CINXE.COM
Search results for: residential energy consumption and carbon emissions
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: residential energy consumption and carbon emissions</title> <meta name="description" content="Search results for: residential energy consumption and carbon emissions"> <meta name="keywords" content="residential energy consumption and carbon emissions"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="residential energy consumption and carbon emissions" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="residential energy consumption and carbon emissions"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13297</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: residential energy consumption and carbon emissions</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13297</span> Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Lei">Shuo Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20type" title="community type">community type</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions" title=" residential energy consumption and carbon emissions"> residential energy consumption and carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20differentiation" title=" residential differentiation"> residential differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=influencing%20factors" title=" influencing factors"> influencing factors</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20community" title=" low-carbon community"> low-carbon community</a> </p> <a href="https://publications.waset.org/abstracts/192386/research-on-the-influencing-factors-of-residents-energy-consumption-and-carbon-emission-in-different-types-of-communities-taking-caijia-new-town-of-chongqing-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13296</span> Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emma%20Serwaa%20Obobisa">Emma Serwaa Obobisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20technology%20innovation" title="green technology innovation">green technology innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20zero%20emissions" title=" net zero emissions"> net zero emissions</a> </p> <a href="https://publications.waset.org/abstracts/186132/accelerating-sustainable-urban-transition-through-green-technology-innovation-and-clean-energy-to-achieve-net-zero-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13295</span> Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kimuli%20Ismail">Kimuli Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Lubwama"> Michael Lubwama</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Baptist%20Kirabira"> John Baptist Kirabira</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Sebbit"> Adam Sebbit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sustainability" title="Sustainability">Sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=Scenario%20Plannnig" title=" Scenario Plannnig"> Scenario Plannnig</a>, <a href="https://publications.waset.org/abstracts/search?q=Times-Veda%20Modelling" title=" Times-Veda Modelling"> Times-Veda Modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Policy%20Development" title=" Energy Policy Development"> Energy Policy Development</a> </p> <a href="https://publications.waset.org/abstracts/161661/energy-scenarios-for-greater-kampala-metropolitan-area-towards-a-sustainable-2050-a-times-veda-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13294</span> Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Lotfizadeh">Hossein Lotfizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20McDonald"> André McDonald</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (non-condensing) and condensing tankless water heaters and condensing boilers that were coupled to solar water heating systems. The performance of the alternative heating systems was compared to a traditional heating system, consisting of a conventional boiler, applied to houses of various gross floor areas. A comparison among the annual natural gas consumption, carbon dioxide (CO<sub>2</sub>) mitigation, and emissions for the various house sizes indicated that the combined solar heating system can reduce the natural gas consumption and CO<sub>2</sub> emissions, and increase CO<sub>2</sub> mitigation for all the systems that were studied. The results suggest that solar water heating systems are potentially beneficial for residential heating system applications in terms of energy savings and CO<sub>2</sub> mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20mitigation" title=" CO2 mitigation"> CO2 mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20consumption" title=" natural gas consumption"> natural gas consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heating%20system" title=" solar water heating system"> solar water heating system</a> </p> <a href="https://publications.waset.org/abstracts/49148/technical-analysis-of-combined-solar-water-heating-systems-for-cold-climate-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13293</span> Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20G%C3%B3mez">Mario Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Carlos%20Rodr%C3%ADguez"> José Carlos Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causality" title="causality">causality</a>, <a href="https://publications.waset.org/abstracts/search?q=cointegration" title=" cointegration"> cointegration</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20Kuznets%20curve" title=" environmental Kuznets curve"> environmental Kuznets curve</a> </p> <a href="https://publications.waset.org/abstracts/57707/analysis-of-causality-between-economic-growth-and-carbon-emissions-the-case-of-mexico-1971-2011" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13292</span> Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Dogan">Eyup Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy" title="biomass energy">biomass energy</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=EKC%20model" title=" EKC model"> EKC model</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20dependence" title=" cross-sectional dependence"> cross-sectional dependence</a> </p> <a href="https://publications.waset.org/abstracts/52904/analyzing-the-effects-of-real-income-and-biomass-energy-consumption-on-carbon-dioxide-co2-emissions-empirical-evidence-from-the-panel-of-biomass-consuming-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13291</span> Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Liesnoor%20Setyowati">Dewi Liesnoor Setyowati</a>, <a href="https://publications.waset.org/abstracts/search?q=Puji%20Hardati"> Puji Hardati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tri%20Marhaeni%20Puji%20Astuti"> Tri Marhaeni Puji Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amin"> Muhammad Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality, energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission%20absorption" title=" carbon emission absorption"> carbon emission absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20literation" title=" energy literation"> energy literation</a> </p> <a href="https://publications.waset.org/abstracts/92553/energy-consumption-emission-absorption-and-carbon-emission-reduction-on-semarang-state-university-campus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13290</span> Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kouhirostamkolaei">M. Kouhirostamkolaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kouhirostami"> M. Kouhirostami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sam"> M. Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Woo"> J. Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Asutosh"> A. T. Asutosh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Li"> J. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kibert"> C. Kibert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO<sub>2</sub>e to 11345 kg CO<sub>2</sub>/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title="construction materials">construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title=" green construction"> green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20simulation" title=" energy simulation"> energy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=designbuilder" title=" designbuilder"> designbuilder</a> </p> <a href="https://publications.waset.org/abstracts/129788/analyzing-the-effect-of-materials-selection-on-energy-saving-and-carbon-footprint-a-case-study-simulation-of-concrete-structure-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13289</span> The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhoa%20Lee">Jinhoa Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=Oman" title=" Oman"> Oman</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/27611/the-relationships-between-carbon-dioxide-co2-emissions-energy-consumption-and-gdp-per-capita-for-oman-time-series-analysis-1980-2010" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13288</span> Global Emission Inventories of Air Pollutants from Combustion Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu%20Tao">Shu Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollutants" title="air pollutants">air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20inventory" title=" emission inventory"> emission inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=sectorial%20information" title=" sectorial information"> sectorial information</a> </p> <a href="https://publications.waset.org/abstracts/25284/global-emission-inventories-of-air-pollutants-from-combustion-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13287</span> Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Ullah">Fahim Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman"> Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20deficiency" title="energy deficiency">energy deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emission" title=" carbon emission"> carbon emission</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20trade" title=" energy trade"> energy trade</a>, <a href="https://publications.waset.org/abstracts/search?q=PQL%20analysis" title=" PQL analysis"> PQL analysis</a> </p> <a href="https://publications.waset.org/abstracts/183640/investigating-the-nexus-between-energy-deficiency-environmental-sustainability-and-renewable-energy-the-role-of-energy-trade-in-global-perspectives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13286</span> Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kumar%20Sinha">Gaurav Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20analytics" title=" sustainability analytics"> sustainability analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20refineries" title=" oil refineries"> oil refineries</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title=" data analytics"> data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modeling" title=" predictive modeling"> predictive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20reduction" title=" greenhouse gas reduction"> greenhouse gas reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title=" environmental performance"> environmental performance</a> </p> <a href="https://publications.waset.org/abstracts/187014/energy-efficiency-and-sustainability-analytics-for-reducing-carbon-emissions-in-oil-refineries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13285</span> A Study of Carbon Emissions during Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonggeon%20Lee">Jonggeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Tae"> Sungho Tae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoon%20Suk"> Sungjoon Suk</a>, <a href="https://publications.waset.org/abstracts/search?q=Keunhyeok%20Yang"> Keunhyeok Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ford"> George Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20E.%20Smith"> Michael E. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Omidreza%20Shoghli"> Omidreza Shoghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20phase" title="building construction phase">building construction phase</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions%20assessment" title=" carbon emissions assessment"> carbon emissions assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle" title=" building life cycle "> building life cycle </a> </p> <a href="https://publications.waset.org/abstracts/29496/a-study-of-carbon-emissions-during-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">751</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13284</span> Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20L.%20Ivy-Yap">L. L. Ivy-Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bekhet"> H. A. Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 periods. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationary of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modeled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-integration" title="co-integration">co-integration</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=granger%20causality" title=" granger causality"> granger causality</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20consumption" title=" residential electricity consumption"> residential electricity consumption</a> </p> <a href="https://publications.waset.org/abstracts/2495/modeling-residential-electricity-consumption-function-in-malaysia-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13283</span> The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hachaichi%20Mohamed%20Nour%20El-Islem">Hachaichi Mohamed Nour El-Islem</a>, <a href="https://publications.waset.org/abstracts/search?q=Baouni%20Tahar"> Baouni Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO<sub>2</sub> emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO<sub>2</sub> emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO<sub>2</sub> from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO<sub>2</sub> uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO<sub>2</sub> by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocapacity" title="biocapacity">biocapacity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint%20assessment" title=" ecological