CINXE.COM

Patrick Mineault | University of California, Los Angeles - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Patrick Mineault | University of California, Los Angeles - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="sVkblkcGXp+UFWSwXZyu6+YhNaaR5rgRh+7fDNzDO26qRvbCXvtlIOXmhk7T4pcre4i1B1HZI6l7R1C+cdzTfA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="patrick mineault" /> <meta name="description" content="Patrick Mineault, University of California, Los Angeles: 31 Followers, 41 Following, 10 Research papers. Research interests: Physics, Mechanical Engineering,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15267,"monthly_visitors":"113 million","monthly_visitor_count":113389981,"monthly_visitor_count_in_millions":113,"user_count":277743440,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733051492000); window.Aedu.timeDifference = new Date().getTime() - 1733051492000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ucla.academia.edu/PatrickMineault" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault","photo":"https://gravatar.com/avatar/8def40ab2d48a7561a0ef948486334a2?s=65","has_photo":true,"department":{"id":30508,"name":"Neurobiology","url":"https://ucla.academia.edu/Departments/Neurobiology/Documents","university":{"id":536,"name":"University of California, Los Angeles","url":"https://ucla.academia.edu/"}},"position":"Post-Doc","position_id":2,"is_analytics_public":false,"interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":161,"name":"Neuroscience","url":"https://www.academia.edu/Documents/in/Neuroscience"},{"id":388873,"name":"Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Mathematics_and_Statistics"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":84990,"name":"Clustering","url":"https://www.academia.edu/Documents/in/Clustering"},{"id":125387,"name":"Normalization","url":"https://www.academia.edu/Documents/in/Normalization"},{"id":42279,"name":"Dimension Reduction","url":"https://www.academia.edu/Documents/in/Dimension_Reduction"},{"id":370219,"name":"Matrix Decomposition","url":"https://www.academia.edu/Documents/in/Matrix_Decomposition"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":3867351,"link":"https://www.facebook.com/patrick.mineault","name":"Facebook","link_domain":"www.facebook.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.facebook.com"},{"id":3867363,"link":"http://scholar.google.com/citations?user=gpQg9uQAAAAJ\u0026hl=en","name":"Google Scholar","link_domain":"scholar.google.com","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ucla.academia.edu/PatrickMineault&quot;,&quot;location&quot;:&quot;/PatrickMineault&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ucla.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/PatrickMineault&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-1c543b7d-8f6f-4b97-b063-64c427722ee9"></div> <div id="ProfileCheckPaperUpdate-react-component-1c543b7d-8f6f-4b97-b063-64c427722ee9"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Patrick Mineault" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" src="https://gravatar.com/avatar/8def40ab2d48a7561a0ef948486334a2?s=200" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Patrick Mineault</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ucla.academia.edu/">University of California, Los Angeles</a>, <a class="u-tcGrayDarker" href="https://ucla.academia.edu/Departments/Neurobiology/Documents">Neurobiology</a>, <span class="u-tcGrayDarker">Post-Doc</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Patrick" data-follow-user-id="13582603" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="13582603"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">31</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">41</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">3</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address:&nbsp;</b>Los Angeles, California, United States<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="13582603">View All (10)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13582603" href="https://www.academia.edu/Documents/in/Physics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://ucla.academia.edu/PatrickMineault&quot;,&quot;location&quot;:&quot;/PatrickMineault&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;ucla.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/PatrickMineault&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Physics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9573103d-13ac-4bdb-ac02-ab536cdc7ee6"></div> <div id="Pill-react-component-9573103d-13ac-4bdb-ac02-ab536cdc7ee6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13582603" href="https://www.academia.edu/Documents/in/Mechanical_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mechanical Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-dbdcf70d-a747-4d23-9f61-aa00ea01f076"></div> <div id="Pill-react-component-dbdcf70d-a747-4d23-9f61-aa00ea01f076"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13582603" href="https://www.academia.edu/Documents/in/Neuroscience"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Neuroscience&quot;]}" data-trace="false" data-dom-id="Pill-react-component-04a0d7c5-0b86-40f0-b422-9c69f26d5f0e"></div> <div id="Pill-react-component-04a0d7c5-0b86-40f0-b422-9c69f26d5f0e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13582603" href="https://www.academia.edu/Documents/in/Mathematics_and_Statistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematics and Statistics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c1a938d2-7f7f-4f40-ad1c-6ad5a68ee8c6"></div> <div id="Pill-react-component-c1a938d2-7f7f-4f40-ad1c-6ad5a68ee8c6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="13582603" href="https://www.academia.edu/Documents/in/Machine_Learning"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Machine Learning&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c14fc814-7830-47ee-9461-65db3d4b61fb"></div> <div id="Pill-react-component-c14fc814-7830-47ee-9461-65db3d4b61fb"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Patrick Mineault</h3></div><div class="js-work-strip profile--work_container" data-work-id="13965551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex"><img alt="Research paper thumbnail of A sensorimotor role for traveling waves in primate visual cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex">A sensorimotor role for traveling waves in primate visual cortex</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://mcgill.academia.edu/TheodorosZanos">Theodoros Zanos</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ucla.academia.edu/PatrickMineault">Patrick Mineault</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://mcgill.academia.edu/KonstantinosNasiotis">Konstantinos Nasiotis</a></span></div><div class="wp-workCard_item"><span>Neuron</span><span>, Jan 4, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Traveling waves of neural activity are frequently observed to occur in concert with the presentat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13965551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13965551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13965551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13965551]").text(description); $(".js-view-count[data-work-id=13965551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13965551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13965551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13965551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13965551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13965551,"title":"A sensorimotor role for traveling waves in primate visual cortex","translated_title":"","metadata":{"abstract":"Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.","publication_date":{"day":4,"month":1,"year":2015,"errors":{}},"publication_name":"Neuron"},"translated_abstract":"Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.","internal_url":"https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex","translated_internal_url":"","created_at":"2015-07-12T19:32:32.627-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33014832,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":2979332,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":13582603,"co_author_invite_id":null,"email":"p***t@gmail.com","affiliation":"University of California, Los Angeles","display_order":0,"name":"Patrick Mineault","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979337,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761597,"email":"p***t@mail.mcgill.ca","display_order":4194304,"name":"Patrick Mineault","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979342,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":628052,"email":"c***k@mcgill.ca","display_order":6291456,"name":"Christopher Pack","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979346,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761599,"email":"d***n@mcgill.ca","display_order":7340032,"name":"Daniel