CINXE.COM

Search results for: flue gas condensation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flue gas condensation</title> <meta name="description" content="Search results for: flue gas condensation"> <meta name="keywords" content="flue gas condensation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flue gas condensation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flue gas condensation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 286</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flue gas condensation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">286</span> The Effect of Flue Gas Condensation on the Exergy Efficiency and Economic Performance of a Waste-To-Energy Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Chinweuba%20Eboh">Francis Chinweuba Eboh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Richards"> Tobias Richards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a waste-to-energy combined heat and power plant under construction was modelled and simulated with the Aspen Plus software. The base case process plant was evaluated and compared when integrated with flue gas condensation (FGC) in order to find out the impact of the exergy efficiency and economic feasibility as well as the effect of overall system exergy losses and revenue generated in the investigated plant. The economic evaluations were carried out using the vendor cost data from Aspen process economic analyser. The results indicate that 4 % increase in the exergy efficiency and 29 % reduction in the exergy loss in the flue gas were obtained when the flue gas condensation was incorporated. Furthermore, with the integrated FGC, the net present values (NPV) and income generated in the base process plant were increased by 29 % and 10 % respectively after 20 years of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20feasibility" title="economic feasibility">economic feasibility</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title=" exergy efficiency"> exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20losses" title=" exergy losses"> exergy losses</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation" title=" flue gas condensation"> flue gas condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a> </p> <a href="https://publications.waset.org/abstracts/108189/the-effect-of-flue-gas-condensation-on-the-exergy-efficiency-and-economic-performance-of-a-waste-to-energy-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">285</span> Flue Gas Characterisation for Conversion to Chemicals and Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas" title="flue gas">flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/25313/flue-gas-characterisation-for-conversion-to-chemicals-and-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">284</span> Characterization of Carbon Dioxide-Rich Flue Gas Sources for Conversion to Chemicals and Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20Orimoloye">Adesola Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever - present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flue%20gas" title="Flue gas">Flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/24936/characterization-of-carbon-dioxide-rich-flue-gas-sources-for-conversion-to-chemicals-and-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">283</span> Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Comakli">Kemal Comakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Terhan"> Meryem Terhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler&rsquo;s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery%20from%20flue%20gas" title="heat recovery from flue gas">heat recovery from flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis%20of%20flue%20gas" title=" energy analysis of flue gas"> energy analysis of flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20analysis" title=" economical analysis"> economical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a> </p> <a href="https://publications.waset.org/abstracts/45052/energy-and-economic-analysis-of-heat-recovery-from-boiler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">282</span> A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thien%20X.%20Dinh">Thien X. Dinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Witt"> Peter Witt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20flow" title=" metallurgical flow"> metallurgical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a> </p> <a href="https://publications.waset.org/abstracts/175697/a-model-of-condensation-and-solidification-of-metallurgical-vapor-in-a-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">281</span> Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Que">Nguyen Van Que</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huy%20The"> Nguyen Huy The</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title="heat and mass transfer">heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=user-defined%20functions" title=" user-defined functions"> user-defined functions</a> </p> <a href="https://publications.waset.org/abstracts/71123/numeric-modeling-of-condensation-of-water-vapor-from-humid-air-in-a-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">280</span> Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karel%20Borovec">Karel Borovec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Gorecki"> Jerzy Gorecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeas%20Ochodek"> Tadeas Ochodek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20measurement" title="continuous measurement">continuous measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas" title=" flue gas"> flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%20determination" title=" mercury determination"> mercury determination</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/78204/tests-and-comparison-of-two-mobile-industrial-analytical-systems-for-mercury-speciation-in-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">279</span> Temperature Effects on CO₂ Intake of MIL-101 and