CINXE.COM

center in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> center in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> center </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/12530/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="algebra">Algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></p> <h2 id="algebraic_theories">Algebraic theories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/2-algebraic+theory">2-algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> </ul> <h2 id="algebras_and_modules">Algebras and modules</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebra over an operad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> </li> </ul> <h2 id="higher_algebras">Higher algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+an+%28%E2%88%9E%2C1%29-category">monoid in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+an+%28%E2%88%9E%2C1%29-category">commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>, <a class="existingWikiWord" href="/nlab/show/module+spectrum">module spectrum</a>, <a class="existingWikiWord" href="/nlab/show/algebra+spectrum">algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/C-%E2%88%9E+algebra">C-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-module+bundle">(∞,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/deformation+theory">deformation theory</a></li> </ul> </li> </ul> <h2 id="model_category_presentations">Model category presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a> / <a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+operads">model structure on operads</a></p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></p> </li> </ul> <h2 id="geometry_on_formal_duals_of_algebras">Geometry on formal duals of algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+conjecture">Deligne conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/higher+algebra+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definitions'>Definitions</a></li> <ul> <li><a href='#of_groups_and_monoids'>Of groups and monoids</a></li> <li><a href='#of_rings'>Of rings</a></li> <li><a href='#of_lie_algebras'>Of Lie algebras</a></li> <li><a href='#OfCategories'>Of (higher) categories</a></li> <ul> <li><a href='#of_general_categories'>Of general categories</a></li> <li><a href='#of_abelian_categories'>Of abelian categories</a></li> <li><a href='#of_higher_categories_2'>Of higher categories</a></li> </ul> <li><a href='#of_groups'>Of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groups</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>In general, the <em>center</em> (or <em>centre</em>) of an <a class="existingWikiWord" href="/nlab/show/algebra">algebraic</a> <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is the collection of <a class="existingWikiWord" href="/nlab/show/elements">elements</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> which “commute with all elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.” This has a number of specific incarnations.</p> <h2 id="definitions">Definitions</h2> <h3 id="of_groups_and_monoids">Of groups and monoids</h3> <p>The original example is the <strong>center</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(G)</annotation></semantics></math> of a <a class="existingWikiWord" href="/nlab/show/group">group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>, which is defined to be the <a class="existingWikiWord" href="/nlab/show/subgroup">subgroup</a> consisting of all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo>∈</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">g\in G</annotation></semantics></math> such that for all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>∈</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">h\in G</annotation></semantics></math> the equality <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mi>h</mi><mo>=</mo><mi>h</mi><mi>g</mi></mrow><annotation encoding="application/x-tex">g h=h g</annotation></semantics></math> holds. The center is an <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian</a> subgroup, but not every abelian subgroup is in the center. See also <a class="existingWikiWord" href="/nlab/show/centralizer">centralizer</a>.</p> <p>This notion of center of a group can be generalized to the center of a <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a> in an obvious way.</p> <div class="num_defn"> <h6 id="definition">Definition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> be an object in a <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>. The center of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(C)</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a> of <a class="existingWikiWord" href="/nlab/show/endomorphisms">endomorphisms</a> of the identity morphism, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>id</mi> <mi>C</mi></msub><mo>:</mo><mi>C</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">id_C : C \rightarrow C</annotation></semantics></math>.</p> </div> <p>One can invoke the <a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+argument">Eckmann-Hilton argument</a> to prove that vertical and horizontal composition agree on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(C)</annotation></semantics></math> and are commutative.</p> <h3 id="of_rings">Of rings</h3> <p>The <strong>center</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(R)</annotation></semantics></math> of a <a class="existingWikiWord" href="/nlab/show/ring">ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is defined to be the <a class="existingWikiWord" href="/nlab/show/multiplicative+subset">multiplicative subset</a> consisting of all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">r \in R</annotation></semantics></math> such that for all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo>∈</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">s \in R</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo>⋅</mo><mi>s</mi><mo>=</mo><mi>s</mi><mo>⋅</mo><mi>r</mi></mrow><annotation encoding="application/x-tex">r \cdot s = s \cdot r</annotation></semantics></math> is true. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a> if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> is isomorphic to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(R)</annotation></semantics></math>.</p> <h3 id="of_lie_algebras">Of Lie algebras</h3> <p>The <strong>center of a <a class="existingWikiWord" href="/nlab/show/Lie+algebra">Lie algebra</a></strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math> is an abelian Lie subalgebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(L)</annotation></semantics></math>, consisting of all elements <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>z</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding="application/x-tex"> z\in L</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>l</mi><mo>,</mo><mi>z</mi><mo stretchy="false">]</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">[l,z]=0</annotation></semantics></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding="application/x-tex">l\in L</annotation></semantics></math>. There are generalizations for some other kinds of algebras.