CINXE.COM
Search results for: fluorescent dyes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fluorescent dyes</title> <meta name="description" content="Search results for: fluorescent dyes"> <meta name="keywords" content="fluorescent dyes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fluorescent dyes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fluorescent dyes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 498</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fluorescent dyes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Rapid Detection System of Airborne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kei%20Takenaka"> Kei Takenaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viruses" title="viruses">viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=sampler" title=" sampler"> sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=mist" title=" mist"> mist</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes" title=" fluorescent dyes"> fluorescent dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microreaction" title=" microreaction"> microreaction</a> </p> <a href="https://publications.waset.org/abstracts/2700/rapid-detection-system-of-airborne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Dyeing Cotton with Dyes Extracted from Eucalyptus and Mango Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamrat%20Tesfaye">Tamrat Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Sithole"> Bruce Sithole</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shabaridharan"> K. Shabaridharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural dyes to replace synthetic dyes has been advocated for to circumvent the environmental problems associated with synthetic dyes. This paper is a preliminary study on the use of natural dyes extracted from eucalyptus and mango trees. Dyes extracted from eucalyptus bark gave more colourized material than the dyes extracted from eucalyptus leaves and mango pills and leaves. Additionally, the extracts exhibited a deeper colour shade. Cotton fiber dyed using the same dye but with different mordants resulted in fabric that exhibited different colours. It appears that natural dyes from these plants could be effective dyes for use on cotton fabrics especially considering that the dyes exhibited excellent colour fastness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title="natural dyes">natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus" title=" eucalyptus"> eucalyptus</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20fastness" title=" colour fastness"> colour fastness</a> </p> <a href="https://publications.waset.org/abstracts/65021/dyeing-cotton-with-dyes-extracted-from-eucalyptus-and-mango-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> Synthesis, Characterization, and Application of Some Acid Dyes Derived from 1-Amino-4 Bromo-Anthraquine-2-Sulphonic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Istifanus%20Chindo"> Istifanus Chindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni"> Nurudeen Ayeni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ten acid dyes were synthesized from 1-amino-4-bromo anthraghinone-2 sulphuric acid by condensation with different substituted amilines. These dyes were characterized by IR Spectroscopy and the results revealed an incorporation of various substituents. Application of these dyes were carried out on Nylon and wool fabrics using standard procedure melting point, percentage yield, molar extinction coefficient, wash, light and staining of adjacent fibre, of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaustion" title=" exhaustion"> exhaustion</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction%20co-efficient" title=" extinction co-efficient "> extinction co-efficient </a> </p> <a href="https://publications.waset.org/abstracts/28845/synthesis-characterization-and-application-of-some-acid-dyes-derived-from-1-amino-4-bromo-anthraquine-2-sulphonic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Sustainability and Awareness with Natural Dyes in Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Karadag">Recep Karadag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/24420/sustainability-and-awareness-with-natural-dyes-in-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Seraj">Sanaz Seraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohre%20Rouhani"> Shohre Rouhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalimide%20dye" title=" naphthalimide dye"> naphthalimide dye</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a> </p> <a href="https://publications.waset.org/abstracts/76722/fluorescence-quenching-as-an-efficient-tool-for-sensing-application-study-on-the-fluorescence-quenching-of-naphthalimide-dye-by-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Synthesis and Characterization of Some Mono Chloro-S-Triazine Vinyl Sulphone Reactive Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Chindo%20Istifanus"> Chindo Istifanus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of ten bi functional mono-chloro-s-triazine vinyl sulphone reactive dyes were synthesized based on H-acid with varied substituents coded as (BRD). These dyes were characterized by IR spectroscopy. The results revealed an incorporation of various substituents. The visible absorption spectra of these dyes were examined in various solvents and results shows positive and negative salvatochromism as the solvent polarity; changes, melting point, percentage yield and molar extinction co-efficient of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifunctional" title="bifunctional">bifunctional</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/18776/synthesis-and-characterization-of-some-mono-chloro-s-triazine-vinyl-sulphone-reactive-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Evaluation of Moringa oleifera in Decolourization of Dyes in Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagia%20Ali">Nagia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20R.