CINXE.COM

Search results for: Bollard pull

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bollard pull</title> <meta name="description" content="Search results for: Bollard pull"> <meta name="keywords" content="Bollard pull"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bollard pull" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bollard pull"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 183</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bollard pull</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Comparison of Numerical and Laboratory Results of Pull-Out Test on Soil–Geogrid Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Ahmadi%20Oliaei">Parisa Ahmadi Oliaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini"> Seyed Abolhassan Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the Pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the Pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of Pull- out a test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plaxis" title="plaxis">plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-%20geogrid%20interaction" title=" soil- geogrid interaction"> soil- geogrid interaction</a> </p> <a href="https://publications.waset.org/abstracts/144971/comparison-of-numerical-and-laboratory-results-of-pull-out-test-on-soil-geogrid-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Simulation" title="Monte Carlo Simulation">Monte Carlo Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20cladding" title=" roof cladding"> roof cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=screw%20pull-out%20strength" title=" screw pull-out strength"> screw pull-out strength</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20fragility" title=" wind fragility"> wind fragility</a> </p> <a href="https://publications.waset.org/abstracts/80016/wind-fragility-for-honeycomb-roof-cladding-panels-using-screw-pull-out-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Gracia">Mauricio Gracia</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Leal"> Luis Leal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Verma"> Bharat Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20draft%20coefficient" title=" current draft coefficient"> current draft coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=STAR-CCM%2B" title=" STAR-CCM+"> STAR-CCM+</a>, <a href="https://publications.waset.org/abstracts/search?q=OCIMF" title=" OCIMF"> OCIMF</a>, <a href="https://publications.waset.org/abstracts/search?q=Bollard%20pull" title=" Bollard pull"> Bollard pull</a> </p> <a href="https://publications.waset.org/abstracts/132520/numerical-study-for-the-estimation-of-hydrodynamic-current-drag-coefficients-for-the-colombian-navy-frigates-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Kitsutaka">Yoshinori Kitsutaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusumi%20Shingo"> Kusumi Shingo</a>, <a href="https://publications.waset.org/abstracts/search?q=Matsuzawa%20Koichi"> Matsuzawa Koichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunieda%20Yoichiro"> Kunieda Yoichiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Yagisawa%20Yasuei"> Yagisawa Yasuei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20anchor%20bolt" title=" mechanical anchor bolt"> mechanical anchor bolt</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20strength" title=" pull-out strength"> pull-out strength</a> </p> <a href="https://publications.waset.org/abstracts/73038/pull-out-behavior-of-mechanical-anchor-bolts-by-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Effect of Hooked-End Steel Fibres Geometry on Pull-Out Behaviour of Ultra-High Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadoon%20Abdallah">Sadoon Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mizi%20Fan"> Mizi Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangming%20Zhou"> Xiangming Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a comprehensive approach has been adopted to examine in detail the effect of various hook geometries on bond-slip characteristics. Extensive single fibre pull-out tests on ultra-high performance matrix with three different W/B ratios and embedded lengths have been carried out. Test results showed that the mechanical deformation of fibre hook is the main mechanism governing the pull-out behaviour. Furthermore, the quantitative analyses have been completed to compare the hook design contribution of 3D, 4D and 5D fibres to assess overall pull-out behaviour. It was also revealed that there is a strong relationship between the magnitude of hook contribution and W/B ratio (i.e. matrix strength). Reducing the W/B ratio from 0.20 to 0.11 greatly optimizes the interfacial transition zone (ITZ) and enables better mobilization, straightening of the hook and results in bond-slip-hardening behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bobond%20mechanisms" title="bobond mechanisms">bobond mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre-matrix%20interface" title=" fibre-matrix interface"> fibre-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=hook%20geometry" title=" hook geometry"> hook geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pullout%20behaviour%20and%20water%20to%20binder%20ratio" title=" pullout behaviour and water to binder ratio"> pullout behaviour and water to binder ratio</a> </p> <a href="https://publications.waset.org/abstracts/59099/effect-of-hooked-end-steel-fibres-geometry-on-pull-out-behaviour-of-ultra-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Mechanical Behavior of CFTR Column Joint under Pull out Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasruddin%20Junus">Nasruddin Junus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFTR column is one of the improvements CFT columns by inserting