CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 239 results for author: <span class="mathjax">Wang, W Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wang, W Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wang%2C+W+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wang, W Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13504">arXiv:2411.13504</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13504">pdf</a>, <a href="https://arxiv.org/format/2411.13504">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Disentangling Memory and Reasoning Ability in Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jin%2C+M">Mingyu Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+W">Weidi Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+S">Sitao Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Hua%2C+W">Wenyue Hua</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+R">Ruixiang Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yongfeng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13504v2-abstract-short" style="display: inline;"> Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model&#39;s decision-making process unclear and disorganized. This ambiguity can lead to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13504v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13504v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13504v2-abstract-full" style="display: none;"> Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model&#39;s decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13504v2-abstract-full').style.display = 'none'; document.getElementById('2411.13504v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22480">arXiv:2410.22480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22480">pdf</a>, <a href="https://arxiv.org/format/2410.22480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Scaling LLM Inference with Optimized Sample Compute Allocation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kexun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+S">Shang Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+D">Danqing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22480v1-abstract-short" style="display: inline;"> Sampling is a basic operation in many inference-time algorithms of large language models (LLMs). To scale up inference efficiently with a limited compute, it is crucial to find an optimal allocation for sample compute budgets: Which sampling configurations (model, temperature, language, etc.) do we use? How many samples do we generate in each configuration? We formulate these choices as a learning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22480v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22480v1-abstract-full" style="display: none;"> Sampling is a basic operation in many inference-time algorithms of large language models (LLMs). To scale up inference efficiently with a limited compute, it is crucial to find an optimal allocation for sample compute budgets: Which sampling configurations (model, temperature, language, etc.) do we use? How many samples do we generate in each configuration? We formulate these choices as a learning problem and propose OSCA, an algorithm that Optimizes Sample Compute Allocation by finding an optimal mix of different inference configurations. Our experiments show that with our learned mixed allocation, we can achieve accuracy better than the best single configuration with 128x less compute on code generation and 25x less compute on 4 reasoning tasks. OSCA is also shown to be effective in agentic workflows beyond single-turn tasks, achieving a better accuracy on SWE-Bench with 3x less compute than the default configuration. Our code and generations are released at https://github.com/LeiLiLab/OSCA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22480v1-abstract-full').style.display = 'none'; document.getElementById('2410.22480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13218">arXiv:2410.13218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13218">pdf</a>, <a href="https://arxiv.org/format/2410.13218">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+M">Mian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xinlu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Labrum%2C+T">Travis Labrum</a>, <a href="/search/cs?searchtype=author&amp;query=Chiu%2C+J+C">Jamie C. Chiu</a>, <a href="/search/cs?searchtype=author&amp;query=Eack%2C+S+M">Shaun M. Eack</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+F">Fei Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z+Z">Zhiyu Zoey Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13218v1-abstract-short" style="display: inline;"> There is a significant gap between patient needs and available mental health support today. In this paper, we aim to thoroughly examine the potential of using Large Language Models (LLMs) to assist professional psychotherapy. To this end, we propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance. We include three levels of tasks in CBT-BE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13218v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13218v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13218v1-abstract-full" style="display: none;"> There is a significant gap between patient needs and available mental health support today. In this paper, we aim to thoroughly examine the potential of using Large Language Models (LLMs) to assist professional psychotherapy. To this end, we propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance. We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions. These tasks encompass key aspects of CBT that could potentially be enhanced through AI assistance, while also outlining a hierarchy of capability requirements, ranging from basic knowledge recitation to engaging in real therapeutic conversations. We evaluated representative LLMs on our benchmark. Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios requiring deep analysis of patients&#39; cognitive structures and generating effective responses, suggesting potential future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13218v1-abstract-full').style.display = 'none'; document.getElementById('2410.13218v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11325">arXiv:2410.11325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11325">pdf</a>, <a href="https://arxiv.org/format/2410.11325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wenda Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+R">Rujun Han</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zifeng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Le%2C+L+T">Long T. Le</a>, <a href="/search/cs?searchtype=author&amp;query=Madeka%2C+D">Dhruv Madeka</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Agarwal%2C+R">Rishabh Agarwal</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+C">Chen-Yu Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Pfister%2C+T">Tomas Pfister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11325v1-abstract-short" style="display: inline;"> Recent advances in knowledge distillation (KD) have enabled smaller student models to approach the performance of larger teacher models. However, popular methods such as supervised KD and on-policy KD, are adversely impacted by the knowledge gaps between teacher-student in practical scenarios. Supervised KD suffers from a distribution mismatch between training with a static dataset and inference o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11325v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11325v1-abstract-full" style="display: none;"> Recent advances in knowledge distillation (KD) have enabled smaller student models to approach the performance of larger teacher models. However, popular methods such as supervised KD and on-policy KD, are adversely impacted by the knowledge gaps between teacher-student in practical scenarios. Supervised KD suffers from a distribution mismatch between training with a static dataset and inference over final student-generated outputs. Conversely, on-policy KD, which uses student-generated samples for training, can suffer from low-quality training examples with which teacher models are not familiar, resulting in inaccurate teacher feedback. To address these limitations, we introduce Speculative Knowledge Distillation (SKD), a novel approach that leverages cooperation between student and teacher models to generate high-quality training data on-the-fly while aligning with the student&#39;s inference-time distribution. In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution, transferring high-quality knowledge adaptively. We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following, and show that SKD consistently outperforms existing KD methods across different domains, data sizes, and model initialization strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11325v1-abstract-full').style.display = 'none'; document.getElementById('2410.11325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09675">arXiv:2410.09675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09675">pdf</a>, <a href="https://arxiv.org/format/2410.09675">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Y">Yuxi Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Goyal%2C+A">Anirudh Goyal</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+X">Xiaobao Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Yin%2C+X">Xunjian Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+X">Xiao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Kan%2C+M">Min-Yen Kan</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09675v1-abstract-short" style="display: inline;"> Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks. However, existing approaches typically implement iterative refinement at the application or prompting level, relying on autoregressive (AR) modeling. The sequential token generation in AR models can lead to high inference latency. To overcome these challenges,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09675v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09675v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09675v1-abstract-full" style="display: none;"> Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks. However, existing approaches typically implement iterative refinement at the application or prompting level, relying on autoregressive (AR) modeling. The sequential token generation in AR models can lead to high inference latency. To overcome these challenges, we propose Context-Wise Order-Agnostic Language Modeling (COrAL), which incorporates iterative refinement directly into the LLM architecture while maintaining computational efficiency. Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally during the generation process. Leveraging the order-agnostic nature of COrAL, we introduce sliding blockwise order-agnostic decoding, which performs multi-token forward prediction and backward reconstruction within context windows. This allows the model to iteratively refine its outputs in parallel in the sliding block, effectively capturing diverse dependencies without the high inference cost of sequential generation. Empirical evaluations on reasoning tasks demonstrate that COrAL improves performance and inference speed, respectively, achieving absolute accuracy gains of $4.6\%$ on GSM8K and $4.0\%$ on LogiQA, along with inference speedups of up to $3.9\times$ over next-token baselines. Preliminary results on code generation indicate a drop in pass rates due to inconsistencies in order-agnostic outputs, highlighting the inherent quality--speed trade-off. Our code is publicly available at https://github.com/YuxiXie/COrAL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09675v1-abstract-full').style.display = 'none'; document.getElementById('2410.09675v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, 3 tables (23 pages, 9 figures, 4 tables including references and appendices)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08414">arXiv:2410.08414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.08414">pdf</a>, <a href="https://arxiv.org/format/2410.08414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Understanding the Interplay between Parametric and Contextual Knowledge for Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+S">Sitao Cheng</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Yin%2C+X">Xunjian Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08414v1-abstract-short" style="display: inline;"> Large language models (LLMs) encode vast amounts of knowledge during pre-training (parametric knowledge, or PK) and can further be enhanced by incorporating contextual knowledge (CK). Can LLMs effectively integrate their internal PK with external CK to solve complex problems? In this paper, we investigate the dynamic interaction between PK and CK, categorizing their relationships into four types:&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08414v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08414v1-abstract-full" style="display: none;"> Large language models (LLMs) encode vast amounts of knowledge during pre-training (parametric knowledge, or PK) and can further be enhanced by incorporating contextual knowledge (CK). Can LLMs effectively integrate their internal PK with external CK to solve complex problems? In this paper, we investigate the dynamic interaction between PK and CK, categorizing their relationships into four types: Supportive, Complementary, Conflicting, and Irrelevant. To support this investigation, we introduce ECHOQA, a benchmark spanning scientific, factual, and commonsense knowledge. Our results show that LLMs tend to suppress their PK when contextual information is available, even when it is complementary or irrelevant. While tailored instructions can encourage LLMs to rely more on their PK, they still struggle to fully leverage it. These findings reveal a key vulnerability in LLMs, raising concerns about their reliability in knowledge-intensive tasks. Resources are available at https://github.com/sitaocheng/Knowledge_Interplay <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08414v1-abstract-full').style.display = 'none'; document.getElementById('2410.08414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 8 figures and 17 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07582">arXiv:2410.07582</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07582">pdf</a>, <a href="https://arxiv.org/format/2410.07582">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Detecting Training Data of Large Language Models via Expectation Maximization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kim%2C+G">Gyuwan Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Spiliopoulou%2C+E">Evangelia Spiliopoulou</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+J">Jie Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Ballesteros%2C+M">Miguel Ballesteros</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07582v1-abstract-short" style="display: inline;"> The widespread deployment of large language models (LLMs) has led to impressive advancements, yet information about their training data, a critical factor in their performance, remains undisclosed. Membership inference attacks (MIAs) aim to determine whether a specific instance was part of a target model&#39;s training data. MIAs can offer insights into LLM outputs and help detect and address concerns&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07582v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07582v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07582v1-abstract-full" style="display: none;"> The widespread deployment of large language models (LLMs) has led to impressive advancements, yet information about their training data, a critical factor in their performance, remains undisclosed. Membership inference attacks (MIAs) aim to determine whether a specific instance was part of a target model&#39;s training data. MIAs can offer insights into LLM outputs and help detect and address concerns such as data contamination and compliance with privacy and copyright standards. However, applying MIAs to LLMs presents unique challenges due to the massive scale of pre-training data and the ambiguous nature of membership. Additionally, creating appropriate benchmarks to evaluate MIA methods is not straightforward, as training and test data distributions are often unknown. In this paper, we introduce EM-MIA, a novel MIA method for LLMs that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm, leveraging the duality that the estimates of these scores can be improved by each other. Membership scores and prefix scores assess how each instance is likely to be a member and discriminative as a prefix, respectively. Our method achieves state-of-the-art results on the WikiMIA dataset. To further evaluate EM-MIA, we present OLMoMIA, a benchmark built from OLMo resources, which allows us to control the difficulty of MIA tasks with varying degrees of overlap between training and test data distributions. We believe that EM-MIA serves as a robust MIA method for LLMs and that OLMoMIA provides a valuable resource for comprehensively evaluating MIA approaches, thereby driving future research in this critical area. