CINXE.COM

Search results for: time resolution

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: time resolution</title> <meta name="description" content="Search results for: time resolution"> <meta name="keywords" content="time resolution"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="time resolution" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="time resolution"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19201</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: time resolution</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19201</span> Design and Implementation of Image Super-Resolution for Myocardial Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy">M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20dictionary%20creation" title="image dictionary creation">image dictionary creation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20super-resolution" title=" image super-resolution"> image super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=LGE%20images" title=" LGE images"> LGE images</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20extraction" title=" patch extraction"> patch extraction</a> </p> <a href="https://publications.waset.org/abstracts/59494/design-and-implementation-of-image-super-resolution-for-myocardial-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19200</span> Improved Super-Resolution Using Deep Denoising Convolutional Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Mishra">Pawan Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Singh%20Bisht"> Ganesh Singh Bisht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resolution" title="resolution">resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title=" deep-learning"> deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=de-blurring" title=" de-blurring"> de-blurring</a> </p> <a href="https://publications.waset.org/abstracts/78802/improved-super-resolution-using-deep-denoising-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19199</span> Continuous FAQ Updating for Service Incident Ticket Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohtaroh%20Miyamoto">Kohtaroh Miyamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As enterprise computing becomes more and more complex, the costs and technical challenges of IT system maintenance and support are increasing rapidly. One popular approach to managing IT system maintenance is to prepare and use an FAQ (Frequently Asked Questions) system to manage and reuse systems knowledge. Such an FAQ system can help reduce the resolution time for each service incident ticket. However, there is a major problem where over time the knowledge in such FAQs tends to become outdated. Much of the knowledge captured in the FAQ requires periodic updates in response to new insights or new trends in the problems addressed in order to maintain its usefulness for problem resolution. These updates require a systematic approach to define the exact portion of the FAQ and its content. Therefore, we are working on a novel method to hierarchically structure the FAQ and automate the updates of its structure and content. We use structured information and the unstructured text information with the timelines of the information in the service incident tickets. We cluster the tickets by structured category information, by keywords, and by keyword modifiers for the unstructured text information. We also calculate an urgency score based on trends, resolution times, and priorities. We carefully studied the tickets of one of our projects over a 2.5-year time period. After the first 6 months, we started to create FAQs and confirmed they improved the resolution times. We continued observing over the next 2 years to assess the ongoing effectiveness of our method for the automatic FAQ updates. We improved the ratio of tickets covered by the FAQ from 32.3% to 68.9% during this time. Also, the average time reduction of ticket resolution was between 31.6% and 43.9%. Subjective analysis showed more than 75% reported that the FAQ system was useful in reducing ticket resolution times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FAQ%20system" title="FAQ system">FAQ system</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20time" title=" resolution time"> resolution time</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20incident%20tickets" title=" service incident tickets"> service incident tickets</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20system%20maintenance" title=" IT system maintenance"> IT system maintenance</a> </p> <a href="https://publications.waset.org/abstracts/13618/continuous-faq-updating-for-service-incident-ticket-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19198</span> Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian">M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy"> M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20b-spline" title="advanced b-spline">advanced b-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20super-resolution" title=" image super-resolution"> image super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error%20%28MSE%29" title=" mean square error (MSE)"> mean square error (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20signal%20to%20noise%20ratio%20%28PSNR%29" title=" peak signal to noise ratio (PSNR)"> peak signal to noise ratio (PSNR)</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20down%20converter" title=" resolution down converter"> resolution down converter</a> </p> <a href="https://publications.waset.org/abstracts/59499/design-and-performance-analysis-of-advanced-b-spline-algorithm-for-image-resolution-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19197</span> PET Image Resolution Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Malczewski">Krzysztof Malczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET" title="PET">PET</a>, <a href="https://publications.waset.org/abstracts/search?q=super-resolution" title=" super-resolution"> super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/6017/pet-image-resolution-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19196</span> Transfer