reinforcing steel bars into infill concrete. The presence of inserting reinforcing steel bars is increasing the excellent structural performance of the CFT column, especially on the fire-resisting performance. Investigation on the mechanical behavior of CFTR column connection is summarized in the three parts; column to column joint, column to beam connection, and column base. Experiment that reported in this paper is concerned on the mechanical behavior of CFTR column joint under pull out testing, especially on its stress transfer mechanism. A number series of the pull out test on the CFT with inserting reinforcing steel bar are conducted. Ten test specimens are designed, constructed, and tested to examine experimentally the effect of the size of square steel tube, size of the bearing plate, length of embedment steel bars, kind of steel bars, and the numbers of rib plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFTR%20column" title="CFTR column">CFTR column</a>, <a href="https://publications.waset.org/abstracts/search?q=pull%20out" title=" pull out"> pull out</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20mechanism" title=" transfer mechanism"> transfer mechanism</a> </p> <a href="https://publications.waset.org/abstracts/43639/mechanical-behavior-of-cftr-column-joint-under-pull-out-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Numerical Simulation of the Bond Behavior Between Concrete and Steel Reinforcing Bars in Specialty Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camille%20A.%20Issa">Camille A. Issa</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Masri"> Omar Masri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the study, the commercial finite element software Abaqus was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title="pull-out test">pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20concrete" title=" underwater concrete"> underwater concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20finite%20element%20analysis" title=" nonlinear finite element analysis"> nonlinear finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus" title=" abaqus"> abaqus</a> </p> <a href="https://publications.waset.org/abstracts/26543/numerical-simulation-of-the-bond-behavior-between-concrete-and-steel-reinforcing-bars-in-specialty-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Haghighatfar">Yashar Haghighatfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Mirhosseini"> Shahrzad Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-in%20instability" title=" pull-in instability"> pull-in instability</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatically%20actuated%20microbeam" title=" electrostatically actuated microbeam"> electrostatically actuated microbeam</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20order%20method" title=" reduced order method"> reduced order method</a> </p> <a href="https://publications.waset.org/abstracts/94193/pull-in-instability-determination-of-microcapacitive-sensor-for-measuring-special-range-of-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Robust Design of a Ball Joint Considering Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bong-Su%20Sin">Bong-Su Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Kyu%20Kim"> Jong-Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Il%20Song"> Se-Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20joint" title="ball joint">ball joint</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20strength" title=" pull-out strength"> pull-out strength</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a> </p> <a href="https://publications.waset.org/abstracts/12084/robust-design-of-a-ball-joint-considering-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duy%20Cuong%20Nguyen">Duy Cuong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Makke"> Ali Makke</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Montay"> Guillaume Montay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp" title=" hemp"> hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out" title=" pull-out"> pull-out</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/29372/a-pull-out-fibermatrix-interface-characterization-of-vegetal-fibers-reinforced-thermoplastic-polymer-composites-the-influence-of-the-processing-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> International Tourists’ Travel Motivation by Push-Pull Factors and Decision Making for Selecting Thailand as Destination Choice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siripen%20Yiamjanya">Siripen Yiamjanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Wongleedee"> Kevin Wongleedee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=destination%20choice" title=" destination choice"> destination choice</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20tourist" title=" international tourist"> international tourist</a>, <a href="https://publications.waset.org/abstracts/search?q=pull%20factor" title=" pull factor"> pull factor</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20factor" title=" push factor"> push factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20motivation" title=" travel motivation"> travel motivation</a> </p> <a href="https://publications.waset.org/abstracts/9153/international-tourists-travel-motivation-by-push-pull-factors-and-decision-making-for-selecting-thailand-as-destination-choice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> AIPM:An Integrator and Pull Request Matching Model in Github</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhifang%20Liao">Zhifang Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanbing%20Li"> Yanbing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xu"> Li Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zhang"> Yan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoping%20Fan"> Xiaoping Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsong%20Wu"> Jinsong Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pull