%20El-Mohamedy"> R. S. R. El-Mohamedy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to irradiate the dyes biologically through the use of Moreinga oleifera. The study confirms the potential use of Moringa oleifera in decolourization of dyes and thus opens up a scope for future analysis pertaining to its performance in treatment of textile effluent. In this paper, the ability of natural products in removing dyes was tested using two reactive dyes and one acid dye. After a preliminary screening for dye removal capacity, a vegetal protein extract derived from Moeringa oleifera seed was fully studied. The influences of several parameters such as pH, temperature or initial dye concentration were tested and the behavior of coagulants was compared. It was found that dye removal decreased as pH increased. Temperature did not seem to have a considerable effect, while initial dye concentration appeared to be a very important variable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moreinga%20oleifera" title="Moreinga oleifera">Moreinga oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourization" title=" decolourization"> decolourization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dyes" title=" reactive dyes"> reactive dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title=" acid dyes"> acid dyes</a> </p> <a href="https://publications.waset.org/abstracts/36561/evaluation-of-moringa-oleifera-in-decolourization-of-dyes-in-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Chanajaree">R. Chanajaree</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Luanwiset"> D. Luanwiset</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pongpratea"> K. Pongpratea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes%20removal" title="dyes removal">dyes removal</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20free%20energies" title=" binding free energies"> binding free energies</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20calculation" title=" quantum calculation"> quantum calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a> </p> <a href="https://publications.waset.org/abstracts/115037/prediction-of-binding-free-energies-for-dyes-removal-using-computational-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Evaluation of Real Time PCR Methods for Food Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Sakalar">Ergun Sakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Bilgic"> Kubra Bilgic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dye" title="fluorescent dye">fluorescent dye</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20probes" title=" molecular probes"> molecular probes</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20analogues" title=" nucleic acid analogues"> nucleic acid analogues</a> </p> <a href="https://publications.waset.org/abstracts/53082/evaluation-of-real-time-pcr-methods-for-food-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Hu">Can Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huixia%20Shi"> Huixia Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongcheng%20Mei"> Hongcheng Mei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongling%20Guo"> Hongling Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20electrophoresis" title=" capillary electrophoresis"> capillary electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20evidence" title=" fiber evidence"> fiber evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20determination" title=" rapid determination"> rapid determination</a> </p> <a href="https://publications.waset.org/abstracts/103782/rapid-method-for-the-determination-of-acid-dyes-by-capillary-electrophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadlia"> M. T. Abadlia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater "> wastewater </a> </p> <a href="https://publications.waset.org/abstracts/43865/recovery-of-waste-acrylic-fibers-for-the-elimination-of-basic-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zonglin%20Yang">Zonglin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatsuya%20Akiyama"> Tatsuya Akiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerry%20S.%20Williamson"> Kerry S. Williamson</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Franklin"> Michael J. Franklin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiruvarangan%20Ramaraj"> Thiruvarangan Ramaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Pseudomonas aeruginosa</em> is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20informatics" title="image informatics">image informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20aeruginosa" title=" Pseudomonas aeruginosa"> Pseudomonas aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=FISH" title=" FISH"> FISH</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title=" data visualization"> data visualization</a> </p> <a