CINXE.COM

Search results for: Stephane Moreau

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Stephane Moreau</title> <meta name="description" content="Search results for: Stephane Moreau"> <meta name="keywords" content="Stephane Moreau"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Stephane Moreau" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Stephane Moreau"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 46</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Stephane Moreau</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20Ndereyimana">Theo Ndereyimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Dufresne"> Yann Dufresne</a>, <a href="https://publications.waset.org/abstracts/search?q=Micael%20Boulet"> Micael Boulet</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Moreau"> Stephane Moreau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20dissipative%20mechanism" title="additive dissipative mechanism">additive dissipative mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse-graining" title=" coarse-graining"> coarse-graining</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed" title=" fluidized bed"> fluidized bed</a> </p> <a href="https://publications.waset.org/abstracts/176694/influence-of-the-coarse-graining-method-on-a-dem-cfd-simulation-of-a-pilot-scale-gas-fluidized-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Direct Measurements of the Electrocaloric Effect in Solid Ferroelectric Materials via Thermoreflectance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layla%20Farhat">Layla Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Bardoux"> Mathieu Bardoux</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Longuemart"> Stéphane Longuemart</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20Herro"> Ziad Herro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Hadj%20Sahraoui"> Abdelhak Hadj Sahraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocaloric (EC) effect refers to the isothermal entropy or adiabatic temperature changes of a dielectric material induced by an external electric field. This phenomenon has been largely ignored for application because only modest EC effects (2.6 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocaloric%20effect" title="electrocaloric effect">electrocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreflectance" title=" thermoreflectance"> thermoreflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectricity" title=" ferroelectricity"> ferroelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20system" title=" cooling system"> cooling system</a> </p> <a href="https://publications.waset.org/abstracts/133920/direct-measurements-of-the-electrocaloric-effect-in-solid-ferroelectric-materials-via-thermoreflectance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Proximal Method of Solving Split System of Minimization Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Getachew%20Gebrie">Anteneh Getachew Gebrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabian%20Wangkeeree"> Rabian Wangkeeree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20Space" title="Hilbert Space">Hilbert Space</a>, <a href="https://publications.waset.org/abstracts/search?q=minimization%20problems" title=" minimization problems"> minimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Moreau-Yosida%20approximate" title=" Moreau-Yosida approximate"> Moreau-Yosida approximate</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20feasibility%20problem" title=" split feasibility problem"> split feasibility problem</a> </p> <a href="https://publications.waset.org/abstracts/119147/proximal-method-of-solving-split-system-of-minimization-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> AI-Driven Strategies for Sustainable Electronics Repair: A Case Study in Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badiy%20Elmabrouk">Badiy Elmabrouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Boujarif"> Abdelhamid Boujarif</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Zeng"> Zhiguo Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Borrel"> Stephane Borrel</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Heidsieck"> Robert Heidsieck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an era where sustainability is paramount, this paper introduces a machine learning-driven testing protocol to accurately predict diode failures, merging reliability engineering with failure physics to enhance repair operations efficiency. Our approach refines the burn-in process, significantly curtailing its duration, which not only conserves energy but also elevates productivity and mitigates component wear. A case study from GE HealthCare’s repair center vividly demonstrates the method’s effectiveness, recording a high prediction of diode failures and a substantial decrease in energy consumption that translates to an annual reduction of 6.5 Tons of CO2 emissions. This advancement sets a benchmark for environmentally conscious practices in the electronics repair sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=burn-in" title=" burn-in"> burn-in</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20physics" title=" failure physics"> failure physics</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20testing" title=" reliability testing"> reliability testing</a> </p> <a href="https://publications.waset.org/abstracts/181584/ai-driven-strategies-for-sustainable-electronics-repair-a-case-study-in-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wided%20Batita">Wided Batita</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Roche"> Stéphane Roche</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Caron"> Claude