CINXE.COM

A005165 - OEIS

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>A005165 - OEIS</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/A005165\/internal" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2fA005165%2finternal">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="A005165 - OEIS"></a> </div> <div class="motdbox"> <div class="motd"> <p>Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).</p> </div> <div class="donate"> <div id="donate-button-container"> <div id="donate-button"></div> <script src="https://www.paypalobjects.com/donate/sdk/donate-sdk.js" charset="UTF-8"></script> <script> PayPal.Donation.Button({ env:'production', hosted_button_id:'SVPGSDDCJ734A', image: { src:'https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif', alt:'Donate with PayPal button', title:'PayPal - The safer, easier way to pay online!', } }).render('#donate-button'); </script> </div> <a href="https://oeisf.org/donate/"> <strong>Other ways to Give</strong> </a> </div> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div class=sequence> <div class=space1></div> <div class=line></div> <div class=seqhead> <div class=seqnumname> <div class=seqnum> <a href="/A005165">A005165</a> </div> <div class=seqname> Alternating factorials: n! - (n-1)! + (n-2)! - ... 1!. <br><font size=-1>(Formerly M3892)</font> </div> </div> <div class=scorerefs> 68 </div> </div> <div> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%I M3892 #125 Jun 14 2024 01:54:49 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%S 0,1,1,5,19,101,619,4421,35899,326981,3301819,36614981,442386619, </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%T 5784634181,81393657019,1226280710981,19696509177019,335990918918981, </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%U 6066382786809019,115578717622022981,2317323290554617019,48773618881154822981 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%N Alternating factorials: n! - (n-1)! &#43; (n-2)! - ... 1!. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%C Conjecture: for n &gt; 2, smallest prime divisor of a(n) &gt; n. - _Gerald McGarvey_, Jun 19 2004 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%C Rebuttal: This is not true; see Zivkovic link (Math. Comp. 68 (1999), pp. 403-409) has demonstrated that 3612703 divides a(n) for all n &gt;= 3612702. - Paul Jobling, Oct 18 2004 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%C Conjecture: For n&gt;1, a(n) is the number of lattice paths from (0,0) to (n&#43;1,0) that do not cross above y=x or below the x-axis using up-steps &#43;(1,a) and down-steps &#43;(1,-b) where a and b are positive integers. For example, a(3) = 5: [(1,1)(1,1)(1,1)(1,-3)], [(1,1)(1,-1)(1,3)(1,-3)], [(1,1)(1,-1)(1,2)(1,-2)], [(1,1)(1,-1)(1,1)(1,-1)] and [(1,1)(1,1)(1,-1)(1,-1)]. - _Nicholas Ham_, Aug 23 2015 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%C Ham&#39;s claim is true for n=2. We proceed with a proof for n&gt;2 by induction. On the j-th step, from (j-1,y) to (j,y&#39;), there are j options for y&#39;: 0, 1, ..., y-1, y&#43;1, ..., j. Thus there are n! possible paths from (0,0) to x=n that stay between y=0 and y=x. (Then the final step is determined.) However, because &#43;(1,0) is not an allowable step, we cannot land on (n,0) on the n-th step. Therefore, the number of acceptable lattice paths is n! - a(n-1). - _Danny Rorabaugh_, Nov 30 2015 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%D Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B10, pp. 152-153. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H T. D. Noe, &lt;a href=&#34;/A005165/b005165.txt&#34;&gt;Table of n, a(n) for n = 0..100&lt;/a&gt; </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Richard K. Guy, &lt;a href=&#34;/A005169/a005169_6.pdf&#34;&gt;Letter to N. J. A. Sloane&lt;/a&gt;, Sep 25 1986. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Richard K. Guy, &lt;a href=&#34;/A005728/a005728.pdf&#34;&gt;Letter to N. J. A. Sloane, 1987&lt;/a&gt; </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Richard K. Guy, &lt;a href=&#34;http://www.jstor.org/stable/2322249&#34;&gt;The strong law of small numbers&lt;/a&gt;. Amer. Math. Monthly 95 (1988), no. 8, 697-712. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Richard K. Guy, &lt;a href=&#34;/A005165/a005165.pdf&#34;&gt;The strong law of small numbers&lt;/a&gt;. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy] </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Hisanori Mishima, &lt;a href=&#34;http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm&#34;&gt;Factorizations of many number sequences: 103&lt;/a&gt; and &lt;a href=&#34;http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha130.htm&#34;&gt;130&lt;/a&gt;. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Alexsandar Petojevic, &lt;a href=&#34;http://www.cs.uwaterloo.ca/journals/JIS/VOL5/Petojevic/petojevic5.html&#34;&gt;The Function vM_m(s; a; z) and Some Well-Known Sequences&lt;/a&gt;, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Eric Wegrzynowski, &lt;a href=&#34;https://web.archive.org/web/20150912143417/http://www.lifl.fr/~wegrzyno/FormulPrem/FormulesPremiers20.html&#34;&gt;Séries de factorielles&lt;/a&gt;. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Eric Weisstein&#39;s World of Mathematics, &lt;a href=&#34;http://mathworld.wolfram.com/AlternatingFactorial.html&#34;&gt;Alternating Factorial&lt;/a&gt; and &lt;a href=&#34;http://mathworld.wolfram.com/Factorial.html&#34;&gt;Factorial&lt;/a&gt;. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H Miodrag Živković, &lt;a href=&#34;http://dx.doi.org/10.1090/S0025-5718-99-00990-4&#34;&gt;The number of primes Sum_{i=1..n} (-1)^(n-i)*i! is finite&lt;/a&gt;, Math. Comp. 68 (1999), pp. 403-409. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%H &lt;a href=&#34;/index/Fa#factorial&#34;&gt;Index entries for sequences related to factorial numbers&lt;/a&gt;. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%F a(0) = 0, a(n) = n! - a(n-1) for n &gt; 0; also a(n) = n*a(n-2) &#43; (n-1)*a(n-1) for n &gt; 1. Sum_{n&gt;=1} Pi^n/a(n) ~ 30.00005. - _Gerald McGarvey_, Jun 19 2004 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%F E.g.f.: 1/(1-x) &#43; exp(-x)*(e*(Ei(1,1)-Ei(1,1-x)) - 1). - _Robert Israel_, Dec 01 2015 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%F a(n) = (-1)^n*(exp(1)*(gamma(n&#43;2)*gamma(-1-n,1)*(-1)^n &#43;Ei(1))-1). - _Gerry Martens_, May 22 2018 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%F Sum_{n&gt;=1} 1/a(n) = A343187. - _Amiram Eldar_, Jun 01 2023 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%p A005165 := proc(n) local i; add((-1)^(n-i)*i!,i=1..n); end; </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t nn=25;With[{fctrls=Range[nn]!},Table[Abs[Total[Times@@@Partition[ Riffle[ Take[ fctrls,n],{1,-1}],2]]],{n,nn}]] (* _Harvey P. Dale_, Dec 10 2011 *) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t a[0] = 0; a[n_] := n! - a[n - 1]; Array[a, 26, 0] (* _Robert G. Wilson v_, Aug 06 2012 *) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t RecurrenceTable[{a[n] == n! - a[n - 1], a[0] == 0}, a, {n, 0, 20}] (* _Eric W. Weisstein_, Jul 27 2017 *) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t AlternatingFactorial[Range[0, 20]] (* _Eric W. Weisstein_, Jul 27 2017 *) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t a[n_] = (-1)^n (Exp[1]((-1)^n Gamma[-1-n,1] Gamma[2&#43;n] - ExpIntegralEi[-1]) - 1) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%t Table[a[n] // FullSimplify, {n, 0, 20}] (* _Gerry Martens_, May 22 2018 *) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (PARI) a(n)=if(n&lt;0,0,sum(k=0,n-1,(-1)^k*(n-k)!)) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (Python) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o a = 0 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o f = 1 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o for n in range(1, 33): </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o print(a, end=&#34;,&#34;) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o f *= n </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o a = f - a </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o # _Alex Ratushnyak_, Aug 05 2012 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (PARI) first(m)=vector(m,j,sum(i=0,j-1,((-1)^i)*(j-i)!)) \\ _Anders Hellström_, Aug 23 2015 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (PARI) a(n)=round((-1)^n*(exp(1)*(gamma(n&#43;2)*incgam(-1-n,1)*(-1)^n &#43;eint1(1))-1)) \\ _Gerry Martens_, May 22 2018 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (Haskell) </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o a005165 n = a005165_list !! n </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o a005165_list = 0 : zipWith (-) (tail a000142_list) a005165_list </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o -- _Reinhard Zumkeller_, Jul 21 2013 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%o (GAP) List([0..30],n-&gt;Sum([1..n],i-&gt;(-1)^(n-i)*Factorial(i))); # _Muniru A Asiru_, Jun 01 2018 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%Y Cf. A000142, A001272, A003422, A071828, A303697, A343187, A359808. </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%K nonn,easy,nice </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%O 0,4 </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt>%A _N. J. A. Sloane_ </tt></p> <p style="text-indent: -2em; margin-left: 2em; margin-top: 0; margin-bottom: 0;"><tt></tt></p> </div> <div class=space10></div> </div> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified December 13 14:40 EST 2024. Contains 378721 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10