footprint assessment"> ecological footprint assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a> </p> <a href="https://publications.waset.org/abstracts/104000/the-carbon-footprint-model-as-a-plea-for-cities-towards-energy-transition-the-case-of-algiers-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13282</span> Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Azimi">Farideh Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Vahedi%20Tafreshi"> Sam Vahedi Tafreshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title="residential buildings">residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Plus%20software" title=" Energy Plus software"> Energy Plus software</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahvaz" title=" Ahvaz"> Ahvaz</a> </p> <a href="https://publications.waset.org/abstracts/72133/development-of-a-suitable-model-for-energy-storage-in-residential-buildings-in-ahvaz-using-energy-plus-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13281</span> The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhoa%20Lee">Jinhoa Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/29270/the-relationships-between-energy-consumption-carbon-dioxide-co2-emissions-and-gdp-for-turkey-time-series-analysis-1980-2010" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13280</span> The Rebound Effect of Energy Efficiency in Residential Energy Demand: Case of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aldubyan">Mohammad Aldubyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Belaid"> Fateh Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Gasim"> Anwar Gasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at linking to link residential energy efficiency to the rebound effect concept, a well-known behavioral phenomenon in which service consumption increases when consumers notice a reduction in monetary spending on energy due to improvements in energy efficiency. It provides insights on into how and why the rebound effect happens when energy efficiency improves and whether this phenomenon is positive or negative. It also shows one technique to estimate the rebound effect on the national residential level. The paper starts with a bird’s eye view of the rebound effect and then dives in in-depth into measuring the rebound effect and evaluating its impact. Finally, the paper estimates the rebound effect in the Saudi residential sector through by linking pre-estimated price elasticities of demand to the Saudi residential building stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20effect" title=" rebound effect"> rebound effect</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand" title=" residential electricity demand"> residential electricity demand</a> </p> <a href="https://publications.waset.org/abstracts/158063/the-rebound-effect-of-energy-efficiency-in-residential-energy-demand-case-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13279</span> Nonlinear Multivariable Analysis of CO2 Emissions in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Tien%20Pao">Hsiao-Tien Pao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ying%20Li"> Yi-Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin-Chia%20Fu"> Hsin-Chia Fu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addressed the impacts of energy consumption, economic growth, financial development, and population size on environmental degradation using grey relational analysis (GRA) for China, where foreign direct investment (FDI) inflows is the proxy variable for financial development. The more recent historical data during the period 2004–2011 are used, because the use of very old data for data analysis may not be suitable for rapidly developing countries. The results of the GRA indicate that the linkage effects of energy consumption–emissions and GDP–emissions are ranked first and second, respectively. These reveal that energy consumption and economic growth are strongly correlated with emissions. Higher economic growth requires more energy consumption and increasing environmental pollution. Likewise, more efficient energy use needs a higher level of economic development. Therefore, policies to improve energy efficiency and create a low-carbon economy can reduce emissions without hurting economic growth. The finding of FDI–emissions linkage is ranked third. This indicates that China do not apply weak environmental regulations to attract inward FDI. Furthermore, China’s government in attracting inward FDI should strengthen environmental policy. The finding of population–emissions linkage effect is ranked fourth, implying that population size does not directly affect CO<sub>2</sub> emissions, even though China has the world’s largest population, and Chinese people are very economical use of energy-related products. Overall, the energy conservation, improving efficiency, managing demand, and financial development, which aim at curtailing waste of energy, reducing both energy consumption and emissions, and without loss of the country’s competitiveness, can be adopted for developing economies. The GRA is one of the best way to use a lower data to build a dynamic analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emissions" title=" CO₂ emissions"> CO₂ emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20direct%20investment" title=" foreign direct investment"> foreign direct investment</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20relational%20analysis" title=" grey relational analysis"> grey relational analysis</a> </p> <a href="https://publications.waset.org/abstracts/47778/nonlinear-multivariable-analysis-of-co2-emissions-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13278</span> Impact of Building Orientation on Energy Performance of Buildings in Kabul, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Karimi">Mustafa Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikamoto%20Tomoyuki"> Chikamoto Tomoyuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building sector consumes 36% of total global energy used, whereas only residential buildings are responsible for 22% of that. In residential buildings, energy used for space heating and cooling represents the majority part of the total energy consumption. Although Afghanistan is amongst the lowest in energy usage globally, residential buildings’ energy consumption has caused serious environmental issues, especially in the capital city, Kabul. After decades of war in Afghanistan, redevelopment of the built environment started from scratch in the past years; therefore, to create sustainable urban areas, it is critical to find the most energy-efficient design parameters for buildings that will last for decades. This study aims to assess the impact of building orientation on the energy performance of buildings in Kabul. It is found that the optimal orientation for buildings in Kabul is South and South-southeast, while West-northwest and Northeast orientations are the worst in terms of energy performance. The difference in the total energy consumption between the best and the worst orientation is 17.