Caron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies &mdash;and primarily on wiki&mdash; and aims at managing the tracking of participants&rsquo; editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geodesign" title="geodesign">geodesign</a>, <a href="https://publications.waset.org/abstracts/search?q=history" title=" history"> history</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20of%20participants%E2%80%99%20editing" title=" tracking of participants’ editing"> tracking of participants’ editing</a>, <a href="https://publications.waset.org/abstracts/search?q=WikiGIS" title=" WikiGIS"> WikiGIS</a> </p> <a href="https://publications.waset.org/abstracts/54647/a-simulated-scenario-of-wikigis-to-support-the-iteration-and-traceability-management-of-the-geodesign-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helene%20Martin">Helene Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=Solmaz%20Boroomandi%20Barati"> Solmaz Boroomandi Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Pinoli"> Jean-Charles Pinoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Valette"> Stephane Valette</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Gavet"> Yann Gavet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dropwise%20condensation" title="dropwise condensation">dropwise condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=textured%20surface" title=" textured surface"> textured surface</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/77857/segmentation-of-gray-scale-images-of-dropwise-condensation-on-textured-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Application of the MOOD Technique to the Steady-State Euler Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaspar%20J.%20Machado">Gaspar J. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Clain"> Stéphane Clain</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Loub%C3%A8re"> Raphael Loubère</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler%20equations" title="Euler equations">Euler equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=MOOD" title=" MOOD"> MOOD</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a> </p> <a href="https://publications.waset.org/abstracts/52830/application-of-the-mood-technique-to-the-steady-state-euler-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Zenasni">Mohamed Amine Zenasni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Meroufel"> Bahia Meroufel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Merlin"> André Merlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benfarhi"> Said Benfarhi</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Molina"> Stéphane Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9atrice%20George"> Béatrice George </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title=" polycaprolactone"> polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20mixture" title=" melt mixture"> melt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=APTES" title=" APTES"> APTES</a>, <a href="https://publications.waset.org/abstracts/search?q=CTAB" title=" CTAB"> CTAB</a> </p> <a href="https://publications.waset.org/abstracts/18860/preparation-of-nanocomposites-based-on-biodegradable-polycaprolactone-by-melt-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balasundaram%20Prasaant">Balasundaram Prasaant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ploix%20Stephane"> Ploix Stephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Delinchant%20Benoit"> Delinchant Benoit</a>, <a href="https://publications.waset.org/abstracts/search?q=Muresan%20Cristian"> Muresan Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20in%20buildings" title="energy in buildings">energy in buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20in%20loop%20testing" title=" hardware in loop testing"> hardware in loop testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modelica%20modelling" title=" modelica modelling"> modelica modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation "> uncertainty propagation </a> </p> <a href="https://publications.waset.org/abstracts/129384/uncertainty-analysis-of-a-hardware-in-loop-setup-for-testing-products-related-to-building-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Dourdain">Sandrine Dourdain</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Lopez"> Cesar Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamir%20Sukhbaatar"> Tamir Sukhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilhem%20Arrachart"> Guilhem Arrachart</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Pellet-Rostaing"> Stephane Pellet-Rostaing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction%20in%20Ionic%20liquid" title="solvent extraction in Ionic liquid">solvent extraction in Ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquids%20structure" title=" Ionic liquids structure"> Ionic liquids structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SAXS" title=" SAXS"> SAXS</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS" title=" SANS"> SANS</a> </p> <a href="https://publications.waset.org/abstracts/107612/solvent-extraction-in-ionic-liquids-structuration-and-aggregation-effects-on-extraction-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20K.%20Joseph">Tony K. Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Balasubramanian%20Vathilingam"> Balasubramanian Vathilingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Morin"> Stephane Morin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracking" title="cracking">cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene" title=" ethylene"> ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=heptane" title=" heptane"> heptane</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a> </p> <a href="https://publications.waset.org/abstracts/118988/n-heptane-as-model-molecule-for-cracking-catalyst-evaluation-to-improve-the-yield-of-ethylene-and-propylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manar%20Amayri">Manar Amayri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Kazimi"> Hussain Kazimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Quoc-Dung%20Ngo"> Quoc-Dung Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Ploix"> Stephane Ploix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20methods" title=" Bayesian methods"> Bayesian methods</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20theory" title=" learning theory"> learning theory</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20networks" title=" sensor networks"> sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20modelling%20and%20knowledge%20based%20systems" title=" knowledge modelling and knowledge based systems"> knowledge modelling and knowledge based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a> </p> <a href="https://publications.waset.org/abstracts/84739/estimating-occupancy-in-residential-context-using-bayesian-networks-for-energy-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houda%20Najeh">Houda Najeh</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Ploix"> Stéphane Ploix</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Pratap%20Singh"> Mahendra Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Chabir"> Karim Chabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Naceur%20Abdelkrim"> Mohamed Naceur Abdelkrim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20system" title="building system">building system</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=outliers" title=" outliers"> outliers</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20gap" title=" data gap"> data gap</a> </p> <a href="https://publications.waset.org/abstracts/97880/automatic-thresholding-for-data-gap-detection-for-a-set-of-sensors-in-instrumented-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Labdaoui">Nassim Labdaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Nouvel"> Fabienne Nouvel</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Dutertre"> Stéphane Dutertre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE-M" title=" LTE-M"> LTE-M</a>, <a href="https://publications.waset.org/abstracts/search?q=NB-IoT" title=" NB-IoT"> NB-IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=MQTT" title=" MQTT"> MQTT</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20IoT" title=" cellular IoT"> cellular IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a> </p> <a href="https://publications.waset.org/abstracts/163932/energy-efficient-internet-of-things-communications-a-comparative-study-of-long-term-evolution-for-machines-and-narrowband-internet-of-things-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Prebiotics and Essential Oils-Enriched Diet Can Increase the Efficiency of Vaccine against Furunculosis in Rainbow Trout (Oncorhynchus Mykiss) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niki%20Hayatgheib">Niki Hayatgheib</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9Gol%C3%A8Ne%20Calvez"> SéGolèNe Calvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Fournel"> Catherine Fournel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lionel%20Pineau"> Lionel Pineau</a>, <a href="https://publications.waset.org/abstracts/search?q=Herve%20Pouliquen"> Herve Pouliquen</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuelle%20Moreau"> Emmanuelle Moreau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known disease found principally in salmonid aquaculture. Vaccination has been partly successful in preventing this disease, but outbreaks still occur. The application of functional feed additive found to be a promising yield to improve fish health against diseases. In this study, we tested the efficacy of prebiotics and plant essential oils-enriched diet on immune response and disease resistance in vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) against furunculosis. A total of 600 fish were fed with the basal diet or supplement. On 4th week of feeding, fish were vaccinated with an autovaccine. Following 8 weeks, fish were challenged with Aeromonas salmonicida subsp. salmonicida and mortalities were recorded for 3 weeks. Lysozyme activity and antibody titer in serum were measured in different groups. The results of this study showed that lysozyme and circulatory antibody titer in plasma elevated significantly in vaccinated fish fed with additive. The best growth rate and relative percentage survival (62%) were in fish fed with a supplement, while 15% in control fish. Overall, prebiotics and essential oils association can be considered as a potential component for enhancing vaccine efficacy against furunculosis by increasing the growth performance, immune responses and disease resistance in rainbow trout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeromonas%20salmonicida%20subsp.