CINXE.COM

Search results for: single feature probability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: single feature probability</title> <meta name="description" content="Search results for: single feature probability"> <meta name="keywords" content="single feature probability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="single feature probability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="single feature probability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7125</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: single feature probability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7125</span> A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20H.%20Al%20Salmani">Salim H. Al Salmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Tansey"> Kevin Tansey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Ozigis"> Mohammed S. Ozigis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20growth" title="urban growth">urban growth</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability" title=" single feature probability"> single feature probability</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20based%20image%20analysis" title=" object based image analysis"> object based image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=landcover%20change" title=" landcover change"> landcover change</a> </p> <a href="https://publications.waset.org/abstracts/88333/a-single-feature-probability-object-based-image-analysis-for-assessing-urban-landcover-change-a-case-study-of-muscat-governorate-in-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7124</span> A Review of Feature Selection Methods Implemented in Neural Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Petrovska">Natasha Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Pavlovic"> Mirjana Pavlovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Larrondo-Petrie"> Maria M. Larrondo-Petrie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20similarity" title=" feature similarity"> feature similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells" title=" neural stem cells"> neural stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection%20methods" title=" feature selection methods"> feature selection methods</a> </p> <a href="https://publications.waset.org/abstracts/163549/a-review-of-feature-selection-methods-implemented-in-neural-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7123</span> Classification of Political Affiliations by Reduced Number of Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesile%20Evrim">Vesile Evrim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Awwal"> Aliyu Awwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=LIWC" title=" LIWC"> LIWC</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=politics" title=" politics"> politics</a> </p> <a href="https://publications.waset.org/abstracts/27684/classification-of-political-affiliations-by-reduced-number-of-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7122</span> COVID-19 Teaches Probability Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Sloan">Sean Sloan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probability Risk Assessments (PRA) can be a difficult concept for students to grasp. So in searching for different ways to describe PRA to relate it to their lives; COVID-19 came up. The parallels are amazing. Soon students began analyzing acceptable risk with the virus. This helped them to quantify just how dangerous is dangerous. The original lesson was dismissed and for the remainder of the period, the probability of risk, and the lethality of risk became the topic. Spreading events such as a COVID carrier on an airline became analogous to single fault casualties such as a Tsunami. Odds of spreading became odds of backup-diesel-generator failure – like with Fukashima Daiichi. Fatalities of the disease became expected fatalities due to radiation spread. Quantification from this discussion took it from hyperbole and emotion into one where we could rationally base guidelines. It has been one of the most effective educational devices observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID" title="COVID">COVID</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/128284/covid-19-teaches-probability-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7121</span> Variability Management of Contextual Feature Model in Multi-Software Product Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fezan%20Afzal">Muhammad Fezan Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20Abbas"> Asad Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan"> Imran Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Imtiaz"> Salma Imtiaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Product Line (SPL) paradigm is used for the development of the family of software products that share common and variable features. Feature model is a domain of SPL that consists of common and variable features with predefined relationships and constraints. Multiple SPLs consist of a number of similar common and variable features, such as mobile phones and Tabs. Reusability of common and variable features from the different domains of SPL is a complex task due to the external relationships and constraints of features in the feature model. To increase the reusability of feature model resources from domain engineering, it is required to manage the commonality of features at the level of SPL application development. In this research, we have proposed an approach that combines multiple SPLs into a single domain and converts them to a common feature model. Extracting the common features from different feature models is more effective, less cost and time to market for the application development. For extracting features from multiple SPLs, the proposed framework consists of three steps: 1) find the variation points, 2) find the constraints, and 3) combine the feature models into a single feature model on the basis of variation points and constraints. By using this approach, reusability can increase features