</p> <h3 id="OfCategories">Of (higher) categories</h3> <h4 id="of_general_categories">Of general categories</h4> <p>The notion of <em><a class="existingWikiWord" href="/nlab/show/center">center</a> of a <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a></em> has a <a class="existingWikiWord" href="/nlab/show/horizontal+categorification">horizontal categorification</a> to a notion of <em><a class="existingWikiWord" href="/nlab/show/center+of+a+category">center of a category</a></em>.</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a category, its center is defined to be the <a class="existingWikiWord" href="/nlab/show/commutative+monoid">commutative monoid</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≔</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>C</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><msub><mi>Id</mi> <mi>C</mi></msub><mo>,</mo><msub><mi>Id</mi> <mi>C</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Z(C) \;\coloneqq\; [C,C](Id_C,Id_C) </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/endomorphism">endo</a>-<a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> of the <a class="existingWikiWord" href="/nlab/show/identity+functor">identity functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Id</mi> <mi>C</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>C</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">Id_C \,\colon\, C \to C</annotation></semantics></math>, i.e. the <a class="existingWikiWord" href="/nlab/show/endomorphism+monoid">endomorphism monoid</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Id</mi> <mi>C</mi></msub></mrow><annotation encoding="application/x-tex">Id_C</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>C</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C,C]</annotation></semantics></math>.</p> <p>It is straightforward to check that this reduces to the usual definition of the center of monoid <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> in the case that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mo>⋅</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C = \mathbf{B}(A,\cdot)</annotation></semantics></math> is the corresponding <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a>.</p> <ul> <li> <p>For a <a class="existingWikiWord" href="/nlab/show/generator">generator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> of a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> there is an embedding of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(\mathcal{C})</annotation></semantics></math> into the monoid <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Hom(G,G)</annotation></semantics></math> given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo>↦</mo><msub><mi>η</mi> <mi>G</mi></msub></mrow><annotation encoding="application/x-tex">\eta\mapsto\eta _G</annotation></semantics></math>. In particular, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Hom</mi><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Hom(G,G)</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>Hom</mi><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(Hom(G,G))</annotation></semantics></math> is trivial, as happens e.g. for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">G=\ast</annotation></semantics></math>, then so is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(\mathcal{C})</annotation></semantics></math> &lbrack;<a href="#Hoffmann75">Hoffmann (1975)</a>&rbrack;</p> </li> <li> <p>For <a class="existingWikiWord" href="/nlab/show/Cauchy+completion">Cauchy complete</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> the idempotent elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo stretchy="false">(</mo><mi>𝒞</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Z(\mathcal{C})</annotation></semantics></math> correspond precisely to the <em>quintessential localizations</em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> &lbrack;<a href="#Johnstone96">Johnstone (1996)</a>&rbrack;</p> </li> </ul> <h4 id="of_abelian_categories">Of abelian categories</h4> <p>If a category carries further <a class="existingWikiWord" href="/nlab/show/structure">structure</a> this may be inherited by its center. Notably the center of an <a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a> is not just a <a class="existingWikiWord" href="/nlab/show/commutative+monoid">commutative monoid</a> but a <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a> (the <a class="existingWikiWord" href="/nlab/show/endomorphism+ring">endomorphism ring</a> of its <a class="existingWikiWord" href="/nlab/show/identity+functor">identity functor</a>).</p> <p>For more on this see at <em><a class="existingWikiWord" href="/nlab/show/center+of+an+abelian+category">center of an abelian category</a></em>.</p> <h4 id="of_higher_categories_2">Of higher categories</h4> <p>The notion of center also has a <a class="existingWikiWord" href="/nlab/show/vertical+categorification">vertical categorification</a>: It is easy to categorify the notion of center of a category as defined above: if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/n-category">n-category</a>, then its <em>center</em> is the monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-1)</annotation></semantics></math>-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>C</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><msub><mi>Id</mi> <mi>C</mi></msub><mo>,</mo><msub><mi>Id</mi> <mi>C</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[C,C](Id_C,Id_C)</annotation></semantics></math> of endo-transformations of its identity functor. One expects that in general, this center will actually admit a natural structure of <em>braided</em> monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-1)</annotation></semantics></math>-category, just as the center of a category is actually a commutative monoid, not merely a monoid.</p> <p>For instance if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><msub><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mo>⊗</mo></msub><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">C = \mathbf{B}_\otimes \mathcal{C}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/delooping">delooping</a> of a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, then this center is called the <em><a class="existingWikiWord" href="/nlab/show/Drinfeld+center">Drinfeld center</a></em> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mo>⊗</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(C, \otimes)</annotation></semantics></math>.