CINXE.COM

Search results for: solubilization

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: solubilization</title> <meta name="description" content="Search results for: solubilization"> <meta name="keywords" content="solubilization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="solubilization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="solubilization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 56</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: solubilization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Spectroscopic Studies on Solubilization of Polycyclic Aromatic Hydrocarbons in Structurally Different Gemini Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toshikee%20Yadav">Toshikee Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Tikariha"> Deepti Tikariha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Lakra"> Jyotsna Lakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kallol%20K.%20Ghosh"> Kallol K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that consist of two or more benzene rings. PAHs have low solubility in water. Their slow dissolution can contaminate large amounts of ground water for long period. They are hydrophobic, non-polar and neutral in nature and are known to have potential mutagenic or carcinogenic activity. In current scenario their removal from the environment, water and soil is still a great challenge and scientists worldwide are engaged to invent and design novel separation technology and decontaminating systems. Various physical, chemical, biological and their combined technologies have been applied to remediate organic-contaminated soils and groundwater. Surfactants play a vital role in the solubilization of these hydrophobic organic compounds. In the present investigation Solubilization capabilities of structurally different gemini surfactants i.e. butanediyl-1,4-bis(dimethyldodecylammonium bromide) (C12-4-C12,2Br−), 2-butanol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)-C12,2Br−), 2,3-butanediol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)2-C12,2Br−) for three polycyclic aromatic hydrocarbons (PAHs); phenanthrene (Phe),fluorene (Fluo) and acenaphthene (Ace) have been studied spectrophotometrically at 300 K. The result showed that the solubility of PAHs increases linearly with increasing surfactant concentration, as an implication of association between the PAHs and micelles. Molar solubilization ratio (MSR), micelle–water partition coefficient (Km) and Gibb's free energy of solubilization (ΔG°s) for PAHs have been determined in aqueous medium. (C12-4(OH)2-C12,2Br−) shows the higher solubilization for all PAHs. Findings of the present investigation may be useful to understand the role of appropriate surfactant system for the solubilization of toxic hydrophobic organic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactant" title="gemini surfactant">gemini surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=molar%20solubilization%20ratio" title=" molar solubilization ratio"> molar solubilization ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbon" title=" polycyclic aromatic hydrocarbon"> polycyclic aromatic hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization "> solubilization </a> </p> <a href="https://publications.waset.org/abstracts/35048/spectroscopic-studies-on-solubilization-of-polycyclic-aromatic-hydrocarbons-in-structurally-different-gemini-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Halotolerant Phosphates Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Efficiency in Potassium, Zinc Solubilization, and Promoting Wheat (Triticum Durum &#039;karim&#039;) Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Aliyat">F. Z. Aliyat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Guilli"> M. El Guilli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nassiri"> L. Nassiri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ibijbijen"> J. Ibijbijen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is becoming a crucial factor that can significantly impact all ecosystems. It has a negative impact on the environment in many parts of the planet. Agriculture is the main sector affected by climate change. Particularly, the salinity of agricultural soils is among the problems caused by climate change. The use of phosphate solubilizing bacteria (PSB) as a biofertilizer requires previous research on their tolerance to abiotic stress, specifically saline stress tolerance, before the formation of biofertilizers. In this context, the main goal of this research was to assess the salinity tolerance of four strains: Serratia rubidaea strain JCM1240, Enterobacter bugandensis strain 247BMC, Pantoea agglomerans strain ATCC 27155, Pseudomonas brassicacearum subsp. Neoaurantiaca strain CIP109457, which was isolated from solid phosphate sludge. Additionally, their capacity to solubilize potassium and zinc, as well as their effect on Wheat (Triticum Durum 'Karim') germination. The four PSB strains were tested for their ability to solubilize phosphate in NBRIP medium with tricalcium phosphate (TCP) as the sole source of phosphorus under salt stress. Five concentrations of NaCl were used (0%, 0.5%, 1%, 2.5%, 5%). Their phosphate solubilizing activity was estimated by the vanadate-molybdate method. The potassium and zinc solubilization has been tested qualitatively and separately on solid media with mica and zinc oxide as the only sources of potassium and zinc, respectively. The result showed that the solubilization decreases with the increase in the concentration of NaCl; all the strains solubilize the TCP even with 5% NaCl, with a significant difference among the four strains. The Serratia rubidaea strain was the most tolerant strain. In addition, the four strains solubilize the potassium and the zinc. The Serratia rubidaea strain was the most efficient. Therefore, biofertilization with PSB salt-tolerant strains could be a climate-change-preparedness strategy for agriculture in salt soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability%20of%20mineral%20nutrients" title="bioavailability of mineral nutrients">bioavailability of mineral nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solid%20sludge%3B%20phosphate%20solubilization" title=" phosphate solid sludge; phosphate solubilization"> phosphate solid sludge; phosphate solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20solubilization" title=" potassium solubilization"> potassium solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress"> salt stress</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20solubilization." title=" zinc solubilization."