmed approximately 1 log reduction of E. coli populations in 24 h, while for thermally embossed NPs, an 8 log reduction of E. coli populations was observed. In addition, the NPs exhibit anti-viral activity against SARS-CoV-2. Fluorescence microscopy revealed that reactive oxygen species (ROS) is the main mode of action through which Mg(OH)₂ and Cu-Infused Mg(OH)₂act against microbes. Plastics with anti-microbial surfaces from where biocides are non-leachable are highly desirable. This work provides a general fabrication strategy for developing anti-microbial plastic surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20K-12%20MG1655" title=" E. coli K-12 MG1655"> E. coli K-12 MG1655</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-viral%20activity" title=" anti-viral activity"> anti-viral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-infused%20magnesium%20hydroxide" title=" copper-infused magnesium hydroxide"> copper-infused magnesium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=non-leachable" title=" non-leachable"> non-leachable</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=compounding" title=" compounding"> compounding</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20embossing" title=" surface embossing"> surface embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a> </p> <a href="https://publications.waset.org/abstracts/168967/investigating-anti-bacterial-and-anti-covid-19-virus-properties-and-mode-of-action-of-mgoh2-and-copper-infused-mgoh2-nanoparticles-on-coated-polypropylene-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Experimental Parameters’ Effects on the Electrical Discharge Machining Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Kleimann"> Pascal Kleimann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=craters" title="craters">craters</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharges" title=" electrical discharges"> electrical discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining" title=" micro-electrical discharge machining"> micro-electrical discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=microsystems" title=" microsystems"> microsystems</a> </p> <a href="https://publications.waset.org/abstracts/146294/experimental-parameters-effects-on-the-electrical-discharge-machining-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Kleimann"> Pascal Kleimann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=craters" title="craters">craters</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharges" title=" electrical discharges"> electrical discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining%20%28%C2%B5EDM%29" title=" micro-electrical discharge machining (µEDM)"> micro-electrical discharge machining (µEDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=microsystems" title=" microsystems"> microsystems</a> </p> <a href="https://publications.waset.org/abstracts/150983/experimental-parameters-effects-on-the-electrical-discharge-machining-performances-edm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Application and Evaluation of 3D Printing Technology in Customized Fashion Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ezza">A. Ezza</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Babar%20Ramzan"> B. M. Babar Ramzan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hira"> C. Hira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deliberates emerging design activates in 3D printing technology, the paper provides the insight into the broad opportunities in 3D printing applications in fashion world. 3D printing is becoming a reason for reduction of lead time. The process engenders the precise models and one of prototype components for design approbation; trail and testing significance through the production components to be utilized in true working environments. This emerging technology have given elevate to an emergent realm of digitally fabricated art and design. Bitonic Creations, CONTINUUM (3D printed shoes), Jiri Evenhuis, Michael Schmidt have be giving extensive amassments of haute couture dresses and accessories. Cosyflex TM, N12 undergarments are examples of an innovative process for 3D printing. Varied types of liquid polymers such as latex, silicon, polyurethane and Teflon as well as a variety of textile fibers such as cotton, viscose and polyamide enable tailor made fabrics for any need. Patterns, perforations, embossing and embellishments may be created by printing on 3D structure base plate. Computer solidifies material feedstock layer by layer with micro-millimeter detail. In lieu of producing textiles by meter, then cutting and sewing them into final product, 3D printing can become a reason to make sewing equipment obsolete. The findings positively corroborates the expected advantage of 3D printed sample that seem to facilitate the first steps for designer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=customization" title=" customization"> customization</a>, <a href="https://publications.waset.org/abstracts/search?q=fashion%20industry" title=" fashion industry"> fashion industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Haute%20couture" title=" Haute couture "> Haute couture </a> </p> <a href="https://publications.waset.org/abstracts/25808/application-and-evaluation-of-3d-printing-technology-in-customized-fashion-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Cost Effective Microfabrication Technique for Lab on Chip (LOC) Devices Using Epoxy Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charmi%20Chande">Charmi Chande</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Phadke"> Ravindra Phadke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics devices are fabricated by using multiple fabrication methods. Photolithography is one of the common methods wherein SU8 is widely used for making master which in turn is used for making working chip by the process of soft lithography. The high-aspect ratio features of SU-8 makes it suitable to be used as micro moulds for injection moulding, hot embossing, and moulds to form polydimethylsiloxane (PDMS) structures for bioMEMS (Microelectromechanical systems) applications. But due to high cost, difficulty in procuring and need for clean room, restricts the use of this polymer especially in developing countries and small research labs. ‘Bisphenol –A’ based polymers in mixture with curing agent are used in various industries like Paints and coatings, Adhesives, Electrical systems and electronics, Industrial tooling and composites. We present the novel use of ‘Bisphenol – A’ based polymer in fabricating micro channels for Lab On Chip(LOC) devices. The present paper describes the prototype for production of microfluidics chips using range of ‘Bisphenol-A’ based polymers viz. GY 250, ATUL B11, DER 331, DER 330 in mixture with cationic photo initiators. All the steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. This even excludes the need of clean room. The produced chips using all above mentioned polymers were validated with respect to height and the chip giving least height was selected for further experimentation. The lowest height achieved was 7 micrometers by GY250. The cost of the master fabricated was $ 0.20 and working chip was $. 0.22. The best working chip was used for morphological identification and profiling of microorganisms from environmental samples like soil, marine water and salt water pan sites. The current chip can be adapted for various microbiological screening experiments like biochemical based microbial identification, studying uncultivable microorganisms at single cell/community level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%E2%80%93A%20based%20epoxy" title="bisphenol–A based epoxy">bisphenol–A based epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20photoinitiators" title=" cationic photoinitiators"> cationic photoinitiators</a>, <a href="https://publications.waset.org/abstracts/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=photolithography" title=" photolithography"> photolithography</a> </p> <a href="https://publications.waset.org/abstracts/17676/cost-effective-microfabrication-technique-for-lab-on-chip-loc-devices-using-epoxy-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Gencturk">Elif Gencturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekin%20Yurdakul"> Ekin Yurdakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Celik"> Ahmet Y. Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Senol%20Mutlu"> Senol Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kutlu%20O.%20Ulgen"> Kutlu O. Ulgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COP" title="COP">COP</a>, <a href="https://publications.waset.org/abstracts/search?q=HMF" title=" HMF"> HMF</a>, <a href="https://publications.waset.org/abstracts/search?q=ribosome%20biogenesis" title=" ribosome biogenesis"> ribosome biogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20microbioreactor" title=" thermoplastic microbioreactor"> thermoplastic microbioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/102817/application-of-thermoplastic-microbioreactor-to-the-single-cell-study-of-budding-yeast-to-decipher-the-effect-of-5-hydroxymethylfurfural-on-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Wu">Ting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feiting%20Hu"> Feiting Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyue%20Zhang"> Xinyue Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuxin%20Tang"> Shuxin Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyun%20Xu"> Xiaoyun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processing%20wastewater%20of%20yuba" title="processing wastewater of yuba">processing wastewater of yuba</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20microbiota" title=" intestinal microbiota"> intestinal microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsule" title=" microcapsule"> microcapsule</a> </p> <a href="https://publications.waset.org/abstracts/165744/regulation-effect-of-intestinal-microbiota-by-fermented-processing-wastewater-of-yuba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>