href="https://publications.waset.org/abstracts/133177/thresholding-approach-for-automatic-detection-of-pseudomonas-aeruginosa-biofilms-from-fluorescence-in-situ-hybridization-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hosseinnezhad">M. Hosseinnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gharanjig"> K. Gharanjig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm<sup>-2</sup>, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm<sup>-2</sup>, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=dye-sensitized%20solar%20cells" title=" dye-sensitized solar cells"> dye-sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a> </p> <a href="https://publications.waset.org/abstracts/58409/investigation-of-green-dye-sensitized-solar-cells-based-on-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thian%20Khoon%20Tan">Thian Khoon Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poi%20Sim%20Khiew"> Poi Sim Khiew</a>, <a href="https://publications.waset.org/abstracts/search?q=Wee%20Siong%20Chiu"> Wee Siong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20Hua%20Chia"> Chin Hua Chia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20enhanced" title=" magnetically enhanced"> magnetically enhanced</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20dyes" title=" synthetic dyes"> synthetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title=" azo dyes"> azo dyes</a> </p> <a href="https://publications.waset.org/abstracts/193545/brief-inquisition-of-photocatalytic-degradation-of-azo-dyes-by-magnetically-enhanced-zinc-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid-ul-Islam">Shahid-ul-Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faqeer%20Mohammad"> Faqeer Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annatto" title="annatto">annatto</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title=" antimicrobial agents"> antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20textiles" title=" green textiles "> green textiles </a> </p> <a href="https://publications.waset.org/abstracts/42793/colorful-textiles-with-antimicrobial-property-using-natural-dyes-as-effective-green-finishing-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Eco-Friendly Textiles: The Power of Natural Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bushra">Bushra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the historical significance, ecological benefits, and contemporary applications of natural dyes in textile dyeing, aiming to provide a comprehensive overview of their potential to contribute to a sustainable fashion industry while minimizing ecological footprints. This research explores the potential of natural dyes as a sustainable alternative to synthetic dyes in the textile industry, examining their historical context, sources, and environmental benefits. Natural dyes come from plants, animals, and minerals, including roots, leaves, bark, fruits, flowers, insects, and metal salts, used as mordants to fix dyes to fabrics. Natural dyeing involves extraction, mordanting, and dyeing techniques. Optimizing these processes can enhance the performance of natural dyes, making them viable for contemporary textile applications based on experimental research. Natural dyes offer eco-friendly benefits like biodegradability, non-toxicity, and resource renewables, reducing pollution, promoting biodiversity, and reducing reliance on petrochemicals. Natural dyes offer benefits but face challenges in color consistency, scalability, and performance, requiring industrial production to meet modern consumer standards for durability and colorfastness. Contemporary initiatives in the textile industry include fashion brands like Eileen Fisher and Patagonia incorporating natural dyes, artisans like India Flint's Botanical Alchemy promoting traditional dyeing techniques, and research projects like the European Union's Horizon 2020 program. Natural dyes offer a sustainable textile industry solution, reducing environmental impact and promoting harmony with nature. Research and innovation are paving the way for widespread adoption, transforming textile dyeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20significance" title="historical significance">historical significance</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20industry" title=" textile industry"> textile industry</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/186606/eco-friendly-textiles-the-power-of-natural-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Sidharta">William Sidharta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Tu%20Lu"> Chin-Tu Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX%20simulation" title="CFX simulation">CFX simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20UV%20lamp" title=" fluorescent UV lamp"> fluorescent UV lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=lamp%20tube%20reflector" title=" lamp tube reflector"> lamp tube reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light "> UV light </a> </p> <a href="https://publications.waset.org/abstracts/25442/reflector-arrangement-effect-on-ultraviolet-lamp-performance-by-cfx-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Preparation of New Organoclays and Applications for Adsorption of Telon Dyes in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Makhoukhi">Benamar Makhoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clay ion-exchange using bismidazolium salts (MBIM) could provide organophilic clays materials that allow effective retention of polluting dyes. The present investigations deal with bentonite (Bt) modification using (ortho, meta and para) bisimidazolium cations and attempts to remove a synthetic textile dyes, such as (Telon-Orange, Telon-Red and Telon-Blue) by adsorption, from aqueous solutions. The surface modification of MBIM–Bt was examined using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption tests applied to Telon dyes revealed a significant increase of the maximum adsorption capacity from ca. 21-28 to 88-108 mg.g-1 after intercalation. The highest adsorption level was noticed for Telon-Orange dye on the p-MBIM–Bt, presumably due higher interlayer space and better diffusion. The pseudo-first order rate equation was able to provide the best description of adsorption kinetics data for all three dyestuffs. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The results show that MBIM–Bt could be employed as low-cost material for the removal of Telon dyes from effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Organoclay" title=" Organoclay"> Organoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bisimidazolium" title=" Bisimidazolium"> Bisimidazolium</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyes" title=" Dyes"> Dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Isotherms" title=" Isotherms"> Isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=Adsorption" title=" Adsorption"> Adsorption</a> </p> <a href="https://publications.waset.org/abstracts/21447/preparation-of-new-organoclays-and-applications-for-adsorption-of-telon-dyes-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Laptinskiy">K. A. Laptinskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Burikov"> S. A. Burikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vervald"> A. M. Vervald</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dolenko"> S. A. Dolenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Dolenko"> T. A. Dolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/14494/using-artificial-neural-networks-for-optical-imaging-of-fluorescent-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">710</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Production, Optimization, Characterization, and Kinetics of a Partially Purified Laccase from Pleurotus citrinopileatus and Its Application in Swift Bioremediation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Kushwaha">Ankita Kushwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Singh"> M. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the present investigation the efficiency of laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) from Pleurotus citrinopileatus was assessed for the decolorization of azo dyes. Aim: Enzyme production, characterization and kinetics of a partially purified laccase from Pleurotus citrinopileatus were determined for its application in bioremediation of azo dyes. Methods & Results: Laccase has been partially purified by using 80% ammonium sulphate solution. Total activity, total protein, specific activity and purification fold for partially purified laccase were found to be 40.38U, 293.33mg/100ml, 0.91U/mg and 2.84, respectively. The pH and temperature optima of laccase were 5.0 and 50ºC, respectively, while the enzyme was most stable at pH 4.0 and temperature 30ºC when exposed for one hour. The Km of the partially purified laccase for substrates guaiacol, DMP (2,6-dimethoxyphenol) and syringaldazine (3,5-dimethoxy-4-hydroxybenzaldehyde azine) were 60, 95 and 26, respectively. This laccase has been tested for the use in the bioremediation of azo dyes in the absence of mediator molecules. Two dyes namely congo red and bromophenol blue were tested. Discussion: It was observed that laccase enzyme was very effective in the decolorization of these two dyes. More than 80% decolorization was observed within half an hour even in the absence of mediator and their lower Km value indicates that efficiency of the enzyme is very high. The results were promising due to quicker decolorization in the absence of mediators showing that it can be used as a valuable biocatalyst for quick bioremediation of azo dyes. Conclusion: The enzymatic properties of laccase from P. citrinopileatus should be considered for a potential environmental (biodegradation and bioremediation) or industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase" title=" laccase"> laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=P.citrinopileatus" title=" P.citrinopileatus"> P.citrinopileatus</a> </p> <a href="https://publications.waset.org/abstracts/88221/production-optimization-characterization-and-kinetics-of-a-partially-purified-laccase-from-pleurotus-citrinopileatus-and-its-application-in-swift-bioremediation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Sharma">Dinesh Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Sharma"> Sanjay Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyebath" title=" dyebath"> dyebath</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic" title=" toxic"> toxic</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=costs" title=" costs"> costs</a> </p> <a href="https://publications.waset.org/abstracts/22655/effects-of-spent-dyebath-recycling-on-pollution-and-cost-of-production-in-a-cotton-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Synthesis and Photophysical Studies of BOPIDY Dyes Conjugated with 4-Benzyloxystyryl Substituents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bokolombe%20Pitchou%20Ngoy">Bokolombe Pitchou Ngoy</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mack"> John Mack</a>, <a href="https://publications.waset.org/abstracts/search?q=Tebello%20Nyokong"> Tebello Nyokong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis and photochemical studies of BODIPY dyes have been investigated in this work in order to have a broad benchmark of this functionalized photosensitizer for