> zinc solubilization.</a> </p> <a href="https://publications.waset.org/abstracts/156937/halotolerant-phosphates-solubilizing-bacteria-isolated-from-phosphate-solid-sludge-and-their-efficiency-in-potassium-zinc-solubilization-and-promoting-wheat-triticum-durum-karim-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Djoudi">A. Djoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djibaou"> R. Djibaou</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Reguieg%20Yssaad"> H. A. Reguieg Yssaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas" title="Pseudomonas">Pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicia%20faba" title=" Vicia faba"> Vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=promoting%20of%20plant%20growth" title=" promoting of plant growth"> promoting of plant growth</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization%20tricalcium%20phosphate" title=" solubilization tricalcium phosphate"> solubilization tricalcium phosphate</a> </p> <a href="https://publications.waset.org/abstracts/32622/study-of-pseudomonas-as-biofertiliser-in-salt-affected-soils-of-the-northwestern-algeria-solubilisation-of-calcium-phosphate-and-growth-promoting-of-broad-bean-vcia-faba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Investigating the Effect of Plant Root Exudates and of Saponin on Polycyclic Aromatic Hydrocarbons Solubilization in Brownfield Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Davin">Marie Davin</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-Laure%20Fauconnier"> Marie-Laure Fauconnier</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Colinet"> Gilles Colinet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Wallonia, there are 6,000 estimated brownfields (rising to over 3.5 million in Europe) that require remediation. Polycyclic Aromatic Hydrocarbons (PAHs) are a class of recalcitrant carcinogenic/mutagenic organic compounds of major concern as they accumulate in the environment and represent 17% of all encountered pollutants. As an alternative to environmentally aggressive, expensive and often disruptive soil remediation strategies, a lot of research has been directed to developing techniques targeting organic pollutants. The following experiment, based on the observation that PAHs soil content decreases in the presence of plants, aimed at improving our understanding of the underlying mechanisms involved in phytoremediation. It focusses on plant root exudates and whether they improve PAHs solubilization, which would make them more available for bioremediation by soil microorganisms. The effect of saponin, a natural surfactant found in some plant roots such as members of the Fabaceae family, on PAHs solubilization was also investigated as part of the implementation of the experimental protocol. The experiments were conducted on soil collected from a brownfield in Saint-Ghislain (Belgium) and presenting weathered PAHs contamination. Samples of soil were extracted with different solutions containing either plant root exudates or commercial saponin. Extracted PAHs were determined in the different aqueous solutions using High-Performance Liquid Chromatography and Fluorimetric Detection (HPLC-FLD). Both root exudates of alfalfa (Medicago sativa L.) or red clover (Trifolium pratense L.) and commercial saponin were tested in different concentrations. Distilled water was used as a control. First of all, results show that PAHs are more extracted using saponin solutions than distilled water and that the amounts generally rise with the saponin concentration. However, the amount of each extracted compound diminishes as its molecular weight rises. Also, it appears that passed a certain surfactant concentration, PAHs are less extracted. This suggests that saponin might be investigated as a washing agent in polluted soil remediation techniques, either for ex-situ or in-situ treatments, as an alternative to synthetic surfactants. On the other hand, preliminary results on experiments using plant root exudates also show differences in PAHs solubilization compared to the control solution. Further results will allow discussion as to whether or not there are differences according to the exudates provenance and concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brownfield" title="brownfield">brownfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa" title=" Medicago sativa"> Medicago sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title=" polycyclic aromatic hydrocarbons"> polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20exudates" title=" root exudates"> root exudates</a>, <a href="https://publications.waset.org/abstracts/search?q=saponin" title=" saponin"> saponin</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Trifolium%20pratense" title=" Trifolium pratense"> Trifolium pratense</a> </p> <a href="https://publications.waset.org/abstracts/51055/investigating-the-effect-of-plant-root-exudates-and-of-saponin-on-polycyclic-aromatic-hydrocarbons-solubilization-in-brownfield-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Degradation of Hydrocarbons by Surfactants and Biosurfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ferhat">Samira Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20Alouaoui"> Redha Alouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Trifi"> Leila Trifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Badis"> Abdelmalek Badis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is the use of natural surfactant (biosurfactant) and synthetic (sodium dodecyl sulfate and tween 80) for environmental application. In fact the solubility of the polycyclic hydrocarbon (naphthalene) and