CINXE.COM
Search results for: dried
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dried</title> <meta name="description" content="Search results for: dried"> <meta name="keywords" content="dried"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dried" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dried"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 579</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dried</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Rural Community Knowledge, Attitude and Perceptions of Consuming Dried Vegetables in Central Region of Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radegunda%20Kessy">Radegunda Kessy</a>, <a href="https://publications.waset.org/abstracts/search?q=Justus%20Ochieng"> Justus Ochieng</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Afari-Sefa"> Victor Afari-Sefa</a>, <a href="https://publications.waset.org/abstracts/search?q=Takemore%20Chagomoka"> Takemore Chagomoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoni%20Nenguwo"> Ngoni Nenguwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetables are excellent sources of dietary fiber, vitamins, and minerals which constitute an indispensable constituent of diets, but in Tanzania and other Sub-Saharan African countries, they are not readily available all year round due to seasonal variations in the production cycle. Drying of vegetables is one of the traditional methods for food preservation known to man. The Dodoma and Singida regions of Tanzania are characterized by semi-arid agro-climate, thereby experiencing short seasonal supply of fresh vegetables followed by long drought in which dried vegetables become an alternative to meet high household demands. A primary survey of 244 of rural consumers was carried out to understand how knowledge, attitudes, and perceptions of rural consumers affect consumption of dried vegetables. The sample respondents were all found to be aware of open sun drying of vegetables while less than 50% of them were aware of solar-dried vegetables. Consumers were highly concerned with the hygiene, nutritional values, taste, drying method, freshness, color of dried vegetables, timely availability and easiness of cooking as important factors they consider before they purchase dried vegetables. Logit model results show that gender, income, years of consuming dried vegetables, awareness of the importance of solar dried vegetables vis-à-vis sun-dried alternatives and employment status influenced rural consumer’s decision to purchase dried vegetables. Preference on dried vegetables differs across the regions which are also important considerations for any future planned interventions. The findings imply that development partners and policymakers need to design better social marketing and promotion techniques for the enhanced adoption of solar drying technology, which will greatly improve the quality and utilization of dried vegetables by target households. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dried%20vegetables" title="dried vegetables">dried vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20management" title=" postharvest management"> postharvest management</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20drying" title=" solar drying"> solar drying</a> </p> <a href="https://publications.waset.org/abstracts/86396/rural-community-knowledge-attitude-and-perceptions-of-consuming-dried-vegetables-in-central-region-of-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Dried Venison Quality Parameters Changes during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laima%20Silina">Laima Silina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Gramatina"> Ilze Gramatina</a>, <a href="https://publications.waset.org/abstracts/search?q=Liga%20Skudra"> Liga Skudra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatjana%20Rakcejeva"> Tatjana Rakcejeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the current research was to determine quality parameters changes of dried venison during storage. Protein, fat and moisture content dynamics as well microbiological quality was analyzed. For the experiments the meat (0.02×4.00×7.00 cm) pieces were marinated in “teriyaki sauce” marinade (composition: teriyaki sauce, sweet and sour sauce, taco sauce, soy sauce, American BBQ sauce hickory, sesame oil, garlic, garlic salt, tabasco red pepper sauce) at 4±2°C temperature for 48±1h. Sodium monophosphate (E339) was also added in part of marinade to improve the meat textural properties. After marinating, meat samples were dried in microwave-vacuum drier MUSSON–1, packaged in vacuum pouches made from polymer film (PA/PE) with barrier properties and storage for 4 months at 18±1°C temperature in dark place. Dried venison samples were analyzed after 0, 35, 91 and 112 days of storage. During the storage total plate counts of dried venison samples significantly (p<0.05) increased. No significant differences in the content of protein, fat and moisture were detected when analyzing dried meat samples during storage and comparing them with the chemical parameters of just dried meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-vacuum%20drier" title=" microwave-vacuum drier"> microwave-vacuum drier</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=venison" title=" venison"> venison</a> </p> <a href="https://publications.waset.org/abstracts/11850/dried-venison-quality-parameters-changes-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Assessing Storage of Stability and Mercury Reduction of Freeze-Dried Pseudomonas putida within Different Types of Lyoprotectant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Azoddein">A. A. M. Azoddein</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Nuratri"> Y. Nuratri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bustary"> A. B. Bustary</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20M.%20Azli"> F. A. M. Azli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Sayuti"> S. C. Sayuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Pseudomonas putida</em> is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried <em>P. putida </em>allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry <em>P. putida </em>cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried <em>P. putida </em>obtained was then mixed with synthetic mercury. Viability of recovery <em>P. putida</em> after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage in 4oC without vacuum. Polyethylene glycol (PEG) pre-treated freeze dry cells and broth pre-treated freeze dry cells after freeze-dry recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried <em>P. putida</em> cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth <em>P. putida</em> but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried <em>P. putida</em> cells to recover before introduce freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 56.78% and 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks were 26.35% and 25.03%. Freeze dried <em>P. putida</em> was found to have lower mercury reduction compare to the fresh <em>P. putida</em> that has been growth in agar. Result from this study may be beneficial and useful as initial reference before commercialize freeze-dried <em>P. putida</em>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20putida" title="Pseudomonas putida">Pseudomonas