Guitton","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979347,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761600,"email":"d***t@mni.mcgill.ca","display_order":7864320,"name":"Daniel Guitton","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979353,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":33068156,"co_author_invite_id":761601,"email":"k***s@gmail.com","affiliation":"McGill University","display_order":8126464,"name":"Konstantinos Nasiotis","title":"A sensorimotor role for traveling waves in primate visual cortex"}],"downloadable_attachments":[],"slug":"A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33014832,"first_name":"Theodoros","middle_initials":null,"last_name":"Zanos","page_name":"TheodorosZanos","domain_name":"mcgill","created_at":"2015-07-12T19:32:16.791-07:00","display_name":"Theodoros Zanos","url":"https://mcgill.academia.edu/TheodorosZanos"},"attachments":[],"research_interests":[{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":107148,"name":"Saccades","url":"https://www.academia.edu/Documents/in/Saccades"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":2444775,"name":"Psychomotor Performance","url":"https://www.academia.edu/Documents/in/Psychomotor_Performance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="42809578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images"><img alt="Research paper thumbnail of Getting the most out of classification images" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images">Getting the most out of classification images</a></div><div class="wp-workCard_item"><span>Journal of Vision</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="42809578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="42809578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42809578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42809578]").text(description); $(".js-view-count[data-work-id=42809578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42809578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='42809578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 42809578, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=42809578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":42809578,"title":"Getting the most out of classification images","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Journal of Vision"},"translated_abstract":null,"internal_url":"https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images","translated_internal_url":"","created_at":"2020-04-21T08:11:56.078-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Getting_the_most_out_of_classification_images","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[],"research_interests":[{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="42809577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex"><img alt="Research paper thumbnail of Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/63039214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex">Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b92a2c5c39ec7eea1d8a0ad419106a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:63039214,&quot;asset_id&quot;:42809577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="42809577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="42809577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42809577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42809577]").text(description); $(".js-view-count[data-work-id=42809577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42809577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='42809577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 42809577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b92a2c5c39ec7eea1d8a0ad419106a7" } } $('.js-work-strip[data-work-id=42809577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":42809577,"title":"Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex","translated_title":"","metadata":{"ai_title_tag":"Local Field Potential Selectivity in Macaque Temporal Cortex","grobid_abstract":"CBCL Memo 240 © 2 0 0 4 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a -w w w . c s a i l . m i t . e d u massachusetts institute of technology -computer science and artificial intelligence laboratory Selectivity of local field potentials in macaque inferior temporal cortex","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":63039214},"translated_abstract":null,"internal_url":"https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex","translated_internal_url":"","created_at":"2020-04-21T08:11:55.867-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":63039214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63039214/thumbnails/1.jpg","file_name":"AIM-2004-020.pdf","download_url":"https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Selectivity_of_Local_Field_Potentials_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63039214/AIM-2004-020-libre.pdf?1587482246=\u0026response-content-disposition=attachment%3B+filename%3DSelectivity_of_Local_Field_Potentials_in.pdf\u0026Expires=1733055092\u0026Signature=LQFELvRox2NqPZmgYDanN1TQQokgdLT~4MZIEuE5elUx1inTdl2itBu9T3g1w5U5PuBy7b6-~nKSVuZMYF3WDJvTpAvTZJd7ui1z6dygfcSBbpQMgf9kRl3Netesp2Yd~u04hSCLwhWNiKHByUyo2cfOOk28GSlwRQ1J70-aayh3RXVDZARjUupkqdo1e0gvpiKUi4mvnC0FmSvqYEvimTpjCQVoYn6EB8t10sNuaiPspQTsN2eQeNlzJR~jUdFAkUd~NIqiD505S98eG3AAwaVHO4v99IsOjGWaFeywCT3I45ZXjEuzu~4QzsUQ4ogY9pbry3893c-8j61huWVK3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":63039214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63039214/thumbnails/1.jpg","file_name":"AIM-2004-020.pdf","download_url":"https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Selectivity_of_Local_Field_Potentials_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63039214/AIM-2004-020-libre.pdf?1587482246=\u0026response-content-disposition=attachment%3B+filename%3DSelectivity_of_Local_Field_Potentials_in.pdf\u0026Expires=1733055092\u0026Signature=LQFELvRox2NqPZmgYDanN1TQQokgdLT~4MZIEuE5elUx1inTdl2itBu9T3g1w5U5PuBy7b6-~nKSVuZMYF3WDJvTpAvTZJd7ui1z6dygfcSBbpQMgf9kRl3Netesp2Yd~u04hSCLwhWNiKHByUyo2cfOOk28GSlwRQ1J70-aayh3RXVDZARjUupkqdo1e0gvpiKUi4mvnC0FmSvqYEvimTpjCQVoYn6EB8t10sNuaiPspQTsN2eQeNlzJR~jUdFAkUd~NIqiD505S98eG3AAwaVHO4v99IsOjGWaFeywCT3I45ZXjEuzu~4QzsUQ4ogY9pbry3893c-8j61huWVK3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":149836,"name":"Spatial Organization","url":"https://www.academia.edu/Documents/in/Spatial_Organization"},{"id":171338,"name":"Spatial Scale","url":"https://www.academia.edu/Documents/in/Spatial_Scale"},{"id":485404,"name":"Local Field Potential","url":"https://www.academia.edu/Documents/in/Local_Field_Potential"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1554042,"name":"Inferior temporal cortex","url":"https://www.academia.edu/Documents/in/Inferior_temporal_cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials"><img alt="Research paper thumbnail of Removal of spurious correlations between spikes and local field potentials" class="work-thumbnail" src="https://attachments.academia-assets.com/34123500/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials">Removal of spurious correlations between spikes and local field potentials</a></div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c13231979cde3d90adf65d3bf92b1cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123500,&quot;asset_id&quot;:7563733,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563733]").text(description); $(".js-view-count[data-work-id=7563733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c13231979cde3d90adf65d3bf92b1cd" } } $('.js-work-strip[data-work-id=7563733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563733,"title":"Removal of spurious correlations between spikes and local field potentials","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Single neurons carry out important sensory and motor functions related to the larger networks in which they are embedded. Understanding the relationships between single-neuron spiking and network activity is therefore of great importance and the latter can be readily estimated from low-frequency brain signals known as local field potentials (LFPs). In this work we examine a number of issues related to the estimation of spike and LFP signals. We show that spike trains and individual spikes contain power at the frequencies that are typically thought to be exclusively related to LFPs, such that simple frequency-domain filtering cannot be effectively used to separate the two signals. Ground-truth simulations indicate that the commonly used method of estimating the LFP signal by low-pass filtering the raw voltage signal leads to artifactual correlations between spikes and LFPs and that these correlations exert a powerful influence on popular metrics of spike-LFP synchronization. Similar artifactual results were seen in data obtained from electrophysiological recordings in macaque visual cortex, when low-pass filtering was used to estimate LFP signals. In contrast LFP tuning curves in response to sensory stimuli do not appear to be affected by spike contamination, either in simulations or in real data. To address the issue of spike contamination, we devised a novel Bayesian spike removal algorithm and confirmed its effectiveness in simulations and by applying it to the electrophysiological data. The algorithm, based on a rigorous mathematical framework, outperforms other methods of spike removal on most metrics of spike-LFP correlations. Following application of this spike removal algorithm, many of our electrophysiological recordings continued to exhibit spike-LFP correlations, confirming previous reports that such relationships are a genuine aspect of neuronal activity. Overall, these results show that careful preprocessing is necessary to remove spikes from LFP signals, but that when effective spike removal is used, spike-LFP correlations can potentially yield novel insights about brain function. . Denker M, Roux S, Timme M, Riehle A, Grün S. Phase synchronization between LFP and spiking activity in motor cortex during movement preparation. Neurocomputing 70: 2096 -2101, 2007. Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19: 4595-4608, 1999. Fattori P, Pitzalis S, Galletti C. The cortical visual area V6 in macaque and human brains. J Physiol (Paris) 103: 88 -97, 2009. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560 -1563, 2001. Fries P, Womelsdorf T, Oostenveld R, Desimone R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 28: 4823-4835, 2008. Galindo-Leon EE, Liu RC. Predicting stimulus-locked single unit spiking from cortical local field potentials. J Comput Neurosci 29: 581-597, 2010. Goense J, Logothetis N. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18: 631-640, 2008. Gold C, Henze DA, Koch C, Buzsáki G. On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95: 3113-3128, 2006. Goupillaud P, Grossmann A, Morlet J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23: 85-102, 1984. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324: 1207-1210, 2009. Jacobs J, Kahana MJ, Ekstrom AD, Fried I. Brain oscillations control timing of single-neuron activity in humans. J Neurosci 27: 3839 -3844, 2007. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron 61: 35-41, 2009. Khawaja FA, Tsui JMG, Pack CC. Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci 29: 13702-13709, 2009. Litaudon P, Garcia S, Buonviso N. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 156: 781-787, 2008. Liu J, Newsome WT. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci 26: 7779 -7790, 2006. Maunsell JHR, Newsome WT. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10: 363-401, 1987. Nauhaus I, Busse L, Carandini M, Ringach D. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12: 70 -76, 2008. Nelson M, Pouget P, Nilsen E, Patten C, Schall J. Review of signal distortion through metal microelectrode recording circuits and filters. J Neurosci Methods 169: 141-157, 2008. Okun M, Naim A, Lampl I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30: 4440 -4448, 2010. Paz R, Bauer EP, Paré D. Theta synchronizes the activity of medial prefrontal neurons during learning. Learn Mem 15: 524 -531, 2008. Pesaran B, Pezaris J, Sahani M, Mitra P, Andersen R. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5: 805-811, 2002. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16: 1661-1687, 2004. Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK. Inferring spike trains from local field potentials. J Neurophysiol 99: 1461-1476, 2008. Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations (60 -200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28: 11526 -11536, 2008. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464: 903-907, 2010. Sahani M. Latent Variable Models for Neural Data Analysis. Pasadena, CA: California Institute of Technology, 1999. Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65: 461-471, 2010. Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46: 141-151, 2005. Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64: 281-289, 2009. Xing D, Yeh C-I, Shapley RM. Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29: 11540 -11549, 2009. Zanos TP, Courellis SH, Berger TW, Hampson RE, Deadwyler SA, Marmarelis VZ. Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Trans Neural Syst Rehabil Eng 16: 336 -352, 2008. Zanos TP, Zanos SP, Courellis SH, Marmarelis VZ, Ojemann GA. Nonlinear dynamic modeling of the relationship between local field potentials and neural discharge in human temporal cortex.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of neurophysiology","grobid_abstract_attachment_id":34123500},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials","translated_internal_url":"","created_at":"2014-07-05T03:09:04.531-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123500/thumbnails/1.jpg","file_name":"zanosmineaultpack11.pdf","download_url":"https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_spurious_correlations_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123500/zanosmineaultpack11-libre.pdf?1404555115=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_spurious_correlations_between.pdf\u0026Expires=1733023264\u0026Signature=btbl0DQu4Mmun0Czfam~-Iu9l3HA999CoBpxZknUetzZiqYCRXNCAewGSrIlalnVlScYRHYsXTQ6elO~2EUzNzXUFd0gRtyEKmzv65kxkaHwYO~sh5eFapdsUG26-zJbIAVkvOoEs9uMa3~btsD2zO4yOX4xSojVpUL6fa4eEhtqjHzIy~EDkEIz9rWswWFQ2NAJv-b2oOg6SSmGMVSF3au~dP~puR8EKgHvEfrHzumnpOjM3q~rFSwSnhUzGb8fCIilauVqn2TgkOct4M4RncNClzXCT3AX44~Hmfa9Bq05ffXDL7s3ah~nWiGHCdilpIvz~DPxUAI24XI36sPK3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_spurious_correlations_between_spikes_and_local_field_potentials","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123500/thumbnails/1.jpg","file_name":"zanosmineaultpack11.pdf","download_url":"https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_spurious_correlations_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123500/zanosmineaultpack11-libre.pdf?1404555115=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_spurious_correlations_between.pdf\u0026Expires=1733023264\u0026Signature=btbl0DQu4Mmun0Czfam~-Iu9l3HA999CoBpxZknUetzZiqYCRXNCAewGSrIlalnVlScYRHYsXTQ6elO~2EUzNzXUFd0gRtyEKmzv65kxkaHwYO~sh5eFapdsUG26-zJbIAVkvOoEs9uMa3~btsD2zO4yOX4xSojVpUL6fa4eEhtqjHzIy~EDkEIz9rWswWFQ2NAJv-b2oOg6SSmGMVSF3au~dP~puR8EKgHvEfrHzumnpOjM3q~rFSwSnhUzGb8fCIilauVqn2TgkOct4M4RncNClzXCT3AX44~Hmfa9Bq05ffXDL7s3ah~nWiGHCdilpIvz~DPxUAI24XI36sPK3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":235677,"name":"Behavioral Animal Models","url":"https://www.academia.edu/Documents/in/Behavioral_Animal_Models"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"}],"urls":[{"id":3137739,"url":"http://dx.doi.org/10.1152/jn.00642.2010"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge"><img alt="Research paper thumbnail of The cerebral emporium of benevolent knowledge" class="work-thumbnail" src="https://attachments.academia-assets.com/34123502/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge">The cerebral emporium of benevolent knowledge</a></div><div class="wp-workCard_item"><span>Neuron</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f46415c5a95d3eadfd65f04ad1208c7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123502,&quot;asset_id&quot;:7563732,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563732]").text(description); $(".js-view-count[data-work-id=7563732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f46415c5a95d3eadfd65f04ad1208c7a" } } $('.js-work-strip[data-work-id=7563732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563732,"title":"The cerebral emporium of benevolent knowledge","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Neuron"},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge","translated_internal_url":"","created_at":"2014-07-05T03:09:03.061-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123502/thumbnails/1.jpg","file_name":"cerebral_emporium.pdf","download_url":"https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_cerebral_emporium_of_benevolent_know.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123502/cerebral_emporium-libre.pdf?1404555219=\u0026response-content-disposition=attachment%3B+filename%3DThe_cerebral_emporium_of_benevolent_know.pdf\u0026Expires=1733055092\u0026Signature=H~A8aqyCeIyH3AeMRh5LuKkQrCfYOIG-uRxoQygAhQ1P5S6brOwf9~UtwzaGv0un48SY3lDRafWV1MczAIU5~ic1Te9mySioVfYAInkwTzVKZJL6UBZCGfKTPkY~dGrM~jQrG01Fk3QRPPFB0xR1IOI75fo~yAHfGuiToAD4KbtHFc6a7m2lJVOLtGnX4oZFMNiTg4bWJpCp2lMDLWlzSdaR6mVD5kSbCvZam5MlzGDy6De7VV6e2tBmhjSY9wA1U2w2ye8Lni9nrbX~VOmf1cLAsKU0OO6B-5htqalPKVy62b7I6KxJwAUJcTfO9iD-gXo96c4u7rLe2mDlTCAqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_cerebral_emporium_of_benevolent_knowledge","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123502/thumbnails/1.jpg","file_name":"cerebral_emporium.pdf","download_url":"https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_cerebral_emporium_of_benevolent_know.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123502/cerebral_emporium-libre.pdf?1404555219=\u0026response-content-disposition=attachment%3B+filename%3DThe_cerebral_emporium_of_benevolent_know.pdf\u0026Expires=1733055092\u0026Signature=H~A8aqyCeIyH3AeMRh5LuKkQrCfYOIG-uRxoQygAhQ1P5S6brOwf9~UtwzaGv0un48SY3lDRafWV1MczAIU5~ic1Te9mySioVfYAInkwTzVKZJL6UBZCGfKTPkY~dGrM~jQrG01Fk3QRPPFB0xR1IOI75fo~yAHfGuiToAD4KbtHFc6a7m2lJVOLtGnX4oZFMNiTg4bWJpCp2lMDLWlzSdaR6mVD5kSbCvZam5MlzGDy6De7VV6e2tBmhjSY9wA1U2w2ye8Lni9nrbX~VOmf1cLAsKU0OO6B-5htqalPKVy62b7I6KxJwAUJcTfO9iD-gXo96c4u7rLe2mDlTCAqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":3137738,"url":"http://dx.doi.org/10.1016/j.neuron.2013.08.