ZIF-301</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ba-Shammakh">M. Ba-Shammakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) are promising materials for CO₂ capture and they have high adsorption capacity towards CO₂. In this study, two different metal organic frameworks (i.e. MIL-101 and ZIF-301) were tested for different flue gases that have different CO₂ fractions. In addition, the effect of temperature was investigated for MIL-101 and ZIF-301. The results show that MIL-101 performs well for pure CO₂ stream while its intake decreases dramatically for other flue gases that have variable CO₂ fraction ranging from 5 to 15 %. The second material (ZIF-301) showed a better result in all flue gases and higher CO₂ intake compared to MIL-101 even at high temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title="CO₂ capture">CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=Metal%20Organic%20Frameworks%20%28MOFs%29" title=" Metal Organic Frameworks (MOFs)"> Metal Organic Frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-101" title=" MIL-101"> MIL-101</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF-301" title=" ZIF-301"> ZIF-301</a> </p> <a href="https://publications.waset.org/abstracts/73035/temperature-effects-on-co2-intake-of-mil-101-and-zif-301" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">278</span> Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Lestinsky">P. Lestinsky</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jecha"> D. Jecha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Brummer"> V. Brummer</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Stehlik"> P. Stehlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150 °C to 40 °C. The pressure drop was increased with increasing of a liquid-gas ratio, but not as much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas" title=" flue gas"> flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/22035/wet-flue-gas-desulfurization-using-a-new-o-element-design-which-replaces-the-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Dissolution of South African Limestone for Wet Flue Gas Desulphurization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Koech">Lawrence Koech</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20Everson"> Ray Everson</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20Neomagus"> Hein Neomagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet Flue gas desulphurization (FGD) systems are commonly used to remove sulphur dioxide from flue gas by contacting it with limestone in aqueous phase which is obtained by dissolution. Dissolution is important as it affects the overall performance of a wet FGD system. In the present study, effects of pH, stirring speed, solid to liquid ratio and acid concentration on the dissolution of limestone using an organic acid (adipic acid) were investigated. This was investigated using the pH stat apparatus. Calcium ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stat%20apparatus" title=" pH stat apparatus"> pH stat apparatus</a> </p> <a href="https://publications.waset.org/abstracts/18656/dissolution-of-south-african-limestone-for-wet-flue-gas-desulphurization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Condensation of Moist Air in Heat Exchanger Using CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Barak">Jan Barak</a>, <a href="https://publications.waset.org/abstracts/search?q=Karel%20Frana"> Karel Frana</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Stiller"> Joerg Stiller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents results of moist air condensation in heat exchanger. It describes theoretical knowledge and definition of moist air. Model with geometry of square canal was created for better understanding and post processing of condensation phenomena. Different approaches were examined on this model to find suitable software and model. Obtained knowledge was applied to geometry of real heat exchanger and results from experiment were compared with numerical results. One of the goals is to solve this issue without creating any user defined function in the applied code. It also contains summary of knowledge and outlook for future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=exchanger" title=" exchanger"> exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/2889/condensation-of-moist-air-in-heat-exchanger-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Heat Transfer Characteristics of Film Condensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mosaad">M. Mosaad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Almutairi"> J. H. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Almutairi"> A. S. Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, saturated-vapour film condensation on a vertical wall with the backside cooled by forced convection is analyzed as a conjugate problem. In the analysis, the temperature and heat flux at the wall sides are assumed unknown and determined from the solution. The model is presented in a dimensionless form to take a broad view of the solution. The dimensionless variables controlling this coupled heat transfer process are discovered from the analysis. These variables explain the relative impact of the interactive heat transfer mechanisms of forced convection and film condensation. The study shows that the conjugate treatment of film condensation process yields results different from that predicted by a non-conjugate Nusselt-type solution, wherein the effect of the cooling fluid is neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=film%20condensation" title="film condensation">film condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20heat%20transfer" title=" coupled heat transfer"> coupled heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20modelling" title=" analytical modelling"> analytical modelling</a> </p> <a href="https://publications.waset.org/abstracts/67440/heat-transfer-characteristics-of-film-condensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20W.%20Njeru">Catherine W. Njeru</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarence%20Murithi%20W."> Clarence Murithi W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20W.