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07582v1-abstract-full').style.display = 'none'; document.getElementById('2410.07582v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06965">arXiv:2410.06965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06965">pdf</a>, <a href="https://arxiv.org/format/2410.06965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Uncovering Factor Level Preferences to Improve Human-Model Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Oh%2C+J">Juhyun Oh</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+E">Eunsu Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+J">Jiseon Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wenda Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Cha%2C+I">Inha Cha</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Oh%2C+A">Alice Oh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06965v2-abstract-short" style="display: inline;"> Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06965v2-abstract-full').style.display = 'inline'; document.getElementById('2410.06965v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06965v2-abstract-full" style="display: none;"> Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE&#39;s factor level analysis explains the &#39;why&#39; behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE&#39;s potential to provide valuable training signals, driving further improvements in human-model alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06965v2-abstract-full').style.display = 'none'; document.getElementById('2410.06965v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05677">arXiv:2410.05677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05677">pdf</a>, <a href="https://arxiv.org/format/2410.05677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> T2V-Turbo-v2: Enhancing Video Generation Model Post-Training through Data, Reward, and Conditional Guidance Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Long%2C+Q">Qian Long</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+J">Jian Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+X">Xiaofeng Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Piramuthu%2C+R">Robinson Piramuthu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05677v2-abstract-short" style="display: inline;"> In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05677v2-abstract-full').style.display = 'inline'; document.getElementById('2410.05677v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05677v2-abstract-full" style="display: none;"> In this paper, we focus on enhancing a diffusion-based text-to-video (T2V) model during the post-training phase by distilling a highly capable consistency model from a pretrained T2V model. Our proposed method, T2V-Turbo-v2, introduces a significant advancement by integrating various supervision signals, including high-quality training data, reward model feedback, and conditional guidance, into the consistency distillation process. Through comprehensive ablation studies, we highlight the crucial importance of tailoring datasets to specific learning objectives and the effectiveness of learning from diverse reward models for enhancing both the visual quality and text-video alignment. Additionally, we highlight the vast design space of conditional guidance strategies, which centers on designing an effective energy function to augment the teacher ODE solver. We demonstrate the potential of this approach by extracting motion guidance from the training datasets and incorporating it into the ODE solver, showcasing its effectiveness in improving the motion quality of the generated videos with the improved motion-related metrics from VBench and T2V-CompBench. Empirically, our T2V-Turbo-v2 establishes a new state-of-the-art result on VBench, with a Total score of 85.13, surpassing proprietary systems such as Gen-3 and Kling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05677v2-abstract-full').style.display = 'none'; document.getElementById('2410.05677v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project Page: https://t2v-turbo-v2.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04444">arXiv:2410.04444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04444">pdf</a>, <a href="https://arxiv.org/format/2410.04444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> G枚del Agent: A Self-Referential Agent Framework for Recursive Self-Improvement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yin%2C+X">Xunjian Yin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wan%2C+X">Xiaojun Wan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04444v2-abstract-short" style="display: inline;"> The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04444v2-abstract-full').style.display = 'inline'; document.getElementById('2410.04444v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04444v2-abstract-full" style="display: none;"> The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G枚del Agent, a self-evolving framework inspired by the G枚del machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G枚del Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G枚del Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04444v2-abstract-full').style.display = 'none'; document.getElementById('2410.04444v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work in progress</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03723">arXiv:2410.03723</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03723">pdf</a>, <a href="https://arxiv.org/format/2410.03723">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+T">Tiffany Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Weissburg%2C+I">Iain Weissburg</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kexun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03723v1-abstract-short" style="display: inline;"> As AI advances in text generation, human trust in AI generated content remains constrained by biases that go beyond concerns of accuracy. This study explores how bias shapes the perception of AI versus human generated content. Through three experiments involving text rephrasing, news article summarization, and persuasive writing, we investigated how human raters respond to labeled and unlabeled co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03723v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03723v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03723v1-abstract-full" style="display: none;"> As AI advances in text generation, human trust in AI generated content remains constrained by biases that go beyond concerns of accuracy. This study explores how bias shapes the perception of AI versus human generated content. Through three experiments involving text rephrasing, news article summarization, and persuasive writing, we investigated how human raters respond to labeled and unlabeled content. While the raters could not differentiate the two types of texts in the blind test, they overwhelmingly favored content labeled as &#34;Human Generated,&#34; over those labeled &#34;AI Generated,&#34; by a preference score of over 30%. We observed the same pattern even when the labels were deliberately swapped. This human bias against AI has broader societal and cognitive implications, as it undervalues AI performance. This study highlights the limitations of human judgment in interacting with AI and offers a foundation for improving human-AI collaboration, especially in creative fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03723v1-abstract-full').style.display = 'none'; document.getElementById('2410.03723v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16751">arXiv:2408.16751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16751">pdf</a>, <a href="https://arxiv.org/format/2408.16751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tuan%2C+Y">Yi-Lin Tuan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16751v1-abstract-short" style="display: inline;"> Beyond maximum likelihood estimation (MLE), the standard objective of a language model (LM) that optimizes good examples probabilities, many studies have explored ways that also penalize bad examples for enhancing the quality of output distribution, including unlikelihood training, exponential maximizing average treatment effect (ExMATE), and direct preference optimization (DPO). To systematically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16751v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16751v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16751v1-abstract-full" style="display: none;"> Beyond maximum likelihood estimation (MLE), the standard objective of a language model (LM) that optimizes good examples probabilities, many studies have explored ways that also penalize bad examples for enhancing the quality of output distribution, including unlikelihood training, exponential maximizing average treatment effect (ExMATE), and direct preference optimization (DPO). To systematically compare these methods and further provide a unified recipe for LM optimization, in this paper, we present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs. Through both mathematical results and experiments on CausalDialogue and Anthropic HH-RLHF datasets, we identify distinct functional characteristics among these methods. We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16751v1-abstract-full').style.display = 'none'; document.getElementById('2408.16751v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20224">arXiv:2407.20224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20224">pdf</a>, <a href="https://arxiv.org/format/2407.20224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Can Editing LLMs Inject Harm? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+C">Canyu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+B">Baixiang Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zekun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Zhaorun Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Lai%2C+S">Shiyang Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+X">Xiongxiao Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jia-Chen Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+J">Jindong Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Yao%2C+H">Huaxiu Yao</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+C">Chaowei Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xifeng Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Torr%2C+P">Philip Torr</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+D">Dawn Song</a>, <a href="/search/cs?searchtype=author&amp;query=Shu%2C+K">Kai Shu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20224v3-abstract-short" style="display: inline;"> Knowledge editing has been increasingly adopted to correct the false or outdated knowledge in Large Language Models (LLMs). Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20224v3-abstract-full').style.display = 'inline'; document.getElementById('2407.20224v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20224v3-abstract-full" style="display: none;"> Knowledge editing has been increasingly adopted to correct the false or outdated knowledge in Large Language Models (LLMs). Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection. Then, we find that editing attacks can inject both types of misinformation into LLMs, and the effectiveness is particularly high for commonsense misinformation injection. For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a bias increase in general outputs of LLMs, which are even highly irrelevant to the injected sentence, indicating a catastrophic impact on the overall fairness of LLMs. Then, we further illustrate the high stealthiness of editing attacks, measured by their impact on the general knowledge and reasoning capacities of LLMs, and show the hardness of defending editing attacks with empirical evidence. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs and the feasibility of disseminating misinformation or bias with LLMs as new channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20224v3-abstract-full').style.display = 'none'; document.getElementById('2407.20224v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The first two authors contributed equally. 9 pages for main paper, 36 pages including appendix. The code, results, dataset for this paper and more resources are on the project website: https://llm-editing.