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4"><img alt="Research paper thumbnail of Local field potentials reflect multiple spatial scales in V4" class="work-thumbnail" src="https://attachments.academia-assets.com/34123503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4">Local field potentials reflect multiple spatial scales in V4</a></div><div class="wp-workCard_item"><span>Frontiers in computational neuroscience</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="108f028781ceaca578ea828530a6df5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123503,&quot;asset_id&quot;:7563731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563731]").text(description); $(".js-view-count[data-work-id=7563731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "108f028781ceaca578ea828530a6df5a" } } $('.js-work-strip[data-work-id=7563731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563731,"title":"Local field potentials reflect multiple spatial scales in V4","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode . The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns to several millimeters . We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an intermediate level of visual processing, in area V4 of two macaques. The spatial structure of LFP receptive fields varied greatly as a function of time lag following stimulus onset, with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags. A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered components: an MUA-like retinotopic component that originated in a small volume around the microelectrodes (∼350 μm), and a second component that was shared across the entire V4 region; this second component had tuning properties unrelated to those of the MUAs. Our results suggest that the LFP reflects neural activity across multiple spatial scales, which both complicates its interpretation and offers new opportunities for investigating the large-scale structure of network processing.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Frontiers in computational neuroscience","grobid_abstract_attachment_id":34123503},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4","translated_internal_url":"","created_at":"2014-07-05T03:09:01.696-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123503/thumbnails/1.jpg","file_name":"fncom-07-00021.pdf","download_url":"https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_field_potentials_reflect_multiple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123503/fncom-07-00021-libre.pdf?1404555152=\u0026response-content-disposition=attachment%3B+filename%3DLocal_field_potentials_reflect_multiple.pdf\u0026Expires=1733055092\u0026Signature=G96SfrHHD~-1wLFLZUkd3me~qbu88RF0bDkVfM1GOuhZFxv-uNN75DVEPU9qGXTrcyYfvQywFn33qB760IeupmXGybEl4qWWpQqjXpjPg6niXoq1mw5aFilclwOesN1dbebmbndwXxhiV5EM4pZxOzMfLBr1EFDIYNf5md9Uw7IbCLRwlYfS5YfTtyMssIXg8r5qDvjJLRLL7fgjvY-LMYlZLhwglhvscQkdTlkfSSbAeB2PCnIYFu-dznLPSj24qopVdVU8OAMzqDD0WnnXmoIbSFABoz-uOBs1rusLrxPEpf6oABPbidsmW7JSpXcsIaDdfBfzuB3jxk~lHEks5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Local_field_potentials_reflect_multiple_spatial_scales_in_V4","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123503/thumbnails/1.jpg","file_name":"fncom-07-00021.pdf","download_url":"https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_field_potentials_reflect_multiple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123503/fncom-07-00021-libre.pdf?1404555152=\u0026response-content-disposition=attachment%3B+filename%3DLocal_field_potentials_reflect_multiple.pdf\u0026Expires=1733055092\u0026Signature=G96SfrHHD~-1wLFLZUkd3me~qbu88RF0bDkVfM1GOuhZFxv-uNN75DVEPU9qGXTrcyYfvQywFn33qB760IeupmXGybEl4qWWpQqjXpjPg6niXoq1mw5aFilclwOesN1dbebmbndwXxhiV5EM4pZxOzMfLBr1EFDIYNf5md9Uw7IbCLRwlYfS5YfTtyMssIXg8r5qDvjJLRLL7fgjvY-LMYlZLhwglhvscQkdTlkfSSbAeB2PCnIYFu-dznLPSj24qopVdVU8OAMzqDD0WnnXmoIbSFABoz-uOBs1rusLrxPEpf6oABPbidsmW7JSpXcsIaDdfBfzuB3jxk~lHEks5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":3137737,"url":"http://dx.doi.org/10.3389/fncom.2013.00021"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway"><img alt="Research paper thumbnail of Hierarchical processing of complex motion along the primate dorsal visual pathway" class="work-thumbnail" src="https://attachments.academia-assets.com/34123506/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway">Hierarchical processing of complex motion along the primate dorsal visual pathway</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://ucla.academia.edu/PatrickMineault">Patrick Mineault</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielButts">Daniel Butts</a></span></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca8d832c6e0f77422db76e1be51ea79e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123506,&quot;asset_id&quot;:7563730,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563730]").text(description); $(".js-view-count[data-work-id=7563730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca8d832c6e0f77422db76e1be51ea79e" } } $('.js-work-strip[data-work-id=7563730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563730,"title":"Hierarchical processing of complex motion along the primate dorsal visual pathway","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Neurons in the medial superior temporal (MST) area of the primate visual cortex respond selectively to complex motion patterns defined by expansion, rotation, and deformation. Consequently they are often hypothesized to be involved in important behavioral functions, such as encoding the velocities of moving objects and surfaces relative to the observer. However, the computations underlying such selectivity are unknown. In this work we have developed a unique, naturalistic motion stimulus and used it to probe the complex selectivity of MST neurons. The resulting data were then used to estimate the properties of the feed-forward inputs to each neuron. This analysis yielded models that successfully accounted for much of the observed stimulus selectivity, provided that the inputs were combined via a nonlinear integration mechanism that approximates a multiplicative interaction among MST inputs. In simulations we found that this type of integration has the functional role of improving estimates of the 3D velocity of moving objects. As this computation is of general utility for detecting complex stimulus features, we suggest that it may represent a fundamental aspect of hierarchical sensory processing.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America","grobid_abstract_attachment_id":34123506},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway","translated_internal_url":"","created_at":"2014-07-05T03:09:00.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":34335783,"work_id":7563730,"tagging_user_id":13582603,"tagged_user_id":32262401,"co_author_invite_id":null,"email":"d***b@umd.edu","display_order":0,"name":"Daniel Butts","title":"Hierarchical processing of complex motion along the primate dorsal visual pathway"},{"id":34335784,"work_id":7563730,"tagging_user_id":13582603,"tagged_user_id":9216014,"co_author_invite_id":null,"email":"f***a@gmail.com","display_order":4194304,"name":"Farhan Khawaja","title":"Hierarchical processing of complex motion along the primate dorsal visual pathway"}],"downloadable_attachments":[{"id":34123506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123506/thumbnails/1.jpg","file_name":"mineaultetal2012.pdf","download_url":"https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hierarchical_processing_of_complex_motio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123506/mineaultetal2012-libre.pdf?1404555203=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_processing_of_complex_motio.pdf\u0026Expires=1733055092\u0026Signature=Uhjt3U979z30vvYjpWanGBU1kbuM~jM8etaA5qCxYAdEzcgJ5homh2YLkfQVRhSb4paPflADAf86KU4Pg0l1~o2Hrcq7RBhRI54aHVN3lJZZ7ISOIw-eG7JfjFFVvq3k9JOhuK3ufN68dHAsNeWZx1SDCvDTUHdhjiKnNkgsK1jQgCjKvJ5LI6Pey8pvBhwL81Ux8UOZHM~OSFJ~539BLAIBz1R4dkWMuYTt1e3FmivpzX7SFN6-Ykf~12w7VhI1cADzulViG4EIqJKhBrPS7Ls0yzhwNIoQm0MKfQCqZ65GmL5RDhUywOlWnTXFsTplnZ-OgC75brRcVmZ9B05slw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123506/thumbnails/1.jpg","file_name":"mineaultetal2012.pdf","download_url":"https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hierarchical_processing_of_complex_motio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123506/mineaultetal2012-libre.pdf?1404555203=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_processing_of_complex_motio.pdf\u0026Expires=1733055092\u0026Signature=Uhjt3U979z30vvYjpWanGBU1kbuM~jM8etaA5qCxYAdEzcgJ5homh2YLkfQVRhSb4paPflADAf86KU4Pg0l1~o2Hrcq7RBhRI54aHVN3lJZZ7ISOIw-eG7JfjFFVvq3k9JOhuK3ufN68dHAsNeWZx1SDCvDTUHdhjiKnNkgsK1jQgCjKvJ5LI6Pey8pvBhwL81Ux8UOZHM~OSFJ~539BLAIBz1R4dkWMuYTt1e3FmivpzX7SFN6-Ykf~12w7VhI1cADzulViG4EIqJKhBrPS7Ls0yzhwNIoQm0MKfQCqZ65GmL5RDhUywOlWnTXFsTplnZ-OgC75brRcVmZ9B05slw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":13493,"name":"Motion