%20%20Mwangi"> Isaac W. Mwangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Wanjau"> Ruth Wanjau</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20N.%20Kiriro"> Grace N. Kiriro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerald%20W.%20Mbugua"> Gerald W. Mbugua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title="FT-IR">FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20flue%20gases" title=" charcoal flue gases"> charcoal flue gases</a>, <a href="https://publications.waset.org/abstracts/search?q=beef" title=" beef"> beef</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20flue%20gases" title=" charcoal flue gases"> charcoal flue gases</a> </p> <a href="https://publications.waset.org/abstracts/192426/characterization-of-fresh-charcoal-flue-gas-treated-and-boiled-beef-samples-using-ftir-for-consumption-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Simulation of Wet Scrubbers for Flue Gas Desulfurization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anders%20Schou%20Simonsen">Anders Schou Simonsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Sorensen"> Kim Sorensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Condra"> Thomas Condra </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title="desulfurization">desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20phase" title=" discrete phase"> discrete phase</a>, <a href="https://publications.waset.org/abstracts/search?q=scrubber" title=" scrubber"> scrubber</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20film" title=" wall film"> wall film</a> </p> <a href="https://publications.waset.org/abstracts/84416/simulation-of-wet-scrubbers-for-flue-gas-desulfurization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> The Effects of Modern Materials on the Moisture Resistance Performance of Architectural Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leyli%20Hashemi%20Rafsanjani">Leyli Hashemi Rafsanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Mortazavi%20Alavi"> Hoda Mortazavi Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Habibzadeh"> Amirhossein Habibzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the atmospheric and environmental factors impose massive damages to buildings. Thus, to reduce these damages, researchers pay more attention on qualitative and quantitative characteristic of buildings materials. Condensation is one of the problems in Contemporary Sustecture Design. It could cause serious damages to the frontage, interior and structural elements of buildings. As a result, taking preventative steps to avoid condensation from occurring in buildings will help prevent avoidable and costly problems in the future. Hence, the aim of this paper is to answer the question: “Does the use of advanced materials cause the reduction of condensation formed on the walls?" In response to those flaws, this paper considered similar articles and selected 20 buildings randomly from contemporary architecture of developing countries which have been built in recent decade from 2002 to 2012, to find out the mutual relation between the usage of advanced materials and level of condensation damages. This consideration shows that by using advanced materials, we will have fewer damages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20materials" title=" advanced materials"> advanced materials</a>, <a href="https://publications.waset.org/abstracts/search?q=contemporary%20sustecture" title=" contemporary sustecture"> contemporary sustecture</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/53472/the-effects-of-modern-materials-on-the-moisture-resistance-performance-of-architectural-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambreen%20Aslam">Ambreen Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Aziz%20Mughal"> Tahira Aziz Mughal</a>, <a href="https://publications.waset.org/abstracts/search?q=Skye%20R.%20Thomas-Hall"> Skye R. Thomas-Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Peer%20M.%20Schenk"> Peer M. Schenk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20analysis" title="biodiesel analysis">biodiesel analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fired%20flue%20gas" title=" coal fired flue gas"> coal fired flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=FAME%20productivity" title=" FAME productivity"> FAME productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title=" fatty acid profile"> fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20content" title=" lipid content"> lipid content</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20culture%20microalgae" title=" mixed culture microalgae"> mixed culture microalgae</a> </p> <a href="https://publications.waset.org/abstracts/67538/biodiesel-fuel-properties-of-mixed-culture-microalgae-under-different-co2-concentration-from-coal-fired-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kazemi%20Jouybari">A. Kazemi Jouybari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirabdolah%20Lavasani"> A. Mirabdolah Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20rate" title=" entropy rate"> entropy rate</a> </p> <a href="https://publications.waset.org/abstracts/94520/numerical-and-analytical-approach-for-film-condensation-on-different-forms-of-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Study on the Thermal Mixing of Steam and Coolant in the Hybrid Safety Injection Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Uk%20Ryu">Sung Uk Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Gook%20Jeon"> Byoung Gook Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Jae%20Yi"> Sung-Jae Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In such passive safety injection systems in the nuclear power plant as Core Makeup Tank (CMT) and Hybrid Safety Injection Tank, various thermal-hydraulic phenomena including the direct contact condensation of steam and the thermal stratification of coolant occur. These phenomena are also closely related to the performance of the system. Depending on the condensation rate of the steam injected to the tank, the injection of the coolant and pressure