CINXE.COM
Search results for: Helmut Wenzel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Helmut Wenzel</title> <meta name="description" content="Search results for: Helmut Wenzel"> <meta name="keywords" content="Helmut Wenzel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Helmut Wenzel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Helmut Wenzel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Helmut Wenzel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Zhelyazkov">Aleksandar Zhelyazkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Zonta"> Daniele Zonta</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20Wenzel"> Helmut Wenzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Furtner"> Peter Furtner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/99423/a-procedure-for-post-earthquake-damage-estimation-based-on-detection-of-high-frequency-transients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Effect of Drop Impact Behavior on Spray Retention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassina%20Hafida%20Boukhalfa">Hassina Hafida Boukhalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Massinon"> Mathieu Massinon</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9deric%20Lebeau"> Fréderic Lebeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Belhamra"> Mohamed Belhamra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drop behaviour during impact affects retention. The increase of adhesion is usually seen as the objective when applying crop protection products, while bouncing and shattering are seen as detrimental to spray retention. However, observation of drop impacts using high speed shadow graphy shows that fragmentation can occur in Wenzel wetting regime. In this case, a part of the drop sticks on the surface, what contributes to retention. Using simultaneous measurements of drop impacts with high speed imaging and of retention with fluorometry for 3 spray mixtures on excised barley leaves allowed us to observe that about 50% of the drops fragmented in Wenzel state remain on the leaf. Depending on spray mixture, these impact outcomes accounted for 25 to 50% of retention, the higher contribution being correlated with bigger VMD (Volume Median Diameter). This contribution is non-negligible and should be considered when a modelling of spray retention process is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20impact" title="drop impact">drop impact</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorometry" title=" fluorometry"> fluorometry</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20imaging" title=" high speed imaging"> high speed imaging</a> </p> <a href="https://publications.waset.org/abstracts/47237/effect-of-drop-impact-behavior-on-spray-retention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anvesh%20Gaddam">Anvesh Gaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Agrawal"> Amit Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Joshi"> Suhas Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Thompson"> Mark Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20number" title=" Poiseuille number"> Poiseuille number</a>, <a href="https://publications.waset.org/abstracts/search?q=textured%20surfaces" title=" textured surfaces"> textured surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting%20transition" title=" wetting transition"> wetting transition</a> </p> <a href="https://publications.waset.org/abstracts/72886/demarcating-wetting-states-in-pressure-driven-flows-by-poiseuille-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes">V. Ibujes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto"> P. Barreto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20grass" title="blue grass">blue grass</a>, <a href="https://publications.waset.org/abstracts/search?q=llanten" title=" llanten"> llanten</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Azuay" title=" soil of Azuay"> soil of Azuay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Tungurahua" title=" soil of Tungurahua"> soil of Tungurahua</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20arsenic%20solution" title=" synthetic arsenic solution"> synthetic arsenic solution</a> </p> <a href="https://publications.waset.org/abstracts/101022/evaluation-of-arsenic-removal-in-soils-contaminated-by-the-phytoremediation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Influence of Surface Wettability on Imbibition Dynamics of Protein Solution in Microwells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himani%20Sharma">Himani Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Agrawal"> Amit Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stability of the Cassie and Wenzel wetting states depends on intrinsic contact angle and geometric features on a surface that was exploited in capturing biofluids in microwells. However, the mechanism of imbibition of biofluids in the microwells is not well implied in terms of wettability of a substrate. In this work, we experimentally demonstrated filling dynamics in hydrophilic and hydrophobic microwells by protein solutions. Towards this, we utilized lotus leaf as a mold to fabricate microwells on a Polydimethylsiloxane (PDMS) surface. Lotus leaf containing micrometer-sized blunt-conical shaped pillars with a height of 8-15 µm and diameter of 3-8 µm were transferred on to PDMS. Furthermore, PDMS surface was treated with oxygen plasma to render the hydrophilic nature. A 10µL droplets containing fluorescein isothiocyanate (FITC) - labelled bovine serum albumin (BSA) were rested on both hydrophobic (θa = 108o, where θa is the apparent contact angle) and hydrophilic (θa = 60o) PDMS surfaces. A time-dependent fluorescence microscopy was conducted on these modified PDMS surfaces by recording the fluorescent intensity over a 5 minute period. It was observed that, initially (at t=1 min) FITC-BSA was accumulated on the periphery of both hydrophilic and hydrophobic microwells due to incomplete penetration of liquid-gas meniscus. This deposition of FITC-BSA on periphery of microwell was not changed with time for hydrophobic surfaces, whereas, a complete filling was occurred in hydrophilic microwells (at t=5 mins). This attributes to a gradual