perception","url":"https://www.academia.edu/Documents/in/Motion_perception"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"}],"urls":[{"id":3137736,"url":"http://dx.doi.org/10.1073/pnas.1115685109"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis"><img alt="Research paper thumbnail of Improved classification images with sparse priors in a smooth basis" class="work-thumbnail" src="https://attachments.academia-assets.com/34123511/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis">Improved classification images with sparse priors in a smooth basis</a></div><div class="wp-workCard_item"><span>Journal of vision</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d0b762e6cb07b86865ea76cf7213de59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123511,&quot;asset_id&quot;:7563729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563729]").text(description); $(".js-view-count[data-work-id=7563729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d0b762e6cb07b86865ea76cf7213de59" } } $('.js-work-strip[data-work-id=7563729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563729,"title":"Improved classification images with sparse priors in a smooth basis","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Classification images provide compelling insight into the strategies used by observers in psychophysical tasks. However, because of the high-dimensional nature of classification images and the limited quantity of trials that can practically be performed, classification images are often too noisy to be useful unless denoising strategies are adopted. Here we propose a method of estimating classification images by the use of sparse priors in smooth bases and generalized linear models (GLMs). Sparse priors in a smooth basis are used to impose assumptions about the simplicity of observers' internal templates, and they naturally generalize commonly used methods such as smoothing and thresholding. The use of GLMs in this context provides a number of advantages over classic estimation techniques, including the possibility of using stimuli with non-Gaussian statistics, such as natural textures. Using simulations, we show that our method recovers classification images that are typically less noisy and more accurate for a smaller number of trials than previously published techniques. Finally, we have verified the efficiency and accuracy of our approach with psychophysical data from a human observer.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of vision","grobid_abstract_attachment_id":34123511},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis","translated_internal_url":"","created_at":"2014-07-05T03:08:58.510-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123511/thumbnails/1.jpg","file_name":"mineaultbarthelemepack.pdf","download_url":"https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_classification_images_with_spar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123511/mineaultbarthelemepack-libre.pdf?1404555250=\u0026response-content-disposition=attachment%3B+filename%3DImproved_classification_images_with_spar.pdf\u0026Expires=1733055092\u0026Signature=P8l8t0x~hE2jP5vMEDOCFH9qg8Oh9AP3yoxDw4EVvrSAOEZiUeXdIeWgSxqgWL1nz08JvKUJRJ789SNq0zhyguKvqJ9GGJgpyiBdc55IUF8kpC2hkfOY5JDNGrOXIXFidPzA4jf0WMvNcXBHV2~~VeaS5XjxwtooGd9ktonFAeN7H3bxxPOOlg2K-WGwYzqCPNxlX1cVb-IVCVaVXFZ8m87KVuZKAbfGfpjJGJ-CTtX803S9vVTSZNbxCTwVYcUJ-ziOqa3gYloLrDUCgmeFy0qxwO6yZI~yUWIluaniDK2~FrhbSD2z2OCDFoKDOgGOutVd6H7aA0Fx9vN-XuHZMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Improved_classification_images_with_sparse_priors_in_a_smooth_basis","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123511/thumbnails/1.jpg","file_name":"mineaultbarthelemepack.pdf","download_url":"https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_classification_images_with_spar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123511/mineaultbarthelemepack-libre.pdf?1404555250=\u0026response-content-disposition=attachment%3B+filename%3DImproved_classification_images_with_spar.pdf\u0026Expires=1733055092\u0026Signature=P8l8t0x~hE2jP5vMEDOCFH9qg8Oh9AP3yoxDw4EVvrSAOEZiUeXdIeWgSxqgWL1nz08JvKUJRJ789SNq0zhyguKvqJ9GGJgpyiBdc55IUF8kpC2hkfOY5JDNGrOXIXFidPzA4jf0WMvNcXBHV2~~VeaS5XjxwtooGd9ktonFAeN7H3bxxPOOlg2K-WGwYzqCPNxlX1cVb-IVCVaVXFZ8m87KVuZKAbfGfpjJGJ-CTtX803S9vVTSZNbxCTwVYcUJ-ziOqa3gYloLrDUCgmeFy0qxwO6yZI~yUWIluaniDK2~FrhbSD2z2OCDFoKDOgGOutVd6H7aA0Fx9vN-XuHZMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":246,"name":"Psychophysics","url":"https://www.academia.edu/Documents/in/Psychophysics"},{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification"},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":816819,"name":"Psychological Models","url":"https://www.academia.edu/Documents/in/Psychological_Models"},{"id":1142720,"name":"Normal Distribution","url":"https://www.academia.edu/Documents/in/Normal_Distribution"},{"id":1191613,"name":"Likelihood Functions","url":"https://www.academia.edu/Documents/in/Likelihood_Functions"}],"urls":[{"id":3137735,"url":"http://dx.doi.org/10.1167/9.10.17"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7558703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4"><img alt="Research paper thumbnail of Functional connectivity during surround suppression in macaque area V4" class="work-thumbnail" src="https://attachments.academia-assets.com/34123512/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4">Functional connectivity during surround suppression in macaque area V4</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb3114accc0b093420270d199dd783cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123512,&quot;asset_id&quot;:7558703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7558703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7558703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7558703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7558703]").text(description); $(".js-view-count[data-work-id=7558703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7558703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7558703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7558703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb3114accc0b093420270d199dd783cd" } } $('.js-work-strip[data-work-id=7558703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7558703,"title":"Functional connectivity during surround suppression in macaque area V4","translated_title":"","metadata":{"grobid_abstract":"Surround suppression is a common feature of sensory neurons. For neurons of the visual cortex, it occurs when a visual stimulus extends beyond a neuron's classical receptive field, reducing the neuron's firing rate. While several studies have been attributing the suppression effect on horizontal, long-range lateral or feedback connections, the underlying circuitry for surround modulation remain unidentified. Since most of these models have been relying on single neuron recordings, the contribution of lateral connections can only be suggested from the surround field properties. A more straightforward approach would be to detect these connections and their dynamics using simultaneous recordings from multiple neurons in one or more visual areas. We have developed a method for estimating these connections and we analyzed data obtained from 100electrode Utah arrays chronically implanted into area V4 of the macaque monkey. Using a method based on the nonlinear Volterra modeling approach, we computed estimates of the strength and statistical reliability of connections among neurons, including nonlinear interactions and excitatory and inhibitory connections. Our results thus far reveal a pattern of connectivity within V4 that conforms to the results of previous anatomical work: Excitatory connections are far more common than inhibitory connections (~65%), stronger connections are found among neurons that are physically near one another, and connections are stronger among neurons with similar receptive field properties. However, this connectivity is capable of reorganizing on short time scales according to the stimulus: Stimuli that evoke strong suppression at the single-unit level introduce stronger inhibition among V4 neurons, identifying recurrent connectivity as the source of the suppression. Overall, these results provide insight into the dynamic nature of neuronal organization within V4 and its contribution to surround suppression.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":34123512},"translated_abstract":null,"internal_url":"https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4","translated_internal_url":"","created_at":"2014-07-04T13:21:01.671-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":34335782,"work_id":7558703,"tagging_user_id":13582603,"tagged_user_id":38489113,"co_author_invite_id":null,"email":"j***n@neuralbiology.com","display_order":0,"name":"J. Monteon","title":"Functional connectivity during surround suppression in macaque area V4"}],"downloadable_attachments":[{"id":34123512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123512/thumbnails/1.jpg","file_name":"zanos_embc11_letter.pdf","download_url":"https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_connectivity_during_surround.