Request (PR) is the primary method for code contributions from the external contributors in Github. PR review is an essential part of open source software developments for maintaining the quality of software. Matching a new PR of an appropriate integrator will make the PR review more effective. However, PR and integrator matching are now organized manually in Github. To reduce this cost, we presented an AIPM model to predict highly relevant integrator of incoming PRs. AIPM uses topic model to extract topics from the PRs, and builds a one-to-one correspondence between topics and integrators. Then, AIPM finds the most suitable integrator according to the maximum entry of the topic-document distribution. On average, AIPM can reach a precision of 60%, and even in some projects, can reach a precision of 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pull%20Request" title="pull Request">pull Request</a>, <a href="https://publications.waset.org/abstracts/search?q=integrator%20matching" title=" integrator matching"> integrator matching</a>, <a href="https://publications.waset.org/abstracts/search?q=Github" title=" Github"> Github</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20source%20project" title=" open source project"> open source project</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20model" title=" topic model"> topic model</a> </p> <a href="https://publications.waset.org/abstracts/63126/aipman-integrator-and-pull-request-matching-model-in-github" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> A Low-Voltage Synchronous Command for JFET Rectifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Monginaud">P. Monginaud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Baudey"> J. C. Baudey </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synchronous, low-voltage command for JFET Rectifiers has many applications: indeed, replacing the traditional diodes by these components allows enhanced performances in gain, linearity and phase shift. We introduce here a new bridge, including JFET associated with pull-down, bipolar command systems, and double-purpose logic gates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous" title="synchronous">synchronous</a>, <a href="https://publications.waset.org/abstracts/search?q=rectifier" title=" rectifier"> rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=JFET" title=" JFET"> JFET</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20command%20system" title=" bipolar command system"> bipolar command system</a>, <a href="https://publications.waset.org/abstracts/search?q=push-pull%20circuits" title=" push-pull circuits"> push-pull circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=double-purpose%20logic%20gates" title=" double-purpose logic gates"> double-purpose logic gates</a> </p> <a href="https://publications.waset.org/abstracts/4289/a-low-voltage-synchronous-command-for-jfet-rectifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> How Manufacturing Firm Manages Information Security: Need Pull and Technology Push Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geuna%20Kim">Geuna Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyun%20Kim"> Sanghyun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates various factors that may influence the ISM process, including the organization’s internal needs and external pressure, and examines the role of regulatory pressure in ISM development and performance. The 105 sets of data collected in a survey were tested against the research model using SEM. The results indicate that NP and TP had positive effects on the ISM process, except for perceived benefits. Regulatory pressure had a positive effect on the relationship between ISM awareness and ISM development and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20security%20management" title="information security management">information security management</a>, <a href="https://publications.waset.org/abstracts/search?q=need%20pull" title=" need pull"> need pull</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20push" title=" technology push"> technology push</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20pressure" title=" regulatory pressure"> regulatory pressure</a> </p> <a href="https://publications.waset.org/abstracts/12340/how-manufacturing-firm-manages-information-security-need-pull-and-technology-push-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Crack Opening Investigation in Fiberconcrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturs%20Macanovskis">Arturs Macanovskis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitalijs%20Lusis"> Vitalijs Lusis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrejs%20Krasnikovs"> Andrejs Krasnikovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiberconcrete" title="fiberconcrete">fiberconcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out" title=" pull-out"> pull-out</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20channel" title=" fiber channel"> fiber channel</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20fiberconcrete" title=" layered fiberconcrete"> layered fiberconcrete</a> </p> <a href="https://publications.waset.org/abstracts/8223/crack-opening-investigation-in-fiberconcrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Nawaz">Akhtar Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Noor"> Sahar Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Hussain"> Iftikhar Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20manufacturing%20system" title="hybrid manufacturing system">hybrid manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20system" title=" supply chain system"> supply chain system</a>, <a href="https://publications.waset.org/abstracts/search?q=make%20to%20order" title=" make to order"> make to order</a>, <a href="https://publications.waset.org/abstracts/search?q=make%20to%20stock" title=" make to stock"> make to stock</a>, <a href="https://publications.waset.org/abstracts/search?q=assemble%20to%20order" title=" assemble to order"> assemble to order</a> </p> <a href="https://publications.waset.org/abstracts/19416/advance-hybrid-manufacturing-supply-chain-system-to-get-benefits-of-push-and-pull-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Adherence Induced Formwork Removal in Small-Scale Pull-Off Tensile Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Spitz">Nicolas Spitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Coniglio"> Nicolas Coniglio</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Mansori"> Mohamed El Mansori</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Montagne"> Alex Montagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabeur%20Mezghani"> Sabeur Mezghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays buildings' construction is performed by pouring concrete into molds referred to as formworks that are usually prefabricated metallic modules. Defects such as stripping may possibly form during the removal of the formwork if the interfacial bonding between the concrete and the formwork is high. A new pull-off tensile test was developed in our laboratory to simulate small-scale formwork removals. The concrete-to-formwork adherence force was measured on bare and coated formworks with different surface signatures. The used concrete was a mixture largely used on building sites and contains CEM I Portland cement and calcareous filler. The concrete surface appearance and the type of failures at the concrete-formwork interface have been investigated. The originality of this near-to-surface test was to compare the laboratory-measured adherence forces to the on-site observations. Based upon the small-scale laboratory test results, functional formwork specifications with low adherence to concrete was proposed in terms of superficial signature characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-formwork%20adherence" title="concrete-formwork adherence">concrete-formwork adherence</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20bonding" title=" interfacial bonding"> interfacial bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20formwork%20functionality" title=" skin formwork functionality"> skin formwork functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20pull-off%20tensile%20test" title=" small-scale pull-off tensile test"> small-scale pull-off tensile test</a> </p> <a href="https://publications.waset.org/abstracts/81360/adherence-induced-formwork-removal-in-small-scale-pull-off-tensile-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Constantinides">Antonis Constantinides</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Yiallouras"> Christos Yiallouras</a>, <a href="https://publications.waset.org/abstracts/search?q=Christakis%20Damianou"> Christakis Damianou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coaxial transformer-coupled push-pull circuitry has been used widely in HF and VHF amplifiers for many decades without significant changes in the topology of the transformers. Basic changes over the years concerned the construction and turns ratio of the transformers as has been imposed upon the newer technologies active devices demands. The balun transmission line transformers applied in push-pull amplifiers enable input/output impedance transformation, but are mainly used to convert the balanced output into unbalanced and the input unbalanced into balanced. A simple and affordable alternative solution over the traditional coaxial transformer is the coreless planar balun. A key advantage over the traditional approach lies in the high specifications repeatability; simplifying the amplifier construction requirements as the planar balun constitutes an integrated part of the PCB copper layout. This paper presents the performance analysis of a planar LDMOS MRFE6VP5600 Push-Pull amplifier that enables robust operation in Band III, DVB-T, DVB-T2 standards but functions equally well in Band II, for DRM+ new generation transmitters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplifier" title="amplifier">amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=balun" title=" balun"> balun</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20impedance" title=" complex impedance"> complex impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=LDMOS" title=" LDMOS"> LDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=planar-transformers" title=" planar-transformers"> planar-transformers</a> </p> <a href="https://publications.waset.org/abstracts/30154/a-novel-design-in-the-use-of-planar-transformers-for-ldmos-based-amplifiers-in-bands-ii-iii-drm-dvb-t-and-dab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Agile Implementation of &#039;PULL&#039; Principles in a Manufacturing Process Chain for Aerospace Composite Parts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Torsten%20Mielitz">Torsten Mielitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietmar%20Schulz"> Dietmar Schulz</a>, <a href="https://publications.waset.org/abstracts/search?q=York%20C.