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16711">arXiv:2407.16711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16711">pdf</a>, <a href="https://arxiv.org/format/2407.16711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Benchmarks as Microscopes: A Call for Model Metrology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Holtzman%2C+A">Ari Holtzman</a>, <a href="/search/cs?searchtype=author&amp;query=West%2C+P">Peter West</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Saphra%2C+N">Naomi Saphra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16711v2-abstract-short" style="display: inline;"> Modern language models (LMs) pose a new challenge in capability assessment. Static benchmarks inevitably saturate without providing confidence in the deployment tolerances of LM-based systems, but developers nonetheless claim that their models have generalized traits such as reasoning or open-domain language understanding based on these flawed metrics. The science and practice of LMs requires a ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16711v2-abstract-full').style.display = 'inline'; document.getElementById('2407.16711v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16711v2-abstract-full" style="display: none;"> Modern language models (LMs) pose a new challenge in capability assessment. Static benchmarks inevitably saturate without providing confidence in the deployment tolerances of LM-based systems, but developers nonetheless claim that their models have generalized traits such as reasoning or open-domain language understanding based on these flawed metrics. The science and practice of LMs requires a new approach to benchmarking which measures specific capabilities with dynamic assessments. To be confident in our metrics, we need a new discipline of model metrology -- one which focuses on how to generate benchmarks that predict performance under deployment. Motivated by our evaluation criteria, we outline how building a community of model metrology practitioners -- one focused on building tools and studying how to measure system capabilities -- is the best way to meet these needs to and add clarity to the AI discussion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16711v2-abstract-full').style.display = 'none'; document.getElementById('2407.16711v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference paper at COLM 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14985">arXiv:2407.14985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14985">pdf</a>, <a href="https://arxiv.org/format/2407.14985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Generalization v.s. Memorization: Tracing Language Models&#39; Capabilities Back to Pretraining Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Antoniades%2C+A">Antonis Antoniades</a>, <a href="/search/cs?searchtype=author&amp;query=Elazar%2C+Y">Yanai Elazar</a>, <a href="/search/cs?searchtype=author&amp;query=Amayuelas%2C+A">Alfonso Amayuelas</a>, <a href="/search/cs?searchtype=author&amp;query=Albalak%2C+A">Alon Albalak</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kexun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14985v4-abstract-short" style="display: inline;"> The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraini&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14985v4-abstract-full').style.display = 'inline'; document.getElementById('2407.14985v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14985v4-abstract-full" style="display: none;"> The impressive capabilities of large language models (LLMs) have sparked debate over whether these models genuinely generalize to unseen tasks or predominantly rely on memorizing vast amounts of pretraining data. To explore this issue, we introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency. To effectively capture task-specific pretraining data frequency, we propose a novel task-gram language model, which is built by counting the co-occurrence of semantically related $n$-gram pairs from task inputs and outputs in the pretraining corpus. Using the Pythia models trained on the Pile dataset, we evaluate four distinct tasks: machine translation, factual question answering, world knowledge understanding, and math reasoning. Our findings reveal varying levels of memorization, with the strongest effect observed in factual question answering. Furthermore, while model performance improves across all tasks as LLM size increases, only factual question answering shows an increase in memorization, whereas machine translation and reasoning tasks exhibit greater generalization, producing more novel outputs. This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks, providing a scalable method for analyzing large pretraining corpora in greater depth. We also show the practical implications of our analysis through a novel prompt optimization algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14985v4-abstract-full').style.display = 'none'; document.getElementById('2407.14985v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">updated 10-page version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13998">arXiv:2407.13998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13998">pdf</a>, <a href="https://arxiv.org/format/2407.13998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Han%2C+R">Rujun Han</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yuhao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Qi%2C+P">Peng Qi</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yumo Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jenyuan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+L">Lan Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Min%2C+B">Bonan Min</a>, <a href="/search/cs?searchtype=author&amp;query=Castelli%2C+V">Vittorio Castelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13998v2-abstract-short" style="display: inline;"> Question answering based on retrieval augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13998v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13998v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13998v2-abstract-full" style="display: none;"> Question answering based on retrieval augmented generation (RAG-QA) is an important research topic in NLP and has a wide range of real-world applications. However, most existing datasets for this task are either constructed using a single source corpus or consist of short extractive answers, which fall short of evaluating large language model (LLM) based RAG-QA systems on cross-domain generalization. To address these limitations, we create Long-form RobustQA (LFRQA), a new dataset comprising human-written long-form answers that integrate short extractive answers from multiple documents into a single, coherent narrative, covering 26K queries and large corpora across seven different domains. We further propose RAG-QA Arena by directly comparing model-generated answers against LFRQA&#39;s answers using LLMs as evaluators. We show via extensive experiments that RAG-QA Arena and human judgments on answer quality are highly correlated. Moreover, only 41.3% of the most competitive LLM&#39;s answers are preferred to LFRQA&#39;s answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13998v2-abstract-full').style.display = 'none'; document.getElementById('2407.13998v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06426">arXiv:2407.06426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06426">pdf</a>, <a href="https://arxiv.org/format/2407.06426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> </div> </div> <p class="title is-5 mathjax"> DebUnc: Mitigating Hallucinations in Large Language Model Agent Communication with Uncertainty Estimations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yoffe%2C+L">Luke Yoffe</a>, <a href="/search/cs?searchtype=author&amp;query=Amayuelas%2C+A">Alfonso Amayuelas</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06426v1-abstract-short" style="display: inline;"> To enhance Large Language Model (LLM) capabilities, multi-agent debates have been introduced, where multiple LLMs discuss solutions to a problem over several rounds of debate. However, LLMs often produce incorrect responses that appear deceptively confident, which can mislead other agents. This is partly because agents do not express their confidence levels during standard debates. To address this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06426v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06426v1-abstract-full" style="display: none;"> To enhance Large Language Model (LLM) capabilities, multi-agent debates have been introduced, where multiple LLMs discuss solutions to a problem over several rounds of debate. However, LLMs often produce incorrect responses that appear deceptively confident, which can mislead other agents. This is partly because agents do not express their confidence levels during standard debates. To address this, we introduce DebUnc, a multi-agent debate framework that uses uncertainty metrics to assess agent confidence levels. We adapted the LLM attention mechanism to adjust token weights based on confidence levels and also explored using textual prompts to convey confidence. Our evaluations across various benchmarks show that attention-based methods are particularly effective, and that as uncertainty metrics evolve, performance will continue to increase. The code is available at https://github.com/lukeyoffe/debunc <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06426v1-abstract-full').style.display = 'none'; document.getElementById('2407.06426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04903">arXiv:2407.04903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04903">pdf</a>, <a href="https://arxiv.org/format/2407.04903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zekun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Choi%2C+K">Kyuri Choi</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+W">Wanrong Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Hsieh%2C+R">Ryan Hsieh</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+H">HyeonJung Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Lim%2C+J+H">Jin Hyuk Lim</a>, <a href="/search/cs?searchtype=author&amp;query=Ji%2C+S">Sungyoung Ji</a>, <a href="/search/cs?searchtype=author&amp;query=Lee%2C+B">Byungju Lee</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xifeng Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Petzold%2C+L+R">Linda Ruth Petzold</a>, <a href="/search/cs?searchtype=author&amp;query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cs?searchtype=author&amp;query=Lim%2C+W">Woosang Lim</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04903v2-abstract-short" style="display: inline;"> The rapid development of Multimodal Large Language Models (MLLMs) is making AI-driven scientific assistants increasingly feasible, with interpreting scientific figures being a crucial task. However, existing datasets and benchmarks focus mainly on basic charts and limited science subjects, lacking comprehensive evaluations. To address this, we curated a multimodal, multidisciplinary dataset from p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04903v2-abstract-full').style.display = 'inline'; document.getElementById('2407.04903v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04903v2-abstract-full" style="display: none;"> The rapid development of Multimodal Large Language Models (MLLMs) is making AI-driven scientific assistants increasingly feasible, with interpreting scientific figures being a crucial task. However, existing datasets and benchmarks focus mainly on basic charts and limited science subjects, lacking comprehensive evaluations. To address this, we curated a multimodal, multidisciplinary dataset from peer-reviewed, open-access Nature Communications articles, spanning 72 scientific disciplines. This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations (e.g., western blots), which often require graduate-level, discipline-specific expertise to interpret. We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models across varied settings. The results highlight the high difficulty of these tasks and the significant performance gap among models. While many open-source models performed at chance level on the multiple-choice task, some matched the performance of proprietary models. However, the gap was more pronounced in the captioning task. Our dataset also provide valuable resource for training. Fine-tuning the Qwen2-VL-2B model with our task-specific multimodal training data improved its multiple-choice accuracy to a level comparable to GPT-4o, though captioning remains challenging. Continuous pre-training of MLLMs using our interleaved article and figure data enhanced their material generation capabilities, demonstrating potential for integrating scientific knowledge. The dataset and benchmarks will be released to support further research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04903v2-abstract-full').style.display = 'none'; document.getElementById('2407.04903v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code and data are available at https://github.com/Leezekun/MMSci</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01863">arXiv:2407.01863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.01863">pdf</a>, <a href="https://arxiv.org/format/2407.01863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Q">Qiucheng Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+H">Handong Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Bui%2C+T">Trung Bui</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+S">Shiyu Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01863v1-abstract-short" style="display: inline;"> Vision language models (VLMs) are an exciting emerging class of language models (LMs) that have merged classic LM capabilities with those of image processing systems. However, the ways that these capabilities combine are not always intuitive and warrant direct investigation. One understudied capability in VLMs is visual spatial planning -- the ability to comprehend the spatial arrangements of obje&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01863v1-abstract-full').style.display = 'inline'; document.getElementById('2407.01863v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01863v1-abstract-full" style="display: none;"> Vision language models (VLMs) are an exciting emerging class of language models (LMs) that have merged classic LM capabilities with those of image processing systems. However, the ways that these capabilities combine are not always intuitive and warrant direct investigation. One understudied capability in VLMs is visual spatial planning -- the ability to comprehend the spatial arrangements of objects and devise action plans to achieve desired outcomes in visual scenes. In our study, we introduce VSP, a benchmark that 1) evaluates the spatial planning capability in these models in general, and 2) breaks down the visual planning task into finer-grained sub-tasks, including perception and reasoning, and measure the LMs capabilities in these sub-tasks. Our evaluation shows that both open-source and private VLMs fail to generate effective plans for even simple spatial planning tasks. Evaluations on the fine-grained analytical tasks further reveal fundamental deficiencies in the models&#39; visual perception and bottlenecks in reasoning abilities, explaining their worse performance in the general spatial planning tasks. Our work illuminates future directions for improving VLMs&#39; abilities in spatial planning. Our benchmark is publicly available at https://github.com/UCSB-NLP-Chang/Visual-Spatial-Planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01863v1-abstract-full').style.display = 'none'; document.getElementById('2407.01863v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16851">arXiv:2406.16851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16851">pdf</a>, <a href="https://arxiv.org/format/2406.16851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Sharma%2C+A">Aditya