putida</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-dry" title=" freeze-dry"> freeze-dry</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a>, <a href="https://publications.waset.org/abstracts/search?q=tween80%2FSucrose" title=" tween80/Sucrose"> tween80/Sucrose</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a> </p> <a href="https://publications.waset.org/abstracts/38542/assessing-storage-of-stability-and-mercury-reduction-of-freeze-dried-pseudomonas-putida-within-different-types-of-lyoprotectant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> The Effect of Ultrasound Pretreatment on Bioactive Compounds of Freeze-Dried Carrots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although drying is one of the most prevalent techniques applied to enhance food stability, it is a complicated method covering simultaneous coupled heat and mass transfer phenomena and the theoretical application of these phenomena to food products becomes challenging because of the complex structure and to the physical and chemical changes that happen at drying. Pretreatment of materials before drying has been shown to be effective in solving drying problems such as long drying times and poor product quality. The study was conducted to examine the effect of ultrasound (US) pre-treatment on physical and chemical/nutritional attributes of freeze-dried carrot slices. The carrots were washed, hand-peeled, and cut with dimensions of 1 cm (L) x 0.2 (W) cm x 1 cm (H). The carrot samples were treated in an ultrasonic bath in two different times, which were 15 and 30 minutes. Untreated and ultrasound pre-treated carrot samples were dried in a freeze dryer. Freeze-dried samples were analyzed in terms of bioactive compounds, including total phenols, ascorbic acid, and antioxidant capacity. Significant differences were found among dried carrot samples with and without ultrasound. The freeze-dried carrot slices treated with a US (especially 30 minutes - treatment) showed higher preservation of bioactive compounds. In overall, US pretreatment is a promising process, as demonstrated in current research by its capability to better retain freeze-dried carrot quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot" title=" carrot"> carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-pretreatment" title=" ultrasound-pretreatment"> ultrasound-pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/110034/the-effect-of-ultrasound-pretreatment-on-bioactive-compounds-of-freeze-dried-carrots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Development of a Passive Solar Tomato Dryer with Movable Heat Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacob%20T.%20Liberty">Jacob T. Liberty</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfred%20I.%20Okonkwo"> Wilfred I. Okonkwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study designed and constructed a post-harvest passive solar tomato dryer of dimension 176 x 152 x 54cm for drying tomato. Quality of the dried crop was evaluated and compared with the fresh ones. The solar dryer consist of solar collector (air heater), 110 x 61 x 10 x 10cm, the drying chamber, 102 x54cm, removal heat storage unit, 40 x 35 x 13cm and drying trays, 43 x 42cm. The physicochemical properties of this crop were evaluated before and after drying. Physicochemical properties evaluated includes moisture, protein, fat, fibre, ash, carbohydrate and vitamin C, contents. The fresh, open and solar dried samples were analysed for their proximate composition using the recommended method of AOAC. Also, statistical analysis of the data was conducted using analysis of variance (ANOVA) using completely Randomize Design (CRD) and means were separated by Duncan’s New Multiple Range test (DNMRT). Proximate analysis showed that solar dried tomato had significantly (P < 0.05) higher protein, fibre, ash, carbohydrate and vitamin C except for the fat content that was significantly (P < 0.05) higher for all the open sun dried samples than the solar dried and fresh product. The nutrient which is highly affected by sun drying is vitamin C. Result indicates that moisture loss in solar dried tomato was faster and lower than the open dried samples and as such makes the solar dried products of lesser tendency to mould and bacterial growth. Also, the open sun dried samples had to be carried into the sheltered place each time it rained. The solar dried produce is of high quality. Further processing of the dried crops will involve packaging for commercial purposes. This will also help in making these agricultural product available in a relatively cheap price in off season and also avert micronutrient deficiencies in diet especially among the low-income groups in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20solar%20dryer" title=" passive solar dryer"> passive solar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20heat%20storage" title=" removal heat storage"> removal heat storage</a> </p> <a href="https://publications.waset.org/abstracts/48399/development-of-a-passive-solar-tomato-dryer-with-movable-heat-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Banda">James Banda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jupiter%20Simbeye"> Jupiter Simbeye</a>, <a href="https://publications.waset.org/abstracts/search?q=Essau%20Chisale"> Essau Chisale</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Kanyerere"> Geoffrey Kanyerere</a>, <a href="https://publications.waset.org/abstracts/search?q=Kings%20Kamtambe"> Kings Kamtambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diplotaxodon" title="diplotaxodon">diplotaxodon</a>, <a href="https://publications.waset.org/abstracts/search?q=Malawi" title=" Malawi"> Malawi</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20sun%20drying" title=" open sun drying"> open sun drying</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tent%20drying" title=" solar tent drying"> solar tent drying</a> </p> <a href="https://publications.waset.org/abstracts/53029/quality-analysis-of-lake-malawis-diplotaxodon-fish-species-processed-in-solar-tent-dryer-versus-open-sun-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Microwave Assisted Foam-Mat Drying of Guava Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ovais%20S.%20Qadri">Ovais S. Qadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam%20mat%20drying" title="foam mat drying">foam mat drying</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20mat%20guava" title=" foam mat guava"> foam mat guava</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20powder" title=" guava powder"> guava powder</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying "> microwave drying </a> </p> <a href="https://publications.waset.org/abstracts/26184/microwave-assisted-foam-mat-drying-of-guava-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Quality Characteristics of Cured Dried Camel Meat Formulated with Different Medicinal Plants as Natural Preservatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Aljabeili">H. S. Aljabeili</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Abd%20El-Hady"> E. A. Abd El-Hady</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Abd%20El-Razik"> M. M. Abd El-Razik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abd%20Elgadir"> M. Abd Elgadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is determining the quality characteristics of