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123512/zanos_embc11_letter-libre.pdf?1404555225=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_connectivity_during_surround.pdf\u0026Expires=1733055092\u0026Signature=ciZ4SIwHgvEAFe-6Ouz1u3zOLfswM2UM93fEdwkq~NSOH8DhF6m7OBNxR3fGr~pDxM2da0-Ot21lNML6T9nxL4IRWrhKI93bVDgP1oUsWmMcvZz1g8F9lrCmsdnGMfmhBvmyCM3kI87phqtP6JvC0GSq-rNex3ysGykHeuNYnoTQH7SY-~Igsl1ewTpCM8~L2uBhj8S16Lz~PWw6IydMI77ls8ZVmExwzDbskWGNg1j5RmLMcdSf8YJDkyUklYACsXWz3BN6fldL58ihhhikRN71SOA1vxhUkd90Tgdy27ev7lKtqaNKwRg6KDIMf5Gb0ZXE0yhXemF4np2EbzaFtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_connectivity_during_surround_suppression_in_macaque_area_V4","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123512/thumbnails/1.jpg","file_name":"zanos_embc11_letter.pdf","download_url":"https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_connectivity_during_surround.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123512/zanos_embc11_letter-libre.pdf?1404555225=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_connectivity_during_surround.pdf\u0026Expires=1733055092\u0026Signature=ciZ4SIwHgvEAFe-6Ouz1u3zOLfswM2UM93fEdwkq~NSOH8DhF6m7OBNxR3fGr~pDxM2da0-Ot21lNML6T9nxL4IRWrhKI93bVDgP1oUsWmMcvZz1g8F9lrCmsdnGMfmhBvmyCM3kI87phqtP6JvC0GSq-rNex3ysGykHeuNYnoTQH7SY-~Igsl1ewTpCM8~L2uBhj8S16Lz~PWw6IydMI77ls8ZVmExwzDbskWGNg1j5RmLMcdSf8YJDkyUklYACsXWz3BN6fldL58ihhhikRN71SOA1vxhUkd90Tgdy27ev7lKtqaNKwRg6KDIMf5Gb0ZXE0yhXemF4np2EbzaFtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"}],"urls":[{"id":3134733,"url":"http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06090906"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7558702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity"><img alt="Research paper thumbnail of Hamiltonian formulation of General Relativity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity">Hamiltonian formulation of General Relativity</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7558702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7558702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7558702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7558702]").text(description); $(".js-view-count[data-work-id=7558702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7558702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7558702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7558702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=7558702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7558702,"title":"Hamiltonian formulation of General Relativity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity","translated_internal_url":"","created_at":"2014-07-04T13:20:56.865-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hamiltonian_formulation_of_General_Relativity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[],"research_interests":[{"id":3504,"name":"General Relativity","url":"https://www.academia.edu/Documents/in/General_Relativity"}],"urls":[{"id":3134732,"url":"http://www.5etdemi.com/uploads/grpaper.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1588223" id="papers"><div class="js-work-strip profile--work_container" data-work-id="13965551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex"><img alt="Research paper thumbnail of A sensorimotor role for traveling waves in primate visual cortex" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex">A sensorimotor role for traveling waves in primate visual cortex</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://mcgill.academia.edu/TheodorosZanos">Theodoros Zanos</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://ucla.academia.edu/PatrickMineault">Patrick Mineault</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://mcgill.academia.edu/KonstantinosNasiotis">Konstantinos Nasiotis</a></span></div><div class="wp-workCard_item"><span>Neuron</span><span>, Jan 4, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Traveling waves of neural activity are frequently observed to occur in concert with the presentat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="13965551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="13965551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 13965551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=13965551]").text(description); $(".js-view-count[data-work-id=13965551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 13965551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='13965551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 13965551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=13965551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":13965551,"title":"A sensorimotor role for traveling waves in primate visual cortex","translated_title":"","metadata":{"abstract":"Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.","publication_date":{"day":4,"month":1,"year":2015,"errors":{}},"publication_name":"Neuron"},"translated_abstract":"Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.","internal_url":"https://www.academia.edu/13965551/A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex","translated_internal_url":"","created_at":"2015-07-12T19:32:32.627-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":33014832,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":2979332,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":13582603,"co_author_invite_id":null,"email":"p***t@gmail.com","affiliation":"University of California, Los Angeles","display_order":0,"name":"Patrick Mineault","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979337,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761597,"email":"p***t@mail.mcgill.ca","display_order":4194304,"name":"Patrick Mineault","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979342,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":628052,"email":"c***k@mcgill.ca","display_order":6291456,"name":"Christopher Pack","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979346,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761599,"email":"d***n@mcgill.ca","display_order":7340032,"name":"Daniel Guitton","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979347,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":null,"co_author_invite_id":761600,"email":"d***t@mni.mcgill.ca","display_order":7864320,"name":"Daniel Guitton","title":"A sensorimotor role for traveling waves in primate visual cortex"},{"id":2979353,"work_id":13965551,"tagging_user_id":33014832,"tagged_user_id":33068156,"co_author_invite_id":761601,"email":"k***s@gmail.com","affiliation":"McGill University","display_order":8126464,"name":"Konstantinos Nasiotis","title":"A sensorimotor role for traveling waves in primate visual cortex"}],"downloadable_attachments":[],"slug":"A_sensorimotor_role_for_traveling_waves_in_primate_visual_cortex","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":33014832,"first_name":"Theodoros","middle_initials":null,"last_name":"Zanos","page_name":"TheodorosZanos","domain_name":"mcgill","created_at":"2015-07-12T19:32:16.791-07:00","display_name":"Theodoros Zanos","url":"https://mcgill.academia.edu/TheodorosZanos"},"attachments":[],"research_interests":[{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":107148,"name":"Saccades","url":"https://www.academia.edu/Documents/in/Saccades"},{"id":119665,"name":"Reaction Time","url":"https://www.academia.edu/Documents/in/Reaction_Time"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":2444775,"name":"Psychomotor Performance","url":"https://www.academia.edu/Documents/in/Psychomotor_Performance"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="42809578"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images"><img alt="Research paper thumbnail of Getting the most out of classification images" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images">Getting the most out of classification images</a></div><div class="wp-workCard_item"><span>Journal of Vision</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="42809578"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="42809578"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42809578; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42809578]").text(description); $(".js-view-count[data-work-id=42809578]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42809578; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='42809578']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 42809578, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=42809578]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":42809578,"title":"Getting the most out of classification images","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Journal of