from the multiple feature models. The impact of this research is to reduce the development of cost, time to market and increase products of SPL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20product%20line" title="software product line">software product line</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20model" title=" feature model"> feature model</a>, <a href="https://publications.waset.org/abstracts/search?q=variability%20management" title=" variability management"> variability management</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-SPLs" title=" multi-SPLs"> multi-SPLs</a> </p> <a href="https://publications.waset.org/abstracts/172205/variability-management-of-contextual-feature-model-in-multi-software-product-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7120</span> The Probability Foundation of Fundamental Theoretical Physics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quznetsov%20Gunn">Quznetsov Gunn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the study of the logical foundations of probability theory, it was found that the terms and equations of the fundamental theoretical physics represent terms and theorems of the classical probability theory, more precisely, of that part of this theory, which considers the probability of dot events in the 3 + 1 space-time. In particular, the masses, moments, energies, spins, etc. turn out of parameters of probability distributions such events. The terms and the equations of the electroweak and of the quark-gluon theories turn out the theoretical-probabilistic terms and theorems. Here the relation of a neutrino to his lepton becomes clear, the W and Z bosons masses turn out dynamic ones, the cause of the asymmetry between particles and antiparticles is the impossibility of the birth of single antiparticles. In addition, phenomena such as confinement and asymptotic freedom receive their probabilistic explanation. And here we have the logical foundations of the gravity theory with phenomena dark energy and dark matter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20theory%20of%20probability" title="classical theory of probability">classical theory of probability</a>, <a href="https://publications.waset.org/abstracts/search?q=logical%20foundation%20of%20fundamental%20theoretical%20physics" title=" logical foundation of fundamental theoretical physics"> logical foundation of fundamental theoretical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=masses" title=" masses"> masses</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=energies" title=" energies"> energies</a>, <a href="https://publications.waset.org/abstracts/search?q=spins" title=" spins"> spins</a> </p> <a href="https://publications.waset.org/abstracts/69589/the-probability-foundation-of-fundamental-theoretical-physics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7119</span> Stochastic Repair and Replacement with a Single Repair Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Hajeeh">Mohammed A. Hajeeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov&#39;s forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system&rsquo;s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=repairable%20models" title="repairable models">repairable models</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect" title=" imperfect"> imperfect</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20distribution" title=" exponential distribution"> exponential distribution</a> </p> <a href="https://publications.waset.org/abstracts/85531/stochastic-repair-and-replacement-with-a-single-repair-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7118</span> Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ranjeeth">M. Ranjeeth</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anuradha"> S. Anuradha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title="spectrum sensing">spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detection" title=" energy detection"> energy detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20channels" title=" fading channels"> fading channels</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20false%20alarm" title=" probability of false alarm"> probability of false alarm</a> </p> <a href="https://publications.waset.org/abstracts/15800/performance-of-nakagami-fading-channel-over-energy-detection-based-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7117</span> Quantum Mechanics Approach for Ruin Probability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kaya">Ahmet Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title="ruin probability">ruin probability</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20technique" title=" Hamiltonian technique"> Hamiltonian technique</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20approach" title=" operator approach"> operator approach</a> </p> <a href="https://publications.waset.org/abstracts/53562/quantum-mechanics-approach-for-ruin-probability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7116</span> Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A0%20Arbu%C3%A9s-Sang%C3%BCesa">Adrià Arbués-Sangüesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Coloma%20Ballester"> Coloma Ballester</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Haro"> Gloria Haro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basketball" title="basketball">basketball</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=single-camera" title=" single-camera"> single-camera</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/109446/single-camera-basketball-tracker-through-pose-and-semantic-feature-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7115</span> Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ke%20Ren">Ke Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiruo%20Shi"> Huiruo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Linsen%20Li"> Linsen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoshuai%20Wang"> Baoshuai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhou"> Yu Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-doppler" title="micro-doppler">micro-doppler</a>, <a