%20salmonicida" title="aeromonas salmonicida subsp. salmonicida">aeromonas salmonicida subsp. salmonicida</a>, <a href="https://publications.waset.org/abstracts/search?q=aquaculture" title=" aquaculture"> aquaculture</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20resistance" title=" disease resistance"> disease resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics-essential%20oils%20feed%20additive" title=" prebiotics-essential oils feed additive"> prebiotics-essential oils feed additive</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20trout" title=" rainbow trout"> rainbow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination "> vaccination </a> </p> <a href="https://publications.waset.org/abstracts/125875/prebiotics-and-essential-oils-enriched-diet-can-increase-the-efficiency-of-vaccine-against-furunculosis-in-rainbow-trout-oncorhynchus-mykiss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Model of a Context-Aware Middleware for Mobile Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esraa%20Moustafa">Esraa Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Rey"> Gaetan Rey</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Lavirotte"> Stephane Lavirotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Yves%20Tigli"> Jean-Yves Tigli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of Internet of Things and Web of Things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services that meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We, therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service that is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent Observation Channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-adaptation" title="auto-adaptation">auto-adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=context-awareness" title=" context-awareness"> context-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=middleware" title=" middleware"> middleware</a>, <a href="https://publications.waset.org/abstracts/search?q=reasoning%20engine" title=" reasoning engine"> reasoning engine</a> </p> <a href="https://publications.waset.org/abstracts/63726/model-of-a-context-aware-middleware-for-mobile-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20M.%20Tadini">Amanda M. Tadini</a>, <a href="https://publications.waset.org/abstracts/search?q=Houssam%20Hajjoul"> Houssam Hajjoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Nicolodelli"> Gustavo Nicolodelli</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Mounier"> Stéphane Mounier</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9lia%20R.%20Montes"> Célia R. Montes</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20M.%20B.%20P.%20Milori"> Débora M. B. P. Milori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amazonian%20soil" title="Amazonian soil">Amazonian soil</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title=" humic acid"> humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a> </p> <a href="https://publications.waset.org/abstracts/57917/characterization-of-organic-matter-in-spodosol-amazonian-by-fluorescence-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Evolutions of Structural Properties of Native Phospho Casein (NPC) Powder during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Nasser">Sarah Nasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Moreau"> Anne Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Hedoux"> Alain Hedoux</a>, <a href="https://publications.waset.org/abstracts/search?q=Romain%20Jeantet"> Romain Jeantet</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Delaplace"> Guillaume Delaplace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Spray dryed powders containing some caseins are commonly produced in dairy industry. It is widely admitted that the structure of casein evolves during powder storage, inducing a loss of solubility. However few studies evaluate accurately the destabilization mechanisms at molecular and mesoscopic level, in particular for Native Phospho Casein powder (NPC). Consequently, at the state of the art, it is very difficult to assess which secondary structure change or crosslinks initiate insolubility during storage. To address this issue, controlled ageing conditions have been applied to a NPC powder (which was obtained by spray drying a concentrate containing a higher content of casein (90%), whey protein (8%) and lactose (few %)). Evolution of structure and loss of solubility, with the effects of temperature and time of storage were systematically reported. Methods: FTIR spectroscopy, Raman and Circular Dichroism were used to monitor changes of secondary structure in dry powder and in solution after rehydration. Besides, proteomic tools and electrophoresis have been performed after varying storage conditions for evaluating aggregation and post translational modifications, like lactosylation or phosphorylation. Finally, Tof Sims and MEB were used to follow in parallel evolution of structure in surface and skin formation due to storage. Results + conclusion: These results highlight the important role of storage temperature in the stability of NPC. It is shown that this is not lactosylation at the heart of formation of aggregates, as advanced in others publications This is almost the rise of multitude post translational modifications (chemical cross link), added to disulphide bridges (physical cross link) wich contribute to the destabilisation of structure and aggregation of casein. A relative quantification of each kind of cross link, source of aggregates, is proposed. In addition, it has been proved that migration of lipids and formation of skin in surface during the ageing also explains the evolution of structure casein and thus the alterations of functional properties of NPC powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=casein" title="casein">casein</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20link" title=" cross link"> cross link</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/48852/evolutions-of-structural-properties-of-native-phospho-casein-npc-powder-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Moreau">Maxime Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Silv%C3%A8re%20Baron"> Silvère Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Lobaccaro"> Jean-Marc Lobaccaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Charlet"> Karine Charlet</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Menecier"> Sébastien Menecier</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Perisse"> Frédéric Perisse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20plasma" title="cold atmospheric plasma">cold atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/153096/contribution-of-hydrogen-peroxide-in-the-selective-aspect-of-prostate-cancer-treatment-by-cold-atmospheric-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Performing Diagnosis in Building with Partially Valid Heterogeneous Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houda%20Najeh">Houda Najeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Pratap%20Singh"> Mahendra Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Ploix"> Stéphane Ploix</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Caucheteux"> Antoine Caucheteux</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Chabir"> Karim Chabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Naceur%20Abdelkrim"> Mohamed Naceur Abdelkrim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20tests" title="heterogeneous tests">heterogeneous tests</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20system" title=" building system"> building system</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20grids" title=" sensor grids"> sensor grids</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fault" title=" sensor fault"> sensor fault</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a> </p> <a href="https://publications.waset.org/abstracts/100728/performing-diagnosis-in-building-with-partially-valid-heterogeneous-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julien%20Deborde">Julien Deborde</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Milcent"> Thomas Milcent</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Glockner"> Stéphane Glockner</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Lubin"> Pierre Lubin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20wave" title="damping wave">damping wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian%20formulation" title=" Eulerian formulation"> Eulerian formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic%20material" title=" hyperelastic material"> hyperelastic material</a> </p> <a href="https://publications.waset.org/abstracts/59072/an-eulerian-method-for-fluid-structure-interaction-simulation-applied-to-wave-damping-by-elastic-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Python Implementation for S1000D Applicability Depended Processing Model - SALERNO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresia%20El%20Khoury">Theresia El Khoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Badr"> Georges Badr</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hajjam%20El%20Hassani"> Amir Hajjam El Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20N%E2%80%99Guyen%20Van%20Ky"> Stéphane N’Guyen Van Ky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeronautics" title="aeronautics">aeronautics</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20processing" title=" data processing"> data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=S1000D" title=" S1000D"> S1000D</a> </p> <a href="https://publications.waset.org/abstracts/164505/python-implementation-for-s1000d-applicability-depended-processing-model-salerno" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Laussac">Stephane Laussac</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Piazzola"> Jacques Piazzola</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Tedeschi"> Gilles Tedeschi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea-spray%20aerosols" title="sea-spray aerosols">sea-spray aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20areas" title=" coastal areas"> coastal areas</a>, <a href="https://publications.waset.org/abstracts/search?q=sea-spray%20concentrations" title=" sea-spray concentrations"> sea-spray concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fetch" title=" short fetch"> short fetch</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF-Chem%20model" title=" WRF-Chem model"> WRF-Chem model</a> </p> <a href="https://publications.waset.org/abstracts/84804/physicochemical-characterization-of-coastal-aerosols-over-the-mediterranean-comparison-with-weather-research-and-forecasting-chem-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Gagnon">Jean-Philippe Gagnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Saute"> Benjamin Saute</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Boubanga-Tombet"> Stéphane Boubanga-Tombet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared" title="infrared">infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=broadband" title=" broadband"> broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20temperature" title=" gas temperature"> gas temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20camera" title=" IR camera"> IR camera</a> </p> <a href="https://publications.waset.org/abstracts/146725/advantages-of-multispectral-imaging-for-accurate-gas-temperature-profile-retrieval-from-fire-combustion-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Psychological Contract and Job Embeddedness Perspectives to Understand Cynicism as a Behavioural Response to Pressures in the Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merkouche%20Wassila">Merkouche Wassila</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchand%20Alain"> Marchand