</p> <p>Generally, we can now obtain a notion of the center of a monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category by regarding it as a one-object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math>-category, according to the <a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a>. It follows that the center of a monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category should naturally be a braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category. This is known to be true when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">n=0</annotation></semantics></math> (the center of a monoid is a commutative monoid) and also for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n=1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n=2</annotation></semantics></math>.</p> <p>Note that a monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category has two different centers: if we regard it as a one-object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math>-category, then its center is a braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category, but if we regard it merely as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category, then its center is a braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-1)</annotation></semantics></math>-category. The latter construction makes no reference to the monoidal structure. Likewise, a braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category has three different centers, depending on whether we regard it as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category, a connected <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math>-category, or a 2-connected <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+2)</annotation></semantics></math>-category, and so on (a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-tuply monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category has <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">k+1</annotation></semantics></math> different centers).</p> <p>It seems that in applications, however, one is usually most interested in the sort of center of a monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> obtained by regarding it as a one-object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1)</annotation></semantics></math>-category, thereby obtaining a braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category. It is in this case, and seemingly this case only, that the center comes with a natural forgetful functor to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, corresponding to the classical inclusion of the center of a monoid. (For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">n\gt 0</annotation></semantics></math>, however, this functor will not be an inclusion; the objects of the center of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> equipped with additional <a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">structure</a>.)</p> <p>Moreover, one expects that if we perform this “canonical” operation on a <a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a> (for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">k\ge 1</annotation></semantics></math>), the resulting braided monoidal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-category will actually be <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(k+1)</annotation></semantics></math>-tuply monoidal. This is known to be true in the cases <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≤</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">n\le 4</annotation></semantics></math>: the center of a braided monoidal category is symmetric monoidal, the center of a braided monoidal 2-category is sylleptic, and the center of a sylleptic monoidal 2-category is symmetric.</p> <p>Finally, if we decategorify further, we find that the center of a <a class="existingWikiWord" href="/nlab/show/set">set</a> (i.e. a <a class="existingWikiWord" href="/nlab/show/0-category">0-category</a>) is a monoidal <a class="existingWikiWord" href="/nlab/show/%28-1%29-category">(-1)-category</a>, i.e. the <a class="existingWikiWord" href="/nlab/show/truth+value">truth value</a> “true.” This is what we ought to expect, since when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a set, there is precisely one endo-transformation of its identity endofunction (namely, the identity).</p> <h3 id="of_groups">Of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groups</h3> <p>See <em><a class="existingWikiWord" href="/nlab/show/center+of+an+%E2%88%9E-group">center of an ∞-group</a>.</em></p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/center+of+a+category">center of a category</a></p> <p><a class="existingWikiWord" href="/nlab/show/center+of+an+additive+category">center of an additive category</a></p> <p><a class="existingWikiWord" href="/nlab/show/Drinfeld+center">Drinfeld center</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/central+product+of+groups">central product of groups</a></p> </li> </ul> <h2 id="references">References</h2> <p>See also</p> <ul> <li>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Center_(group_theory)">Center (group theory)</a></em></li> </ul> <p>On the notion of <a class="existingWikiWord" href="/nlab/show/center+of+a+category">center of a category</a>:</p> <ul> <li id="Hoffmann75"> <p><a class="existingWikiWord" href="/nlab/show/Rudolf-E.+Hoffmann">Rudolf-E. Hoffmann</a>, <em>Über das Zentrum einer Kategorie</em>, Math. Nachr. <strong>68</strong> (1975) 299-306 &lbrack;<a href="https://doi.org/10.1002/mana.19750680122">doi:10.1002/mana.19750680122</a>&rbrack;</p> </li> <li id="Johnstone96"> <p><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <em>Remarks on Quintessential and Persistent Localizations</em>, TAC <strong>2</strong> 8 (1996) 90-99 &lbrack;<a href="http://www.tac.mta.ca/tac/volumes/1996/n8/2-08abs.html">tac:2-08</a>, <a href="http://www.tac.mta.ca/tac/volumes/1996/n8/n8.pdf">pdf</a>&rbrack;</p> </li> </ul> <p>and of an <a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Harald+Lindner">Harald Lindner</a>. <em>Center and trace</em>, Archiv der Mathematik 35 (1980): 476-496. (<a href="https://doi.org/10.1007/BF01235372">doi:10.1007/BF01235372</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 20, 2023 at 10:53:29. See the <a href="/nlab/history/center" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/center" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/12530/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/center/29" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/center" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/center" accesskey="S" class="navlink" id="history" rel="nofollow">History (29 revisions)</a> <a href="/nlab/show/center/cite" style="color: black">Cite</a> <a href="/nlab/print/center" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/center" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10