the desorption of the heavy metals in the presence of surfactants. The microorganisms selected in this work are bacterial strain (Bacillus licheniformis) for the production of biosurfactant for use in this study. In the first part of this study, we evaluated the effectiveness of surfactants solubilization certain hydrocarbons few soluble in water such as polyaromatic (case naphthalene). Tests have shown that from the critical micelle concentration, decontamination is performed. The second part presents the results on the desorption of heavy metals (for copper) by the three surfactants, using concentrations above the critical micelle concentration. The comparison between the desorption of copper by the three surfactants, it is shown that the biosurfactant is more effective than tween 80 and sodium dodecyl sulfate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactants" title="surfactants">surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/40181/degradation-of-hydrocarbons-by-surfactants-and-biosurfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Micelles Made of Pseudo-Proteins for Solubilization of Hydrophobic Biologicals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Torchilin"> Vladimir P. Torchilin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrophobic / hydrophilically modified functional polymers are of high interest in modern biomedicine due to their ability to solubilize water-insoluble / poorly soluble (hydrophobic) drugs. Among the many approaches that are being developed in this direction, one of the most effective methods is the use of polymeric micelles (PMs) (micelles formed by amphiphilic block-copolymers) for solubilization of hydrophobic biologicals. For therapeutic purposes, PMs are required to be stable and biodegradable, although quite a few amphiphilic block-copolymers are described capable of forming stable micelles with good solubilization properties. For obtaining micelle-forming block-copolymers, polyethylene glycol (PEG) derivatives are desirable to use as hydrophilic shell because it represents the most popular biocompatible hydrophilic block and various hydrophobic blocks (polymers) can be attached to it. Although the construction of the hydrophobic core, due to the complex requirements and micelles structure development, is the very actual and the main problem for nanobioengineers. Considering the above, our research goal was obtaining biodegradable micelles for the solubilization of hydrophobic drugs and biologicals. For this purpose, we used biodegradable polymers– pseudo-proteins (PPs)(synthesized with naturally occurring amino acids and other non-toxic building blocks, such as fatty diols and dicarboxylic acids) as hydrophobic core since these polymers showed reasonable biodegradation rates and excellent biocompatibility. In the present study, we used the hydrophobic amino acid – L-phenylalanine (MW 4000-8000Da) instead of L-leucine. Amino-PEG (MW 2000Da) was used as hydrophilic fragments for constructing the suitable micelles. The molecular weight of PP (the hydrophobic core of micelle) was regulated by variation of used monomers ratios. Micelles were obtained by dissolving of synthesized amphiphilic polymer in water. The micelle-forming property was tested using dynamic light scattering (Malvern zetasizer NanoZSZEN3600). The study showed that obtaining amphiphilic block-copolymer form stable neutral micelles 100 ± 7 nm in size at 10mg/mL concentration, which is considered as an optimal range for pharmaceutical micelles. The obtained preliminary data allow us to conclude that the obtained micelles are suitable for the delivery of poorly water-soluble drugs and biologicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20%E2%80%93%20L-phenylalanine" title="amino acid – L-phenylalanine">amino acid – L-phenylalanine</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-proteins" title=" pseudo-proteins"> pseudo-proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20block-copolymers" title=" amphiphilic block-copolymers"> amphiphilic block-copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20micelles" title=" biodegradable micelles"> biodegradable micelles</a> </p> <a href="https://publications.waset.org/abstracts/109290/micelles-made-of-pseudo-proteins-for-solubilization-of-hydrophobic-biologicals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Effect of Physicochemical Treatments on the Characteristics of Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 % <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=quicklime" title=" quicklime"> quicklime</a> </p> <a href="https://publications.waset.org/abstracts/157961/effect-of-physicochemical-treatments-on-the-characteristics-of-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pukhrambam%20Helena%20Chanu">Pukhrambam Helena Chanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Janardan%20Yadav"> Janardan Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesized%20nano%20ZnO" title="biosynthesized nano ZnO">biosynthesized nano ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20dipping" title=" root dipping"> root dipping</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20solubilizing%20fungi." title=" zinc solubilizing fungi."> zinc solubilizing fungi.</a> </p> <a href="https://publications.waset.org/abstracts/183473/unveiling-microbial-potential-investigating-zinc-solubilizing-fungi-in-rhizospheric-soil-through-isolation-characterization-and-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schirin%20Hanf">Schirin Hanf</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Lizandara-Pueyo"> Carlos Lizandara-Pueyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Timmo%20P.%20Emmert"> Timmo P. Emmert</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Jevtovikj"> Ivana Jevtovikj</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Gl%C3%A4ser"> Roger Gläser</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20A.