produced curing and dried camel meat contained some medicinal plants of thyme, rosemary, clove and ginger as natural preservatives. Camel meat samples were sliced and divided into five batches, one batch recorded as control sample was treated by the curing mixture (2.5%) contained the following ingredients: black pepper 1 gm, cumin 0.4 gm, spices mixture 0.5 gm, dried onion 3 gm, dried garlic 0.5 gm and salt 2 gm. To evaluate the effect of different natural preservatives sources of thyme, rosemary, clove and ginger, 3.0% of the aforementioned natural preservatives was mixed with the aforementioned curing mixture and used for curing the four batches of sliced camel meat. After curing process, cured sliced camel meat (control and treated with the natural preservatives) were conducting to drying process at 35 ± 3 °C for 36 h in a drying cabinet. The quality characteristics of prepared dried camel meat were evaluated such as chemical composition, microbiological characteristics and sensory characteristics. Based on the microbiological and sensory characteristics, it could be suggested that the selected medicinal plants specially thyme and rosemary could be used as natural preservatives for preparing semi dry camel meat without negative effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing" title="curing">curing</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20camel%20meat" title=" dried camel meat"> dried camel meat</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20preservatives" title=" natural preservatives"> natural preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20characteristics" title=" quality characteristics"> quality characteristics</a> </p> <a href="https://publications.waset.org/abstracts/100124/quality-characteristics-of-cured-dried-camel-meat-formulated-with-different-medicinal-plants-as-natural-preservatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Experimental Study on Drying Parameters of Freeze Drying Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Sui%C3%A7mez">Ali Osman Suiçmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Deniz"> Emrah Deniz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, control experiments were made on a freeze drying system of which were built a prototype. In experiments, apple slices in different geometrical shapes were dried and drying curves were gained. Then, the shapes which were the fastest for drying were determined. Twenty samples for each apple shapes were put in the prototype and dried. After the experiments, the humidity ratio of the samples and water activity values of the samples have been obtained. Obtained results show that the prototype is working and by comparing the results the shape which dried fastest was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title="freeze drying">freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20process" title=" drying process"> drying process</a>, <a href="https://publications.waset.org/abstracts/search?q=apple" title=" apple"> apple</a> </p> <a href="https://publications.waset.org/abstracts/61882/experimental-study-on-drying-parameters-of-freeze-drying-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Effect of Pretreatment and Drying Method on Selected Quality Parameters of Dried Bell Pepper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toyosi%20Yewande%20Tunde-Akintunde">Toyosi Yewande Tunde-Akintunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Oluwatoyin%20Ogunlakin"> Grace Oluwatoyin Ogunlakin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bosede%20Folake%20Olanipekun"> Bosede Folake Olanipekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peppers are excellent sources of nutrients but its high moisture content makes it susceptible to spoilage. Drying, a common processing method, results in a reduction of these nutrients in the final product. Pre-treatment of pepper before drying can be used to reduce the level of degradation of nutrients. Thus this study investigated the effect of pre-treatment (hot water blanching and soaking in brine-sodium chloride) and drying methods (oven, microwave and sun) on selected quality parameters (proximate composition, capsaicin, reducing sugar and phenolic content, pH, total solid (TS), Titratable acidity (TA), water absorption capacity (WAC) and colour) of pepper. The protein and moisture content value ranged from 9.09 to 10.23% and 5.63 to 8.48% respectively. Sun dried samples had the highest value while oven dried samples had the lowest. Brine treated samples had higher protein but lower moisture content than blanched samples. Capsaicin, reducing sugar and phenolic content values ranged from 0.68 to 0.87 mg/dm3; 3.18 to 3.79 µg/ml; and 40.67 to 84.01 mg GAE/100 g d.m respectively. The sun dried samples had higher values while the lowest values were from microwave dried samples. The brine treated samples had higher values in capsaicin while the blanched samples had higher reducing sugar and phenolic contents. The values of L, a* and b* for the dried pepper varied from 58.76 to 63.13; 7.09 to 7.34; and 11.79 to 12.36 respectively. Oven dried samples had the lowest values for a*, while its L values were the highest. The L and a* values for brine treated samples were higher than blanched samples. The pre-treatment and drying method considered resulted in different values of the quality parameters considered which indicates that drying and pre-treatment has an effect on the quality of the final dried pepper samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bell%20pepper" title="Bell pepper">Bell pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying"> microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20drying" title=" oven drying"> oven drying</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a> </p> <a href="https://publications.waset.org/abstracts/28237/effect-of-pretreatment-and-drying-method-on-selected-quality-parameters-of-dried-bell-pepper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Thermal Degradation Kinetics of Field-Dried and Pelletized Switchgrass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20E.%20Supan">Karen E. Supan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal degradation kinetics of switchgrass (Panicum virgatum) from the field, as well as in a pellet form, are presented. Thermogravimetric analysis tests were performed at heating rates of 10-40 K min⁻¹ in an inert atmosphere. The activation energy and the pre-exponential factor were calculated using the Ozawa/Flynn/Wall method as suggested by the ASTM Standard Test Method for Decomposition Kinetics by Thermogravimetry. Four stages were seen in the degradation: dehydration, active pyrolysis of hemicellulose, active pyrolysis of cellulose, and passive pyrolysis. The derivative mass loss peak for active pyrolysis of cellulose in the field-dried sample was much higher than the pelletized. The range of activation energy in the 0.15 – 0.70 conversion interval was 191 – 242 kJ mol⁻¹ for the field-dried and 130-192 kJ mol⁻¹ for the pellets. The highest activation energies were achieved at 0.50 conversion and were 242 kJ mol⁻¹ and 192 kJ mol⁻¹ for the field-dried and pellets, respectively. The thermal degradation and activation energies were comparable to switchgrass and other biomass reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=switchgrass" title=" switchgrass"> switchgrass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/152009/thermal-degradation-kinetics-of-field-dried-and-pelletized-switchgrass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Effects of Drying Temperatures on the Qualitative and Quantitative Phytochemicals of Aqueous Extracts If the Calyces of Hibiscus Sabdariffa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20O.