movement of three-phase contact line along the vertical surface of the hydrophilic microwells as compared to stable pinning in the hydrophobic microwells as confirmed by Surface Evolver simulations. In addition, if the cavities are presented on hydrophobic surfaces, air bubbles will be trapped inside the cavities once the aqueous solution is placed over these surfaces, resulting in the Cassie-Baxter wetting state. This condition hinders trapping of proteins inside the microwells. Thus, it is necessary to impart hydrophilicity to the microwell surfaces so as to induce the Wenzel state, such that, an entire solution will be fully in contact with the walls of microwells. Imbibition of microwells by protein solutions was analyzed in terms fluorescent intensity versus time. The present work underlines the importance of geometry of microwells and surface wettability of substrate in wetting and effective capturing of solid sub-phases in biofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BSA" title="BSA">BSA</a>, <a href="https://publications.waset.org/abstracts/search?q=microwells" title=" microwells"> microwells</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20evolver" title=" surface evolver"> surface evolver</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/72888/influence-of-surface-wettability-on-imbibition-dynamics-of-protein-solution-in-microwells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Tunnelling Concepts in Overstressed Weak Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Entfellner%20Manuel">Entfellner Manuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Wannenmacher%20Helmut"> Wannenmacher Helmut</a>, <a href="https://publications.waset.org/abstracts/search?q=Reisenbauer%20Josef"> Reisenbauer Josef</a>, <a href="https://publications.waset.org/abstracts/search?q=Schubert%20Wulf"> Schubert Wulf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When tunnelling in overstressed weak rocks ("squeezing ground"), two basic design approaches are available: the resistance principle, and the yielding principle. The resistance principle relies on rigid support systems to withstand the ground pressure. Alternatively, the yielding principle prioritizes controlled deformation, allowing the ground to deform without compromising tunnel integrity. This paper highlights the beneficial factors of the yielding principle for conventionally excavated tunnels in overstressed weak rocks. Especially the application of a ductile shotcrete lining with yielding elements is analysed in detail. Construction costs, safety, short- and long-term stabilities are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeezing%20ground" title="squeezing ground">squeezing ground</a>, <a href="https://publications.waset.org/abstracts/search?q=yielding%20principle" title=" yielding principle"> yielding principle</a>, <a href="https://publications.waset.org/abstracts/search?q=yielding%20element" title=" yielding element"> yielding element</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20tunneling" title=" conventional tunneling"> conventional tunneling</a> </p> <a href="https://publications.waset.org/abstracts/176528/tunnelling-concepts-in-overstressed-weak-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Architectural and Structural Analysis of Selected Tall Buildings in Warsaw, Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Szolomicki">J. Szolomicki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Golasz-Szolomicka"> H. Golasz-Szolomicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents elements of architectural and structural analysis of selected high-rise buildings in the Polish capital city of Warsaw. When analyzing the architecture of Warsaw, it can be concluded that it is currently a rapidly growing city with technologically advanced skyscrapers that belong to the category of intelligent buildings. The constructional boom over the last dozen years has seen the erection of postmodern skyscrapers for office and residential use. This article focuses on how Warsaw has recently joined the most architecturally interesting cities in Europe. Warsaw is currently in fifth place in Europe in terms of the number of skyscrapers and is considered the second most preferred city in Europe (after London) for investment related to them. However, the architectural development of the city could not take place without the participation of eminent Polish and foreign architects such as Stefan Kuryłowicz, Lary Oltmans, Helmut Jahn or Daniel Libeskind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20structure" title="core structure">core structure</a>, <a href="https://publications.waset.org/abstracts/search?q=curtain%20facade" title=" curtain facade"> curtain facade</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundation" title=" raft foundation"> raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title=" tall buildings"> tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/89391/architectural-and-structural-analysis-of-selected-tall-buildings-in-warsaw-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Experts' Opinions of Considerations for Competition Landings in Gymnastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmut%20Geiblinger">Helmut Geiblinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dismounts performed by elite gymnasts during competition require great courage and virtuoso displays of precisely organized movements and skills. The dismount and landing leave the final impression in a routine and are often the key to a successful evaluation by the judges. Landings require precise body control and the skillful dissipation of substantial body momentum. The aim of this research study was to investigate landing techniques and strategies used by elite male gymnasts through the eyes of gymnastics experts. It drew from the accrued knowledge and experience of 21 male expert participants who were elite coaches, elite gymnasts, international judges or combinations of these. The experts made a number of subtle points, many of which are not in the extant literature. The experts highlighted concerns about safety and the study concluded that on-going monitoring of the rules on competition landings within the Code of