%20Schunk"> Stephan A. Schunk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20alkoxides" title="metal alkoxides">metal alkoxides</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20carbonates" title=" metal carbonates"> metal carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20hydroxycarbonates" title=" metal hydroxycarbonates"> metal hydroxycarbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20insertion" title=" CO₂ insertion"> CO₂ insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a> </p> <a href="https://publications.waset.org/abstracts/135815/synthetic-access-to-complex-metal-carbonates-and-hydroxycarbonates-via-sol-gel-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Mahdi">Ismail Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Fahsi"> Nidal Fahsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hafidi"> Mohamed Hafidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmounaim%20Allaoui"> Abdelmounaim Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Latefa%20Biskri"> Latefa Biskri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solubilizing%20bacteria" title="phosphate solubilizing bacteria">phosphate solubilizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=IAA" title=" IAA"> IAA</a>, <a href="https://publications.waset.org/abstracts/search?q=Seed%20germination" title=" Seed germination"> Seed germination</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoa" title=" quinoa"> quinoa</a> </p> <a href="https://publications.waset.org/abstracts/125261/potential-application-of-selected-halotolerant-psb-isolated-from-rhizospheric-soil-of-chenopodium-quinoa-in-plant-growth-promotion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Mixed Hydrotropic Zaleplon Oral Tablets: Formulation and Neuropharmacological Effect on Plasma GABA Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20A.%20Abdelbary">Ghada A. Abdelbary</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20M.%20Amin"> Maha M. Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelmoteleb"> Mostafa Abdelmoteleb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zaleplon (ZP) is a non-benzodiazepine poorly soluble hypnotic drug indicated for the short term treatment of insomnia having a bioavailability of about 30%. The aim of the present study is to enhance the solubility and consequently the bioavailability of ZP using hydrotropic agents (HA). Phase solubility diagrams of ZP in presence of different molar concentrations of HA (Sodium benzoate, Urea, Ascorbic acid, Resorcinol, Nicotinamide, and Piperazine) were constructed. ZP/Sodium benzoate and Resorcinol microparticles were prepared adopting melt, solvent evaporation and melt-evaporation techniques followed by XRD. Directly compressed mixed hydrotropic ZP tablets of Sodium benzoate and Resorcinol in different weight ratios were prepared and evaluated compared to the commercially available tablets (Sleep aid® 5 mg). The effect of shelf and accelerated stability storage (40°C ± 2°C/75%RH ± 5%RH) on the optimum tablet formula (F5) for six months were studied. The enhancement of ZP solubility follows the order of: Resorcinol > Sodium benzoate > Ascorbic acid > Piperazine > Urea > Nicotinamide with about 350 and 2000 fold increase using 1M of Sodium benzoate and Resorcinol respectively. ZP/HA microparticles exhibit the order of: Solvent evaporation > melt-solvent evaporation > melt > physical mixture which was further confirmed by the complete conversion of ZP into amorphous form. Mixed hydrotropic tablet formula (F5) composed of ZP/(Resorcinol: Sodium benzoate 4:1w/w) microparticles prepared by solvent evaporation exhibits in-vitro dissolution of 31.7±0.11% after five minutes (Q5min) compared to 10.0±0.10% for Sleep aid® (5 mg) respectively. F5 showed significantly higher GABA concentration of 122.5±5.5mg/mL in plasma compared to 118±1.00 and 27.8±1.5 mg/mL in case of Sleep aid® (5 mg) and control taking only saline respectively suggesting a higher neuropharmacological effect of ZP following hydrotropic solubilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zaleplon" title="zaleplon">zaleplon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrotropic%20solubilization" title=" hydrotropic solubilization"> hydrotropic solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20GABA%20level" title=" plasma GABA level"> plasma GABA level</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20hydrotropy" title=" mixed hydrotropy"> mixed hydrotropy</a> </p> <a href="https://publications.waset.org/abstracts/30664/mixed-hydrotropic-zaleplon-oral-tablets-formulation-and-neuropharmacological-effect-on-plasma-gaba-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Identification and Application of Biocontrol Agents against Cotton Leaf Curl Virus Disease in Gossypium hirsutum under Green House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Memoona%20Ramzan">Memoona Ramzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Tabassum"> Bushra Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Khan"> Anwar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq"> Muhammad Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mudassar%20Fareed%20Awan"> Mudassar Fareed Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Idrees%20Ahmad%20Nasir"> Idrees Ahmad Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahida%20Qamar"> Zahida Qamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20Shahid"> Naila Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayyab%20Husnain"> Tayyab Husnain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological control is a novel approach being used in crop protection nowadays. Bacteria like Bacillus and Pseudomonas are reported for this purpose and few of their products are commercially available too. Rhizosphere and phyllosphere of healthy cotton plants were used as a source to isolate bacteria capable of exhibiting properties worthy for selection as biocontrol agent. For this purpose all isolated strains were screened for the activities like phosphate solubilization, Indole acetic acid (IAA) production and biocontrol against fungi. Two strains S1HL3 and S1HL4 showed phosphate solubilization and IAA production simultaneously while two other JS2HR4 and JS3HR2 were good inhibitors of fungal pathogens. Through biochemical and molecular characterization these bacteria were identified as