Learning for Protein Structure Classification at Low Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Hudson">Alexander Hudson</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaogang%20Gong"> Shaogang Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20distance%20maps" title=" protein distance maps"> protein distance maps</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20structure%20classification" title=" protein structure classification"> protein structure classification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/129704/transfer-learning-for-protein-structure-classification-at-low-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19195</span> Application on Metastable Measurement with Wide Range High Resolution VDL Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Hui%20Yang">Po-Hui Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Min%20Chen"> Jing-Min Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Yu%20Kuo"> Po-Yu Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chun%20Wu"> Chia-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vernier%20delay%20line" title="vernier delay line">vernier delay line</a>, <a href="https://publications.waset.org/abstracts/search?q=D-type%20flip-flop" title=" D-type flip-flop"> D-type flip-flop</a>, <a href="https://publications.waset.org/abstracts/search?q=DFF" title=" DFF"> DFF</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20phenomenon" title=" metastable phenomenon"> metastable phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/25622/application-on-metastable-measurement-with-wide-range-high-resolution-vdl-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19194</span> The Concept of Commercial Dispute Resolution through the Court in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Afriana">Anita Afriana</a>, <a href="https://publications.waset.org/abstracts/search?q=Efa%20Laela%20Fakhriah"> Efa Laela Fakhriah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The law of civil procedure which is currently in effect in Indonesia is still referring to the rules applicable at the time of the Dutch East Indies, that is Het Herziene Indonesisch Reglement (HIR) and Reglement Tot Regeling Van Het Rechtswezen In De gewesten Buiten Java En Madura (RBg). With the fact that the enactment of this has been very long, there are some things that are no longer suitable with the circumstances and needs of the community in seeking justice today. Therefore, a new regulation on the law of civil procedure is required and the discussions of the draft are currently being carried out. The fast examination of dispute in civil procedure is required to accelerate the growth of Indonesia’s economy by accelerating the dispute resolution method (time efficiency). With the provision of the quick examination on commercial disputes mentioned above, it is expected to benefit the community in order to obtain a tool of dispute resolution efficiently and effectively, so as making justice fast and inexpensive, especially for the resolution of commercial disputes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20dispute" title="commercial dispute">commercial dispute</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20law%20procedure" title=" civil law procedure"> civil law procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=court" title=" court"> court</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/28409/the-concept-of-commercial-dispute-resolution-through-the-court-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19193</span> Framework for Performance Measure of Super Resolution Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Hemant%20Patil">Varsha Hemant Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20A.%20Bhavsar"> Swati A. Bhavsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolee%20H.%20Patil"> Abolee H. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image quality assessment plays an important role in image evaluation. This paper aims to present an investigation of classic techniques in use for image quality assessment, especially for super-resolution imaging. Researchers have contributed a lot towards the development of super-resolution imaging techniques. However, not much attention is paid to the development of metrics for testing the performance of developed techniques. In this paper, the study report of existing image quality measures is given. The paper classifies reviewed approaches according to functionality and suitability for super-resolution imaging. Probable modifications and improvements of these to suit super-resolution imaging are presented. The prime goal of the paper is to provide a comprehensive reference source for researchers working towards super-resolution imaging and suggest a better framework for measuring the performance of super-resolution imaging techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation" title="interpolation">interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=SSIM" title=" SSIM"> SSIM</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a> </p> <a href="https://publications.waset.org/abstracts/159819/framework-for-performance-measure-of-super-resolution-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19192</span> Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Takahashi">Yasuyuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Yamashita"> Maya Yamashita</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoko%20Saito"> Kyoko Saito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20SPECT" title="dynamic SPECT">dynamic SPECT</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20resolution" title=" time resolution"> time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=180-degree%20interpolation%20method" title=" 180-degree interpolation method"> 180-degree interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=99mTc-GSA." title=" 99mTc-GSA."> 99mTc-GSA.</a> </p> <a href="https://publications.waset.org/abstracts/12762/increasing-the-apparent-time-resolution-of-tc-99m-diethylenetriamine-pentaacetic-acid-galactosyl-human-serum-albumin-dynamic-spect-by-use-of-an-180-degree-interpolation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19191</span> The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20D.