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20orientation" title="building orientation">building orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul" title=" Kabul"> Kabul</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20issues" title=" environmental issues"> environmental issues</a> </p> <a href="https://publications.waset.org/abstracts/152170/impact-of-building-orientation-on-energy-performance-of-buildings-in-kabul-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13277</span> The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhoa%20Lee">Jinhoa Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/29284/the-relationships-between-energy-consumption-carbon-dioxide-co2-emissions-and-gdp-for-egypt-time-series-analysis-1980-2010" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13276</span> Application of Grasshopper Optimization Algorithm for Design and Development of Net Zero Energy Residential Building in Ahmedabad, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasis%20Sarkar">Debasis Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to apply the Grasshopper-Optimization-Algorithm (GOA) for designing and developing a Net-Zero-Energy residential building for a mega-city like Ahmedabad in India. The methodology implemented includes advanced tools like Revit for model creation and MATLAB for simulation, enabling the optimization of the building design. GOA has been applied in reducing cooling loads and overall energy consumption through optimized passive design features. For the attainment of a net zero energy mission, solar panels were installed on the roof of the building. It has been observed that the energy consumption of 8490 kWh was supported by the installed solar panels. Thereby only 840kWh had to be supported by non-renewable energy sources. The energy consumption was further reduced through the application of simulation and optimization methods like GOA, which further reduced the energy consumption to about 37.56 kWh per month from April to July when energy demand was at its peak. This endeavor aimed to achieve near-zero-energy consumption, showcasing the potential of renewable energy integration in building sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grasshopper%20optimization%20algorithm" title="grasshopper optimization algorithm">grasshopper optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20zero%20energy" title=" net zero energy"> net zero energy</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a> </p> <a href="https://publications.waset.org/abstracts/188220/application-of-grasshopper-optimization-algorithm-for-design-and-development-of-net-zero-energy-residential-building-in-ahmedabad-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13275</span> Study of Methods to Reduce Carbon Emissions in Structural Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Krijnen">Richard Krijnen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Wang"> Alan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20structural%20design" title="efficient structural design">efficient structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20material" title=" low-carbon material"> low-carbon material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20structural%20design" title=" sustainable structural design"> sustainable structural design</a> </p> <a href="https://publications.waset.org/abstracts/186101/study-of-methods-to-reduce-carbon-emissions-in-structural-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13274</span> Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanya%20L.%20Khatri">Kanya L. Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashfaque%20A.%20Memon"> Ashfaque A. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rod%20J.%20Smith"> Rod J. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamas%20Bilal"> Shamas Bilal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressurised%20irrigation" title="pressurised irrigation">pressurised irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally-friendly" title=" environmentally-friendly"> environmentally-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=REIP" title=" REIP "> REIP </a> </p> <a href="https://publications.waset.org/abstracts/16448/real-time-optimisation-and-minimal-energy-use-for-water-and-environment-efficient-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13273</span> The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption, and GDP for Turkey: Time Series Analysis, 1980-2010</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhoa%20Lee">Jinhoa Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests negative long-run causalities from consumption of petroleum products and the direct combustion of crude oil, coal and natural gas to GDP. Conversely, positive impacts of CO2 emissions and electricity consumption on GDP are found to be significant in Turkey during the period. There exists a short-run bidirectional relationship between electricity consumption and natural gas consumption. There exists a positive unidirectional causality running from electricity consumption to natural gas consumption, while there exists a negative unidirectional causality running from natural gas consumption to electricity consumption. Moreover, GDP has a negative effect on electricity consumption in Turkey in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Turkey over of period 1980-2010. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a> </p> <a href="https://publications.waset.org/abstracts/27614/the-relationships-between-carbon-dioxide-co2-emissions-energy-consumption-and-gdp-for-turkey-time-series-analysis-1980-2010" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13272</span> Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Indati%20Mustapa">Siti Indati Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet"> Hussain Ali Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title="CO2 emissions">CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20sector" title=" transportation sector"> transportation sector</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/3404/highlighting-of-the-factors-and-policies-affecting-co2-emissions-level-in-malaysian-transportation-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13271</span> Economic Growth and Transport Carbon Dioxide Emissions in New Zealand: A Co-Integration Analysis of the Environmental Kuznets Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingyue%20Sheng">Mingyue Sheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Basil%20Sharp"> Basil