Alain</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaud%20St%C3%A9phane"> Renaud Stéphane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organizations are facing competitive pressures constraining them to modify their practices and change initial work conditions of employees, however, these modifications have to sustain initial quality of work and engagements toward the workforce. We focus on the importance of promises in the perspective of psychological contract. According to this perspective, employees perceiving a breach of the expected obligations from the employer may become unsatisfied at work and develop organizational withdrawal behaviors. These are negative counterproductive behaviours aiming to damage the organisation according to the principle of reciprocity and social exchange. We present an integrative model of the determinants and manifestations of organizational withdrawal (OW), a set of behaviors allowing the employee to leave his job or avoid his assigned work. OW contains two main components often studied in silos: work withdrawal (delays, absenteeism and other adverse behaviors) and job withdrawal (turnover). We use the systemic micro, meso and macro sociological approach designing the individual at the heart of a system containing individual, organizational, and environmental determinants. Under the influence of these different factors, the individual assesses the type of behavior to adopt. We provide better lighting for understanding OW using both psychological contract approach through the perception of its respect by the organization and job embeddedness approach which explains why the employee does not leave the organization and then remains in his post while practicing negative and counterproductive behaviors such as OW. We study specifically cynicism as a type of OW as it is a dimension of burnout. We focus on the antecedents of cynicism to try to prevent it in the workplace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burnout" title="burnout">burnout</a>, <a href="https://publications.waset.org/abstracts/search?q=cynicism" title=" cynicism"> cynicism</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20embeddedness" title=" job embeddedness"> job embeddedness</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20withdrawal" title=" organizational withdrawal"> organizational withdrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20contract" title=" psychological contract"> psychological contract</a> </p> <a href="https://publications.waset.org/abstracts/59168/psychological-contract-and-job-embeddedness-perspectives-to-understand-cynicism-as-a-behavioural-response-to-pressures-in-the-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Quantification of NDVI Variation within the Major Plant Formations in Nunavik</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Gaspard">Anna Gaspard</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Boudreau"> Stéphane Boudreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Simard"> Martin Simard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Altered temperature and precipitation regimes associated with climate change generally result in improved conditions for plant growth. For Arctic and sub-Arctic ecosystems, this new climatic context favours an increase in primary productivity, a phenomenon often referred to as "greening". The development of an erect shrub cover has been identified as the main driver of Arctic greening. Although this phenomenon has been widely documented at the circumpolar scale, little information is available at the scale of plant communities, the basic unit of the Arctic, and sub-Arctic landscape mosaic. The objective of this study is to quantify the variation of NDVI within the different plant communities of Nunavik, which will allow us to identify the plant formations that contribute the most to the increase in productivity observed in this territory. To do so, the variation of NDVI extracted from Landsat images for the period 1984 to 2020 was quantified. From the Landsat scenes, annual summer NDVI mosaics with a resolution of 30 m were generated. The ecological mapping of Northern Quebec vegetation was then overlaid on the time series of NDVI maps to calculate the average NDVI per vegetation polygon for each year. Our results show that NDVI increases are more important for the bioclimatic domains of forest tundra and erect shrub tundra, and shrubby formations. Surface deposits, variations in mean annual temperature, and variations in winter precipitation are involved in NDVI variations. This study has thus allowed us to quantify changes in Nunavik's vegetation communities, using fine spatial resolution satellite imagery data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=latitudinal%20gradient" title=" latitudinal gradient"> latitudinal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20communities" title=" plant communities"> plant communities</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/145542/quantification-of-ndvi-variation-within-the-major-plant-formations-in-nunavik" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kharrat">M. Kharrat</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Moreau"> G. Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Aboura"> Z. Aboura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanisms" title=" damage mechanisms"> damage mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20damage%20threshold" title=" first damage threshold"> first damage threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=interlock%20composite%20materials" title=" interlock composite materials"> interlock composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/83783/identification-of-damage-mechanisms-in-interlock-reinforced-composites-using-a-pattern-recognition-approach-of-acoustic-emission-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Multivariate Data Analysis for Automatic Atrial Fibrillation Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20Haddi">Zouhair Haddi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Delliaux"> Stephane Delliaux</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Pons"> Jean-Francois Pons</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Kechaf"> Ismail Kechaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Claude%20De%20Haro"> Jean-Claude De Haro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Ouladsine"> Mustapha Ouladsine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atrial%20fibrillation" title="atrial fibrillation">atrial fibrillation</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20data%20analysis" title=" multivariate data analysis"> multivariate data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20detection" title=" automatic detection"> automatic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine" title=" telemedicine"> telemedicine</a> </p> <a href="https://publications.waset.org/abstracts/55423/multivariate-data-analysis-for-automatic-atrial-fibrillation-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Gender-Specific Vulnerability on Climate Change and Food Security Status - A Catchment Approach on Agroforestry Systems - A Multi-Country Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerihun%20Yohannes%20Amare%20Id">Zerihun Yohannes Amare Id</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Freyer"> Bernhard Freyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ky%20Serge%20Stephane"> Ky Serge Stephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ou%C3%A9da%20Adama"> Ouéda Adama</a>, <a href="https://publications.waset.org/abstracts/search?q=Blessing%20Mudombi"> Blessing Mudombi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Nzuma"> Jean Nzuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekonen%20Getachew%20Abebe"> Mekonen Getachew Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Adane%20Tesfaye"> Adane Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Birtukan%20Atinkut%20Asmare"> Birtukan Atinkut Asmare</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfahun%20Asmamaw%20Kassie"> Tesfahun Asmamaw Kassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted in Ethiopia (Zege Catchment) (ZC), Zimbabwe (Upper Save Catchment) (USC), and Burkina Faso (Nakambe Catchment) (NC). The study utilized a quantitative approach with 180 participants and complemented it with qualitative methods, including 33 key informant interviews and 6 focus group discussions. Households in ZC (58%), NC (55%), and US (40%) do not cover their household food consumption from crop production. The households rely heavily on perennial cash crops rather than annual crop production. Exposure indicators in ZC (0.758), USC (0.774), and NC (0.944), and sensitivity indicators in ZC (0.849) and NC (0.937) show statistically significant and high correlation with vulnerability. In the USC, adaptive capacity (0.746) and exposure (0.774) are also statistically significant and highly correlated with vulnerability. Vulnerability levels of the NC are very high (0.75) (0.85 female and 0.65 male participants) compared to the USC (0.66) (0.69 female and 0.61 male participants) and ZC (0.47) (0.34 female and 0.58 male participants). Female-headed households had statistically significantly lower vulnerability index compared to males in ZC, while male-headed households had statistically significantly lower vulnerability index compared to females in USC and NC. The reason is land certification in ZC (80%) is higher than in the US (10%) and NC (8%). Agroforestry practices variables across the study catchments had statistically significant contributions to households' adaptive capacity. We conclude that agroforestry practices do have substantial benefits in increasing women's adaptive capacity and reducing their vulnerability to climate change and food insecurity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20vulnerability" title="climate change vulnerability">climate change vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title=" agroforestry"> agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=Sub-Saharan%20Africa" title=" Sub-Saharan Africa"> Sub-Saharan Africa</a> </p> <a href="https://publications.waset.org/abstracts/170698/gender-specific-vulnerability-on-climate-change-and-food-security-status-a-catchment-approach-on-agroforestry-systems-a-multi-country-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9mence%20Royer">Clémence Royer</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Mazouffre"> Stéphane Mazouffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20propulsion" title="electric propulsion">electric propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=Hall%20Thruster" title=" Hall Thruster"> Hall Thruster</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20diagnostics" title=" plasma diagnostics"> plasma diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=low-frequency%20oscillations" title=" low-frequency oscillations"> low-frequency oscillations</a> </p> <a href="https://publications.waset.org/abstracts/168470/transient-phenomena-in-a-100-w-hall-thrusters-experimental-measurements-of-discharge-current-and-plasma-parameter-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stephane%20Moreau&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Stephane%20Moreau&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10