CINXE.COM

Search results for: patch clamp

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: patch clamp</title> <meta name="description" content="Search results for: patch clamp"> <meta name="keywords" content="patch clamp"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="patch clamp" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="patch clamp"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 224</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: patch clamp</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moez%20ul%20Hassan">Moez ul Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Noman"> Bushra Noman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarmad%20Hameed"> Sarmad Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Mehmood"> Shahab Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Bashir"> Asma Bashir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20current" title=" ionic current"> ionic current</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20amplifier" title=" operational amplifier"> operational amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20clamp" title=" patch clamp"> patch clamp</a> </p> <a href="https://publications.waset.org/abstracts/28042/indigenous-patch-clamp-technique-design-of-highly-sensitive-amplifier-circuit-for-measuring-and-monitoring-of-real-time-ultra-low-ionic-current-through-cellular-gates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimal%20Jasoliya">Vimal Jasoliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnank%20Bhatt"> Purnank Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mit%20Shah"> Mit Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clamp%20cylinder" title="clamp cylinder">clamp cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title=" fatigue analysis"> fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding%20machines" title=" injection moulding machines"> injection moulding machines</a> </p> <a href="https://publications.waset.org/abstracts/66452/design-and-finite-element-analysis-of-clamp-cylinder-for-capacity-augmentation-of-injection-moulding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> A pilot Study of Umbilical Cord Mini-Clamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seng%20Sing%20Tan">Seng Sing Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clamping of the umbilical cord after birth is widely practiced as a part of labor management. Further improvements were proposed to produce a smaller, lighter and more comfortable clamp while still maintaining current standards of clamping. A detachable holder was also developed to facilitate the clamping process. This pilot study on the efficacy of the mini-clamp was conducted to evaluate a tightness of the seal and a firm grip of the clamp on the umbilical cord. The study was carried out at National University Hospital, using 5 sets of placental cord. 18 samples of approximate 10 cm each were harvested. The test results showed that the mini-clamp was able to stop the flow through the cord after clamping without rupturing the cord. All slip tests passed with a load of 0.2 kg. In the pressure testing, 30kPa of saline was exerted into the umbilical veins. Although there was no physical sign of fluid leaking through the end secured by the mini-clamp, the results showed the pressure was not able to sustain the pressure set during the tests. 12 out of the 18 test samples have more than 7% of pressure drop in 30 seconds. During the pressure leak test, it was observed on several samples that when pressurized, small droplets of saline were growing on the outer surface of the cord lining membrane. It was thus hypothesized that the pressure drop was likely caused by the perfusion of the injected saline through the Wharton’s jelly and the cord lining membrane. The average pressure in the umbilical vein is roughly 2.67kPa (20 mmHg), less than 10% of 30kPa (~225mmHg), set for the pressure testing. As such, the pressure set could be over-specified, leading to undesirable outcomes. The development of the mini-clamp was an attempt to increase the comfort of newly born babies while maintaining the usability and efficacy of hospital grade umbilical cord clamp. The pressure leak in this study would be unfair to fully attribute it to the design and efficacy of the mini-clamp. Considering the unexpected leakage of saline through the umbilical membrane due to over-specified pressure exerted on the umbilical veins, improvements can definitely be made to the existing experimental setup to obtain a more accurate and conclusive outcome. If proven conclusive and effective, the mini-clamp with a detachable holder could be a smaller and potentially cheaper alternative to existing umbilical cord clamps. In addition, future clinical trials could be conducted to determine the user-friendliness of the mini-clamp and evaluate its practicality in the clinical setting by labor ward clinicians. A further potential improvement could be proposed on the sustainability factor of the mini-clamp. A biodegradable clamp would revolutionise the industry in this increasingly environmentally sustainability world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leak%20test" title="leak test">leak test</a>, <a href="https://publications.waset.org/abstracts/search?q=mini-clamp" title=" mini-clamp"> mini-clamp</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20test" title=" slip test"> slip test</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title=" umbilical cord"> umbilical cord</a> </p> <a href="https://publications.waset.org/abstracts/137435/a-pilot-study-of-umbilical-cord-mini-clamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Design of Broadband W-Slotted Microstrip Patch Antenna </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20G.