biological applications such as photodynamic therapy or antimicrobial activity. The common acid catalyzed synthetic method was used, and BODIPY dyes were obtained in quite a good yield (25 %) followed by bromination and Knoevenagel condensation to afford the BODIPY dyes conjugated with maximum absorbance in the near-infrared region of the electromagnetic spectrum. The fluorescence lifetimes, fluorescence quantum yield, and Singlet oxygen quantum yield of the conjugated BODIPY dyes were determined in different solvents by using Time Correlation Single Photon Counting (TCSPC), fluorimeter, and Laser Flash Photolysis respectively. It was clearly shown that the singlet oxygen quantum yield was higher in THF followed by DMSO compared to another solvent. The same trend was observed for the fluorescence lifetimes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BODIPY" title="BODIPY">BODIPY</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20therapy" title=" photodynamic therapy"> photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitizer" title=" photosensitizer"> photosensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=singlet%20oxygen" title=" singlet oxygen"> singlet oxygen</a> </p> <a href="https://publications.waset.org/abstracts/72430/synthesis-and-photophysical-studies-of-bopidy-dyes-conjugated-with-4-benzyloxystyryl-substituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Toxic Dyes Removal in Aqueous Solution Using Calcined and Uncalcined Anionic Clay Zn/Al+Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bessaha%20Hassiba">Bessaha Hassiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouraada%20Mohamed"> Bouraada Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Layered double hydroxide with Zn/(Al+Fe) molar ratio of 3:1 was synthesized by co-precipitation method and their calcined product was obtained by heating treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove weak acid dyes: indigo carmine (IC) and green bezanyl-F2B (F2B) in aqueous solution. The synthesized materials were characterized by XRD, SEM, FTIR and TG/DTA analysis confirming the formation of pure layered structure of ZAF-HT, the destruction of the original structure after calcination and the intercalation of the dyes molecules. Moreover, the interlayer distance increases from 7.645 Å in ZAF-HT to 19.102 Å after the dyes sorption. The dose of the adsorbents was chosen 0.5 g/l while the initial concentrations were 250 and 750 mg/l for indigo carmine and green bezanyl-F2B respectively. The sorption experiments were carried out at ambient temperature and without adjusting the initial solution pH (pHi = 6.10 for IC and pHi = 5.01 for F2B). In addition, the maximum adsorption capacities obtained by ZAF-HT and CZAF for both dyes followed the order: CZAF-F2B (1501.4 mg.g-1) > CZAF-IC (617.3 mg.g-1) > ZAF-HT-IC (41.4 mg.g-1) > ZAF-HT-F2B (28.9 mg.g-1). The removal of indigo carmine and green bezanyl-F2B by ZAF-HT was due to the anion exchange and/or the adsorption on the surface. By using the calcined material (CZAF), the removal of the dyes was based on a particular property, called ‘memory effect’. CZAF recover the pristine structure in the presence anionic molecules such as acid dyes where they occupy the interlayer space. The sorption process was spontaneous in nature and followed pseudo-second-order. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF were consistent with Langmiur model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxides" title=" layered double hydroxides"> layered double hydroxides</a> </p> <a href="https://publications.waset.org/abstracts/43304/toxic-dyes-removal-in-aqueous-solution-using-calcined-and-uncalcined-anionic-clay-znalfe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Mousavi">Seyed Mohsen Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahjat%20Afshari%20Razani"> Bahjat Afshari Razani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%2FZnO%20hollow%20sphere" title=" Fe/ZnO hollow sphere"> Fe/ZnO hollow sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20sphere%20nanostructures" title=" hollow sphere nanostructures"> hollow sphere nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/56367/green-and-facile-fabrication-and-characterization-of-fezno-hollow-spheres-and-photodegradation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20Siva%20Prasad%20Pamula">Abhiram Siva Prasad Pamula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title="textile wastewater">textile wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a>, <a href="https://publications.waset.org/abstracts/search?q=hazardous%20pollutants" title=" hazardous pollutants"> hazardous pollutants</a> </p> <a href="https://publications.waset.org/abstracts/162825/assessment-of-treatment-methods-to-remove-hazardous-dyes-from-synthetic-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samera%20Salimpour%20Abkenar">Samera Salimpour Abkenar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=silk" title=" silk"> silk</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20dyeing" title=" traditional dyeing"> traditional dyeing</a> </p> <a href="https://publications.waset.org/abstracts/135825/traditional-dyeing-of-silk-with-natural-dyes-by-eco-friendly-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Khanjani">Somayeh Khanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi"> Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Jalili"> Shirin Jalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Khara"> Afshin