equalizing timings of the tank are decided. The steam injected to the tank from the upper nozzle penetrates the coolant and induces a direct contact condensation. In the present study, the direct contact condensation of steam and the thermal mixing between the steam and coolant were examined by using the Particle Image Velocimetry (PIV) technique. Especially, by altering the size of the nozzle from which the steam is injected, the influence of steam injection velocity on the thermal mixing with coolant and condensation shall be comprehended, while also investigating the influence of condensation on the pressure variation inside the tank. Even though the amounts of steam inserted were the same in three different nozzle size conditions, it was found that the velocity of pressure rise becomes lower as the steam injection area decreases. Also, as the steam injection area increases, the thickness of the zone within which the coolant’s temperature decreases. Thereby, the amount of steam condensed by the direct contact condensation also decreases. The results derived from the present study can be utilized for the detailed design of a passive safety injection system, as well as for modeling the direct contact condensation triggered by the steam jet’s penetration into the coolant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20safety%20injection%20systems" title="passive safety injection systems">passive safety injection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20penetration" title=" steam penetration"> steam penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20contact%20condensation" title=" direct contact condensation"> direct contact condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a> </p> <a href="https://publications.waset.org/abstracts/62498/study-on-the-thermal-mixing-of-steam-and-coolant-in-the-hybrid-safety-injection-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Jui%20Li">Cheng-Jui Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chou%20Tseng"> Chien-Chou Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian-Eulerian%20Model" title=" Eulerian-Eulerian Model"> Eulerian-Eulerian Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Flue%20Gas%20Desulfurization%20%28FGD%29" title=" Flue Gas Desulfurization (FGD)"> Flue Gas Desulfurization (FGD)</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sieve%20tray" title=" perforated sieve tray"> perforated sieve tray</a> </p> <a href="https://publications.waset.org/abstracts/70051/numerical-investigation-of-multiphase-flow-structure-for-the-flue-gas-desulfurization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycloaddition%20reaction" title="cycloaddition reaction">cycloaddition reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselectivity" title=" regioselectivity"> regioselectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20reaction" title=" mechanism reaction"> mechanism reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20analysis" title=" NMR analysis"> NMR analysis</a> </p> <a href="https://publications.waset.org/abstracts/192375/synthesis-characterization-and-quantum-investigations-on-32-cycloaddition-reaction-of-nitrile-oxide-with-15-benzodiazepine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Molecular Dynamics Studies of Homogeneous Condensation and Thermophysical Properties of HFC-1336mzz(Z)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Khan">Misbah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Wen"> Jian Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asif%20Shakoori"> Muhammad Asif Shakoori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Organic Rankine Cycle (ORC) plays an important role in converting low-temperature heat sources into electrical power by using refrigerants as working fluids. The thermophysical properties of working fluids are essential for designing ORC. HFO-1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) considered as working fluid and have almost 99% low GWP and relatively same thermophysical properties used as a replacement of HFC-245fa (1,1,1,3,3-pentafluoro-propane). The environmental, safety, healthy and thermophysical properties of HFO-1336mzz(Z) are needed to use it in a practical system. In this paper, Molecular dynamics simulations were used to investigate the Homogeneous condensation, thermophysical and structural properties of HFO-1336mzz(Z) and HFC-245fa. The effect of various temperatures and pressures on thermophysical properties and condensation was extensively investigated. The liquid densities and isobaric heat capacities of this refrigerant was simulated at 273.15K to 353.15K temperatures and pressure0.5-4.0MPa. The simulation outcomes were compared with experimental data to validate our simulation method. The mean square displacement for different temperatures was investigated for dynamical analysis. The variations in potential energies and condensation rate were simulated to get insight into the condensation process. The radial distribution function was simulated at the micro level for structural analysis and revealed that the phase transition of HFO-1336mzz(Z) did not affect the intramolecular structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenous%20condensation" title="homogenous condensation">homogenous condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerants" title=" refrigerants"> refrigerants</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulations" title=" molecular dynamics simulations"> molecular dynamics simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title=" organic rankine cycle"> organic rankine cycle</a> </p> <a href="https://publications.waset.org/abstracts/144702/molecular-dynamics-studies-of-homogeneous-condensation-and-thermophysical-properties-of-hfc-1336mzzz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Glew">David Glew</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Thomas"> Felix Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Brooke-Peat"> Matthew Brooke-Peat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation%20risk" title="condensation risk">condensation