href="https://publications.waset.org/abstracts/search?q=time-frequency%20analysis" title=" time-frequency analysis"> time-frequency analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20target%20classification" title=" radar target classification"> radar target classification</a> </p> <a href="https://publications.waset.org/abstracts/66995/time-frequency-feature-extraction-method-based-on-micro-doppler-signature-of-ground-moving-targets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7114</span> Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoyuki%20Sugihashi">Naoyuki Sugihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiharu%20Kishi"> Toshiharu Kishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20crack%20control" title="thermal crack control">thermal crack control</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concrete" title=" mass concrete"> mass concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking%20probability" title=" thermal cracking probability"> thermal cracking probability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20of%20concrete" title=" durability of concrete"> durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=calculating%20method%20of%20cracking%20probability" title=" calculating method of cracking probability"> calculating method of cracking probability</a> </p> <a href="https://publications.waset.org/abstracts/74943/rational-probabilistic-method-for-calculating-thermal-cracking-risk-of-mass-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7113</span> Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabab%20M.%20Ramadan">Rabab M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaraby%20A.%20Elgallad"> Elaraby A. Elgallad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iris%20recognition" title="iris recognition">iris recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20print" title=" palm print"> palm print</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Scale%20Invariant%20Feature%20Transform%20%28SIFT%29" title=" the Scale Invariant Feature Transform (SIFT)"> the Scale Invariant Feature Transform (SIFT)</a> </p> <a href="https://publications.waset.org/abstracts/90535/implementation-of-a-multimodal-biometrics-recognition-system-with-combined-palm-print-and-iris-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7112</span> A Prediction Model of Tornado and Its Impact on Architecture Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jialin%20Wu">Jialin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Lian"> Zhiwei Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieyu%20Tang"> Jieyu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingyun%20Shen"> Jingyun Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tornado%20probability" title="tornado probability">tornado probability</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20mathematics" title=" fuzzy mathematics"> fuzzy mathematics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a> </p> <a href="https://publications.waset.org/abstracts/128106/a-prediction-model-of-tornado-and-its-impact-on-architecture-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7111</span> Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo-Ling%20Chang"> Shuo-Ling Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous" title=" amorphous"> amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/23123/nanoindentation-behaviour-and-microstructural-evolution-of-annealed-single-crystal-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7110</span> The Effect of Feature Selection on Pattern Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Fong%20Tsai">Chih-Fong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Han%20Hu"> Ya-Han Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionality%20reduction" title=" dimensionality reduction"> dimensionality reduction</a> </p> <a href="https://publications.waset.org/abstracts/5047/the-effect-of-feature-selection-on-pattern-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7109</span> Applied Complement of Probability and Information Entropy for Prediction in Student Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kennedy%20Efosa%20Ehimwenma">Kennedy Efosa Ehimwenma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujatha%20Krishnamoorthy"> Sujatha Krishnamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Safiya%20Al%E2%80%91Sharji"> Safiya Al‑Sharji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complement%20of%20probability" title="complement of probability">complement of probability</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayes%E2%80%99%20rule" title=" Bayes’ rule"> Bayes’ rule</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-assessments" title=" pre-assessments"> pre-assessments</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20education" title=" computational education"> computational education</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20theory" title=" information theory"> information theory</a> </p> <a href="https://publications.waset.org/abstracts/135595/applied-complement-of-probability-and-information-entropy-for-prediction-in-student-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7108</span> Comprehensive Feature Extraction for Optimized Condition Assessment of Fuel Pumps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugochukwu%20Ejike%20Akpudo">Ugochukwu Ejike Akpudo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jank-Wook%20Hur"> Jank-Wook Hur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for improved productivity, maintainability, and reliability has prompted rapidly increasing research studies on the emerging condition-based maintenance concept- Prognostics and health management (PHM). Varieties of fuel pumps serve critical functions in several hydraulic systems; hence, their failure can have daunting effects on productivity, safety, etc. The need for condition monitoring and assessment of these pumps cannot be overemphasized, and this has led to the uproar in