Sharma</a>, <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16851v3-abstract-short" style="display: inline;"> We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16851v3-abstract-full').style.display = 'inline'; document.getElementById('2406.16851v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16851v3-abstract-full" style="display: none;"> We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking logarithmic decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16851v3-abstract-full').style.display = 'none'; document.getElementById('2406.16851v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Findings of EMNLP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14867">arXiv:2406.14867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14867">pdf</a>, <a href="https://arxiv.org/format/2406.14867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Investigating the Transferability of Code Repair for Low-Resource Programming Languages </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wong%2C+K">Kyle Wong</a>, <a href="/search/cs?searchtype=author&amp;query=Amayuelas%2C+A">Alfonso Amayuelas</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14867v2-abstract-short" style="display: inline;"> Large language models (LLMs) have shown remarkable performance on code generation tasks. A recent use case is iterative code repair, where an LLM fixes an incorrect program by rationalizing about errors and generating new code. Recent works augment the code repair process by integrating modern techniques such as chain-of-thought reasoning or distillation, but only study their benefits on high-reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14867v2-abstract-full').style.display = 'inline'; document.getElementById('2406.14867v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14867v2-abstract-full" style="display: none;"> Large language models (LLMs) have shown remarkable performance on code generation tasks. A recent use case is iterative code repair, where an LLM fixes an incorrect program by rationalizing about errors and generating new code. Recent works augment the code repair process by integrating modern techniques such as chain-of-thought reasoning or distillation, but only study their benefits on high-resource languages like Python, and ignore low-resource languages like Perl. To address this gap of knowledge, we investigate the benefits of distilling code repair for both high and low resource languages to determine if the techniques that are effective in a high resource setting are also applicable in a low resource setting. Our evaluation shows that distilling the ability to repair code has language dependent benefits. To explain this behavior, we perform a further analysis and find that contrary to preexisting beliefs, the correlation between reasoning ability and code correction ability is weak. We hypothesize this weak correlation is magnified in low-resource settings where base models lack deep knowledge of a programming language, leading to wavering benefits of code repair. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14867v2-abstract-full').style.display = 'none'; document.getElementById('2406.14867v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13869">arXiv:2406.13869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13869">pdf</a>, <a href="https://arxiv.org/format/2406.13869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Global Human-guided Counterfactual Explanations for Molecular Properties via Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+D">Danqing Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Antoniades%2C+A">Antonis Antoniades</a>, <a href="/search/cs?searchtype=author&amp;query=Luong%2C+K">Kha-Dinh Luong</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+E">Edwin Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Kosan%2C+M">Mert Kosan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Singh%2C+A">Ambuj Singh</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13869v1-abstract-short" style="display: inline;"> Counterfactual explanations of Graph Neural Networks (GNNs) offer a powerful way to understand data that can naturally be represented by a graph structure. Furthermore, in many domains, it is highly desirable to derive data-driven global explanations or rules that can better explain the high-level properties of the models and data in question. However, evaluating global counterfactual explanations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13869v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13869v1-abstract-full" style="display: none;"> Counterfactual explanations of Graph Neural Networks (GNNs) offer a powerful way to understand data that can naturally be represented by a graph structure. Furthermore, in many domains, it is highly desirable to derive data-driven global explanations or rules that can better explain the high-level properties of the models and data in question. However, evaluating global counterfactual explanations is hard in real-world datasets due to a lack of human-annotated ground truth, which limits their use in areas like molecular sciences. Additionally, the increasing scale of these datasets provides a challenge for random search-based methods. In this paper, we develop a novel global explanation model RLHEX for molecular property prediction. It aligns the counterfactual explanations with human-defined principles, making the explanations more interpretable and easy for experts to evaluate. RLHEX includes a VAE-based graph generator to generate global explanations and an adapter to adjust the latent representation space to human-defined principles. Optimized by Proximal Policy Optimization (PPO), the global explanations produced by RLHEX cover 4.12% more input graphs and reduce the distance between the counterfactual explanation set and the input set by 0.47% on average across three molecular datasets. RLHEX provides a flexible framework to incorporate different human-designed principles into the counterfactual explanation generation process, aligning these explanations with domain expertise. The code and data are released at https://github.com/dqwang122/RLHEX. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13869v1-abstract-full').style.display = 'none'; document.getElementById('2406.13869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by KDD 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12168">arXiv:2406.12168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12168">pdf</a>, <a href="https://arxiv.org/format/2406.12168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> BPO: Staying Close to the Behavior LLM Creates Better Online LLM Alignment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wenda Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12168v4-abstract-short" style="display: inline;"> Direct alignment from preferences (DAP) has emerged as a promising paradigm for aligning large language models (LLMs) to human desiderata from pre-collected, offline preference datasets. While recent studies indicate that existing offline DAP methods can directly benefit from online training samples, we highlight the need to develop specific online DAP algorithms to fully harness the power of onli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12168v4-abstract-full').style.display = 'inline'; document.getElementById('2406.12168v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12168v4-abstract-full" style="display: none;"> Direct alignment from preferences (DAP) has emerged as a promising paradigm for aligning large language models (LLMs) to human desiderata from pre-collected, offline preference datasets. While recent studies indicate that existing offline DAP methods can directly benefit from online training samples, we highlight the need to develop specific online DAP algorithms to fully harness the power of online training. Specifically, we identify that the learned LLM should adhere to the proximity of the behavior LLM, which collects the training samples. To this end, we propose online Preference Optimization in proximity to the Behavior LLM (BPO), emphasizing the importance of constructing a proper trust region for LLM alignment. We conduct extensive experiments to validate the effectiveness and applicability of our approach by integrating it with various DAP methods, resulting in significant performance improvements across a wide range of tasks when training with the same amount of preference data. Even when only introducing one additional data collection phase, our online BPO improves its offline DAP baseline from 72.0% to 80.2% on TL;DR and from 82.2% to 89.1% on Anthropic Helpfulness in terms of win rate against human reference text. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12168v4-abstract-full').style.display = 'none'; document.getElementById('2406.12168v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Wenda Xu and Jiachen Li contributed equally. Accepted by EMNLP 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11069">arXiv:2406.11069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.11069">pdf</a>, <a href="https://arxiv.org/format/2406.11069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> WildVision: Evaluating Vision-Language Models in the Wild with Human Preferences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+D">Dongfu Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Choi%2C+Y">Yejin Choi</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+B+Y">Bill Yuchen Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11069v1-abstract-short" style="display: inline;"> Recent breakthroughs in vision-language models (VLMs) emphasize the necessity of benchmarking human preferences in real-world multimodal interactions. To address this gap, we launched WildVision-Arena (WV-Arena), an online platform that collects human preferences to evaluate VLMs. We curated WV-Bench by selecting 500 high-quality samples from 8,000 user submissions in WV-Arena. WV-Bench uses GPT-4&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11069v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11069v1-abstract-full" style="display: none;"> Recent breakthroughs in vision-language models (VLMs) emphasize the necessity of benchmarking human preferences in real-world multimodal interactions. To address this gap, we launched WildVision-Arena (WV-Arena), an online platform that collects human preferences to evaluate VLMs. We curated WV-Bench by selecting 500 high-quality samples from 8,000 user submissions in WV-Arena. WV-Bench uses GPT-4 as the judge to compare each VLM with Claude-3-Sonnet, achieving a Spearman correlation of 0.94 with the WV-Arena Elo. This significantly outperforms other benchmarks like MMVet, MMMU, and MMStar. Our comprehensive analysis of 20K real-world interactions reveals important insights into the failure cases of top-performing VLMs. For example, we find that although GPT-4V surpasses many other models like Reka-Flash, Opus, and Yi-VL-Plus in simple visual recognition and reasoning tasks, it still faces challenges with subtle contextual cues, spatial reasoning, visual imagination, and expert domain knowledge. Additionally, current VLMs exhibit issues with hallucinations and safety when intentionally provoked. We are releasing our chat and feedback data to further advance research in the field of VLMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11069v1-abstract-full').style.display = 'none'; document.getElementById('2406.11069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">link: https://hf.co/spaces/WildVision/vision-arena</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08656">arXiv:2406.08656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08656">pdf</a>, <a href="https://arxiv.org/format/2406.08656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Feng%2C+W">Weixi Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+T">Tsu-jui Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08656v1-abstract-short" style="display: inline;"> Video generation has many unique challenges beyond those of image generation. The temporal dimension introduces extensive possible variations across frames, over which consistency and continuity may be violated. In this study, we move beyond evaluating simple actions and argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08656v1-abstract-full').style.display = 'inline'; document.getElementById('2406.08656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08656v1-abstract-full" style="display: none;"> Video generation has many unique challenges beyond those of image generation. The temporal dimension introduces extensive possible variations across frames, over which consistency and continuity may be violated. In this study, we move beyond evaluating simple actions and argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses. To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics. The prompts articulate the initial and final states of scenes, effectively reducing ambiguities for frame development and simplifying the assessment of transition completion. In addition, by collecting aligned real-world videos corresponding to the prompts, we expand TC-Bench&#39;s applicability from text-conditional models to image-conditional ones that can perform generative frame interpolation. We also develop new metrics to measure the completeness of component transitions in generated videos, which demonstrate significantly higher correlations with human judgments than existing metrics. Our comprehensive experimental results reveal that most video generators achieve less than 20% of the compositional changes, highlighting enormous space for future improvement. Our analysis indicates that current video generation models struggle to interpret descriptions of compositional changes and synthesize various components across different time steps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08656v1-abstract-full').style.display = 'none'; document.getElementById('2406.08656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08407">arXiv:2406.08407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08407">pdf</a>, <a href="https://arxiv.org/format/2406.08407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> MMWorld: Towards Multi-discipline Multi-faceted World Model Evaluation in Videos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=He%2C+X">Xuehai He</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+W">Weixi Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+K">Kaizhi Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+W">Wanrong Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Fan%2C+Y">Yue Fan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jianfeng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Linjie Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Z">Zhengyuan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+K">Kevin Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+L">Lijuan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X+E">Xin Eric Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08407v3-abstract-short" style="display: inline;"> Multimodal Language Language Models (MLLMs) demonstrate the emerging abilities of &#34;world