%20Nahata">Neeraj G. Nahata</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Bhagat"> K. S. Bhagat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadband" title="broadband">broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=VSWR" title=" VSWR"> VSWR</a>, <a href="https://publications.waset.org/abstracts/search?q=W-slotted%20patch" title=" W-slotted patch"> W-slotted patch</a> </p> <a href="https://publications.waset.org/abstracts/25341/design-of-broadband-w-slotted-microstrip-patch-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghibeche%20Abderrahmane">Ghibeche Abderrahmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euglycemic-hyperinsulinemic" title="euglycemic-hyperinsulinemic">euglycemic-hyperinsulinemic</a>, <a href="https://publications.waset.org/abstracts/search?q=HSP72" title=" HSP72"> HSP72</a>, <a href="https://publications.waset.org/abstracts/search?q=mRNA" title=" mRNA"> mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=diabete" title=" diabete"> diabete</a> </p> <a href="https://publications.waset.org/abstracts/25876/intramuscular-heat-shock-protein-72-and-heme-oxygenase-1-mrna-are-reduced-in-patients-with-type-2-diabetes-evidence-that-insulin-resistance-is-associated-with-a-disturbed-antioxidant-defense-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Improvement and Miniaturization RFID Patch Antenna by Inclusion the Complementary Metamaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seif%20Naoui">Seif Naoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Lassaad%20Latrach"> Lassaad Latrach</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gharsallah"> Ali Gharsallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is specialized to highlight the method of miniaturization and improvement the patch antenna by using the complementary metamaterial. This method is presented by a simple technique is composed a structure of patch antenna integrated in its surface a cell of complementary split ring resonator. This resonator is placed at the middle of the radiating patch in parallel with the transmission line and with a variable angle of orientation. The objective is to find the ultimate angle where the best results are obtained on improving the characteristics of the considered antenna. This motif widespread at the traceability applications by wireless communication for RFID technology at the operation frequency 2.45 GHz. Our contribution is based on studies empirical often presented in this article. All simulation results were made by the CST Microwave Studio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complimentary%20split%20ring%20resonators" title="complimentary split ring resonators">complimentary split ring resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation%20technology%20microwave%20studio" title=" computer simulation technology microwave studio"> computer simulation technology microwave studio</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials%20patch%20antennas" title=" metamaterials patch antennas"> metamaterials patch antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a> </p> <a href="https://publications.waset.org/abstracts/28790/improvement-and-miniaturization-rfid-patch-antenna-by-inclusion-the-complementary-metamaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> The Study of Dissolving Microneedle Patch for Androgenetic Alopecia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Yu%20Lee">Li-Yu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shuan%20Chen"> Yu-Shuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sheng%20Wang"> Jun Sheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ming%20Chu"> I-Ming Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microneedle patch is a painless transdermal drug delivery method, It could solve some problems in traditional drug delivery such as digestive system causing drug metabolism and subcutaneous injection causing some side effects. Coating drug on or loading drug in microneedle can carry active ingredient through stratum corneum, also can control dose well when microneedle patch apply on localized topical area. We used hyaluronic acid to fabricate dissolvable microneedle patch and encapsulated minoxidil into microneedles. Minoxdil is a drug for exterior use that can be used to treat Androgenetic alopecia, but related commercial products have some shortcomings, for example, propylene glycol which is used to soften stratum corneum cause skin allergic reaction, comparing chemical promotion, microneedle patch provide physical way to make drugs through nature barrier of skin. In this research, we designed a two-step process to fabricate microneedle patch, that can effectively reduce drug waste, and gentle production process could maintain drug activity well. We also do in vitro test on cadaver to make sure patch has enough mechanical strength to penetrate stratum corneum. In the release test and animal test, we found microneedle patch has higher delivery efficiency than tradition way. In this study, we may determine that germinal MNs patch is a potential commodity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolving%20microneedles" title="dissolving microneedles">dissolving microneedles</a>, <a href="https://publications.waset.org/abstracts/search?q=androgenetic%20alopecia" title=" androgenetic alopecia"> androgenetic alopecia</a>, <a href="https://publications.waset.org/abstracts/search?q=minoxidil" title=" minoxidil"> minoxidil</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal%20drug%20delivery" title=" transdermal drug delivery"> transdermal drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/66745/the-study-of-dissolving-microneedle-patch-for-androgenetic-alopecia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Analysis of Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuits with Electrical Characteristics for the 5V Power Clamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Park">Jun-Geol Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Il%20Do"> Kyoung-Il Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Ju%20Kwon"> Min-Ju Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Hyun%20Park"> Kyung-Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Seo%20Koo"> Yong-Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuits with the turn-on time characteristics. The structures are the LVTSCR (Low Voltage Triggered SCR), the ZTSCR (Zener Triggered SCR) and the PTSCR (P-Substrate Triggered SCR). The three structures are for the 5V power clamp. In general, the structures with the low trigger voltage structure can have the fast turn-on characteristics than other structures. All the ESD protection circuits have the low trigger voltage by using the N+ bridge region of LVTSCR, by using the zener diode structure of ZTSCR, by increasing the trigger current of PTSCR. The simulation for the comparison with the turn-on time was conducted by the Synopsys TCAD simulator. As the simulation results, the LVTSCR has the turn-on time of 2.8 ns, ZTSCR of 2.1 ns and the PTSCR of 2.4 ns. The HBM simulation results, however, show that the PTSCR is the more robust structure of 430K in HBM 8kV standard than 450K of LVTSCR and 495K of ZTSCR. Therefore the PTSCR is the most effective ESD protection circuit for the 5V power clamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-on%20time" title=" turn-on time"> turn-on time</a>, <a href="https://publications.waset.org/abstracts/search?q=trigger%20voltage" title=" trigger voltage"> trigger voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a> </p> <a href="https://publications.waset.org/abstracts/65650/analysis-of-silicon-controlled-rectifier-based-electrostatic-discharge-protection-circuits-with-electrical-characteristics-for-the-5v-power-clamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Repair of Cracked Aluminum Plate by Composite Patch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb">S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zeggane"> A. Zeggane</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, repaired crack in 6061-T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain, and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its size vary from 20 mm to 60 mm and we compare the first results with second. Thirdly, we repair various cracks with the composite patch (carbon/epoxy) and for (2 layers, 4 layers). Finally, the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20patch%20repair" title="composite patch repair">composite patch repair</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title=" crack growth"> crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%20plate" title=" aluminum alloy plate"> aluminum alloy plate</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/34073/repair-of-cracked-aluminum-plate-by-composite-patch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subal%20Kar">Subal Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhuja%20Ghosh"> Madhuja Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitesh%20Kumar"> Amitesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Majumder"> Arijit Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=split%20ring%20resonator" title="split ring resonator">split ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=CSRR%20loaded%20patch%20antenna" title=" CSRR loaded patch antenna"> CSRR loaded patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=LC%20resonator" title=" LC resonator"> LC resonator</a> </p> <a href="https://publications.waset.org/abstracts/52176/complementary-split-ring-resonator-loaded-microstrip-patch-antenna-useful-for-microwave-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> A Study of the Relationship between Habitat Patch Metrics and Landscape Connectivity with Reference to Colombo Wetlands Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20W.%20G.%20M.%20K.%20Ekanayake">H. E. M. W. G. M. K. Ekanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Dharmasena"> J. Dharmasena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Landscape fragmentation and habitat loss are emerging issues in Sri Lanka, which is due to rapid urban development and inadequate concern of managing Landscape connectivity. Urban Wetlands are the most vulnerable ecosystem effects from the fragmentation. Therefore, management of landscape connectivity with proper analysis and understanding has become a most important measure for urban wetland habitats. This study aimed to introduce spatial planning strategy to identify and locate landscape developments appropriately in order to restore landscape connectivity. Therefore, the study focuses on understanding the relationship between habitat patch metrics and landscape connectivity with reference to Colombo wetlands. Geographic Information Systems (GIS) was used to measure the wetland patch metrics; Patch area, Total edge, Perimeter-area ratio, Core area index and Inter-patch distances. Further, GIS-enabled least-cost path tool was used to measure the Landscape connectivity and calculate the number of species flow paths per wetland patch. According to the research findings; increasing the patch area, maintaining a mean perimeter-area ratio and core area index also reducing the inter-patch distances could enhance the landscape connectivity. Further, this study introduces three patch typologies; ‘active patches,' ‘open patches’ and ‘closed patches’ that severs to landscape connectivity in different levels. In the end, the study proposes a strategy for Landscape Architects to select most suitable locations to implement ecological based landscape developments with adjacent to the existing urban habitat in order to enhance habitat patch metrics and to restore the landscape connectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landscape%20fragmentation" title="landscape fragmentation">landscape fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20wetlands" title=" urban