%20Roth"> York C. Roth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Market forecasts show a significant increase in the demand for aircraft within the next two decades and production rates will be adapted accordingly. Improvements and optimizations in the industrial system are becoming more important to cope with future challenges in manufacturing and assembly. Highest quality standards have to be met for aerospace parts, whereas cost effective production in industrial systems and methodologies are also a key driver. A look at other industries like e.g., automotive shows well established processes to streamline existing manufacturing systems. In this paper, the implementation of 'PULL' principles in an existing manufacturing process chain for a large scale composite part is presented. A nonlinear extrapolation based on 'Little's Law' showed a risk of a significant increase of parts needed in the process chain to meet future demand. A project has been set up to mitigate the risk whereas the methodology has been changed from a traditional milestone approach in the beginning towards an agile way of working in the end in order to facilitate immediate benefits in the shop-floor. Finally, delivery rates could be increased avoiding more semi-finished parts in the process chain (work in progress & inventory) by the successful implementation of the 'PULL' philosophy in the shop-floor between the work stations. Lessons learned during the running project as well as implementation and operations phases are discussed in order to share best practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace%20composite%20part%20manufacturing" title="aerospace composite part manufacturing">aerospace composite part manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=PULL%20principles" title=" PULL principles"> PULL principles</a>, <a href="https://publications.waset.org/abstracts/search?q=shop-floor%20implementation" title=" shop-floor implementation"> shop-floor implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=lessons%20learned" title=" lessons learned"> lessons learned</a> </p> <a href="https://publications.waset.org/abstracts/95112/agile-implementation-of-pull-principles-in-a-manufacturing-process-chain-for-aerospace-composite-parts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> The Impact of Motor Predispositions of Pilot-Cadets on Results in Aviation Synthetic Efficiency Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Wochynski">Zbigniew Wochynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Skrzynska"> Justyna Skrzynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Jedrys"> Robert Jedrys</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kobos"> Zdzislaw Kobos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to determine the types of motor skills and their impact on achieving results while undergoing Aviation Synthetic Efficiency Test (ASET). The study involved 59 cadets, 21 years-old on average, who are studying on first year for a pilot. The average weight of the respondents is 73.8 kg. The subjects were divided into two groups by weight: up to 73.8 kg -group A (n-30) and above 73,8kg -group B (n-29). All subjects underwent the following tests: running at 40m, 100m, 1000m, 2000m, pull-ups, ASET. In both groups, the cadets were divided into two motor skills types taking into advance 40 m running, pull-ups, 2000 meters running and then subjected to do ASET. There has been shown statistically significant increase in group B in body height, weight and BMI with p <0.0003, p <0.0001, p <0.0001 compared to group A. The results indicate that the dominant motor type in all subjects is the endurance-strength model, which reached the speed V = 1,42m/s in overcoming ASET. This is confirmed by the correlation between 2000m and pull-ups r = 0.37 (p <0.05). In group A, the results indicate that the dominant type of motor is a high-speed-endurance model (26.6%), which reached speed V = 1,42m/s in overcoming ASET. In Group B, there was type of motor speed-strength (20.6%), which reached speed of V = 1.45m/s in overcoming ASET. This confirms the correlation between ASET and pull-ups r = 0.56 (p <0.005). Examined cadets who were having one dominant characteristic achieved worse results is ASET. The best results from all examined cadets in overcoming ASET had the type of motor endurance-strength, in group A endurance-speed model and in group B type of speed-strength <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASET" title="ASET">ASET</a>, <a href="https://publications.waset.org/abstracts/search?q=Aviation%20Synthetic%20Efficiency%20Test" title=" Aviation Synthetic Efficiency Test"> Aviation Synthetic Efficiency Test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20skills" title=" motor skills"> motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20tests" title=" physical tests"> physical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot-cadets" title=" pilot-cadets"> pilot-cadets</a> </p> <a href="https://publications.waset.org/abstracts/54307/the-impact-of-motor-predispositions-of-pilot-cadets-on-results-in-aviation-synthetic-efficiency-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Wahab">A. M. Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Rustighi"> E. Rustighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20electro-active%20polymer" title="dielectric electro-active polymer">dielectric electro-active polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=pull%20actuator" title=" pull actuator"> pull actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=static" title=" static"> static</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=electromechanical" title=" electromechanical"> electromechanical</a> </p> <a href="https://publications.waset.org/abstracts/26387/dynamics-characterizations-of-dielectric-electro-active-polymer-pull-actuator-for-vibration-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Inertia Friction Pull Plug Welding, a New Weld Repair Technique of Aluminium Friction