P. aeruginosa, Burkholderia and Bacillus respectively. In green house trials of these isolates against Cotton leaf curl virus (CLCuV), seven treatments including individual bacterial isolate and consortia were included. Treated plants were healthy as compared to control plants in which upto 74% CLCuV symptomatic plants exist. Maximum inhibition of CLCuV was observed in T7 treated plants where viral load was only 0.4% as compared to control where viral load was upto 74%. This treatment consortium included Bacillus and Pseudomonas isolates; S1HL3, S1HL4, JS2HR4 and JS3HR2. Principal Component Biplot depicted highly significant correlation between percentage viral load and the disease incidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20leaf%20curl%20virus" title="cotton leaf curl virus">cotton leaf curl virus</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus" title=" bacillus"> bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title=" pseudomonas"> pseudomonas</a> </p> <a href="https://publications.waset.org/abstracts/42061/identification-and-application-of-biocontrol-agents-against-cotton-leaf-curl-virus-disease-in-gossypium-hirsutum-under-green-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Majeed">A. Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.K.%20Abbasi"> M.K. Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hameed"> S. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Imran"> A. Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naqqash"> T. Naqqash</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Hanif"> M. K. Hanif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environment <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PGPR" title="PGPR">PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fixation" title=" nitrogen fixation"> nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20solubilization" title=" phosphate solubilization"> phosphate solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=colonization" title=" colonization"> colonization</a> </p> <a href="https://publications.waset.org/abstracts/42869/screening-of-plant-growth-promoting-rhizobacteria-in-the-rhizo-and-endosphere-of-sunflower-helianthus-anus-and-their-role-in-enhancing-growth-and-yield-attriburing-trairs-and-colonization-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manzoor">Maria Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Iram%20Gul"> Iram Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Kallerhoff"> Jean Kallerhoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pb%20tolerant%20fungus" title="Pb tolerant fungus">Pb tolerant fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb%20mobility" title=" Pb mobility"> Pb mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting%20activities" title=" plant growth promoting activities"> plant growth promoting activities</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20acetic%20acid%20%28IAA%29" title=" indole acetic acid (IAA)"> indole acetic acid (IAA)</a> </p> <a href="https://publications.waset.org/abstracts/70524/potential-of-lead-tolerant-and-mobilizing-fungus-for-plant-growth-promotion-through-plant-growth-promoting-activity-a-promising-approach-for-enhance-phytoremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Inclusion Body Refolding at High Concentration for Large-Scale Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Gabrielczyk">J. Gabrielczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kluitmann"> J. Kluitmann</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Dammeyer"> T. Dammeyer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20J%C3%B6rdening"> H. J. Jördening</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dialysis" title="dialysis">dialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion%20body" title=" inclusion body"> inclusion body</a>, <a href="https://publications.waset.org/abstracts/search?q=refolding" title=" refolding"> refolding</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a> </p> <a href="https://publications.waset.org/abstracts/36720/inclusion-body-refolding-at-high-concentration-for-large-scale-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Optimization of Alkali Assisted Microwave Pretreatments of Sorghum Straw for Efficient Bioethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahiru%20Tsegaye">Bahiru Tsegaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrajit%20Balomajumder"> Chandrajit Balomajumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Roy"> Partha Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The limited supply and related negative environmental consequence of fossil fuels are driving researcher for finding sustainable sources of energy. Lignocellulose biomass like sorghum straw is considered as among cheap, renewable and abundantly available sources of energy. However, lignocellulose biomass conversion to bioenergy like bioethanol is hindered due to the reluctant nature of lignin in the biomass. Therefore, removal of lignin is a vital step for lignocellulose conversion to renewable energy. The aim of this study is to optimize microwave pretreatment conditions using design expert software to remove lignin and to release maximum possible polysaccharides from sorghum straw for efficient hydrolysis and fermentation process. Sodium hydroxide concentration between 0.5-1.5%, v/v, pretreatment time from 5-25 minutes and pretreatment temperature from 120-2000C were considered to depolymerize sorghum straw. The effect of pretreatment was studied by analyzing the compositional changes before and after pretreatments following renewable energy laboratory procedure. Analysis of variance (ANOVA) was used to test the significance of the model used for optimization. About 32.8%-48.27% of hemicellulose solubilization, 53% -82.62% of cellulose release, and 49.25% to 78.29% lignin solubilization were observed during microwave pretreatment. Pretreatment for 10 minutes with alkali concentration of 1.5% and temperature of 1400C released maximum cellulose and lignin. At this optimal condition, maximum of 82.62% of cellulose release and 78.29% of lignin removal was achieved. Sorghum straw at