wetlands"> urban wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20connectivity" title=" landscape connectivity"> landscape connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20metrics" title=" patch metrics"> patch metrics</a> </p> <a href="https://publications.waset.org/abstracts/82563/a-study-of-the-relationship-between-habitat-patch-metrics-and-landscape-connectivity-with-reference-to-colombo-wetlands-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> A Compact Ultra-Wide Band Antenna with C-Shaped Slot for WLAN Notching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Rasool">Maryam Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Munir"> Farhan Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Nawaz"> Fahad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Ahmad"> Saad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A patch antenna operating in the Ultra-Wide Band of frequency (3.1 GHz – 10.6 GHz) is designed with enhanced security from interference from other applications by incorporating the notching technique. Patch antennas in the Ultra-Wide Band are becoming widely famous due to their low power, light weight and high data rate capability. Micro strip patch antenna’s patch can be altered to increase its bandwidth and introduce UWB character in it. The designed antenna is a patch antenna consisting of a conductive sheet of metal mounted over a large sheet of metal called the ground plane with a substrate separating the two. Notched bands are public safety WLAN, WLAN and FSS. Different techniques used to implement the UWB antenna were individually implemented and there results were examined. V shaped patch was then chosen and modified to an arrow shaped patch to give the optimized results operating on the entire UWB region with considerable return loss. The frequency notch prevents the operation of the antenna at a particular range of frequency, hence minimizing interference from other systems. There are countless techniques for introducing the notch but we have used inverted C-shaped slots in the UWB patch to get the notch characteristics as output and also wavelength resonators to introduce notch in UWB band. The designed antenna is simulated in High Frequency Structural Simulator (HFSS) 13.0 by Ansoft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS" title="HFSS">HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=Notch" title=" Notch"> Notch</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB" title=" UWB"> UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a> </p> <a href="https://publications.waset.org/abstracts/66385/a-compact-ultra-wide-band-antenna-with-c-shaped-slot-for-wlan-notching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Miniaturized Wideband Single-Feed Shorted-Edge Stacked Patch Antenna for C-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelheq%20Boukarkar">Abdelheq Boukarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Guermoua"> Omar Guermoua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a miniaturized and wideband patch antenna for C-band applications. The antenna miniaturization is obtained by loading shorting vias along one patch edge. At the same time, the wideband performance is achieved by combining two resonances using one feed line. The measured results reveal that the antenna covers the frequency band 4.32 GHz to 6.52 GHz (41%) with a peak gain and a peak efficiency of 5.5 dBi and 87%, respectively. The antenna occupies a relatively small size of only 26 x 22 x 5.6 mm<sup>3</sup>, making it suitable for compact wireless devices requiring a stable unidirectional gain over a wide frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miniaturized%20antennas" title="miniaturized antennas">miniaturized antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20antennas" title=" patch antennas"> patch antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20gain" title=" stable gain"> stable gain</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20antennas" title=" wideband antennas"> wideband antennas</a> </p> <a href="https://publications.waset.org/abstracts/131057/miniaturized-wideband-single-feed-shorted-edge-stacked-patch-antenna-for-c-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Young%20Kim">Hyun Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung%20Kwang%20Lee"> Chung Kwang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Hee%20Cho">Han Hee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Woon%20Cho"> Sang Woon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seo%20Koo"> Yong Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESD" title="ESD">ESD</a>, <a href="https://publications.waset.org/abstracts/search?q=SCR" title=" SCR"> SCR</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20clamp" title=" power clamp"> power clamp</a> </p> <a href="https://publications.waset.org/abstracts/30148/scr-stacking-structure-with-high-holding-voltage-for-io-and-power-clamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Inam"> M. Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflect array antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflect array antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180 MHz to 200 MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10 GHz resonant frequency with a patch volume of 2.71 mm3 as compared to 3.47 mm3 required for rectangular patch without slot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20reflect%20array" title=" tunable reflect array"> tunable reflect array</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20tunability" title=" frequency tunability"> frequency tunability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20phase%20range" title=" dynamic phase range "> dynamic phase range </a> </p> <a