Khara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title="fingerprint">fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20particle%20reagent%20%28SPR%29" title=" small particle reagent (SPR)"> small particle reagent (SPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=arson" title=" arson"> arson</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20fluorescent" title=" novel fluorescent "> novel fluorescent </a> </p> <a href="https://publications.waset.org/abstracts/28086/detection-of-latent-fingerprints-recovered-from-arson-simulation-by-a-novel-fluorescent-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> The Impact of Ionic Strength on the Adsorption Behavior of Anionic and Cationic Dyes on Low Cost Biosorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Bouguettoucha">Abdallah Bouguettoucha</a>, <a href="https://publications.waset.org/abstracts/search?q=Derradji%20Chebli"> Derradji Chebli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Aga"> Sara Aga</a>, <a href="https://publications.waset.org/abstracts/search?q=Agueniou%20Fazia"> Agueniou Fazia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to looking for alternative materials (low cost) for the adsorption of textile dyes and optimizes the type which gives optimum adsorption and provides an explanation of the mechanism involved in the adsorption process. Adsorption of Orange II and Methylene blue on H2SO4 traited cone of Pinus brutia, was carried out at different initial concentrations of the dye (20, 50 and 100 mg / L) and at tow initial pH, pH 1 and 10 respectively. The models of Langmuir, Freundlich and Sips were used in this study to analyze the obtained results of the adsorption isotherm. PCB-0M had high adsorption capacities namely 32.8967 mg/g and 128.1651 mg/g, respectively for orange II and methylene blue and further indicated that the removal of dyes increased with increase in the ionic strength of solution, this was attributed to aggregation of dyes in solution. The potential of H2SO4 traited cone of Pinus brutia, an easily available and low cost material, to be used as an alternative biosorbent material for the removal of a dyes, Orange II and Methylene Bleu, from aqueous solutions was therefore confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Methylene%20blue" title="Methylene blue">Methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20II" title=" orange II"> orange II</a>, <a href="https://publications.waset.org/abstracts/search?q=cones%20of%20pinus%20brutia" title=" cones of pinus brutia"> cones of pinus brutia</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/43723/the-impact-of-ionic-strength-on-the-adsorption-behavior-of-anionic-and-cationic-dyes-on-low-cost-biosorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ouslimani">N. Ouslimani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadlia"> M. T. Abadlia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentonite" title="Bentonite">Bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20of%20polluted%20water" title=" treatment of polluted water"> treatment of polluted water</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title=" acid dyes"> acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/24409/study-of-the-removal-of-a-red-dye-acid-and-sodium-bentonite-raw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> An Investigation on the Removal of Synthetic Dyes from Aqueous Solution by a Functional Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kara">Ali Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Olgun"> Asim Olgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevgi%20Sozugecer"> Sevgi Sozugecer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Ozel"> Sahin Ozel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Nur%20Yildiz"> Kubra Nur Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sevin%C3%A7"> P. Sevinç</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Kuresh"> Abdurrahman Kuresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Guliz%20Turhan"> Guliz Turhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Gulgun"> Duygu Gulgun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthetic dyes, one of the most hazardous chemical compound classes, are important potential water pollutions since their presence in water bodies reduces light penetration, precluding the photosynthesis of aqueous flora and causing various diseases. Some the synthetic dyes are highly toxic and/or carcinogenic, and their biodegradation can produce even more toxic aromatic amines. The adsorption procedure is one of the most effective means of removing synthetic dye pollutants, and has been described in a number of previous studies by using the functional polymers. In this study, we investigated the removal of synthetic dyes from aqueous solution by using a functional polymer as an adsorbent material. The effect of initial solution concentration, pH, and contact time on the adsorption capacity of the adsorbent were studied in details. The results showed that functional polymer has a potential to be used as cost-effective and efficient adsorbent for the treatment of aqueous solutions from textile industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20polymers" title="functional polymers">functional polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=synhetic%20dyes" title=" synhetic dyes"> synhetic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a> </p> <a href="https://publications.waset.org/abstracts/94325/an-investigation-on-the-removal-of-synthetic-dyes-from-aqueous-solution-by-a-functional-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>