risk</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20simulation" title=" hygrothermal simulation"> hygrothermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20wall%20insulation" title=" internal wall insulation"> internal wall insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bridging" title=" thermal bridging"> thermal bridging</a> </p> <a href="https://publications.waset.org/abstracts/127908/assessing-the-risk-of-condensation-and-moisture-accumulation-in-solid-walls-comparing-different-internal-wall-insulation-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengjun%20Zhang">Shengjun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Cheng"> Xu Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Shen"> Feng Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-condensable%20gas" title="non-condensable gas">non-condensable gas</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer%20analogy" title=" heat and mass transfer analogy"> heat and mass transfer analogy</a> </p> <a href="https://publications.waset.org/abstracts/62526/condensation-of-vapor-in-the-presence-of-non-condensable-gas-on-a-vertical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Sarac">Aysegul Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=6-Sigma%20methodology" title=" 6-Sigma methodology"> 6-Sigma methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=washer-dryers" title=" washer-dryers"> washer-dryers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20condensation%20technology" title=" water condensation technology"> water condensation technology</a> </p> <a href="https://publications.waset.org/abstracts/46334/optimizing-water-consumption-of-a-washer-dryer-which-contains-water-condensation-technology-under-a-constraint-of-energy-consumption-and-drying-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> A Study on Removal of SO3 in Flue Gas Generated from Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Y.%20Jo">E. Y. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Park"> S. M. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Yeo"> I. S. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Kim"> K. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Park"> S. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Kim"> Y. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Kim"> Y. D. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Park"> C. G. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurization" title="flue gas desulfurization">flue gas desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title=" petroleum cokes"> petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulfur%20trioxide" title=" Sulfur trioxide"> Sulfur trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=SO3%20removal" title=" SO3 removal"> SO3 removal</a> </p> <a href="https://publications.waset.org/abstracts/18701/a-study-on-removal-of-so3-in-flue-gas-generated-from-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sou%20Watanabe">Sou Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromichi%20Ogi"> Hiromichi Ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuhiro%20Shibata"> Atsuhiro Shibata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Nomura"> Kazunori Nomura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH<sub>4</sub><sup>+</sup> ion in the feed solution was successfully concentrated, and NH<sub>4</sub><sup>+</sup> ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20liquid%20waste" title=" radioactive liquid waste"> radioactive liquid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=STRAD%20project" title=" STRAD project"> STRAD project</a> </p> <a href="https://publications.waset.org/abstracts/104557/waste-management-in-a-hot-laboratory-of-japan-atomic-energy-agency-2-condensation-and-solidification-experiments-on-liquid-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Kabuba"> John Kabuba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20ion" title="calcium ion">calcium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stat%20apparatus" title=" pH stat apparatus"> pH stat apparatus</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20flue%20gas%20desulphurization" title=" wet flue gas desulphurization"> wet flue gas desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/13102/dissolution-of-zeolite-as-a-sorbent-in-flue-gas-desulphurization-process-using-a-ph-stat-apparatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Snustad">Ingrid Snustad</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmund%20Ervik"> Asmund Ervik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Austegard"> Anders Austegard</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Brunsvold"> Amy Brunsvold</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianying%20He"> Jianying He</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang%20Zhang"> Zhiliang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCS" title="CCS">CCS</a>, <a href="https://publications.waset.org/abstracts/search?q=dropwise%20condensation" title=" dropwise condensation"> dropwise condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20surface%20tension%20liquid" title=" low surface tension liquid"> low surface tension liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=superlyophobic%20surfaces" title=" superlyophobic surfaces"> superlyophobic surfaces</a> </p> <a href="https://publications.waset.org/abstracts/83040/superlyophobic-surfaces-for-increased-heat-transfer-during-condensation-of-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Jui%20Kou">Kai-Jui Kou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ling%20Shen"> Tzu-Ling Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20emission" title=" particle emission"> particle emission</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20concentration" title=" number concentration"> number concentration</a> </p> <a href="https://publications.waset.org/abstracts/96276/characterizing-nanoparticles-generated-from-the-different-working-type-and-the-stack-flue-during-3d-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flue%20gas%20condensation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10