Stir Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Wang">Guoqing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Zhao"> Yanhua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Zhang"> Lina Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingbin%20Bai"> Jingbin Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruican%20Zhu"> Ruican Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding with bobbin tool is a simple technique compared to conventional FSW since the backing fixture is no longer needed and assembling labor is reduced. It gets adopted more and more in the aerospace industry as a result. However, a post-weld problem, the left keyhole, has to be fixed by forced repair welding. To close the keyhole, the conventional fusion repair could be an option if the joint properties are not deteriorated; friction push plug welding, a forced repair, could be another except that a rigid support unit is demanded at the back of the weldment. Therefore, neither of the above ways is satisfaction in welding a large enclosed structure, like rocket propellant tank. Although friction pulls plug welding does not need a backing plate, the wide applications are still held back because of the disadvantages in respects of unappropriated tensile stress, (i.e. excessive stress causing neck shrinkage of plug that will bring about back defects while insufficient stress causing lack of heat input that will bring about face defects), complicated welding parameters (including rotation speed, transverse speed, friction force, welding pressure and upset),short welding time (approx. 0.5 sec.), narrow windows and poor stability of process. In this research, an updated technique called inertia friction pull plug welding, and its equipment was developed. The influencing rules of technological parameters on joint properties of inertia friction pull plug welding were observed. The microstructure characteristics were analyzed. Based on the elementary performance data acquired, the conclusion is made that the uniform energy provided by an inertia flywheel will be a guarantee to a stable welding process. Meanwhile, due to the abandon of backing plate, the inertia friction pull plug welding is considered as a promising technique in repairing keyhole of bobbin tool FSW and point type defects of aluminium base material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20repairing" title="defect repairing">defect repairing</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%20friction%20pull%20plug%20welding" title=" inertia friction pull plug welding"> inertia friction pull plug welding</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20parameters" title=" technological parameters"> technological parameters</a> </p> <a href="https://publications.waset.org/abstracts/59502/inertia-friction-pull-plug-welding-a-new-weld-repair-technique-of-aluminium-friction-stir-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Load Transfer of Steel Pipe Piles in Warming Permafrost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Amirhossein%20Tabatabaei">S. Amirhossein Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulghader%20A.%20Aldaeef"> Abdulghader A. Aldaeef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20T.%20Rayhani"> Mohammad T. Rayhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adfreeze" title="Adfreeze">Adfreeze</a>, <a href="https://publications.waset.org/abstracts/search?q=frozen%20soil-structure%20interface" title=" frozen soil-structure interface"> frozen soil-structure interface</a>, <a href="https://publications.waset.org/abstracts/search?q=ice-poor%20soils" title=" ice-poor soils"> ice-poor soils</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20capacity" title=" pull-out capacity"> pull-out capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=warming%20permafrost" title=" warming permafrost"> warming permafrost</a> </p> <a href="https://publications.waset.org/abstracts/150679/load-transfer-of-steel-pipe-piles-in-warming-permafrost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20A.%20Jebur">Ameer A. Jebur</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Loffill"> Edward Loffill </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc&frasl;d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20&deg; as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slenderness%20ratio" title="slenderness ratio">slenderness ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20model%20%28beam%20on%20elastic%20foundation%29" title=" winkler model (beam on elastic foundation)"> winkler model (beam on elastic foundation)</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20capacity" title=" pull-out capacity"> pull-out capacity</a> </p> <a href="https://publications.waset.org/abstracts/49411/simulation-of-soil-pile-interaction-of-steel-batter-piles-penetrated-in-sandy-soil-subjected-to-pull-out-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Muscle Activation Comparisons in a Lat Pull down Exercise with Machine Weights, Resistance Bands and Body Weight Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20R.