models&#34; -- interpreting and reasoning about complex real-world dynamics. To assess these abilities, we posit videos are the ideal medium, as they encapsulate rich representations of real-world dynamics and causalities. To this end, we introduce MMWorld, a new benchmark for multi-discipline, multi-faceted multi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08407v3-abstract-full').style.display = 'inline'; document.getElementById('2406.08407v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08407v3-abstract-full" style="display: none;"> Multimodal Language Language Models (MLLMs) demonstrate the emerging abilities of &#34;world models&#34; -- interpreting and reasoning about complex real-world dynamics. To assess these abilities, we posit videos are the ideal medium, as they encapsulate rich representations of real-world dynamics and causalities. To this end, we introduce MMWorld, a new benchmark for multi-discipline, multi-faceted multimodal video understanding. MMWorld distinguishes itself from previous video understanding benchmarks with two unique advantages: (1) multi-discipline, covering various disciplines that often require domain expertise for comprehensive understanding; (2) multi-faceted reasoning, including explanation, counterfactual thinking, future prediction, etc. MMWorld consists of a human-annotated dataset to evaluate MLLMs with questions about the whole videos and a synthetic dataset to analyze MLLMs within a single modality of perception. Together, MMWorld encompasses 1,910 videos across seven broad disciplines and 69 subdisciplines, complete with 6,627 question-answer pairs and associated captions. The evaluation includes 2 proprietary and 10 open-source MLLMs, which struggle on MMWorld (e.g., GPT-4V performs the best with only 52.3\% accuracy), showing large room for improvement. Further ablation studies reveal other interesting findings such as models&#39; different skill sets from humans. We hope MMWorld can serve as an essential step towards world model evaluation in videos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08407v3-abstract-full').style.display = 'none'; document.getElementById('2406.08407v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07546">arXiv:2406.07546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07546">pdf</a>, <a href="https://arxiv.org/format/2406.07546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Commonsense-T2I Challenge: Can Text-to-Image Generation Models Understand Commonsense? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fu%2C+X">Xingyu Fu</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+M">Muyu He</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Roth%2C+D">Dan Roth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07546v2-abstract-short" style="display: inline;"> We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that align with commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as &#34;a lightbulb without electricity&#34; v.s. &#34;a lightbulb with electricity&#34;, we evaluate whether T2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07546v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07546v2-abstract-full" style="display: none;"> We present a novel task and benchmark for evaluating the ability of text-to-image(T2I) generation models to produce images that align with commonsense in real life, which we call Commonsense-T2I. Given two adversarial text prompts containing an identical set of action words with minor differences, such as &#34;a lightbulb without electricity&#34; v.s. &#34;a lightbulb with electricity&#34;, we evaluate whether T2I models can conduct visual-commonsense reasoning, e.g. produce images that fit &#34;the lightbulb is unlit&#34; vs. &#34;the lightbulb is lit&#34; correspondingly. Commonsense-T2I presents an adversarial challenge, providing pairwise text prompts along with expected outputs. The dataset is carefully hand-curated by experts and annotated with fine-grained labels, such as commonsense type and likelihood of the expected outputs, to assist analyzing model behavior. We benchmark a variety of state-of-the-art (sota) T2I models and surprisingly find that, there is still a large gap between image synthesis and real life photos--even the DALL-E 3 model could only achieve 48.92% on Commonsense-T2I, and the stable diffusion XL model only achieves 24.92% accuracy. Our experiments show that GPT-enriched prompts cannot solve this challenge, and we include a detailed analysis about possible reasons for such deficiency. We aim for Commonsense-T2I to serve as a high-quality evaluation benchmark for T2I commonsense checking, fostering advancements in real life image generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07546v2-abstract-full').style.display = 'none'; document.getElementById('2406.07546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">COLM 2024, Project Url: https://zeyofu.github.io/CommonsenseT2I/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20535">arXiv:2405.20535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20535">pdf</a>, <a href="https://arxiv.org/format/2405.20535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xinlu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z+Z">Zhiyu Zoey Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+X">Xi Ye</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Lichang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Petzold%2C+L+R">Linda Ruth Petzold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20535v1-abstract-short" style="display: inline;"> Instruction Fine-Tuning (IFT) significantly enhances the zero-shot capabilities of pretrained Large Language Models (LLMs). While coding data is known to boost reasoning abilities during LLM pretraining, its role in activating internal reasoning capacities during IFT remains understudied. This paper investigates a key question: How does coding data impact LLMs&#39; reasoning capacities during the IFT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20535v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20535v1-abstract-full" style="display: none;"> Instruction Fine-Tuning (IFT) significantly enhances the zero-shot capabilities of pretrained Large Language Models (LLMs). While coding data is known to boost reasoning abilities during LLM pretraining, its role in activating internal reasoning capacities during IFT remains understudied. This paper investigates a key question: How does coding data impact LLMs&#39; reasoning capacities during the IFT stage? To explore this, we thoroughly examine the impact of coding data across different coding data proportions, model families, sizes, and reasoning domains, from various perspectives. Specifically, we create three IFT datasets with increasing coding data proportions, fine-tune six LLM backbones across different families and scales on these datasets, evaluate the tuned models&#39; performance across twelve tasks in three reasoning domains, and analyze the outcomes from three broad-to-granular perspectives: overall, domain-level, and task-specific. Our holistic analysis provides valuable insights in each perspective. First, coding data tuning enhances the overall reasoning capabilities of LLMs across different model families and scales. Moreover, the effect of coding data varies among different domains but shows consistent trends across model families and scales within each domain. Additionally, coding data generally yields comparable task-specific benefits across different model families, with the optimal coding data proportions in IFT datasets being task-specific. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20535v1-abstract-full').style.display = 'none'; document.getElementById('2405.20535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18750">arXiv:2405.18750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18750">pdf</a>, <a href="https://arxiv.org/format/2405.18750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+W">Weixi Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+T">Tsu-Jui Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Basu%2C+S">Sugato Basu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18750v2-abstract-short" style="display: inline;"> Diffusion-based text-to-video (T2V) models have achieved significant success but continue to be hampered by the slow sampling speed of their iterative sampling processes. To address the challenge, consistency models have been proposed to facilitate fast inference, albeit at the cost of sample quality. In this work, we aim to break the quality bottleneck of a video consistency model (VCM) to achiev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18750v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18750v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18750v2-abstract-full" style="display: none;"> Diffusion-based text-to-video (T2V) models have achieved significant success but continue to be hampered by the slow sampling speed of their iterative sampling processes. To address the challenge, consistency models have been proposed to facilitate fast inference, albeit at the cost of sample quality. In this work, we aim to break the quality bottleneck of a video consistency model (VCM) to achieve $\textbf{both fast and high-quality video generation}$. We introduce T2V-Turbo, which integrates feedback from a mixture of differentiable reward models into the consistency distillation (CD) process of a pre-trained T2V model. Notably, we directly optimize rewards associated with single-step generations that arise naturally from computing the CD loss, effectively bypassing the memory constraints imposed by backpropagating gradients through an iterative sampling process. Remarkably, the 4-step generations from our T2V-Turbo achieve the highest total score on VBench, even surpassing Gen-2 and Pika. We further conduct human evaluations to corroborate the results, validating that the 4-step generations from our T2V-Turbo are preferred over the 50-step DDIM samples from their teacher models, representing more than a tenfold acceleration while improving video generation quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18750v2-abstract-full').style.display = 'none'; document.getElementById('2405.18750v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Project page: https://t2v-turbo.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17978">arXiv:2405.17978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17978">pdf</a>, <a href="https://arxiv.org/format/2405.17978">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> FASTopic: Pretrained Transformer is a Fast, Adaptive, Stable, and Transferable Topic Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wu%2C+X">Xiaobao Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Nguyen%2C+T">Thong Nguyen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+D+C">Delvin Ce Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Luu%2C+A+T">Anh Tuan Luu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17978v2-abstract-short" style="display: inline;"> Topic models have been evolving rapidly over the years, from conventional to recent neural models. However, existing topic models generally struggle with either effectiveness, efficiency, or stability, highly impeding their practical applications. In this paper, we propose FASTopic, a fast, adaptive, stable, and transferable topic model. FASTopic follows a new paradigm: Dual Semantic-relation Reco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17978v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17978v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17978v2-abstract-full" style="display: none;"> Topic models have been evolving rapidly over the years, from conventional to recent neural models. However, existing topic models generally struggle with either effectiveness, efficiency, or stability, highly impeding their practical applications. In this paper, we propose FASTopic, a fast, adaptive, stable, and transferable topic model. FASTopic follows a new paradigm: Dual Semantic-relation Reconstruction (DSR). Instead of previous conventional, VAE-based, or clustering-based methods, DSR directly models the semantic relations among document embeddings from a pretrained Transformer and learnable topic and word embeddings. By reconstructing through these semantic relations, DSR discovers latent topics. This brings about a neat and efficient topic modeling framework. We further propose a novel Embedding Transport Plan (ETP) method. Rather than early straightforward approaches, ETP explicitly regularizes the semantic relations as optimal transport plans. This addresses the relation bias issue and thus leads to effective topic modeling. Extensive experiments on benchmark datasets demonstrate that our FASTopic shows superior effectiveness, efficiency, adaptivity, stability, and transferability, compared to state-of-the-art baselines across various scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17978v2-abstract-full').style.display = 'none'; document.getElementById('2405.17978v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NeurIPS 2024. Code is available at https://github.com/BobXWu/Fastopic</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14213">arXiv:2405.14213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14213">pdf</a>, <a href="https://arxiv.org/format/2405.14213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> From Text to Pixel: Advancing Long-Context Understanding in MLLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiujun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+T">Tsu-Jui Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Eckstein%2C+M">Miguel Eckstein</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14213v2-abstract-short" style="display: inline;"> The rapid progress in Multimodal Large Language Models (MLLMs) has significantly advanced their ability to process and understand complex visual and textual information. However, the integration of multiple images and extensive textual contexts remains a challenge due to the inherent limitation of the models&#39; capacity to handle long input sequences efficiently. In this paper, we introduce SEEKER,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14213v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14213v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14213v2-abstract-full" style="display: none;"> The rapid progress in Multimodal Large Language Models (MLLMs) has significantly advanced their ability to process and understand complex visual and textual information. However, the integration of multiple images and extensive textual contexts remains a challenge due to the inherent limitation of the models&#39; capacity to handle long input sequences efficiently. In this paper, we introduce SEEKER, a multimodal large language model designed to tackle this issue. SEEKER aims to optimize the compact encoding of long text by compressing the text sequence into the visual pixel space via images, enabling the model to handle long text within a fixed token-length budget efficiently. Our empirical experiments on six long-context multimodal tasks demonstrate that SEEKER can leverage fewer image tokens to convey the same amount of textual information compared