Points would be beneficial to the sport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20competition%20landings" title="controlled competition landings">controlled competition landings</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20technique" title=" landing technique"> landing technique</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20strategies" title=" landing strategies"> landing strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20body%20segment%20coordination" title=" optimal body segment coordination"> optimal body segment coordination</a> </p> <a href="https://publications.waset.org/abstracts/53893/experts-opinions-of-considerations-for-competition-landings-in-gymnastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Hossen">B. Hossen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Helmut"> Y. Helmut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title="soil salinity">soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=EC" title=" EC"> EC</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20indices" title=" salinity indices"> salinity indices</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing "> remote sensing </a> </p> <a href="https://publications.waset.org/abstracts/139666/assessment-of-soil-salinity-through-remote-sensing-technique-in-the-coastal-region-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Diaspora by Design; Jewish Refugee Architects and Wellington City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Abreu%20e%20Lima">Daniele Abreu e Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chloe%20Fitzpatrick"> Chloe Fitzpatrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the 1930s, New Zealand received a wave of refugees feeling from the impeding war and atrocities the Nazi regime was imposing on the German people. Among the hundreds of refugees were highly trained artists, architects and musicians who made a huge contribution to Wellington’s culture and identity. It is unfeasible to chronicle the impact of every Jewish refugee in the development of New Zealand arts scene. But it is possible to choose a number of them and analyse their contribution to NZ culture. This research aims to bring to light the reception and life of five influential Jewish architects; Helmut Einhorn, Ernst Plischke, Frederick Neumann, Henry Kulka, and Maximillian Rosenfeld. Each had a key role in influencing New Zealand architectural landscape and the modernization of the country. Before coming to New Zealand, these five architects lived different lives working all over Europe, from Paris through to Moscow. In common, apart from their ethnicity, they had led cultured lives where they were culturally and politically active. This research looks at how much their individual contributions helped to transform the architectural scene in New Zealand but also in the amount of cultural and religious renunciation they had to endure to be accepted in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jewish%20Refugee%20architects" title="Jewish Refugee architects">Jewish Refugee architects</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20architecture" title=" modern architecture"> modern architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=World%20War%202" title=" World War 2"> World War 2</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Zealand" title=" New Zealand"> New Zealand</a> </p> <a href="https://publications.waset.org/abstracts/185320/diaspora-by-design-jewish-refugee-architects-and-wellington-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Meshram">Ganesh Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Biswal"> Gloria Biswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20boltzmann%20method" title=" lattice boltzmann method"> lattice boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=d2q9%20model" title=" d2q9 model"> d2q9 model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-potential%20multiphase%20method" title=" pseudo-potential multiphase method"> pseudo-potential multiphase method</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wenzel%20state" title=" wenzel state"> wenzel state</a>, <a href="https://publications.waset.org/abstracts/search?q=cassie-baxter%20state" title=" cassie-baxter state"> cassie-baxter state</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/167911/numerical-study-of-wettability-on-the-triangular-micro-pillared-surfaces-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Ethnography of the Social and Cultural Perspectives of Childhood Neuro-Developmental Disorders: Implications for Health Seeking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Nono">Denis Nono</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Abbo"> Catherine Abbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20%20Wenzel"> Thomas Wenzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The study explored socio-cultural perspectives of childhood disorders and its implications for health seeking. Emphasis was on exploring local understanding and perceptions and how these ideas affect health seeking. Study aim: To explore the socio-cultural perspectives of neuro-developmental disorders and its implications on health seeking behaviour. Methods: The methods used in this study included key informant interviews conducted with health professionals. Parents of the children aged (6-15 years) with neuro-developmental disorders were recruited from the hospital to participate in focus group discussion, participant observation and individual in-depth interviews. Results: The study found out that stigma extended from children to parents and caregivers who were also shunned by community members. Participants described their children as “a gift from God” others described them as “a test from God”. The communities perceive the disorders as a spiritual infliction and always insisted that the children be taken for Acholi cultural and traditional rituals to cleanse children and they believed that mental illness has spiritual linkages. Conclusion: This study gives unique insights into the perceptions of neuro-developmental disorders and health seeking behavior in Gulu District and neighboring communities. The results showed that communities linked