%20Higgins">Trevor R. Higgins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to compare muscle activation of the latissimus dorsi between pin-loaded machine (Lat Pull Down), resistance band (Lat Pull Down) and body-weight (Chin Up) exercises. A convenient sample of male college students with >2 years resistance training experience volunteered for the study. A paired t-test with repeated measures designs was carried out on results from EMG analysis. EMG analysis was conducted with Trigno wireless sensors (Delsys) placed laterally on the latissimus dorsi (left and right) of each participant. By conventional criteria the two-tailed P value suggested that differences between pin-loaded and body-weight was not significantly different (p = 0.93) and differences between pin-loaded and resistance band was not significantly different (p = 0.17) in muscle activity. In relation to conventional criteria the two-tailed P value suggested differences between body-weight and resistance band was not quite significantly different (p = 0.06) in muscle activity. However, effect size trends indicated that both body-weight and pin-loaded exercises where more effective in stimulating muscle electrical activity than a resistance band with male college athletes with >2 years resistance training experience. Although, resistance bands have increased in popularity in health and fitness centres, that for well-trained participants, they may not be effective in stimulating muscles of the latissimus dorsi. Therefore, when considering equipment and exercise selection for experienced resistance training participants pin-loaded machines and body-weight should be prescribed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pin-loaded" title="pin-loaded">pin-loaded</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20bands" title=" resistance bands"> resistance bands</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title=" body weight"> body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG%20analysis" title=" EMG analysis"> EMG analysis</a> </p> <a href="https://publications.waset.org/abstracts/53198/muscle-activation-comparisons-in-a-lat-pull-down-exercise-with-machine-weights-resistance-bands-and-body-weight-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Adhesion Performance According to Lateral Reinforcement Method of Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungbhin%20You">Jungbhin You</a>, <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim"> Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion%20performance" title="adhesion performance">adhesion performance</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20reinforcement" title=" lateral reinforcement"> lateral reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/67487/adhesion-performance-according-to-lateral-reinforcement-method-of-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Sigruener">Michael Sigruener</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Muscat"> Dirk Muscat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Struebbe"> Nicole Struebbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title="fiber-matrix interface">fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20fibers" title=" polymeric fibers"> polymeric fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20fiber%20pull-out%20test" title=" single fiber pull-out test"> single fiber pull-out test</a> </p> <a href="https://publications.waset.org/abstracts/111301/investigation-on-pull-out-behavior-and-interface-critical-parameters-of-polymeric-fibers-embedded-in-concrete-and-their-correlation-with-particular-fiber-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20van%20Tonder">Pierre van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoff%20Kruger"> Christoff Kruger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20reinforcement" title="supplementary reinforcement">supplementary reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor%20loops" title=" anchor loops"> anchor loops</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20panels" title=" retaining panels"> retaining panels</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20failure" title=" pull-out failure"> pull-out failure</a> </p> <a href="https://publications.waset.org/abstracts/143106/pull-out-analysis-of-composite-loops-embedded-in-steel-reinforced-concrete-retaining-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> European and Scandinavian Tourists&#039; Perceptions and Desire to Travel in Ranong Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wipanee%20Maen-In">Wipanee Maen-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=European%20and%20Scandinavian" title="European and Scandinavian">European and Scandinavian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranong%20province" title=" Ranong province"> Ranong province</a>, <a href="https://publications.waset.org/abstracts/search?q=tourists%E2%80%99%20perceptions" title=" tourists’ perceptions"> tourists’ perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=visitors%E2%80%99%20decision%20making" title=" visitors’ decision making"> visitors’ decision making</a> </p> <a href="https://publications.waset.org/abstracts/44206/european-and-scandinavian-tourists-perceptions-and-desire-to-travel-in-ranong-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Determination of the Pull-Out/ Holding Strength at the Taper-Trunnion Junction of Hip Implants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obinna%20K.%20Ihesiulor">Obinna K. Ihesiulor</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Shankar"> Krishna Shankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Smith"> Paul Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Fien"> Alan Fien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the taper-trunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by Pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear" title="wear">wear</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20hip%20prosthesis" title=" modular hip prosthesis"> modular hip prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=taper%20head-stem" title=" taper head-stem"> taper head-stem</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20assembly%20and%20disassembly" title=" force assembly and disassembly "> force assembly and disassembly </a> </p> <a href="https://publications.waset.org/abstracts/37910/determination-of-the-pull-out-holding-strength-at-the-taper-trunnion-junction-of-hip-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bollard%20pull&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10