research studies on standard feature extraction techniques for optimized condition assessment of fuel pumps. By extracting time-based, frequency-based and the more robust time-frequency based features from these vibrational signals, a more comprehensive feature assessment (and selection) can be achieved for a more accurate and reliable condition assessment of these pumps. With the aid of emerging deep classification and regression algorithms like the locally linear embedding (LLE), we propose a method for comprehensive condition assessment of electromagnetic fuel pumps (EMFPs). Results show that the LLE as a comprehensive feature extraction technique yields better feature fusion/dimensionality reduction results for condition assessment of EMFPs against the use of single features. Also, unlike other feature fusion techniques, its capabilities as a fault classification technique were explored, and the results show an acceptable accuracy level using standard performance metrics for evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20fuel%20pumps" title="electromagnetic fuel pumps">electromagnetic fuel pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20feature%20extraction" title=" comprehensive feature extraction"> comprehensive feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20linear%20embedding" title=" locally linear embedding"> locally linear embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20fusion" title=" feature fusion"> feature fusion</a> </p> <a href="https://publications.waset.org/abstracts/111870/comprehensive-feature-extraction-for-optimized-condition-assessment-of-fuel-pumps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7107</span> Local Spectrum Feature Extraction for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran%20Ahmad">Muhammad Imran Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzelita%20Ngadiran"> Ruzelita Ngadiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nazrin%20Md%20Isa"> Mohd Nazrin Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ashidi%20Mat%20Isa"> Nor Ashidi Mat Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20ZaizuIlyas"> Mohd ZaizuIlyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Abdullah%20Raja%20Ahmad"> Raja Abdullah Raja Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amirul%20Anwar%20Ab%20Hamid"> Said Amirul Anwar Ab Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzammil%20Jusoh"> Muzammil Jusoh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20features%20modelling" title="local features modelling">local features modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition%20system" title=" face recognition system"> face recognition system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20models" title=" Gaussian mixture models"> Gaussian mixture models</a>, <a href="https://publications.waset.org/abstracts/search?q=Feret" title=" Feret"> Feret</a> </p> <a href="https://publications.waset.org/abstracts/17388/local-spectrum-feature-extraction-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7106</span> Deleterious SNP’s Detection Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Zidoum">Hamza Zidoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-nucleotide%20polymorphism" title="single-nucleotide polymorphism">single-nucleotide polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/45046/deleterious-snps-detection-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7105</span> A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samina%20Khalid">Samina Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamila%20Nasreen"> Shamila Nasreen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20related%20macular%20degeneration" title="age related macular degeneration">age related macular degeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection%20feature%20subset%20selection%20feature%20extraction%2Ftransformation" title=" feature selection feature subset selection feature extraction/transformation"> feature selection feature subset selection feature extraction/transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=FSA%E2%80%99s" title=" FSA’s"> FSA’s</a>, <a href="https://publications.waset.org/abstracts/search?q=relief" title=" relief"> relief</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20based%20method" title=" correlation based method"> correlation based method</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=ICA" title=" ICA"> ICA</a> </p> <a href="https://publications.waset.org/abstracts/6168/a-survey-of-feature-selection-and-feature-extraction-techniques-in-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7104</span> Quantum Mechanism Approach for Non-Ruin Probability and Comparison of Path Integral Method and Stochastic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kaya">Ahmet Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum mechanism is one of the most important approaches to calculating non-ruin probability. We apply standard Dirac notation to model given Hamiltonians. By using the traditional method and eigenvector basis, non-ruin probability is found for several examples. Also, non-ruin probability is calculated for two different Hamiltonian by using the tensor product. Finally, the path integral method is applied to the examples and comparison is made for stochastic simulations and path integral calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title="quantum physics">quantum physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20system" title=" Hamiltonian system"> Hamiltonian system</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20integral" title=" path integral"> path integral</a>, <a href="https://publications.waset.org/abstracts/search?q=tensor%20product" title=" tensor product"> tensor product</a>, <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title=" ruin probability"> ruin probability</a> </p> <a