%20Efosa">John O. Efosa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Egielewa"> S. Egielewa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Azeke"> M. A. Azeke </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hibiscus sabdariffa (Hs) is known for its delicacy and also for medicinal properties. The flower calyces are usually sun- or oven-dried after harvesting. There are unverified claims that calyces dried at lower temperatures have better medicinal potentials than those dried at higher temperatures. The present work, therefore, aimed to study the effects of drying temperatures on the photochemical composition and antioxidant potential of aqueous extracts of the calyces of Hs. The calyces were dried at different temperatures (freeze-drying at -580C, drying at 300C, 400C, and 500 C.) respectively to constant weight. Samples (25 g) of dried calyces from each drying temperatures were weighed and placed in clean conical flasks and extracted; each was used for the analysis. Validated analytical assays were used for the determination of the different Phytochemicals. From the results obtained, it was observed that drying at 30°C resulted in the highest retention of total phenols, total flavonoids, tannins, alkaloids and saponins. Using the Inhibition Concentration values (IC50), some antioxidant parameters were found to follow the same trend as the earlier mentioned phytochemicals. Drying at 30°C resulted in the highest retention of DPPH Radical Scavenging Activity, Ferric Reducing Antioxidant Potential (FRAP), Nitrite radical scavenging Activity, 2, 2-azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) radical scavenging activity There were, however, significant reductions in vitamin C and oxalate contents as the drying temperature increased (P < 0.05). From the results, it recommended that the calyces of Hibiscus sabdariffa be dried at 30°C in order to optimally elicit its medicinal potentials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20temperature" title=" drying temperature"> drying temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=hibiscus%20sabdariffa" title=" hibiscus sabdariffa"> hibiscus sabdariffa</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative" title=" quantitative"> quantitative</a> </p> <a href="https://publications.waset.org/abstracts/134216/effects-of-drying-temperatures-on-the-qualitative-and-quantitative-phytochemicals-of-aqueous-extracts-if-the-calyces-of-hibiscus-sabdariffa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Antioxidant Property of Honey with Dried Cherry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasna%20M.%20%C4%8Canadanovi%C4%87-Brunet">Jasna M. Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20S.%20%C4%86etkovi%C4%87"> Gordana S. Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20J.%20Vuli%C4%87"> Jelena J. Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20M.%20Djilas"> Sonja M. Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20T.%20Tumbas%20%C5%A0aponjac"> Vesna T. Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sladjana%20M.%20Staj%C4%8Di%C4%87"> Sladjana M. Stajčić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Honey serves as a source of natural antioxidants, which are effective in reducing the risk of heart disease, cancer, immune-system decline, cataracts, different inflammatory processes, and also prevent deteriorative oxidation reactions in foods such as enzymatic browning of fruit and vegetables. Honey is a natural saturated sugar solution, but it also contains certain minor constituents, proteins, enzymes, amino and organic acids, lipids, vitamins, phenolic acids, flavonoids and carotenoids. It is consumed in its natural form alone, but also in combination with nuts and various kinds of dried fruits. The aim of this research was to investigate the contribution of dried cherry on phenols (TPh) and flavonoids (Fl) contents and antioxidant activities of honey. Phenolic compounds in Serbian polyfloral (PH), linden (LH) and acacia (AH) honey and also in their mixtures with dried cherry, in 40% mass concentrations (PH40; LH40, AH40), were determined. In comparison to honey, TPh increased 2.25 times for LH40, 2.16 times for AH40 and 1.45 times for PH40, while Fl increased 2.81-fold for PH40, 1.21-fold for LH40 and 1.44-fold for AH40. Antioxidant activity was investigated with two assays, DPPH test and reducing power (RP), and expressed as EC50DPPH and RP0.5 values. The EC50DPPH values were: EC50PH40 = 1.16 mg/ml; EC50LH40= 1.42 mg/ml and EC50AH40= 1.69 mg/ml, while RP0.5 were: RP0.5PH40 = 15.05 mg/ml; RP0.5LH40 = 16.09 mg/ml and P0.5AH40 = 17.60 mg/ml. Our results indicate that supplementation of polyfloral, linden and acacia honey with 40% dried cherry improves antioxidant activity of honey by enriching the phenolic composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20cherry" title=" dried cherry"> dried cherry</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a> </p> <a href="https://publications.waset.org/abstracts/40792/antioxidant-property-of-honey-with-dried-cherry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Sadeghi">Reza Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20assay" title="colorimetric assay">colorimetric assay</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=Oryzaephilus%20mercator" title=" Oryzaephilus mercator"> Oryzaephilus mercator</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a> </p> <a href="https://publications.waset.org/abstracts/170388/efficacy-of-microwave-against-oryzaephilus-mercator-pest-infesting-dried-figs-and-evaluation-of-the-product-color-changes-using-an-image-processing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lekhavat">S. Lekhavat</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kajsongkram"> T. Kajsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sang-han"> S. Sang-han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a> </p> <a href="https://publications.waset.org/abstracts/53148/effect-of-ethanol-concentration-and-enzyme-pre-treatment-on-bioactive-compounds-from-ginger-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Phenolic Composition and Antioxidant Property of Honey with Dried Apricots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet">Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87"> Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Djilas"> Sonja Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas-%C5%A0aponjac"> Vesna Tumbas-Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87">Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sladjana%20Staj%C4%8Di%C4%87"> Sladjana Stajčić </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Honey, produced by the honeybee, is a natural saturated sugar solution, which is mainly composed of a complex mixture of carbohydrates. Besides this, it also contains certain minor constituents, proteins, enzymes, amino and organic acids, lipids, vitamins, phenolic acids, flavonoids and carotenoids. Honey serves as a source