disorders to spiritual affliction, misunderstandings between families, bewitching, and other supernatural forces. Some of the participants highly recommended biomedical approaches to prevention, management and control of the disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethnography" title="ethnography">ethnography</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20seeking" title=" health seeking"> health seeking</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-developmental%20disorders" title=" neuro-developmental disorders"> neuro-developmental disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-cultural" title=" socio-cultural"> socio-cultural</a> </p> <a href="https://publications.waset.org/abstracts/102756/ethnography-of-the-social-and-cultural-perspectives-of-childhood-neuro-developmental-disorders-implications-for-health-seeking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Joubert Syndrome in Children as Multicentric Screening in Ten Different Places in World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bajraktarevic%20Adnan">Bajraktarevic Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Djukic%20Branka"> Djukic Branka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sporisevic%20Lutvo"> Sporisevic Lutvo</a>, <a href="https://publications.waset.org/abstracts/search?q=Krdzalic%20Zecevic%20Belma"> Krdzalic Zecevic Belma</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzicanin%20Sajra"> Uzicanin Sajra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadzimuratovic%20Admir"> Hadzimuratovic Admir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadzimuratovic%20Hadzipasic%20Emina"> Hadzimuratovic Hadzipasic Emina</a>, <a href="https://publications.waset.org/abstracts/search?q=Abduzaimovic%20Alisa"> Abduzaimovic Alisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kustric%20Amer"> Kustric Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=Suljevic%20Ismet"> Suljevic Ismet</a>, <a href="https://publications.waset.org/abstracts/search?q=Serafi%20Ismail"> Serafi Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahmiscija%20Indira"> Tahmiscija Indira</a>, <a href="https://publications.waset.org/abstracts/search?q=Khatib%20Hakam"> Khatib Hakam</a>, <a href="https://publications.waset.org/abstracts/search?q=Semic%20Jusufagic%20Aida"> Semic Jusufagic Aida</a>, <a href="https://publications.waset.org/abstracts/search?q=Haas%20Helmut"> Haas Helmut</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladicic%20Aleksandra"> Vladicic Aleksandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Aplenc%20Richard"> Aplenc Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadic%20Deovic%20Aida"> Kadic Deovic Aida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Joubert syndrome has an autosomal recessive pattern of inheritance. It is referred as the brain malfunctioning and caused due to the underdevelopment of the cerebellar vermis. Associated conditions involving the eye, the kidney, and ocular disease are well described. Aims: Research helps us better understand this diseases, Joubert syndrome and can lead to advances in diagnosis and treatment. Methods: Different several conditions have been described in which the molar tooth sign and characteristics of Joubert syndrome in ten different places in the world. Carrier testing and diagnosis are available if one of these gene mutations has been identified in an affected family member. Results: Authors have described eleven cases during twenty years of Joubert syndrome. It is a clinically and genetically heterogeneous group of disorders characterized by hypoplasia of the cerebellar vermis with the characteristic neuroradiologic molar tooth sign, and accompanying neurologic symptoms, including dysregulation of breathing pattern and developmental delay. We made confirmation of diagnosis in twin sisters with Joubert syndrome with renal anomalies. Ocular symptoms have existed in seven cases (63.64%) from total eleven. Eleven cases were different sex, five boys (45.45%) and six girls (54.44%). Conclusions: Joubert syndrome is inherited as an autosomal recessive genetic disorder with several features of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joubert%20syndrome" title="Joubert syndrome">Joubert syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebellooculorenal%20syndrome" title=" cerebellooculorenal syndrome"> cerebellooculorenal syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=autosomal%20recessive%20genetic%20disorder%20%28ARGD%29" title=" autosomal recessive genetic disorder (ARGD)"> autosomal recessive genetic disorder (ARGD)</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/70523/joubert-syndrome-in-children-as-multicentric-screening-in-ten-different-places-in-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Maus">Irena Maus</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Gabriella%20Cibis"> Katharina Gabriella Cibis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bremges"> Andreas Bremges</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvonne%20Stolze"> Yvonne Stolze</a>, <a href="https://publications.waset.org/abstracts/search?q=Geizecler%20Tomazetto"> Geizecler Tomazetto</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Wibberg"> Daniel Wibberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20K%C3%B6nig"> Helmut König</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20P%C3%BChler"> Alfred Pühler</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Schl%C3%BCter"> Andreas Schlüter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome%20sequence" title="genome sequence">genome sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20biogas%20plant" title=" thermophilic biogas plant"> thermophilic biogas plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermotogae" title=" Thermotogae"> Thermotogae</a>, <a href="https://publications.waset.org/abstracts/search?q=Defluviitoga%20tunisiensis" title=" Defluviitoga tunisiensis"> Defluviitoga tunisiensis</a> </p> <a href="https://publications.waset.org/abstracts/29463/insights-into-the-annotated-genome-sequence-of-defluviitoga-tunisiensis-l3-isolated-from-a-thermophilic-rural-biogas-producing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>