href="https://publications.waset.org/abstracts/56920/quantum-mechanism-approach-for-non-ruin-probability-and-comparison-of-path-integral-method-and-stochastic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7103</span> Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toby%20Li">Toby Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Zhu"> Julian Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Starlink" title="Starlink">Starlink</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20probability" title=" collision probability"> collision probability</a>, <a href="https://publications.waset.org/abstracts/search?q=debris" title=" debris"> debris</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20model" title=" geometry model"> geometry model</a> </p> <a href="https://publications.waset.org/abstracts/171068/starlink-satellite-collision-probability-simulation-based-on-simplified-geometry-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7102</span> A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Wen%20Chen">Po-Wen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Yu%20Wu"> Jin-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Peng"> Yang Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Te%20Chang"> Chen-Te Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Der-Jun%20Jan"> Der-Jun Jan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20magnetic%20field" title=" transverse magnetic field"> transverse magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20walk" title=" random walk"> random walk</a> </p> <a href="https://publications.waset.org/abstracts/52417/a-statistical-model-for-the-dynamics-of-single-cathode-spot-in-vacuum-cylindrical-cathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7101</span> Analytical Downlink Effective SINR Evaluation in LTE Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwane%20Ben%20Hcine">Marwane Ben Hcine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridha%20Bouallegue"> Ridha Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTE" title="LTE">LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDMA" title=" OFDMA"> OFDMA</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20SINR" title=" effective SINR"> effective SINR</a>, <a href="https://publications.waset.org/abstracts/search?q=log%20skew%20normal%20approximation" title=" log skew normal approximation"> log skew normal approximation</a> </p> <a href="https://publications.waset.org/abstracts/21658/analytical-downlink-effective-sinr-evaluation-in-lte-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7100</span> Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lae-Jeong%20Park">Lae-Jeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title="pedestrian detection">pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20segmentation" title=" color segmentation"> color segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20positive" title=" false positive"> false positive</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/61932/reduction-of-false-positives-in-head-shoulder-detection-based-on-multi-part-color-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7099</span> Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Aravinda">C. V. Aravinda</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Prakash"> H. N. Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=word%20segmentation%20and%20recognition" title="word segmentation and recognition">word segmentation and recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=character%20recognition" title=" character recognition"> character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20character%20recognition" title=" optical character recognition"> optical character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20written%20character%20recognition" title=" hand written character recognition"> hand written character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Indian%20languages" title=" South Indian languages"> South Indian languages</a> </p> <a href="https://publications.waset.org/abstracts/41271/kannada-handwritten-character-recognition-by-edge-hinge-and-edge-distribution-techniques-using-manhatan-and-minimum-distance-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7098</span> Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Goyal">Vishnu Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20Agarwal"> Basant Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20feature%20selection" title=" hybrid feature selection"> hybrid feature selection</a> </p> <a href="https://publications.waset.org/abstracts/59737/hybrid-feature-selection-method-for-sentiment-classification-of-movie-reviews" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7097</span> Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hangsik%20Shin">Hangsik Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20detection" title="peak detection">peak detection</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling" title=" sampling"> sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20reconstruction" title=" signal reconstruction"> signal reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/53409/feature-location-restoration-for-under-sampled-photoplethysmogram-using-spline-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7096</span> Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Khalifa">Salam Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmed"> Naveed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20video" title="3D video">3D video</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20animation" title=" 3D animation"> 3D animation</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20video" title=" RGB-D video"> RGB-D video</a>, <a href="https://publications.waset.org/abstracts/search?q=temporally%20coherent%203D%20animation" title=" temporally coherent 3D animation"> temporally coherent 3D animation</a> </p> <a href="https://publications.waset.org/abstracts/12034/temporally-coherent-3d-animation-reconstruction-from-rgb-d-video-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=237">237</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=238">238</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=single%20feature%20probability&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10