href="https://publications.waset.org/abstracts/13628/design-of-liquid-crystal-based-tunable-reflectarray-antenna-using-slot-embedded-patch-element-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fortaki%20Tarek">Fortaki Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bedra"> S. Bedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20Tc%20superconducting%20microstrip%20patch" title="high Tc superconducting microstrip patch">high Tc superconducting microstrip patch</a>, <a href="https://publications.waset.org/abstracts/search?q=electric-magnetic%20anisotropic%20substrate" title=" electric-magnetic anisotropic substrate"> electric-magnetic anisotropic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20complex%20impedance%20with%20boundary%20conditions" title=" surface complex impedance with boundary conditions"> surface complex impedance with boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20patterns" title=" radiation patterns"> radiation patterns</a> </p> <a href="https://publications.waset.org/abstracts/50630/study-of-superconducting-patch-printed-on-electric-magnetic-substrates-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> The Minimum Patch Size Scale for Seagrass Canopy Restoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aina%20Barcelona">Aina Barcelona</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolyn%20Oldham"> Carolyn Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Colomer"> Jordi Colomer</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Serra"> Teresa Serra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The loss of seagrass meadows worldwide is being tackled by formulating coastal restoration strategies. Seagrass loss results in a network of vegetated patches which are barely interconnected, and consequently, the ecological services they provide may be highly compromised. Hence, there is a need to optimize coastal management efforts in order to implement successful restoration strategies, not only through modifying the architecture of the canopies but also by gathering together information on the hydrodynamic conditions of the seabeds. To obtain information on the hydrodynamics within the patches of vegetation, this study deals with the scale analysis of the minimum lengths of patch management strategies that can be effectively used on. To this aim, a set of laboratory experiments were conducted in a laboratory flume where the plant densities, patch lengths, and hydrodynamic conditions were varied to discern the vegetated patch lengths that can provide optimal ecosystem services for canopy development. Two possible patch behaviours based on the turbulent kinetic energy (TKE) production were determined: one where plants do not interact with the flow and the other where plants interact with waves and produce TKE. Furthermore, this study determines the minimum patch lengths that can provide successful management restoration. A canopy will produce TKE, depending on its density, the length of the vegetated patch, and the wave velocities. Therefore, a vegetated patch will produce plant-wave interaction under high wave velocities when it presents large lengths and high canopy densities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seagrass" title="seagrass">seagrass</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20patch%20size" title=" minimum patch size"> minimum patch size</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20kinetic%20energy" title=" turbulent kinetic energy"> turbulent kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20flow" title=" oscillatory flow"> oscillatory flow</a> </p> <a href="https://publications.waset.org/abstracts/136059/the-minimum-patch-size-scale-for-seagrass-canopy-restoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid%20M.%20Ali">Shahid M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakiullah"> Zakiullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20band" title="dual band">dual band</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=HFSS" title=" HFSS"> HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku%20band" title=" Ku band"> Ku band</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a> </p> <a href="https://publications.waset.org/abstracts/37730/the-design-and-analysis-of-a-novel-type-high-gain-microstrip-patch-antenna-system-for-the-satellite-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Zaid">Lakhdar Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Albane%20Sangiovanni"> Albane Sangiovanni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90&deg; phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20antenna" title="active antenna">active antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20diversity" title=" polarization diversity"> polarization diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20antenna" title=" patch antenna"> patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphase%20filter" title=" polyphase filter"> polyphase filter</a> </p> <a href="https://publications.waset.org/abstracts/59013/a-reconfigurable-microstrip-patch-antenna-with-polyphase-filter-for-polarization-diversity-and-cross-polarization-filtering-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Life Time Improvement of Clamp Structural by Using Fatigue Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pisut%20Boonkaew">Pisut Boonkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatuporn%20Thongsri"> Jatuporn Thongsri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clamp" title="clamp">clamp</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regressive%20analysis" title=" linear regressive analysis"> linear regressive analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20analysis" title=" fatigue analysis"> fatigue analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/77177/life-time-improvement-of-clamp-structural-by-using-fatigue-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar%20K.%20S.">Vinay Kumar K. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shravani%20V."