optimal pretreatment condition was subjected to enzymatic hydrolysis and fermentation. The efficiency of hydrolysis was measured by analyzing reducing sugars by 3, 5 dinitrisylicylic acid method. Reducing sugars of about 619 mg/g of sorghum straw were obtained after enzymatic hydrolysis. This study showed a significant amount of lignin removal and cellulose release at optimal condition. This enhances the yield of reducing sugars as well as ethanol yield. The study demonstrates the potential of microwave pretreatments for enhancing bioethanol yield from sorghum straw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulose" title=" lignocellulose"> lignocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/101882/optimization-of-alkali-assisted-microwave-pretreatments-of-sorghum-straw-for-efficient-bioethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Structural and Functional Comparison of Untagged and Tagged EmrE Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Junaid%20S.%20Qazi">S. Junaid S. Qazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Denice%20C.%20Bay"> Denice C. Bay</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Chew"> Raymond Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20J.%20Turner"> Raymond J. Turner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20multidrug%20resistance%20%28SMR%29%20protein" title="small multidrug resistance (SMR) protein">small multidrug resistance (SMR) protein</a>, <a href="https://publications.waset.org/abstracts/search?q=EmrE" title=" EmrE"> EmrE</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20membrane%20protein%20folding" title=" integral membrane protein folding"> integral membrane protein folding</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20compounds%20%28QAC%29" title=" quaternary ammonium compounds (QAC)"> quaternary ammonium compounds (QAC)</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternary%20cation%20compounds%20%28QCC%29" title=" quaternary cation compounds (QCC)"> quaternary cation compounds (QCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20affinity%20chromatography" title=" nickel affinity chromatography"> nickel affinity chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=hexahistidine%20%28His6%29%20tag" title=" hexahistidine (His6) tag"> hexahistidine (His6) tag</a> </p> <a href="https://publications.waset.org/abstracts/36260/structural-and-functional-comparison-of-untagged-and-tagged-emre-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Keun%20Lee">Bo Keun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo%20Yeon%20Kwon"> Doo Yeon Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hoon%20Park"> Ji Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Hee%20Lee"> Gun Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hye%20Baek"> Ji Hye Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Heung%20Jae%20Chun"> Heung Jae Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Joo%20Koh"> Young Joo Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Suk%20Kim"> Moon Suk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-responsive%20material" title="thermo-responsive material">thermo-responsive material</a>, <a href="https://publications.waset.org/abstracts/search?q=zwitterionic" title=" zwitterionic"> zwitterionic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/9288/preparation-and-evaluation-of-polyethylene-glycol-b-polycaprolactone-diblock-copolymers-with-zwitterionic-end-group-for-thermo-responsive-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> The Role of Microbes in Organic Sustainable Agriculture and Plant Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koppula%20Prawan">Koppula Prawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20D.%20Oyeyemi"> Kehinde D. Oyeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kushal%20P.%20Singh"> Kushal P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbes" title="microbes">microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculants" title=" inoculants"> inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilization" title=" fertilization"> fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional." title=" conventional."> conventional.</a> </p> <a href="https://publications.waset.org/abstracts/164485/the-role-of-microbes-in-organic-sustainable-agriculture-and-plant-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Abubakr%20Abdelgalil">Soad Abubakr Abdelgalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20Attia%20Abo-Zaid"> Gaber Attia Abo-Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mohamed%20Yousri%20Kaddah"> Mohamed Mohamed Yousri Kaddah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20eggshells%20waste" title="chicken eggshells waste">chicken eggshells waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20experimental%20design" title=" statistical experimental design"> statistical experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20fermentation" title=" batch fermentation"> batch fermentation</a> </p> <a href="https://publications.waset.org/abstracts/159622/eggshell-waste-bioprocessing-for-sustainable-acid-phosphatase-production-and-minimizing-environmental-hazards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassiba%20Zemmouri">A. Hassiba Zemmouri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nabil%20Mameri"> B. Nabil Mameri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hakim%20Lounici"> C. Hakim Lounici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title="waste activated sludge">waste activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton%20pre-treatment" title=" fenton pre-treatment"> fenton pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/28090/biogas-production-improve-from-waste-activated-sludge-using-fenton-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Combination Approach Using Experiments and Optimal Experimental Design to Optimize Chemical Concentration in Alkali-Surfactant-Polymer Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Tai%20Pham">H. Tai Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Bae%20Wisup"> Bae