of natural antioxidants, which are effective in reducing the risk of heart disease, cancer, immune-system decline, cataracts, and different inflammatory processes. Honey is consumed in its natural form alone, but also in combination with nuts and various kinds of dried fruits (plums, figs, cranberries, apricots etc.). The aim of this research was to investigate the contribution of dried apricot addition to polyphenols and flavonoids contents and antioxidant activities of honey. Some individual phenolic compounds in Serbian polyfloral honey (PH), linden honey (LH) and also in their mixtures with dried apricot, in 40% mass concentrations (PH40; LH40), were identified and quantified by HPLC. The most dominant phenolic compound was: gallic acid in LH (11.14 mg/100g), LH40 (42.65 mg/100g), PH (7.24 mg/100g) and catehin in PH40 (11.83 mg/100g). The antioxidant activity of PH, LH, PH40 and LH40 was tested by measuring their ability to scavenge hydroxyl radicals (OH) by electron spin resonance spectroscopy (ESR). Honey samples with 40% dried apricot exhibited better antioxidant activity measured by hydroxyl radical scavenging activity. The EC50 values, the amount of antioxidant necessary to decrease the initial concentration of OH radicals by 50%, were: EC50PH=3.36 mg/ml, EC50LH=13.36 mg/ml, EC50PH40=2.29 mg/ml, EC50 LH40=7.78 mg/ml. Our results indicate that supplementation of polyfloral honey and linden honey with dried apricots improves antioxidant activity of honey by enriching the phenolic composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20apricot" title=" dried apricot"> dried apricot</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyl%20radical" title=" hydroxyl radical"> hydroxyl radical</a> </p> <a href="https://publications.waset.org/abstracts/4891/phenolic-composition-and-antioxidant-property-of-honey-with-dried-apricots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Impact of Microwave Heating Temperatures on the Pharmaceutical Powder Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Al-Ali">Maha Al-Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvakannan%20Periasamy"> Selvakannan Periasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajarathinam%20Parthasarathy"> Rajarathinam Parthasarathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying temperature is an important factor impacting the physicochemical properties of the dried materials, particularly the pharmaceutical powders. Drying of pharmaceuticals by using microwave radiation is very limited, and the available information about the interaction between the electromagnetic radiations and the pharmaceutical material is still scarce. Therefore, microwave drying process is employed in this work to dry the wet (moisturised) granules of the formulated naproxen-sodium drug. This study aims to investigate the influences of the microwave radiation temperatures on the moisture removal, the crystalline structure, the size and morphology of the dried naproxen-sodium particles, and identify any potential changes in the chemical groups of the drug. In this work, newly formulated naproxen-sodium is prepared and moisturized by wet granulation process and hence dried by using microwave radiation at different temperatures. Moisture analyzer, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscope are used to characterise the non-moisturised powder (reference powder), the moisturised granules, and the dried particles. The results show that microwave drying of naproxen-sodium at high drying temperature is more efficient than that at low temperatures in terms of the moisture removal. Although there is no significant change in the chemical structure of the dried particles, the particle size, crystallinity and morphology are relatively changed with changing of heating temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating%20temperature" title="heating temperature">heating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying"> microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=naproxen-sodium" title=" naproxen-sodium"> naproxen-sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a> </p> <a href="https://publications.waset.org/abstracts/84916/impact-of-microwave-heating-temperatures-on-the-pharmaceutical-powder-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Comparison Conventional with Microwave-Assisted Drying Method on the Physicochemical Characteristics of Rice Bran Noodle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Chun%20Huang">Chien-Chun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-U%20Chiou"> Yi-U Chiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiun-C.R.%20Wang"> Chiun-C.R. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For longer shelf life of noodles, air-dried method is the traditional way for the noodle preparation. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted air driers and many agricultural products were dried successfully. There are few researches about the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional and microwave-assisted drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no characteristic of noodle was appeared on the surface of noodles preparing by low power (0.5 KW) microwave facility. The optimum cooking time of noodles was decreased as higher power microwave or higher proportion of rice bran was incorporated into noodles preparation. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased, with the increases of rice bran proportion. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and acceptable quality of cooked noodles as compared to conventional dried noodles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20drying%20method" title="microwave-assisted drying method">microwave-assisted drying method</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20characteristics" title=" physicochemical characteristics"> physicochemical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20noodles" title=" rice bran noodles"> rice bran noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/24750/comparison-conventional-with-microwave-assisted-drying-method-on-the-physicochemical-characteristics-of-rice-bran-noodle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzan-Chain%20Lee">Tzan-Chain Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light-harvesting%20complex" title="light-harvesting complex">light-harvesting complex</a>, <a href="https://publications.waset.org/abstracts/search?q=pigment%E2%80%93protein%20complexes" title=" pigment–protein complexes"> pigment–protein complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20cotyledon" title=" soybean cotyledon"> soybean cotyledon</a>, <a href="https://publications.waset.org/abstracts/search?q=grana%20development" title=" grana development"> grana development</a> </p> <a href="https://publications.waset.org/abstracts/128332/reversibility-of-photosynthetic-activity-and-pigment-protein-complexes-expression-during-seed-development-of-soybean-and-black-soybean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Effect of Convective Dryness Combined with Osmotic Dehydration, Blanching, Microwave and Ultrasonic Treatment on Bioactive Compounds and Rehydration Capacity of Dried Plums</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Corina%20Popescu">Elena Corina Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20Gabriela%20Bratu"> Magda