with the OCR-based approach, and is more efficient in understanding long-form multimodal input and generating long-form textual output, outperforming all existing proprietary and open-source MLLMs by large margins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14213v2-abstract-full').style.display = 'none'; document.getElementById('2405.14213v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01769">arXiv:2405.01769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01769">pdf</a>, <a href="https://arxiv.org/format/2405.01769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z+Z">Zhiyu Zoey Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+J">Jing Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xinlu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Hao%2C+N">Nan Hao</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+A">An Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Nourbakhsh%2C+A">Armineh Nourbakhsh</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=McAuley%2C+J">Julian McAuley</a>, <a href="/search/cs?searchtype=author&amp;query=Petzold%2C+L">Linda Petzold</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01769v2-abstract-short" style="display: inline;"> In the fast-evolving domain of artificial intelligence, large language models (LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance, healthcare, and law: domains characterized by their reliance on professional expertise, challenging data acquisition, high-stakes, and stringent regulatory compliance. This survey offers a detailed exploration of the methodologies, applications&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01769v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01769v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01769v2-abstract-full" style="display: none;"> In the fast-evolving domain of artificial intelligence, large language models (LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance, healthcare, and law: domains characterized by their reliance on professional expertise, challenging data acquisition, high-stakes, and stringent regulatory compliance. This survey offers a detailed exploration of the methodologies, applications, challenges, and forward-looking opportunities of LLMs within these high-stakes sectors. We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies. Moreover, we critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems that respect regulatory norms. By presenting a thorough review of current literature and practical applications, we showcase the transformative impact of LLMs, and outline the imperative for interdisciplinary cooperation, methodological advancements, and ethical vigilance. Through this lens, we aim to spark dialogue and inspire future research dedicated to maximizing the benefits of LLMs while mitigating their risks in these precision-dependent sectors. To facilitate future research on LLMs in these critical societal domains, we also initiate a reading list that tracks the latest advancements under this topic, which will be continually updated: \url{https://github.com/czyssrs/LLM_X_papers}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01769v2-abstract-full').style.display = 'none'; document.getElementById('2405.01769v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">TMLR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15271">arXiv:2404.15271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15271">pdf</a>, <a href="https://arxiv.org/format/2404.15271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+W">Wanrong Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Healey%2C+J">Jennifer Healey</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+R">Ruiyi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+T">Tong Sun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15271v1-abstract-short" style="display: inline;"> Recent advancements in instruction-following models have made user interactions with models more user-friendly and efficient, broadening their applicability. In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources. In this work, we introduce a novel multimodal instruction-following framework for layout planning, allowing use&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15271v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15271v1-abstract-full" style="display: none;"> Recent advancements in instruction-following models have made user interactions with models more user-friendly and efficient, broadening their applicability. In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources. In this work, we introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts by specifying canvas size and design purpose, such as for book covers, posters, brochures, or menus. We developed three layout reasoning tasks to train the model in understanding and executing layout instructions. Experiments on two benchmarks show that our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello. This progress highlights the potential of multimodal instruction-following models to automate and simplify the design process, providing an approachable solution for a wide range of design tasks on visually-rich documents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15271v1-abstract-full').style.display = 'none'; document.getElementById('2404.15271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07973">arXiv:2404.07973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07973">pdf</a>, <a href="https://arxiv.org/format/2404.07973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Ferret-v2: An Improved Baseline for Referring and Grounding with Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">Haotian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=You%2C+H">Haoxuan You</a>, <a href="/search/cs?searchtype=author&amp;query=Dufter%2C+P">Philipp Dufter</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Hong-You Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Fu%2C+T">Tsu-Jui Fu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+S">Shih-Fu Chang</a>, <a href="/search/cs?searchtype=author&amp;query=Gan%2C+Z">Zhe Gan</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yinfei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07973v1-abstract-short" style="display: inline;"> While Ferret seamlessly integrates regional understanding into the Large Language Model (LLM) to facilitate its referring and grounding capability, it poses certain limitations: constrained by the pre-trained fixed visual encoder and failed to perform well on broader tasks. In this work, we unveil Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any resolution grounding and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07973v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07973v1-abstract-full" style="display: none;"> While Ferret seamlessly integrates regional understanding into the Large Language Model (LLM) to facilitate its referring and grounding capability, it poses certain limitations: constrained by the pre-trained fixed visual encoder and failed to perform well on broader tasks. In this work, we unveil Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any resolution grounding and referring: A flexible approach that effortlessly handles higher image resolution, improving the model&#39;s ability to process and understand images in greater detail. (2) Multi-granularity visual encoding: By integrating the additional DINOv2 encoder, the model learns better and diverse underlying contexts for global and fine-grained visual information. (3) A three-stage training paradigm: Besides image-caption alignment, an additional stage is proposed for high-resolution dense alignment before the final instruction tuning. Experiments show that Ferret-v2 provides substantial improvements over Ferret and other state-of-the-art methods, thanks to its high-resolution scaling and fine-grained visual processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07973v1-abstract-full').style.display = 'none'; document.getElementById('2404.07973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint. 14 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04251">arXiv:2404.04251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04251">pdf</a>, <a href="https://arxiv.org/format/2404.04251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Who Evaluates the Evaluations? Objectively Scoring Text-to-Image Prompt Coherence Metrics with T2IScoreScore (TS2) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Jahara%2C+F">Fatima Jahara</a>, <a href="/search/cs?searchtype=author&amp;query=Khoshnoodi%2C+M">Mahsa Khoshnoodi</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Sharma%2C+A">Aditya Sharma</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04251v3-abstract-short" style="display: inline;"> With advances in the quality of text-to-image (T2I) models has come interest in benchmarking their prompt faithfulness -- the semantic coherence of generated images to the prompts they were conditioned on. A variety of T2I faithfulness metrics have been proposed, leveraging advances in cross-modal embeddings and vision-language models (VLMs). However, these metrics are not rigorously compared and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04251v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04251v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04251v3-abstract-full" style="display: none;"> With advances in the quality of text-to-image (T2I) models has come interest in benchmarking their prompt faithfulness -- the semantic coherence of generated images to the prompts they were conditioned on. A variety of T2I faithfulness metrics have been proposed, leveraging advances in cross-modal embeddings and vision-language models (VLMs). However, these metrics are not rigorously compared and benchmarked, instead presented with correlation to human Likert scores over a set of easy-to-discriminate images against seemingly weak baselines. We introduce T2IScoreScore, a curated set of semantic error graphs containing a prompt and a set of increasingly erroneous images. These allow us to rigorously judge whether a given prompt faithfulness metric can correctly order images with respect to their objective error count and significantly discriminate between different error nodes, using meta-metric scores derived from established statistical tests. Surprisingly, we find that the state-of-the-art VLM-based metrics (e.g., TIFA, DSG, LLMScore, VIEScore) we tested fail to significantly outperform simple (and supposedly worse) feature-based metrics like CLIPScore, particularly on a hard subset of naturally-occurring T2I model errors. TS2 will enable the development of better T2I prompt faithfulness metrics through more rigorous comparison of their conformity to expected orderings and separations under objective criteria. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04251v3-abstract-full').style.display = 'none'; document.getElementById('2404.04251v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024 Spotlight</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01295">arXiv:2404.01295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.01295">pdf</a>, <a href="https://arxiv.org/format/2404.01295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Towards Safety and Helpfulness Balanced Responses via Controllable Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tuan%2C+Y">Yi-Lin Tuan</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xilun Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Smith%2C+E+M">Eric Michael Smith</a>, <a href="/search/cs?searchtype=author&amp;query=Martin%2C+L">Louis Martin</a>, <a href="/search/cs?searchtype=author&amp;query=Batra%2C+S">Soumya Batra</a>, <a href="/search/cs?searchtype=author&amp;query=Celikyilmaz%2C+A">Asli Celikyilmaz</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Bikel%2C+D+M">Daniel M. Bikel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01295v1-abstract-short" style="display: inline;"> As large language models (LLMs) become easily accessible nowadays, the trade-off between safety and helpfulness can significantly impact user experience. A model that prioritizes safety will cause users to feel less engaged and assisted while prioritizing helpfulness will potentially cause harm. Possible harms include teaching people how to build a bomb, exposing youth to inappropriate content, an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01295v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01295v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01295v1-abstract-full" style="display: none;"> As large language models (LLMs) become easily accessible nowadays, the trade-off between safety and helpfulness can significantly impact user experience. A model that prioritizes safety will cause users to feel less engaged and assisted while prioritizing helpfulness will potentially cause harm. Possible harms include teaching people how to build a bomb, exposing youth to inappropriate content, and hurting users&#39; mental health. In this work, we propose to balance safety and helpfulness in diverse use cases by controlling both attributes in LLM. We explore training-free and fine-tuning methods that do not require extra human annotations and analyze the challenges of controlling safety and helpfulness in LLMs. Our experiments demonstrate that our method can rewind a learned model and unlock its controllability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01295v1-abstract-full').style.display = 'none'; document.getElementById('2404.01295v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11092">arXiv:2403.11092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11092">pdf</a>, <a href="https://arxiv.org/format/2403.11092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Saxon%2C+M">Michael Saxon</a>, <a href="/search/cs?searchtype=author&amp;query=Luo%2C+Y">Yiran Luo</a>, <a href="/search/cs?searchtype=author&amp;query=Levy%2C+S">Sharon Levy</a>, <a href="/search/cs?searchtype=author&amp;query=Baral%2C+C">Chitta Baral</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yezhou Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11092v1-abstract-short" style="display: inline;"> Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, &#34;Conceptual Coverage Across Languages&#34; (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11092v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11092v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11092v1-abstract-full" style="display: none;"> Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, &#34;Conceptual Coverage Across Languages&#34; (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction&#39;s impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11092v1-abstract-full').style.display = 'none'; document.getElementById('2403.11092v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NAACL 2024 Main Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11027">arXiv:2403.11027</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11027">pdf</a>, <a href="https://arxiv.org/format/2403.11027">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Reward Guided Latent Consistency Distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+J">Jiachen Li</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+W">Weixi Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11027v2-abstract-short" style="display: inline;"> Latent Consistency Distillation (LCD) has emerged as a promising paradigm for efficient text-to-image synthesis. By distilling a latent consistency model (LCM) from a pre-trained teacher latent diffusion model (LDM), LCD facilitates the generation of high-fidelity images within merely 2 to 4 inference steps. However, the LCM&#39;s efficient inference is obtained at the cost of the sample quality. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11027v2-abstract-full').style.display = 'inline'; document.getElementById('2403.11027v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11027v2-abstract-full" style="display: none;"> Latent Consistency Distillation (LCD) has emerged as a promising paradigm for efficient text-to-image synthesis. By distilling a latent consistency model (LCM) from a pre-trained teacher latent diffusion model (LDM), LCD facilitates the generation of high-fidelity images within merely 2 to 4 inference steps. However, the LCM&#39;s efficient inference is obtained at the cost of the sample quality. In this paper, we propose compensating the quality loss by aligning LCM&#39;s output with human preference during training. Specifically, we introduce Reward Guided LCD (RG-LCD), which integrates feedback from a reward model (RM) into the LCD process by augmenting the original LCD loss with the objective of maximizing the reward associated with LCM&#39;s single-step generation. As validated through human evaluation, when trained with the feedback of a good RM, the 2-step generations from our RG-LCM are favored by humans over the 50-step DDIM samples from the teacher LDM, representing a 25-time inference acceleration without quality loss. As directly optimizing towards differentiable RMs can suffer from over-optimization, we take the initial step to overcome this difficulty by proposing the use of a latent proxy RM (LRM). This novel component serves as an intermediary, connecting our LCM with the RM. Empirically, we demonstrate that incorporating the LRM into our RG-LCD successfully avoids high-frequency noise in the generated images, contributing to both improved Fr茅chet Inception Distance (FID) on MS-COCO and a higher HPSv2.1 score on HPSv2&#39;s test set, surpassing those achieved by the baseline LCM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11027v2-abstract-full').style.display = 'none'; document.getElementById('2403.11027v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by TMLR. Project page: https://rg-lcd.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18909">arXiv:2402.18909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18909">pdf</a>, <a href="https://arxiv.org/format/2402.18909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> AKEW: Assessing Knowledge Editing in the Wild </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wu%2C+X">Xiaobao Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Luu%2C+A+T">Anh Tuan Luu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18909v2-abstract-short" style="display: inline;"> Knowledge editing injects knowledge updates into language models to keep them correct and up-to-date. However, its current evaluations deviate significantly from practice: their knowledge updates solely consist of structured facts derived from meticulously crafted datasets, instead of practical sources -- unstructured texts like news articles, and they often overlook practical real-world knowledge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18909v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18909v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18909v2-abstract-full" style="display: none;"> Knowledge editing injects knowledge updates into language models to keep them correct and up-to-date. However, its current evaluations deviate significantly from practice: their knowledge updates solely consist of structured facts derived from meticulously crafted datasets, instead of practical sources -- unstructured texts like news articles, and they often overlook practical real-world knowledge updates. To address these issues, in this paper we propose AKEW (Assessing Knowledge Editing in the Wild), a new practical benchmark for knowledge editing. AKEW fully covers three editing settings of knowledge updates: structured facts, unstructured texts as facts, and extracted triplets. It further introduces new datasets featuring both counterfactual and real-world knowledge updates. Through extensive experiments, we demonstrate the considerable gap between state-of-the-art knowledge-editing methods and practical scenarios. Our analyses further highlight key insights to motivate future research for practical knowledge editing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18909v2-abstract-full').style.display = 'none'; document.getElementById('2402.18909v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to EMNLP 2024 main conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.18025">arXiv:2402.18025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.18025">pdf</a>, <a href="https://arxiv.org/format/2402.18025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic Descriptions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kexun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Choi%2C+Y+M">Yee Man Choi</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+Z">Zhenqiao Song</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+T">Taiqi He</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.18025v2-abstract-short" style="display: inline;"> How can large language models (LLMs) process and translate endangered languages? Many languages lack a large corpus to train a decent LLM; therefore existing LLMs rarely perform well in unseen, endangered languages. On the contrary, we observe that 2000 endangered languages, though without a large corpus, have a grammar book or a dictionary. We propose LINGOLLM, a training-free approach to enable&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18025v2-abstract-full').style.display = 'inline'; document.getElementById('2402.18025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.18025v2-abstract-full" style="display: none;"> How can large language models (LLMs) process and translate endangered languages? Many languages lack a large corpus to train a decent LLM; therefore existing LLMs rarely perform well in unseen, endangered languages. On the contrary, we observe that 2000 endangered languages, though without a large corpus, have a grammar book or a dictionary. We propose LINGOLLM, a training-free approach to enable an LLM to process unseen languages that hardly occur in its pre-training. Our key insight is to demonstrate linguistic knowledge of an unseen language in an LLM&#39;s prompt, including a dictionary, a grammar book, and morphologically analyzed input text. We implement LINGOLLM on top of two models, GPT-4 and Mixtral, and evaluate their performance on 5 tasks across 8 endangered or low-resource languages. Our results show that LINGOLLM elevates translation capability from GPT-4&#39;s 0 to 10.5 BLEU for 10 language directions. Our findings demonstrate the tremendous value of linguistic knowledge in the age of LLMs for endangered languages. Our data, code, and model generations can be found at https://github.com/LLiLab/llm4endangeredlang. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.18025v2-abstract-full').style.display = 'none'; document.getElementById('2402.18025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16827">arXiv:2402.16827</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16827">pdf</a>, <a href="https://arxiv.org/format/2402.16827">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Data Selection for Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Albalak%2C+A">Alon Albalak</a>, <a href="/search/cs?searchtype=author&amp;query=Elazar%2C+Y">Yanai Elazar</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+S+M">Sang Michael Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Longpre%2C+S">Shayne Longpre</a>, <a href="/search/cs?searchtype=author&amp;query=Lambert%2C+N">Nathan Lambert</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Muennighoff%2C+N">Niklas Muennighoff</a>, <a href="/search/cs?searchtype=author&amp;query=Hou%2C+B">Bairu Hou</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Jeong%2C+H">Haewon Jeong</a>, <a href="/search/cs?searchtype=author&amp;query=Raffel%2C+C">Colin Raffel</a>, <a href="/search/cs?searchtype=author&amp;query=Chang%2C+S">Shiyu Chang</a>, <a href="/search/cs?searchtype=author&amp;query=Hashimoto%2C+T">Tatsunori Hashimoto</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16827v3-abstract-short" style="display: inline;"> A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the am&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16827v3-abstract-full').style.display = 'inline'; document.getElementById('2402.16827v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16827v3-abstract-full" style="display: none;"> A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16827v3-abstract-full').style.display = 'none'; document.getElementById('2402.16827v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Paper list available at https://github.com/alon-albalak/data-selection-survey</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11436">arXiv:2402.11436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11436">pdf</a>, <a href="https://arxiv.org/format/2402.11436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wenda Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+G">Guanglei Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+X">Xuandong Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11436v2-abstract-short" style="display: inline;"> Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM&#39;s bias in evaluating their own output. In this paper, we formally define LLM&#39;s self-bias - the tendency to favor its own generation - using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11436v2-abstract-full').style.display = 'inline'; document.getElementById('2402.11436v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11436v2-abstract-full" style="display: none;"> Recent studies show that large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others. We discovered that such a contrary is due to LLM&#39;s bias in evaluating their own output. In this paper, we formally define LLM&#39;s self-bias - the tendency to favor its own generation - using two statistics. We analyze six LLMs (GPT-4, GPT-3.5, Gemini, LLaMA2, Mixtral and DeepSeek) on translation, constrained text generation, and mathematical reasoning tasks. We find that self-bias is prevalent in all examined LLMs across multiple languages and tasks. Our analysis reveals that while the self-refine pipeline improves the fluency and understandability of model outputs, it further amplifies self-bias. To mitigate such biases, we discover that larger model size and external feedback with accurate assessment can significantly reduce bias in the self-refine pipeline, leading to actual performance improvement in downstream tasks. The code and data are released at https://github.com/xu1998hz/llm_self_bias. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11436v2-abstract-full').style.display = 'none'; document.getElementById('2402.11436v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03268">arXiv:2402.03268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.03268">pdf</a>, <a href="https://arxiv.org/format/2402.03268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Amayuelas%2C+A">Alfonso Amayuelas</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kexun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+W">Wenhu Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03268v3-abstract-short" style="display: inline;"> Pre-trained language models (LMs) are able to perform complex reasoning without explicit fine-tuning. To understand how pre-training with a next-token prediction objective contributes to the emergence of such reasoning capability, we propose that we can view an LM as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time. We found this perspective effective in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03268v3-abstract-full').style.display = 'inline'; document.getElementById('2402.03268v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03268v3-abstract-full" style="display: none;"> Pre-trained language models (LMs) are able to perform complex reasoning without explicit fine-tuning. To understand how pre-training with a next-token prediction objective contributes to the emergence of such reasoning capability, we propose that we can view an LM as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time. We found this perspective effective in two important cases of reasoning: logic reasoning with knowledge graphs (KGs) and chain-of-thought (CoT) reasoning. More specifically, we formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs. Analyses of learned LM distributions suggest that a weighted sum of relevant random walk path probabilities is a reasonable way to explain how LMs reason. Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths and suggest that augmenting unlabeled random walk reasoning paths can improve real-world multi-step reasoning performance. code: https://github.com/WANGXinyiLinda/LM_random_walk <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03268v3-abstract-full').style.display = 'none'; document.getElementById('2402.03268v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ICML 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17256">arXiv:2401.17256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17256">pdf</a>, <a href="https://arxiv.org/format/2401.17256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Weak-to-Strong Jailbreaking on Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+X">Xuandong Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Pang%2C+T">Tianyu Pang</a>, <a href="/search/cs?searchtype=author&amp;query=Du%2C+C">Chao Du</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yu-Xiang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17256v2-abstract-short" style="display: inline;"> Large language models (LLMs) are vulnerable to jailbreak attacks - resulting in harmful, unethical, or biased text generations. However, existing jailbreaking methods are computationally costly. In this paper, we propose the weak-to-strong jailbreaking attack, an efficient method to attack aligned LLMs to produce harmful text. Our key intuition is based on the observation that jailbroken and align&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17256v2-abstract-full').style.display = 'inline'; document.getElementById('2401.17256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17256v2-abstract-full" style="display: none;"> Large language models (LLMs) are vulnerable to jailbreak attacks - resulting in harmful, unethical, or biased text generations. However, existing jailbreaking methods are computationally costly. In this paper, we propose the weak-to-strong jailbreaking attack, an efficient method to attack aligned LLMs to produce harmful text. Our key intuition is based on the observation that jailbroken and aligned models only differ in their initial decoding distributions. The weak-to-strong attack&#39;s key technical insight is using two smaller models (a safe and an unsafe one) to adversarially modify a significantly larger safe model&#39;s decoding probabilities. We evaluate the weak-to-strong attack on 5 diverse LLMs from 3 organizations. The results show our method can increase the misalignment rate to over 99% on two datasets with just one forward pass per example. Our study exposes an urgent safety issue that needs to be addressed when aligning LLMs. As an initial attempt, we propose a defense strategy to protect against such attacks, but creating more advanced defenses remains challenging. The code for replicating the method is available at https://github.com/XuandongZhao/weak-to-strong <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17256v2-abstract-full').style.display = 'none'; document.getElementById('2401.17256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13782">arXiv:2401.13782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13782">pdf</a>, <a href="https://arxiv.org/format/2401.13782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Position: AI/ML Influencers Have a Place in the Academic Process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Weissburg%2C+I+X">Iain Xie Weissburg</a>, <a href="/search/cs?searchtype=author&amp;query=Arora%2C+M">Mehir Arora</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xinyi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13782v3-abstract-short" style="display: inline;"> As the number of accepted papers at AI and ML conferences reaches into the thousands, it has become unclear how researchers access and read research publications. In this paper, we investigate the role of social media influencers in enhancing the visibility of machine learning research, particularly the citation counts of papers they share. We have compiled a comprehensive dataset of over 8,000 pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13782v3-abstract-full').style.display = 'inline'; document.getElementById('2401.13782v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13782v3-abstract-full" style="display: none;"> As the number of accepted papers at AI and ML conferences reaches into the thousands, it has become unclear how researchers access and read research publications. In this paper, we investigate the role of social media influencers in enhancing the visibility of machine learning research, particularly the citation counts of papers they share. We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023, alongside controls precisely matched by 9 key covariates. Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers, with median citation counts 2-3 times higher than those of the control group. Additionally, the study delves into the geographic, gender, and institutional diversity of highlighted authors. Given these findings, we advocate for a responsible approach to curation, encouraging influencers to uphold the journalistic standard that includes showcasing diverse research topics, authors, and institutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13782v3-abstract-full').style.display = 'none'; document.getElementById('2401.13782v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 Pages, 22 Figures, ICML 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02406">arXiv:2312.02406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02406">pdf</a>, <a href="https://arxiv.org/format/2312.02406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Efficient Online Data Mixing For Language Model Pre-Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Albalak%2C+A">Alon Albalak</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Raffel%2C+C">Colin Raffel</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02406v2-abstract-short" style="display: inline;"> The data used to pretrain large language models has a decisive impact on a model&#39;s downstream performance, which has led to a large body of work on data selection methods that aim to automatically determine the most suitable data to use for pretraining. Existing data selection methods suffer from slow and computationally expensive processes, a problem amplified by the increasing size of models and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02406v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02406v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02406v2-abstract-full" style="display: none;"> The data used to pretrain large language models has a decisive impact on a model&#39;s downstream performance, which has led to a large body of work on data selection methods that aim to automatically determine the most suitable data to use for pretraining. Existing data selection methods suffer from slow and computationally expensive processes, a problem amplified by the increasing size of models and of pretraining datasets. Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together and determining sampling probabilities across entire groups. However, data mixing proportions are typically fixed before training and therefore cannot adapt to changing training dynamics. To address these limitations, we develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing. Based on multi-armed bandit algorithms, our online approach optimizes the data mixing proportions during training. Remarkably, our method trains a model that reaches the final perplexity of the next best method with 19\% fewer training iterations, and improves performance on the 5-shot MMLU benchmark by 1.9% relative accuracy, while adding negligible wall-clock time during pretraining. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02406v2-abstract-full').style.display = 'none'; document.getElementById('2312.02406v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17647">arXiv:2311.17647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17647">pdf</a>, <a href="https://arxiv.org/format/2311.17647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Text as Images: Can Multimodal Large Language Models Follow Printed Instructions in Pixels? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xiujun Li</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Gan%2C+Z">Zhe Gan</a>, <a href="/search/cs?searchtype=author&amp;query=Gao%2C+J">Jianfeng Gao</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Choi%2C+Y">Yejin Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17647v2-abstract-short" style="display: inline;"> Recent multimodal large language models (MLLMs) have shown promising instruction following capabilities on vision-language tasks. In this work, we introduce VISUAL MODALITY INSTRUCTION (VIM), and investigate how well multimodal models can understand textual instructions provided in pixels, despite not being explicitly trained on such data during pretraining or fine-tuning. We adapt VIM to eight be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17647v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17647v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17647v2-abstract-full" style="display: none;"> Recent multimodal large language models (MLLMs) have shown promising instruction following capabilities on vision-language tasks. In this work, we introduce VISUAL MODALITY INSTRUCTION (VIM), and investigate how well multimodal models can understand textual instructions provided in pixels, despite not being explicitly trained on such data during pretraining or fine-tuning. We adapt VIM to eight benchmarks, including OKVQA, MM-Vet, MathVista, MMMU, and probe diverse MLLMs in both the text-modality instruction (TEM) setting and VIM setting. Notably, we observe a significant performance disparity between the original TEM and VIM settings for open-source MLLMs, indicating that open-source MLLMs face greater challenges when text instruction is presented solely in image form. To address this issue, we train v-MLLM, a generalizable model that is capable to conduct robust instruction following in both text-modality and visual-modality instructions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17647v2-abstract-full').style.display = 'none'; document.getElementById('2311.17647v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Github: https://github.com/VIM-Bench/VIM_TOOL, Model and Data: https://huggingface.co/VIM-Bench</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09336">arXiv:2311.09336</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09336">pdf</a>, <a href="https://arxiv.org/format/2311.09336">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xu%2C+W">Wenda Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Deutsch%2C+D">Daniel Deutsch</a>, <a href="/search/cs?searchtype=author&amp;query=Finkelstein%2C+M">Mara Finkelstein</a>, <a href="/search/cs?searchtype=author&amp;query=Juraska%2C+J">Juraj Juraska</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+B">Biao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Z">Zhongtao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+L">Lei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Freitag%2C+M">Markus Freitag</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09336v5-abstract-short" style="display: inline;"> Recent large language models (LLM) are leveraging human feedback to improve their generation quality. However, human feedback is costly to obtain, especially during inference. In this work, we propose LLMRefine, an inference time optimization method to refine LLM&#39;s output. The core idea is to use a learned fine-grained feedback model to pinpoint defects and guide LLM to refine them iteratively. Us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09336v5-abstract-full').style.display = 'inline'; document.getElementById('2311.09336v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09336v5-abstract-full" style="display: none;"> Recent large language models (LLM) are leveraging human feedback to improve their generation quality. However, human feedback is costly to obtain, especially during inference. In this work, we propose LLMRefine, an inference time optimization method to refine LLM&#39;s output. The core idea is to use a learned fine-grained feedback model to pinpoint defects and guide LLM to refine them iteratively. Using original LLM as a proposal of edits, LLMRefine searches for defect-less text via simulated annealing, trading off the exploration and exploitation. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization. LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09336v5-abstract-full').style.display = 'none'; document.getElementById('2311.09336v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NAACL 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01361">arXiv:2311.01361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.01361">pdf</a>, <a href="https://arxiv.org/format/2311.01361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> GPT-4V(ision) as a Generalist Evaluator for Vision-Language Tasks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+X">Xinlu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yujie Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W">Weizhi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+A">An Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+J">Jun Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Qin%2C+L">Lianke Qin</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+X">Xifeng Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Petzold%2C+L+R">Linda Ruth Petzold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01361v1-abstract-short" style="display: inline;"> Automatically evaluating vision-language tasks is challenging, especially when it comes to reflecting human judgments due to limitations in accounting for fine-grained details. Although GPT-4V has shown promising results in various multi-modal tasks, leveraging GPT-4V as a generalist evaluator for these tasks has not yet been systematically explored. We comprehensively validate GPT-4V&#39;s capabiliti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01361v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01361v1-abstract-full" style="display: none;"> Automatically evaluating vision-language tasks is challenging, especially when it comes to reflecting human judgments due to limitations in accounting for fine-grained details. Although GPT-4V has shown promising results in various multi-modal tasks, leveraging GPT-4V as a generalist evaluator for these tasks has not yet been systematically explored. We comprehensively validate GPT-4V&#39;s capabilities for evaluation purposes, addressing tasks ranging from foundational image-to-text and text-to-image synthesis to high-level image-to-image translations and multi-images to text alignment. We employ two evaluation methods, single-answer grading and pairwise comparison, using GPT-4V. Notably, GPT-4V shows promising agreement with humans across various tasks and evaluation methods, demonstrating immense potential for multi-modal LLMs as evaluators. Despite limitations like restricted visual clarity grading and real-world complex reasoning, its ability to provide human-aligned scores enriched with detailed explanations is promising for universal automatic evaluator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01361v1-abstract-full').style.display = 'none'; document.getElementById('2311.01361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15654">arXiv:2310.15654</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15654">pdf</a>, <a href="https://arxiv.org/format/2310.15654">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Detection of LLMs-Generated Content </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xianjun Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Pan%2C+L">Liangming Pan</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+X">Xuandong Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+H">Haifeng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Petzold%2C+L">Linda Petzold</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+W+Y">William Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Cheng%2C+W">Wei Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15654v1-abstract-short" style="display: inline;"> The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15654v1-abstract-full').style.display = 'inline'; document.getElementById('2310.15654v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15654v1-abstract-full" style="display: none;"> The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, offering a guiding reference for researchers and practitioners striving to uphold the integrity of digital information in an era increasingly dominated by synthetic content. The relevant papers are summarized and will be consistently updated at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15654v1-abstract-full').style.display = 'none'; document.getElementById('2310.15654v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We will keep updating at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 20 pages </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wang%2C+W+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10