%20Pluzhnikov">Anatoly D. Pluzhnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Pribludova"> Elena N. Pribludova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20G.%20Ryndyk"> Alexander G. Ryndyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20pattern" title="antenna pattern">antenna pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=array" title=" array"> array</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20resolution" title=" spatial resolution"> spatial resolution</a> </p> <a href="https://publications.waset.org/abstracts/98259/the-principle-probabilities-of-space-distance-resolution-for-a-monostatic-radar-and-realization-in-cylindrical-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19190</span> A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Wang">Jun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingcun%20Wei"> Tingcun Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPWM" title="DPWM">DPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=digitally-controlled%20DC-DC%20switching%20converter" title=" digitally-controlled DC-DC switching converter"> digitally-controlled DC-DC switching converter</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=PLL%20megafunction" title=" PLL megafunction"> PLL megafunction</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20resolution" title=" time resolution"> time resolution</a> </p> <a href="https://publications.waset.org/abstracts/50826/a-high-time-resolution-digital-pulse-width-modulator-based-on-field-programmable-gate-arrays-phase-locked-loop-megafunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19189</span> The Dubai World Islamic Finance Arbitration Center and Jurisprudence Office as the Dispute Resolution Center and Mechanism for the Islamic Finance Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camille%20Paldi">Camille Paldi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the Islamic finance industry is growing annually at a rate of 10% to 15% per year, it is imperative that a unique, independent legal framework is established in order to effectively adjudicate Islamic finance disputes. Currently, Islamic finance disputes are being adjudicated in inadequate civil and common law courts and arbitration centers where the contracts in dispute are being transformed from Islamic to conventional transactions. Through case analysis combined with an exploration of the efficacy of existing arbitration centers and dispute resolution methods available to Islamic finance, this paper will seek to reveal that the Islamic finance industry currently lacks an adequate dispute resolution mechanism and facility to adjudicate disputes arising from Islamic finance contracts. Hence, now is the time for the Dubai World Islamic Finance Arbitration Center (DWIFAC) and Jurisprudence Office (DWIFACJO) as the Dispute Resolution Center and Mechanism for the Islamic Finance Industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20finance" title="Islamic finance">Islamic finance</a>, <a href="https://publications.waset.org/abstracts/search?q=dispute%20resolution" title=" dispute resolution"> dispute resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=Dubai%20world%20Islamic%20finance%20arbitration%20center" title=" Dubai world Islamic finance arbitration center"> Dubai world Islamic finance arbitration center</a>, <a href="https://publications.waset.org/abstracts/search?q=jurisprudence%20office" title=" jurisprudence office"> jurisprudence office</a> </p> <a href="https://publications.waset.org/abstracts/7004/the-dubai-world-islamic-finance-arbitration-center-and-jurisprudence-office-as-the-dispute-resolution-center-and-mechanism-for-the-islamic-finance-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19188</span> Empirical Research on Preference for Conflict Resolution Styles of Owners and Contractors in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junqi%20Zhao">Junqi Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqiang%20Chen"> Yongqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preference for different conflict resolution styles are influenced by cultural background and power distance of two parties involving in conflict. This research put forward 7 hypotheses and tested the preference differences of the five conflict resolution styles between Chinese owner and contractor as well as the preference differences concerning the same style between two parties. The research sample includes 202 practitioners from construction enterprises in mainland China. Research result found that theories concerning conflict resolution styles could be applied in the Chinese construction industry. Some results of this research were not in line with former research, and this research also gave explanation to the differences from the characteristics of construction projects. Based on the findings, certain suggestions were made to serve as a guidance for managers to choose appropriate conflict resolution styles for a better handling of conflict. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20owner%20and%20contractor" title="Chinese owner and contractor">Chinese owner and contractor</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title=" construction project"> construction project</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution%20styles" title=" conflict resolution styles"> conflict resolution styles</a> </p> <a href="https://publications.waset.org/abstracts/3663/empirical-research-on-preference-for-conflict-resolution-styles-of-owners-and-contractors-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19187</span> Sub-Pixel Mapping Based on New Mixed Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Zhou">Zeyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Bi"> Xiaojun Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title="remote sensing images">remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-pixel%20mapping" title=" sub-pixel mapping"> sub-pixel mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20interpolation" title=" bilinear interpolation"> bilinear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-directed%20interpolation" title=" edge-directed interpolation"> edge-directed interpolation</a> </p> <a href="https://publications.waset.org/abstracts/77883/sub-pixel-mapping-based-on-new-mixed-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19186</span> Light-Weight Network for Real-Time Pose Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianghao%20Hu">Jianghao Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyu%20Wang"> Hongyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depthwise%20separable%20convolutions" title="depthwise separable convolutions">depthwise separable convolutions</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20pyramid%20network" title=" feature pyramid network"> feature pyramid network</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20pose%20estimation" title=" human pose estimation"> human pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weight%20backbone" title=" light-weight backbone "> light-weight backbone </a> </p> <a href="https://publications.waset.org/abstracts/112845/light-weight-network-for-real-time-pose-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19185</span> Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Zhang">Helen Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20super-resolution" title="3D super-resolution">3D super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=airway%20segmentation" title=" airway segmentation"> airway segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-slice%20CT%20scans" title=" thin-slice CT scans"> thin-slice CT scans</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/163912/heterogenous-dimensional-super-resolution-of-3d-ct-scans-using-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19184</span> A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti-An%20Tsai">Ti-An Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chih%20Wang"> Chun-Chih Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Wen%20Wang"> Hung-Wen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang"> I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lien-Wen%20Chen"> Lien-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20photonic%20crystal" title="magnetic photonic crystal">magnetic photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index%20sensor" title=" refractive index sensor"> refractive index sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=high-resolution" title=" high-resolution"> high-resolution</a> </p> <a href="https://publications.waset.org/abstracts/26102/a-high-resolution-refractive-index-sensor-based-on-a-magnetic-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19183</span> The Role of Legal Translation in Conflict Resolution: The Case of the Anglophone Crisis in Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shwiri%20Eshwa%20Chumbow">Shwiri Eshwa Chumbow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper explores the contribution of legal translation in conflict resolution with a specific focus on the Anglophone Crisis in Cameroon. The Anglophone Crisis, which emerged from grievances concerning language and legal systems, has underscored the importance of accurate and culturally sensitive legal translation services. Using documentary research and case study analysis, this paper examines the impact of translation (or lack thereof) on conflict resolution and proposes translation-related solutions to resolve the conflict and promote peace. The findings highlight the critical role of (legal) translation in bridging linguistic and cultural gaps, facilitating dialogue, and fostering understanding in conflict resolution processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anglophone%20crisis" title="anglophone crisis">anglophone crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Cameroon" title=" Cameroon"> Cameroon</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution" title=" conflict resolution"> conflict resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=francophone" title=" francophone"> francophone</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20translation" title=" legal translation"> legal translation</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/179149/the-role-of-legal-translation-in-conflict-resolution-the-case-of-the-anglophone-crisis-in-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19182</span> HR MRI CS Based Image Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Malczewski">Krzysztof Malczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super-resolution" title="super-resolution">super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse-sense" title=" sparse-sense"> sparse-sense</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a> </p> <a href="https://publications.waset.org/abstracts/6021/hr-mri-cs-based-image-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19181</span> Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khen%20Cohen">Khen Cohen</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Yankelevich"> Daniel Yankelevich</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mendlovic"> David Mendlovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Raviv"> Dan Raviv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DVS-CIS%20stereo%20vision" title="DVS-CIS stereo vision">DVS-CIS stereo vision</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-movements" title=" micro-movements"> micro-movements</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20super-resolution" title=" temporal super-resolution"> temporal super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/143524/frame-camera-and-event-camera-in-stereo-pair-for-high-resolution-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19180</span> Alternative Dispute Resolution in the Settlement of Environmental Disputes in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20van%20der%20Bank">M. van der Bank</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20van%20der%20Bank"> C. M. van der Bank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative Dispute Resolution denotes all forms of dispute resolution other than litigation or adjudication through the courts. This definition of Alternative Dispute Resolution, however, makes no mention of a vital consideration. ADR is the generally accepted acronym for alternative dispute resolution. Despite the choice not to proceed before a court or statutory tribunal, ADR will still be regulated by law and by the Constitution. Fairness is one of the core values of the South African constitutional order. Environmental disputes occur frequently, but due to delays and costs, ADR is a mechanism to resolve this kind of disputes which is a resolution of non-judicial mechanism. ADR can be used as a mechanism in environmental disputes that are less expensive and also more expeditious than formal litigation. ADR covers a broad range of mechanisms and processes designed to assist parties in resolving disputes creatively and effectively. In so far as this may involve the selection or design of mechanisms and processes other than formal litigation, these mechanisms and processes are not intended to supplant court adjudication, but rather to supplement it. A variety of ADR methods have been developed to deal with numerous problems encountered during environmental disputes. The research questions are: How can ADR facilitate environmental disputes in South Africa? Are they appropriate? And what improvements should be made? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20dispute" title="alternative dispute">alternative dispute</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20disputes" title=" environmental disputes"> environmental disputes</a>, <a href="https://publications.waset.org/abstracts/search?q=non-judicial" title=" non-judicial"> non-judicial</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20and%20settlement" title=" resolution and settlement"> resolution and settlement</a> </p> <a href="https://publications.waset.org/abstracts/74147/alternative-dispute-resolution-in-the-settlement-of-environmental-disputes-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19179</span> A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park">Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim"> Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangsik%20Choi"> Sangsik Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20structure" title="underwater structure">underwater structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SONAR" title=" SONAR"> SONAR</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20inspection" title=" safety inspection"> safety inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/42801/a-regression-analysis-study-of-the-applicability-of-side-scan-sonar-based-safety-inspection-of-underwater-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19178</span> Integrated Intensity and Spatial Enhancement Technique for Color Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evan%20W.%20Krieger">Evan W. Krieger</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayan%20K.%20Asari"> Vijayan K. Asari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saibabu%20Arigela"> Saibabu Arigela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20range%20compression" title="dynamic range compression">dynamic range compression</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20Fourier%20features" title=" multi-level Fourier features"> multi-level Fourier features</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20enhancement" title=" nonlinear enhancement"> nonlinear enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a> </p> <a href="https://publications.waset.org/abstracts/22706/integrated-intensity-and-spatial-enhancement-technique-for-color-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19177</span> Enhancer: An Effective Transformer Architecture for Single Image Super Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pitigalage%20Chamath%20Chandira%20Peiris">Pitigalage Chamath Chandira Peiris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20image%20super%20resolution" title="single image super resolution">single image super resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20transformers" title=" vision transformers"> vision transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20%20restoration" title=" image restoration"> image restoration</a> </p> <a href="https://publications.waset.org/abstracts/154323/enhancer-an-effective-transformer-architecture-for-single-image-super-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19176</span> Alternate Dispute Resolution: Expeditious Justice </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzma%20Fakhar">Uzma Fakhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Fakhar"> Osama Fakhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Shafiq%20Ch"> Aamir Shafiq Ch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methods of alternate dispute resolution (ADR) like conciliation, arbitration, mediation are the supplement to ensure inexpensive and expeditious justice in a country. Justice delayed has not only created chaos, but an element of rebellious behavior towards judiciary is being floated among people. Complexity of traditional judicial system and its diversity has created an overall coherence. Admittedly, In Pakistan the traditional judicial system has failed to achieve its goals which resulted in the backlog of cases pending in courts, resultantly even the critics of alternate dispute resolution agree to restore the spirit of expeditious justice by reforming the old Panchayat system. The Government is keen to enact certain laws and make amendments to facilitate the resolution of a dispute through a simple and faster ADR framework instead of a lengthy and exhausting complex trial in order to create proliferation and faith in alternate dispute resolution. This research highlights the value of ADR in a country like Pakistan for revival of the confidence of the people upon the judicial process and a useful judicial tool to reduce the pressure on the judiciary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternate%20dispute%20resolution" title="alternate