Gabriela Bratu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing interest in keeping bioactive compounds (anthocyanins, vitamin C) and dried fruit quality has motivated the researchers to investigate new combined drying technologies. The aim of this study was to evaluate the effects of convective dryness combined with osmotic dehydration, blanching, microwave treatment and ultrasonic treatment on the quality of dried plums. Osmotic dehydration was achieved by maintaining plums for 1 h in sucrose solution (300Brix). For microwave treatment, the plums were kept at 400 W for 80 sec. For ultrasonic treatment, plums were immersed in distilled water and sonicated for 30 minutes at 40 kHz and 200 W. The blanching consists of immersing plums in hot water at 90°C for 20 seconds and cooling them rapidly. Conventional drying was carried out at 70°C for 630 minutes. Drying curves, drying rate, anthocyanin and vitamin C stability, acidity variation (expressed as malic acid), reducing sugar content, and rehydration capacity of dried plums were analyzed. Blanching led to the largest amount of evaporated water. Blanched plums have had 13.36% less water than sonicated ones. The lowest anthocyanal loss of 34.5% was obtained in osmotically dehydrated plums, and 2.93% vitamin C is found in the plums sonicated. There were no significant differences in regards acidity and reducing sugar. The plums blanched before drying have had a high capacity of rehydration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20plums" title=" dried plums"> dried plums</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatments" title=" pretreatments"> pretreatments</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a> </p> <a href="https://publications.waset.org/abstracts/83359/effect-of-convective-dryness-combined-with-osmotic-dehydration-blanching-microwave-and-ultrasonic-treatment-on-bioactive-compounds-and-rehydration-capacity-of-dried-plums" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Study of White Salted Noodles Air Dehydration Assisted by Microwave as Compared to Conventional Air Dried Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiun-C.%20R.%20Wang">Chiun-C. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Yu%20Chiu"> I-Yu Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying is the most difficult and critical step to control in the dried salted noodles production. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method for the noodle preparation. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted and conventional air driers and many agricultural products were dried successfully. There is very few research associated with the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional air and microwave-assisted air drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, and sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no significant difference of noodle was appeared on the surface of noodles between low power (0.5 KW) microwave-assisted salted noodles and control set. The optimum cooking time of noodles was decreased as higher power microwave was applied or higher proportion of rice bran was incorporated in the preparation of salted noodles. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. Meanwhile, the higher power of microwave-assisted air dried noodles indicated the larger air cell inside the noodles and appeared little burnt stripe on the surface of noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and overall acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased with the increases of rice bran proportion in the salted noodles. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and more acceptable quality of cooked noodles as compared to conventional dried noodles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=white%20salted%20noodles" title="white salted noodles">white salted noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-assisted%20air%20drying%20processing" title=" microwave-assisted air drying processing"> microwave-assisted air drying processing</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20yield" title=" cooking yield"> cooking yield</a>, <a href="https://publications.waset.org/abstracts/search?q=appearance" title=" appearance"> appearance</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20profiles" title=" texture profiles"> texture profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electrical%20microscopy" title=" scanning electrical microscopy"> scanning electrical microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/32972/study-of-white-salted-noodles-air-dehydration-assisted-by-microwave-as-compared-to-conventional-air-dried-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> The Effect of Ultrasound as Pre-Treatment for Drying of Red Delicious and Golden Delicious Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying (dehydration) is the process of removing water from food in order to preserve the food and an alternative to reduce post-harvest loss of fruits. Different pre-treatment methods have been developed for fruit drying, such as ultrasound. If no pre-treatment is done, the fruits will continue to darken after they are dried. However, the effects of ultrasound as pre-treatment on drying of apples has not been well documented. This study was undertaken to investigate the effect of ultrasound as pre-treatment before oven drying of red delicious and golden delicious apples. Red delicious and golden delicious apples were dried in different temperatures. Before performing drying experiments in an oven at 50, 75 and 100 °C, ultrasound as pretreatment was applied in 5, 10, and 15 minutes. Colors of the dried apples were measured with a Minolta Chroma Meter CR-300 (Minolta Camera Co. Ltd., Osaka, Japan) by directly holding the device vertically to the surface of the samples. Content of total phenols was determined spectrophotometrically with the FolinCiocalteau assay, and the antioxidant capacity was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The samples (both red delicious and golden delicious apples) with longer ultrasound treatment produced higher weight loss due to the changes in tissue structure. However less phenolic content and antioxidant capacity were observed for the samples with longer ultrasound pre-treatment. The highest total phenolic content (TPC) was determined in dried apples at 75 °C with 5 minutes pre-treatment ultrasound and the lowest TPC was determined in dried apples at 50 °C with 15 minutes pre-treatment ultrasound which was subjected to the longest ultrasound pre-treatment and drying. The combination of 5 min of ultrasound pre-treatment and 75 °C of oven-drying showed to be the best combination for an energy efficient process. This combination exhibited good antioxidant properties as well. The present study clearly demonstrated that applying ultrasound as pre-treatment for drying of apples is an effective process in terms of quality of dried products, time, and energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=golden%20delicious%20apples" title="golden delicious apples">golden delicious apples</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20delicious%20apples" title=" red delicious apples"> red delicious apples</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultrasound" title=" Ultrasound"> Ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/88399/the-effect-of-ultrasound-as-pre-treatment-for-drying-of-red-delicious-and-golden-delicious-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Comparative Study on Sensory Profiles of Liquor from Different Dried Cocoa Beans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Bariah%20Sulaiman">Khairul Bariah Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tajul%20Aris%20Yang"> Tajul Aris Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaysian dried cocoa beans have been reported to have low quality flavour and are often sold at discounted prices. Various efforts have been made to improve the Malaysian beans quality. Among these efforts is introduction of the shallow box fermentation technique and pulp preconditioned through pods storage. However, after nearly four decades of the effort was done, Malaysian cocoa farmers still received lower prices for their beans. So, this study was carried out in order to assess the flavour quality of dried cocoa beans produced by shallow box fermentation techniques, combination of shallow box fermentation with pods storage and compared to dried cocoa beans obtained from Ghana. A total of eight samples of dried cocoa was used in this study, which one of the samples was Ghanaian beans (coded with no.8), while the rest were Malaysian cocoa beans with different post-harvest processing (coded with no. 1, 2, 3, 4, 5, 6 and 7). Cocoa liquor was prepared from all samples in the prescribed techniques and sensory evaluation was carried out using Quantitative Descriptive Analysis (QDA) Method with 0-10 scale by Malaysian Cocoa Board trained panelist. Sensory evaluation showed that cocoa attributes for all cocoa liquors ranging from 3.5 to 5.3, whereas bitterness was ranging from 3.4 to 4.6 and astringent attribute ranging from 3.9 to 5.5, respectively. Meanwhile, all cocoa liquors were having acid or sourness attribute ranging from 1.6 to 3.6, respectively. In general cocoa liquor prepared from sample coded no 4 has almost similar flavour profile and no significantly different at p < 0.05 with Ghana, in term of most flavour attributes as compared to the other six samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa%20beans" title="cocoa beans">cocoa beans</a>, <a href="https://publications.waset.org/abstracts/search?q=flavour" title=" flavour"> flavour</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20box" title=" shallow box"> shallow box</a>, <a href="https://publications.waset.org/abstracts/search?q=pods%20storage" title=" pods storage"> pods storage</a> </p> <a href="https://publications.waset.org/abstracts/34896/comparative-study-on-sensory-profiles-of-liquor-from-different-dried-cocoa-beans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Preservation of High Quality Fruit Products: Microwave Freeze Drying as a Substitute for the Conventional Freeze Drying Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabine%20Ambros">Sabine Ambros</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Kulozik"> Ulrich Kulozik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Berries such as blue- and raspberries belong to the most valuable fruits. To preserve the characteristic flavor and the high contents of vitamins and anthocyanins, the very sensitive berries are usually dried by lyophilization. As this method is very time- and energy-consuming, the dried fruit is extremely expensive. However, healthy snack foods are growing in popularity. Especially dried fruit free of any additives or additional sugar are more and more asked for. To make these products affordable, the fruits have to be dried by a method that is more energy-efficient than freeze drying but reveals the same high product quality. The additional insertion of microwaves to a freeze drying process was examined in this work to overcome the inconveniences of freeze drying. As microwaves penetrate the product volumetrically, sublimation takes place simultaneously all over the product and leads to a many times shorter process duration. A range of microwave and pressure settings was applied to find the optimum drying condition. The influence of the process parameters microwave power and chamber pressure on drying kinetics, product temperature and product quality was investigated to find the best condition for an energy-efficient process with high product quality. The product quality was evaluated by rehydration capacitiy, crispiness, shrinkage, color, vitamin C content and antioxidative capacity. The conclusion could be drawn that microwave freeze dried berries were almost equal to freeze dried fruit in all measured quality parameters or even could overcome it. Additionally, sensory evaluations could confirm the analytical studies. Drying time could be reduced by more than 75% at much lower energy consumption rates. Thus, an energy-efficient and cost saving method compared to the conventional freeze drying technique for the gentle production of tasty fruit or vegetable snacks has been found. This technique will make dried high-quality snacks available for many of consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blueberries" title="blueberries">blueberries</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20freeze%20drying" title=" microwave freeze drying"> microwave freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20quality" title=" product quality"> product quality</a> </p> <a href="https://publications.waset.org/abstracts/67707/preservation-of-high-quality-fruit-products-microwave-freeze-drying-as-a-substitute-for-the-conventional-freeze-drying-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liga%20Priecina">Liga Priecina</a>, <a href="https://publications.waset.org/abstracts/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidants are became the most analyzed substances in last decades. Antioxidants act as in activator for free radicals. Spices and vegetables are one of major antioxidant sources. Most common antioxidants in vegetables and spices are vitamin C, E, phenolic compounds, carotenoids. Therefore, it is important to get some view about antioxidant changes in spices and vegetables during processing. In this article was analyzed nine fresh and dried spices and vegetables- celery (Apium graveolens), parsley (Petroselinum crispum), dill (Anethum graveolens), leek (Allium ampeloprasum L.), garlic (Allium sativum L.), onion (Allium cepa), celery root (Apium graveolens var. rapaceum), pumpkin (Curcubica maxima), carrot (Daucus carota)- grown in Latvia 2013. Total carotenoids and phenolic compounds and their antiradical scavenging activity were determined for all samples. Dry matter content was calculated from moisture content. After drying process carotenoid content significantly decreases in all analyzed samples, except one -carotenoid content increases in parsley. Phenolic composition was different and depends on sample – fresh or dried. Total phenolic, flavonoid and phenolic acid content increases in dried spices. Flavan-3-ol content is not detected in fresh spice samples. For dried vegetables- phenolic acid content decreases significantly, but increases flavan-3-ols content. The higher antiradical scavenging activity was observed in samples with higher flavonoid and phenolic acid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiradical%20scavenging%20activity" title="antiradical scavenging activity">antiradical scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/8667/natural-antioxidant-changes-in-fresh-and-dried-spices-and-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Tien">N. P. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Songsermpong"> S. Songsermpong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Quan"> T. H. Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean%20vermicelli" title="mung bean vermicelli">mung bean vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air" title=" hot air"> hot air</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20continuous" title=" microwave continuous"> microwave continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20vacuum" title=" microwave vacuum"> microwave vacuum</a> </p> <a href="https://publications.waset.org/abstracts/170532/the-effects-of-drying-technology-on-rehydration-time-and-quality-of-mung-bean-vermicelli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Effects of Packaging Method, Storage Temperature and Storage Time on the Quality Properties of Cold-Dried Beef Slices </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ayk%C4%B1n%20Din%C3%A7er">Elif Aykın Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erba%C5%9F"> Mustafa Erbaş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of packaging method (modified atmosphere packaging (MAP) and aerobic packaging (AP)), storage temperature (4 and 25°C) and storage time (0, 15, 30, 45, 60, 75 and 90 days) on the chemical, microbiological and sensory properties of cold-dried beef slices were investigated. Beef slices were dried at 10°C and 3 m/s after pasteurization with hot steam and then packaged in order to determine the effect of different storage conditions. As the storage temperature and time increased, it was determined that the amount of CO2 decreased in the MAP packed samples and that the amount of O2 decreased while the amount of CO2 increased in the AP packed samples. The water activity value of stored beef slices decreased from 0.91 to 0.88 during 90 days of storage. The pH, TBARS and NPN-M values of stored beef slices were higher in the AP packed samples and pH value increased from 5.68 to 5.93, TBARS increased from 25.25 to 60.11 μmol MDA/kg and NPN-M value increased from 4.37 to 6.66 g/100g during the 90 days of storage. It was determined that the microbiological quality of MAP packed samples was higher and the mean counts of TAMB, TPB, Micrococcus/Staphylococcus, LAB and yeast-mold were 4.10, 3.28, 3.46, 2.99 and 3.14 log cfu/g, respectively. As a result of sensory evaluation, it was found that the quality of samples packed MAP and stored at low temperature was higher and the shelf life of samples was 90 days at 4°C and 75 days at 25°C for MAP treatment, and 60 days at 4°C and 45 days at 25°C for AP treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20drying" title="cold drying">cold drying</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20meat" title=" dried meat"> dried meat</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/103429/effects-of-packaging-method-storage-temperature-and-storage-time-on-the-quality-properties-of-cold-dried-beef-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchana%20Sitlaothaworn">Kanchana Sitlaothaworn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgaricus and S. thermophilus reduced from 109 to 107 cfu/g. The precence of sucrose cannot help to protect cell from ice crystal formation in freeze-dried process, high (20%) sucrose reduced L. bulgaricus and S. thermophilus growth during fermentation of yogurt. The addition of FOS had reduced slowly the viability of both L. bulgaricus and S. thermophilus similar to control (without FOS) during 28 days of capsule storage. The viable cell exhibited satisfactory viability level in capsule storage (6.7x106cfu/g) during 21 days at 4oC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yogurt%20capsule" title="yogurt capsule">yogurt capsule</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20bulgaricus" title=" Lactobacillus bulgaricus"> Lactobacillus bulgaricus</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20thermophilus" title=" Streptococcus thermophilus"> Streptococcus thermophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title=" freeze-drying"> freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=sucrose" title=" sucrose"> sucrose</a> </p> <a href="https://publications.waset.org/abstracts/10794/effect-of-capsule-storage-on-viability-of-lactobacillus-bulgaricus-and-streptococcus-thermophilus-in-yogurt-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Effect Different Moisture States of Surface-treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sallehan%20Ismail">Sallehan Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahyuddin%20Ramli"> Mahyuddin Ramli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moisture%20state" title="moisture state">moisture state</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/4188/effect-different-moisture-states-of-surface-treated-recycled-concrete-aggregate-on-properties-of-fresh-and-hardened-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> Effect of Pretreatment on Quality Parameters of Natural Convection Mixed-Mode Solar Dried Potato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshanaprava%20Dhalsamant">Kshanaprava Dhalsamant</a>, <a href="https://publications.waset.org/abstracts/search?q=Punyadarshini%20P.%20Tripathy"> Punyadarshini P. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanker%20L.%20Shrivastava"> Shanker L. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With present high global population, the need for rising food usage by minimizing food wastage and investment is highly necessary to achieve food security. The purpose of this study is to enlighten the effect of pre-drying treatment on rehydration, color, texture, nanohardness, microstructure and surface morphology of solar dried potato samples dried in the mixed-mode solar dryer. Locally bought potatoes were cleaned and cut into cylindrical pieces and pretreated with sodium metabisulfite (0.5%) for 10 min before placing them in natural convection solar dryer designed and developed in Indian Institute of Technology Kharagpur, India. Advanced quality characteristics were studied using Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM) and nanoindentation method, along with color, texture and water activity. The rehydration indices of solar dried potatoes were significantly biased by pretreatment followed by rehydration temperature. A lower redness index (a*) with a higher value of yellowness index (b*), chroma (C*) and hue angle (h*) were obtained for pretreated samples. Also, the average nanohardness (H) of untreated samples exhibited substantial lower value (18.46%) compared to pretreated samples. Additionally, a creep displacement of 43.27 nm during 20 s dwell time under constant load of 200 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title="pretreatment">pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohardness" title=" nanohardness"> nanohardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a> </p> <a href="https://publications.waset.org/abstracts/83034/effect-of-pretreatment-on-quality-parameters-of-natural-convection-mixed-mode-solar-dried-potato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dried&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>