Wisup</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungmin%20Jung"> Sungmin Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Efriza"> Ivan Efriza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Widyaningsih"> Ratna Widyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Un%20Min"> Byung Un Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The middle-phase-microemulsion in Alkaline-Surfactant-Polymer (ASP) solution and oil play important roles in the success of an ASP flooding process. The high quality microemulsion phase has ultralow interfacial tensions and it can increase oil recovery. The research used optimal experimental design and response-surface-methodology to predict the optimum concentration of chemicals in ASP solution for maximum microemulsion quality. Secondly, this optimal ASP formulation was implemented in core flooding test to investigate the effective injection volume. As the results, the optimum concentration of surfactants in the ASP solution is 0.57 wt.% and the highest effective injection volume is 19.33% pore volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimize" title="optimize">optimize</a>, <a href="https://publications.waset.org/abstracts/search?q=ASP" title=" ASP"> ASP</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization%20ratio" title=" solubilization ratio"> solubilization ratio</a> </p> <a href="https://publications.waset.org/abstracts/55285/combination-approach-using-experiments-and-optimal-experimental-design-to-optimize-chemical-concentration-in-alkali-surfactant-polymer-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim-Kana"> E. B. Gueguim-Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to develop a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from enzymatically hydrolysed sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed. Maximum reducing sugar yield of 0.406 g/g was obtained with 2 M FeCl3 at 700W for 3.5 min. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5 % hemicellulose solubilization. This pretreatment was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2 fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid" title="acid">acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a> </p> <a href="https://publications.waset.org/abstracts/66636/microwave-assisted-inorganic-salt-pretreatment-of-sugarcane-leaf-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Characterization of Nanoemulsion Incorporating Crude Cocoa Polyphenol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzannah%20Sharif">Suzannah Sharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Aznie%20Aida%20Ahmad"> Aznie Aida Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Maznah%20Ismail"> Maznah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cocoa bean is the raw material for products such as cocoa powder and chocolate. Cocoa bean contains polyphenol which has been shown in several clinical studies to confer beneficial health effects. However studies showed that cocoa polyphenol absorption in the human intestinal tracts are very low. Therefore nanoemulsion may be one way to increase the bioavailability of cocoa polyphenol. This study aim to characterize nanoemulsion incorporating crude cocoa polyphenol produced using high energy technique. Cocoa polyphenol was extracted from fresh freeze-dried cocoa beans from Malaysia. The particle distribution, particle size, and zeta potential were determined. The emulsion was also analysed using transmission electron microscope to visualize the particles. Solubilization study was conducted by titrating the nanoemulsion into distilled water or 1% surfactant solution. Result showed that the nanoemulsion contains particle which have narrow size distribution. The particles size average at 112nm with zeta potential of -45mV. The nanoemulsions behave differently in distilled water and surfactant solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa" title="cocoa">cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoemulsion" title=" nanoemulsion"> nanoemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa%20polyphenol" title=" cocoa polyphenol"> cocoa polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilisation%20study" title=" solubilisation study"> solubilisation study</a> </p> <a href="https://publications.waset.org/abstracts/51861/characterization-of-nanoemulsion-incorporating-crude-cocoa-polyphenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title="petroleum hydrocarbons">petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon%20Marchika" title=" lagoon Marchika"> lagoon Marchika</a> </p> <a href="https://publications.waset.org/abstracts/46762/evaluation-of-biosurfactant-production-by-a-new-strain-isolated-from-the-lagoon-of-mar-chica-degrading-gasoline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> High Dissolution of ATC by pH Control and Its Enzymatic Conversion to L-Cysteine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hun%20Youn"> Sung Hun Youn</a>, <a href="https://publications.waset.org/abstracts/search?q=Younggon%20Kim"> Younggon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-Cysteine is extensively used as a supplement of pharmaceuticals, cosmetics, food and feed additives. It has obtained industrially by hydrolysis of human hair and poultry feathers. However, there are some problems such as the restriction of using materials from animals and the intractable waste pollution. The enzymatic conversion has been regarded as an environmental-friendly method. Currently, the biggest bottle-neck of enzymatic conversion is the low yield of L-cysteine due to the low substrate solubility. In this study, the method of enhancing the solubility of the substrate D,L-2-amino-Δ2-thiazoline-4-carboxylicacid (ATC) was developed and the enzymatic reaction at high concentration levels was performed. A large amount of substrate in aqueous solutions was dissolved by pH control using salts. As the pH of the solution increased, the solubility of ATC increased. It was thought that a shift of ATC from acid form (-COOH) to dissociated carboxylic group (-COO-) would improve its hydrophilicity leading to solubility increase. The highest solubility of ATC was 610 mM at pH 10.5, whereas