dispute resolution">alternate dispute resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20of%20law" title=" development of law"> development of law</a>, <a href="https://publications.waset.org/abstracts/search?q=expeditious%20justice" title=" expeditious justice"> expeditious justice</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/80534/alternate-dispute-resolution-expeditious-justice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19175</span> Determination of Full Energy Peak Efficiency and Resolution of Nai (Tl) Detector Using Gamma-ray Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jibon%20Sharma">Jibon Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Alakjyoti%20Patowary"> Alakjyoti Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Moirangthem%20Nara%20Singh"> Moirangthem Nara Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In experimental research it is very much essential to obtain the quality control of the system used for the experiment. NaI (Tl) scintillation detector is the most commonly used in radiation and medical physics for measurement of the gamma ray activity of various samples. In addition, the scintillation detector has a lot of applications in the elemental analysis of various compounds, alloys using activation analysis. In each application for quantitative analysis, it is very much essential to know the detection efficiency and resolution for different gamma energies. In this work, the energy dependence of efficiency and resolution of NaI (Tl) detector using gamma-ray spectroscopy are investigated. Different photon energies of 356.01 keV,511keV,661.60keV,1170 keV,1274.53 keV and 1330 keV are obtained from four radioactive sources (133Ba,22Na,137Cs and 60 Co) used in these studies. Values of full energy peak efficiencies of these gamma energies are found to be respectively 58.46%,10.15%,14.39%,1.4%,3.27% and 1.31%. The values of percent resolution for above different gamma ray energies are found to be 11.27%,7.27%,6.38%,5.17%,4.86% and 4.74% respectively. It was found that the efficiency of the detector exponentially decreases with energy and the resolution of the detector is directly proportional to the energy of gamma-ray. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naI%20%28Tl%29%20gamma-ray%20spectrometer" title="naI (Tl) gamma-ray spectrometer">naI (Tl) gamma-ray spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20energy%20peak%20efficiency" title=" full energy peak efficiency"> full energy peak efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20sources" title=" radioactive sources"> radioactive sources</a> </p> <a href="https://publications.waset.org/abstracts/158239/determination-of-full-energy-peak-efficiency-and-resolution-of-nai-tl-detector-using-gamma-ray-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19174</span> Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Dutta">Manoj Kumar Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WDM%20network" title="WDM network">WDM network</a>, <a href="https://publications.waset.org/abstracts/search?q=contention%20resolution" title=" contention resolution"> contention resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20buffering" title=" optical buffering"> optical buffering</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linearity" title=" non-linearity"> non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a> </p> <a href="https://publications.waset.org/abstracts/38257/comparative-performance-analysis-of-fiber-delay-line-based-buffer-architectures-for-contention-resolution-in-optical-wdm-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19173</span> Unearthing Air Traffic Control Officers Decision Instructional Patterns From Simulator Data for Application in Human Machine Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainuddin%20Zakaria">Zainuddin Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Woh%20Lye"> Sun Woh Lye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control%20strategies" title="air traffic control strategies">air traffic control strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution" title=" conflict resolution"> conflict resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=simulator%20data" title=" simulator data"> simulator data</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20classification%20system" title=" strategy classification system"> strategy classification system</a> </p> <a href="https://publications.waset.org/abstracts/172853/unearthing-air-traffic-control-officers-decision-instructional-patterns-from-simulator-data-for-application-in-human-machine-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19172</span> A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moslehpour">M. Moslehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khorsandi"> S. Khorsandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP&rsquo;s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDP" title="NDP">NDP</a>, <a href="https://publications.waset.org/abstracts/search?q=IPsec" title=" IPsec"> IPsec</a>, <a href="https://publications.waset.org/abstracts/search?q=SEND" title=" SEND"> SEND</a>, <a href="https://publications.waset.org/abstracts/search?q=CGA" title=" CGA"> CGA</a>, <a href="https://publications.waset.org/abstracts/search?q=modifier" title=" modifier"> modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=malicious%20node" title=" malicious node"> malicious node</a>, <a href="https://publications.waset.org/abstracts/search?q=self-computing" title=" self-computing"> self-computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed-computing" title=" distributed-computing"> distributed-computing</a> </p> <a href="https://publications.waset.org/abstracts/45747/a-distributed-cryptographically-generated-address-computing-algorithm-for-secure-neighbor-discovery-protocol-in-ipv6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=640">640</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=641">641</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=time%20resolution&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10