> Shravani V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Spoorthi%20G."> Spoorthi G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Udith%20K.%20S."> Udith K. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20T.%20M."> Divya T. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkatesha%20M."> Venkatesha M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20HFSS" title="Ansys HFSS">Ansys HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=gain" title=" gain"> gain</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20loss" title=" return loss"> return loss</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20array" title=" slot array"> slot array</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=5G%20antenna" title=" 5G antenna"> 5G antenna</a> </p> <a href="https://publications.waset.org/abstracts/166157/design-modeling-and-analysis-of-22-microstrip-patch-antenna-array-system-for-5g-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Multiband Fractal Patch Antenna for Small Spacecraft of Earth Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beibit%20Karibayev">Beibit Karibayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Imanbayeva"> Akmaral Imanbayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Timur%20Namazbayev"> Timur Namazbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the small spacecraft (SSC) industry is experiencing a big boom in popularity. This is primarily due to ease of use, low cost and mobility. In addition, these programs can be implemented not only at the state level but also at the level of companies, universities and other organizations. For remote sensing of the Earth (ERS), small spacecraft with an orientation system is used. It is important to take into account here that a remote sensing device, for example, a camera for photographing the Earth's surface, must be directed at the Earth's surface. But this, at first glance, the limitation can be turned into an advantage using a patch antenna. This work proposed to use a patch antenna based on a unidirectional fractal in the SSC. The CST Microwave Studio software package was used for simulation and research. Copper (ε = 1.0) was chosen as the emitting element and reflector. The height of the substrate was 1.6 mm, the type of substrate material was FR-4 (ε = 4.3). The simulation was performed in the frequency range of 0 – 6 GHz. As a result of the research, a patch antenna based on fractal geometry was developed for ERS nanosatellites. The capabilities of these antennas are modeled and investigated. A method for calculating and modeling fractal geometry for patch antennas has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20remote%20sensing" title=" earth remote sensing"> earth remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20spacecraft" title=" small spacecraft"> small spacecraft</a> </p> <a href="https://publications.waset.org/abstracts/135034/multiband-fractal-patch-antenna-for-small-spacecraft-of-earth-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Navid%20Ghoreishi"> Seyed Mohammad Navid Ghoreishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto&rsquo;s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi%20objective%20optimization" title="multi objective optimization">multi objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto%20front" title=" pareto front"> pareto front</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20patch" title=" composite patch"> composite patch</a>, <a href="https://publications.waset.org/abstracts/search?q=cracked%20pipe" title=" cracked pipe"> cracked pipe</a> </p> <a href="https://publications.waset.org/abstracts/67559/optimal-design-of-composite-patch-for-a-cracked-pipe-by-utilizing-genetic-algorithm-and-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chejarla%20Raghunathababu">Chejarla Raghunathababu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Logashanmugam"> E. Logashanmugam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title=" microstrip patch antenna"> microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20material" title=" substrate material"> substrate material</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20material" title=" nanocomposite material"> nanocomposite material</a> </p> <a href="https://publications.waset.org/abstracts/177575/optimizing-rectangular-microstrip-antenna-performance-with-nanofiller-integration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Design of Circular Patch Antenna in Terahertz Band for Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulfi%20Bouchra">Moulfi Bouchra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferouani%20Souheyla"> Ferouani Souheyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziani%20Kerarti%20Djalal"> Ziani Kerarti Djalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Moulessehoul%20Wassila"> Moulessehoul Wassila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20patch%20antenna" title="circular patch antenna">circular patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=Terahertz%20transmission" title=" Terahertz transmission"> Terahertz transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=WBAN%20applications" title=" WBAN applications"> WBAN applications</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20monitoring" title=" real-time monitoring"> real-time monitoring</a> </p> <a href="https://publications.waset.org/abstracts/158335/design-of-circular-patch-antenna-in-terahertz-band-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zahra%20Moussa">Fatima Zahra Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Belhadef"> Yamina Belhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=Souheyla%20Ferouani"> Souheyla Ferouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patch%20antenna" title="patch antenna">patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=miniaturisation" title=" miniaturisation"> miniaturisation</a>, <a href="https://publications.waset.org/abstracts/search?q=CSRR" title=" CSRR"> CSRR</a>, <a href="https://publications.waset.org/abstracts/search?q=notches" title=" notches"> notches</a>, <a href="https://publications.waset.org/abstracts/search?q=wifi" title=" wifi"> wifi</a>, <a href="https://publications.waset.org/abstracts/search?q=DGS" title=" DGS"> DGS</a> </p> <a href="https://publications.waset.org/abstracts/158338/a-miniaturized-circular-patch-antenna-based-on-metamaterial-for-wi-fi-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Dual Band Shared Aperture Antenna for 5G Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zunnurain%20Ahmad">Zunnurain Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100μm). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20wave" title=" millimeter wave"> millimeter wave</a>, <a href="https://publications.waset.org/abstracts/search?q=5G" title=" 5G"> 5G</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a> </p> <a href="https://publications.waset.org/abstracts/184487/dual-band-shared-aperture-antenna-for-5g-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Unsteady Similarity Solution for a Slender Dry Patch in a Thin Newtonian Fluid Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Abas">S. S. Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Yatim"> Y. M. Yatim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the unsteady, slender, symmetric dry patch in an infinitely wide and thin liquid film of Newtonian fluid draining under gravity down an inclined plane in the presence of strong surface-tension effect is considered. A similarity transformation, named a travelling-wave similarity solution is used to reduce the governing partial differential equation into the ordinary differential equation which is then solved numerically using a shooting method. The introduction of surface-tension effect on the flow leads to a fourth-order ordinary differential equation. The solution obtained predicts that the dry patch has a quartic shape and the free surface has a capillary ridge near the contact line which decays in an oscillatory manner far from it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20patch" title="dry patch">dry patch</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid" title=" Newtonian fluid"> Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20solution" title=" similarity solution"> similarity solution</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-tension%20effect" title=" surface-tension effect"> surface-tension effect</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling-wave" title=" travelling-wave"> travelling-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20thin-film%20flow" title=" unsteady thin-film flow"> unsteady thin-film flow</a> </p> <a href="https://publications.waset.org/abstracts/10714/unsteady-similarity-solution-for-a-slender-dry-patch-in-a-thin-newtonian-fluid-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> A Low Profile Dual Polarized Slot Coupled Patch Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingde%20Du">Mingde Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Han"> Dong Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss &gt; 15 dB and pair ports isolation &gt;23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80&plusmn;3<sup>o</sup> in the horizontal plane and 39&plusmn;2<sup>o</sup> in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20polarized" title="dual polarized">dual polarized</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20antenna" title=" patch antenna"> patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20coupled" title=" slot coupled"> slot coupled</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20station%20antenna" title=" base station antenna"> base station antenna</a> </p> <a href="https://publications.waset.org/abstracts/80571/a-low-profile-dual-polarized-slot-coupled-patch-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> The Effect of Backing Layer on Adhesion Properties of Single Layer Ketoprofen Transdermal Drug Delivery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hamedanlou">Maryam Hamedanlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahla%20Hajializadeh"> Shahla Hajializadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transdermal drug delivery system is one of the types of novel drug delivery system that the drug is absorbed into the skin. The major considerations for designing and producing transdermal patch are small size, suitable drug release and good adhering. In this study, drug-in-adhesive transdermal patch contained non-steroidal anti-inflammatory ketoprofen is prepared. Also, the effect of non-woven fabric and plastic backing layers on adhesion properties is assessed. The results of the test, demonstrated the use of plastic backing layer increases tack and peel rather than non-woven fabric type. The balance tack with plastic backing layer patch is 6.7 (N/mm2), and the fabric one is 3.8 (N/mm2), and their peel is 9.2 (N/25mm) and 8.3 (N/25mm) by arrangement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transdermal%20drug%20delivery%20system" title="transdermal drug delivery system">transdermal drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20layer%20patch%20of%20ketoprofen" title=" single layer patch of ketoprofen"> single layer patch of ketoprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20layer" title=" plastic layer"> plastic layer</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20backing%20layer" title=" fabric backing layer"> fabric backing layer</a> </p> <a href="https://publications.waset.org/abstracts/55471/the-effect-of-backing-layer-on-adhesion-properties-of-single-layer-ketoprofen-transdermal-drug-delivery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=patch%20clamp&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10