the maximum reaction rate was obtained at pH 8.3. As a result, a high L-cysteine yield of 250 mM was achieved at pH 9.1, which was obtained from a combination of optimum pH conditions for ATC solubility and enzymatic conversion. This yield corresponds to approximately 18 times of that in previous reports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D" title="D">D</a>, <a href="https://publications.waset.org/abstracts/search?q=L-2-amino-%CE%942-thiazoline-4-carboxylicacid" title="L-2-amino-Δ2-thiazoline-4-carboxylicacid">L-2-amino-Δ2-thiazoline-4-carboxylicacid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20conversion" title=" enzymatic conversion"> enzymatic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=high-substrate%20solubilization" title=" high-substrate solubilization"> high-substrate solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Cysteine" title=" L-Cysteine"> L-Cysteine</a> </p> <a href="https://publications.waset.org/abstracts/4128/high-dissolution-of-atc-by-ph-control-and-its-enzymatic-conversion-to-l-cysteine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Hemostasis Poly Vinyl Alcohol Gauze Coated with Chitosan Encapsulated with Polymer and Drug</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishekkumar%20Ramasamy">Abhishekkumar Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Parameshwari"> Parameshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan is the deacyelitated derivative of chitin, the second most abundant biopolymer just after cellulose. Without doubt, its biomedical usages have gained more importance among the vast variety of chitosan applications owing to its good biocompatibility and biodegradability. In recent years, particular interest has been devoted to chitosan hydrogels as a promising alternative in competition with conventional sutures or bioadhesives. Different parameters such as acid type and concentration, and degree of deacetylation (DD%) of chitosan, were altered to modify hydrogel properties including viscosity, pH, cohesive strength, and tissue bioadhesiveness. In the current work, we have investigated the effectiveness of chitosan hydrogel encapsulated with tanexamic acid to stop bleeding. Chitosan film was obtained with solubilization of chitosan powder in aqueous acidic media. In vivo experiments have been conducted on rat and rabbit models that provide a convenient way to evaluate the efficacy of prepared samples. The arteries vein was punctured on the hind limb of the rat and the gauze was been applied on the punchered area. Bioadhesive strength as well as irritant effects were discussed. Samples with higher degree of deacetylation, including Chs-16 and Chs-19 that were dissolved in lactic media showed best sealing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomaptibility" title=" biocomaptibility"> biocomaptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=bioadhersive" title=" bioadhersive"> bioadhersive</a>, <a href="https://publications.waset.org/abstracts/search?q=deacetylation" title=" deacetylation"> deacetylation</a> </p> <a href="https://publications.waset.org/abstracts/41700/hemostasis-poly-vinyl-alcohol-gauze-coated-with-chitosan-encapsulated-with-polymer-and-drug" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Surfactant-Free O/W-Emulsion as Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumpugdee-Vollrath">M. Kumpugdee-Vollrath</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-P.%20Krause"> J.-P. Krause</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B%C3%BCrk"> S. Bürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion" title="emulsion">emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=lidocaine" title=" lidocaine"> lidocaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Miglyol" title=" Miglyol"> Miglyol</a>, <a href="https://publications.waset.org/abstracts/search?q=size" title=" size"> size</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=release" title=" release"> release</a>, <a href="https://publications.waset.org/abstracts/search?q=injection" title=" injection"> injection</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability "> stability </a> </p> <a href="https://publications.waset.org/abstracts/11202/surfactant-free-ow-emulsion-as-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Chee%20Loh">Kai-Chee Loh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingxin%20Zhang"> Jingxin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Wah%20Tong"> Yen-Wah Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=high-solids" title=" high-solids"> high-solids</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste%20and%20horse%20manure" title=" food waste and horse manure"> food waste and horse manure</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community" title=" microbial community"> microbial community</a> </p> <a href="https://publications.waset.org/abstracts/37897/three-stage-anaerobic-co-digestion-of-high-solids-food-waste-and-horse-manure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheba%20Ben%20Amar">Cheba Ben Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus" title="bacillus">bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=paenibacillus" title=" paenibacillus"> paenibacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=bene%EF%AC%81cial%20activities" title=" beneficial activities"> beneficial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanisms" title=" mechanisms"> mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20promotion" title=" growth promotion"> growth promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20control" title=" disease control"> disease control</a>, <a href="https://publications.waset.org/abstracts/search?q=agrobiotechnology" title=" agrobiotechnology"> agrobiotechnology</a> </p> <a href="https://publications.waset.org/abstracts/37958/diversity-phyto-beneficial-activities-and-agrobiotechnolody-of-plant-growth-promoting-bacillus-and-paenibacillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solubilization&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=solubilization&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10