Sharp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouse gas (GHG) emissions from national transport account for the largest share of emissions from energy use in New Zealand. Whether the environmental Kuznets curve (EKC) relationship exists between environmental degradation indicators from the transport sector and economic growth in New Zealand remains unclear. This paper aims at exploring the causality relationship between CO₂ emissions from the transport sector, fossil fuel consumption, and the Gross Domestic Product (GDP) per capita in New Zealand, using annual data for the period 1977 to 2013. First, conventional unit root tests (Augmented Dickey–Fuller and Phillips–Perron tests), and a unit root test with the breakpoint (Zivot-Andrews test) are employed to examine the stationarity of the variables. Second, the autoregressive distributed lag (ARDL) bounds test for co-integration, followed by Granger causality investigated causality among the variables. Empirical results of the study reveal that, in the short run, there is a unidirectional causality between economic growth and transport CO₂ emissions with direction from economic growth to transport CO₂ emissions, as well as a bidirectional causality from transport CO₂ emissions to road energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20carbon%20dioxide%20emissions" title=" transport carbon dioxide emissions"> transport carbon dioxide emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20Kuznets%20curve" title=" environmental Kuznets curve"> environmental Kuznets curve</a>, <a href="https://publications.waset.org/abstracts/search?q=causality" title=" causality"> causality</a> </p> <a href="https://publications.waset.org/abstracts/92763/economic-growth-and-transport-carbon-dioxide-emissions-in-new-zealand-a-co-integration-analysis-of-the-environmental-kuznets-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13270</span> Impact of Climate Change on Energy Consumption of the Residential Building Stock in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadik%20Yigit">Sadik Yigit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy consumed in the buildings constitutes a large portion of the total energy consumption in the world. In this study, it was aimed to measure the impact of climate change on the energy consumption of residential building stock by analyzing a typical mid-rise residential building in four different climate regions of Turkey. An integrated system was developed using the "Distribution Evolutionary Algorithms in Python" tool and Energy Plus. By using the developed integrated system, the energy performance of the typical residential building was analyzed under the effect of different climate change scenarios. The results indicated that predicted overheating will be experienced in the future, which will significantly increase the cooling energy loads of the buildings. In addition, design solutions to improve the future energy performance of the buildings were proposed, considering budget constraints. The results of the study will guide researchers studying in this area of research and designers in the sector in finding climate change resilient design solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy_efficient" title="energy_efficient">energy_efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=energyplus" title=" energyplus"> energyplus</a> </p> <a href="https://publications.waset.org/abstracts/149500/impact-of-climate-change-on-energy-consumption-of-the-residential-building-stock-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13269</span> Towards Carbon-Free Communities: A Compilation of Urban Design Criteria for Sustainable Neighborhoods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atefeh%20Kalantari">Atefeh Kalantari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in population and energy consumption has caused environmental crises such as the energy crisis, increased pollution, and climate change, all of which have resulted in a decline in the quality of life, especially in urban environments. Iran is one of the developing countries which faces several challenges concerning energy use and environmental sustainability such as air pollution, climate change, and energy security. On the other hand, due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Sustainable development programs and post-carbon cities rely on implementing energy policies in different sectors of society, particularly, the built environment sector is one of the main ones responsible for energy consumption and carbon emissions for cities. Because of this, several advancements and programs are being implemented to promote energy efficiency for urban planning, and city experts, like others, are looking for solutions to deal with these problems. Among the solutions provided for this purpose, low-carbon design can be mentioned. Among the different scales, the neighborhood can be mentioned as a suitable scale for applying the principles and solutions of low-carbon urban design; Because the neighborhood as a "building unit of the city" includes elements and flows that all affect the number of CO2 emissions. The article aims to provide criteria for designing a low-carbon and carbon-free neighborhood through descriptive methods and secondary data analysis. The ultimate goal is to promote energy efficiency and create a more resilient and livable environment for local residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20urban%20design" title=" low-carbon urban design"> low-carbon urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon-free%20neighborhood" title=" carbon-free neighborhood"> carbon-free neighborhood</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a> </p> <a href="https://publications.waset.org/abstracts/164911/towards-carbon-free-communities-a-compilation-of-urban-design-criteria-for-sustainable-neighborhoods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13268</span> Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuang%20Guo">Yuang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewancker%20Bart"> Dewancker Bart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20parameters" title=" design parameters"> design parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title=" simulation study"> simulation study</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20cold%20climate%20zone" title=" severe cold climate zone"> severe cold climate zone</a> </p> <a href="https://publications.waset.org/abstracts/115217/optimization-of-energy-consumption-with-various-design-parameters-on-office-buildings-in-chinese-severe-cold-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=443">443</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=444">444</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residential%20energy%20consumption%20and%20carbon%20emissions&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>