Vision"},"translated_abstract":null,"internal_url":"https://www.academia.edu/42809578/Getting_the_most_out_of_classification_images","translated_internal_url":"","created_at":"2020-04-21T08:11:56.078-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Getting_the_most_out_of_classification_images","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[],"research_interests":[{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":2922956,"name":"Psychology and Cognitive Sciences","url":"https://www.academia.edu/Documents/in/Psychology_and_Cognitive_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="42809577"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex"><img alt="Research paper thumbnail of Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex" class="work-thumbnail" src="https://attachments.academia-assets.com/63039214/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex">Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8b92a2c5c39ec7eea1d8a0ad419106a7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:63039214,&quot;asset_id&quot;:42809577,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="42809577"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="42809577"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 42809577; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=42809577]").text(description); $(".js-view-count[data-work-id=42809577]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 42809577; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='42809577']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 42809577, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8b92a2c5c39ec7eea1d8a0ad419106a7" } } $('.js-work-strip[data-work-id=42809577]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":42809577,"title":"Selectivity of Local Field Potentials in Macaque Inferior Temporal Cortex","translated_title":"","metadata":{"ai_title_tag":"Local Field Potential Selectivity in Macaque Temporal Cortex","grobid_abstract":"CBCL Memo 240 © 2 0 0 4 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a -w w w . c s a i l . m i t . e d u massachusetts institute of technology -computer science and artificial intelligence laboratory Selectivity of local field potentials in macaque inferior temporal cortex","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"grobid_abstract_attachment_id":63039214},"translated_abstract":null,"internal_url":"https://www.academia.edu/42809577/Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex","translated_internal_url":"","created_at":"2020-04-21T08:11:55.867-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":63039214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63039214/thumbnails/1.jpg","file_name":"AIM-2004-020.pdf","download_url":"https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Selectivity_of_Local_Field_Potentials_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63039214/AIM-2004-020-libre.pdf?1587482246=\u0026response-content-disposition=attachment%3B+filename%3DSelectivity_of_Local_Field_Potentials_in.pdf\u0026Expires=1733055092\u0026Signature=LQFELvRox2NqPZmgYDanN1TQQokgdLT~4MZIEuE5elUx1inTdl2itBu9T3g1w5U5PuBy7b6-~nKSVuZMYF3WDJvTpAvTZJd7ui1z6dygfcSBbpQMgf9kRl3Netesp2Yd~u04hSCLwhWNiKHByUyo2cfOOk28GSlwRQ1J70-aayh3RXVDZARjUupkqdo1e0gvpiKUi4mvnC0FmSvqYEvimTpjCQVoYn6EB8t10sNuaiPspQTsN2eQeNlzJR~jUdFAkUd~NIqiD505S98eG3AAwaVHO4v99IsOjGWaFeywCT3I45ZXjEuzu~4QzsUQ4ogY9pbry3893c-8j61huWVK3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Selectivity_of_Local_Field_Potentials_in_Macaque_Inferior_Temporal_Cortex","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":63039214,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63039214/thumbnails/1.jpg","file_name":"AIM-2004-020.pdf","download_url":"https://www.academia.edu/attachments/63039214/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Selectivity_of_Local_Field_Potentials_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63039214/AIM-2004-020-libre.pdf?1587482246=\u0026response-content-disposition=attachment%3B+filename%3DSelectivity_of_Local_Field_Potentials_in.pdf\u0026Expires=1733055092\u0026Signature=LQFELvRox2NqPZmgYDanN1TQQokgdLT~4MZIEuE5elUx1inTdl2itBu9T3g1w5U5PuBy7b6-~nKSVuZMYF3WDJvTpAvTZJd7ui1z6dygfcSBbpQMgf9kRl3Netesp2Yd~u04hSCLwhWNiKHByUyo2cfOOk28GSlwRQ1J70-aayh3RXVDZARjUupkqdo1e0gvpiKUi4mvnC0FmSvqYEvimTpjCQVoYn6EB8t10sNuaiPspQTsN2eQeNlzJR~jUdFAkUd~NIqiD505S98eG3AAwaVHO4v99IsOjGWaFeywCT3I45ZXjEuzu~4QzsUQ4ogY9pbry3893c-8j61huWVK3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":149836,"name":"Spatial Organization","url":"https://www.academia.edu/Documents/in/Spatial_Organization"},{"id":171338,"name":"Spatial Scale","url":"https://www.academia.edu/Documents/in/Spatial_Scale"},{"id":485404,"name":"Local Field Potential","url":"https://www.academia.edu/Documents/in/Local_Field_Potential"},{"id":1006816,"name":"Macaque Monkey","url":"https://www.academia.edu/Documents/in/Macaque_Monkey"},{"id":1554042,"name":"Inferior temporal cortex","url":"https://www.academia.edu/Documents/in/Inferior_temporal_cortex"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563733"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials"><img alt="Research paper thumbnail of Removal of spurious correlations between spikes and local field potentials" class="work-thumbnail" src="https://attachments.academia-assets.com/34123500/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials">Removal of spurious correlations between spikes and local field potentials</a></div><div class="wp-workCard_item"><span>Journal of neurophysiology</span><span>, 2011</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c13231979cde3d90adf65d3bf92b1cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123500,&quot;asset_id&quot;:7563733,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563733"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563733"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563733; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563733]").text(description); $(".js-view-count[data-work-id=7563733]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563733; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563733']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563733, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c13231979cde3d90adf65d3bf92b1cd" } } $('.js-work-strip[data-work-id=7563733]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563733,"title":"Removal of spurious correlations between spikes and local field potentials","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Single neurons carry out important sensory and motor functions related to the larger networks in which they are embedded. Understanding the relationships between single-neuron spiking and network activity is therefore of great importance and the latter can be readily estimated from low-frequency brain signals known as local field potentials (LFPs). In this work we examine a number of issues related to the estimation of spike and LFP signals. We show that spike trains and individual spikes contain power at the frequencies that are typically thought to be exclusively related to LFPs, such that simple frequency-domain filtering cannot be effectively used to separate the two signals. Ground-truth simulations indicate that the commonly used method of estimating the LFP signal by low-pass filtering the raw voltage signal leads to artifactual correlations between spikes and LFPs and that these correlations exert a powerful influence on popular metrics of spike-LFP synchronization. Similar artifactual results were seen in data obtained from electrophysiological recordings in macaque visual cortex, when low-pass filtering was used to estimate LFP signals. In contrast LFP tuning curves in response to sensory stimuli do not appear to be affected by spike contamination, either in simulations or in real data. To address the issue of spike contamination, we devised a novel Bayesian spike removal algorithm and confirmed its effectiveness in simulations and by applying it to the electrophysiological data. The algorithm, based on a rigorous mathematical framework, outperforms other methods of spike removal on most metrics of spike-LFP correlations. Following application of this spike removal algorithm, many of our electrophysiological recordings continued to exhibit spike-LFP correlations, confirming previous reports that such relationships are a genuine aspect of neuronal activity. Overall, these results show that careful preprocessing is necessary to remove spikes from LFP signals, but that when effective spike removal is used, spike-LFP correlations can potentially yield novel insights about brain function. . Denker M, Roux S, Timme M, Riehle A, Grün S. Phase synchronization between LFP and spiking activity in motor cortex during movement preparation. Neurocomputing 70: 2096 -2101, 2007. Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19: 4595-4608, 1999. Fattori P, Pitzalis S, Galletti C. The cortical visual area V6 in macaque and human brains. J Physiol (Paris) 103: 88 -97, 2009. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560 -1563, 2001. Fries P, Womelsdorf T, Oostenveld R, Desimone R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 28: 4823-4835, 2008. Galindo-Leon EE, Liu RC. Predicting stimulus-locked single unit spiking from cortical local field potentials. J Comput Neurosci 29: 581-597, 2010. Goense J, Logothetis N. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18: 631-640, 2008. Gold C, Henze DA, Koch C, Buzsáki G. On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95: 3113-3128, 2006. Goupillaud P, Grossmann A, Morlet J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23: 85-102, 1984. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324: 1207-1210, 2009. Jacobs J, Kahana MJ, Ekstrom AD, Fried I. Brain oscillations control timing of single-neuron activity in humans. J Neurosci 27: 3839 -3844, 2007. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron 61: 35-41, 2009. Khawaja FA, Tsui JMG, Pack CC. Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci 29: 13702-13709, 2009. Litaudon P, Garcia S, Buonviso N. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 156: 781-787, 2008. Liu J, Newsome WT. Local field potential in cortical area MT: stimulus tuning and behavioral correlations. J Neurosci 26: 7779 -7790, 2006. Maunsell JHR, Newsome WT. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10: 363-401, 1987. Nauhaus I, Busse L, Carandini M, Ringach D. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12: 70 -76, 2008. Nelson M, Pouget P, Nilsen E, Patten C, Schall J. Review of signal distortion through metal microelectrode recording circuits and filters. J Neurosci Methods 169: 141-157, 2008. Okun M, Naim A, Lampl I. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30: 4440 -4448, 2010. Paz R, Bauer EP, Paré D. Theta synchronizes the activity of medial prefrontal neurons during learning. Learn Mem 15: 524 -531, 2008. Pesaran B, Pezaris J, Sahani M, Mitra P, Andersen R. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5: 805-811, 2002. Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16: 1661-1687, 2004. Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK. Inferring spike trains from local field potentials. J Neurophysiol 99: 1461-1476, 2008. Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates of high-gamma oscillations (60 -200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28: 11526 -11536, 2008. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464: 903-907, 2010. Sahani M. Latent Variable Models for Neural Data Analysis. Pasadena, CA: California Institute of Technology, 1999. Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG. Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65: 461-471, 2010. Siapas AG, Lubenov EV, Wilson MA. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46: 141-151, 2005. Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64: 281-289, 2009. Xing D, Yeh C-I, Shapley RM. Spatial spread of the local field potential and its laminar variation in visual cortex. J Neurosci 29: 11540 -11549, 2009. Zanos TP, Courellis SH, Berger TW, Hampson RE, Deadwyler SA, Marmarelis VZ. Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Trans Neural Syst Rehabil Eng 16: 336 -352, 2008. Zanos TP, Zanos SP, Courellis SH, Marmarelis VZ, Ojemann GA. Nonlinear dynamic modeling of the relationship between local field potentials and neural discharge in human temporal cortex.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Journal of neurophysiology","grobid_abstract_attachment_id":34123500},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563733/Removal_of_spurious_correlations_between_spikes_and_local_field_potentials","translated_internal_url":"","created_at":"2014-07-05T03:09:04.531-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123500/thumbnails/1.jpg","file_name":"zanosmineaultpack11.pdf","download_url":"https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_spurious_correlations_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123500/zanosmineaultpack11-libre.pdf?1404555115=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_spurious_correlations_between.pdf\u0026Expires=1733023264\u0026Signature=btbl0DQu4Mmun0Czfam~-Iu9l3HA999CoBpxZknUetzZiqYCRXNCAewGSrIlalnVlScYRHYsXTQ6elO~2EUzNzXUFd0gRtyEKmzv65kxkaHwYO~sh5eFapdsUG26-zJbIAVkvOoEs9uMa3~btsD2zO4yOX4xSojVpUL6fa4eEhtqjHzIy~EDkEIz9rWswWFQ2NAJv-b2oOg6SSmGMVSF3au~dP~puR8EKgHvEfrHzumnpOjM3q~rFSwSnhUzGb8fCIilauVqn2TgkOct4M4RncNClzXCT3AX44~Hmfa9Bq05ffXDL7s3ah~nWiGHCdilpIvz~DPxUAI24XI36sPK3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_spurious_correlations_between_spikes_and_local_field_potentials","translated_slug":"","page_count":36,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123500,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123500/thumbnails/1.jpg","file_name":"zanosmineaultpack11.pdf","download_url":"https://www.academia.edu/attachments/34123500/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_spurious_correlations_between.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123500/zanosmineaultpack11-libre.pdf?1404555115=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_spurious_correlations_between.pdf\u0026Expires=1733023264\u0026Signature=btbl0DQu4Mmun0Czfam~-Iu9l3HA999CoBpxZknUetzZiqYCRXNCAewGSrIlalnVlScYRHYsXTQ6elO~2EUzNzXUFd0gRtyEKmzv65kxkaHwYO~sh5eFapdsUG26-zJbIAVkvOoEs9uMa3~btsD2zO4yOX4xSojVpUL6fa4eEhtqjHzIy~EDkEIz9rWswWFQ2NAJv-b2oOg6SSmGMVSF3au~dP~puR8EKgHvEfrHzumnpOjM3q~rFSwSnhUzGb8fCIilauVqn2TgkOct4M4RncNClzXCT3AX44~Hmfa9Bq05ffXDL7s3ah~nWiGHCdilpIvz~DPxUAI24XI36sPK3w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":235677,"name":"Behavioral Animal Models","url":"https://www.academia.edu/Documents/in/Behavioral_Animal_Models"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":880279,"name":"Bayes Theorem","url":"https://www.academia.edu/Documents/in/Bayes_Theorem-1"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"},{"id":968586,"name":"Visual Evoked Potentials","url":"https://www.academia.edu/Documents/in/Visual_Evoked_Potentials"}],"urls":[{"id":3137739,"url":"http://dx.doi.org/10.1152/jn.00642.2010"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563732"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge"><img alt="Research paper thumbnail of The cerebral emporium of benevolent knowledge" class="work-thumbnail" src="https://attachments.academia-assets.com/34123502/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge">The cerebral emporium of benevolent knowledge</a></div><div class="wp-workCard_item"><span>Neuron</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f46415c5a95d3eadfd65f04ad1208c7a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123502,&quot;asset_id&quot;:7563732,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563732"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563732"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563732; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563732]").text(description); $(".js-view-count[data-work-id=7563732]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563732; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563732']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563732, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f46415c5a95d3eadfd65f04ad1208c7a" } } $('.js-work-strip[data-work-id=7563732]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563732,"title":"The cerebral emporium of benevolent knowledge","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Neuron"},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563732/The_cerebral_emporium_of_benevolent_knowledge","translated_internal_url":"","created_at":"2014-07-05T03:09:03.061-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123502/thumbnails/1.jpg","file_name":"cerebral_emporium.pdf","download_url":"https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_cerebral_emporium_of_benevolent_know.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123502/cerebral_emporium-libre.pdf?1404555219=\u0026response-content-disposition=attachment%3B+filename%3DThe_cerebral_emporium_of_benevolent_know.pdf\u0026Expires=1733055092\u0026Signature=H~A8aqyCeIyH3AeMRh5LuKkQrCfYOIG-uRxoQygAhQ1P5S6brOwf9~UtwzaGv0un48SY3lDRafWV1MczAIU5~ic1Te9mySioVfYAInkwTzVKZJL6UBZCGfKTPkY~dGrM~jQrG01Fk3QRPPFB0xR1IOI75fo~yAHfGuiToAD4KbtHFc6a7m2lJVOLtGnX4oZFMNiTg4bWJpCp2lMDLWlzSdaR6mVD5kSbCvZam5MlzGDy6De7VV6e2tBmhjSY9wA1U2w2ye8Lni9nrbX~VOmf1cLAsKU0OO6B-5htqalPKVy62b7I6KxJwAUJcTfO9iD-gXo96c4u7rLe2mDlTCAqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_cerebral_emporium_of_benevolent_knowledge","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123502,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123502/thumbnails/1.jpg","file_name":"cerebral_emporium.pdf","download_url":"https://www.academia.edu/attachments/34123502/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_cerebral_emporium_of_benevolent_know.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123502/cerebral_emporium-libre.pdf?1404555219=\u0026response-content-disposition=attachment%3B+filename%3DThe_cerebral_emporium_of_benevolent_know.pdf\u0026Expires=1733055092\u0026Signature=H~A8aqyCeIyH3AeMRh5LuKkQrCfYOIG-uRxoQygAhQ1P5S6brOwf9~UtwzaGv0un48SY3lDRafWV1MczAIU5~ic1Te9mySioVfYAInkwTzVKZJL6UBZCGfKTPkY~dGrM~jQrG01Fk3QRPPFB0xR1IOI75fo~yAHfGuiToAD4KbtHFc6a7m2lJVOLtGnX4oZFMNiTg4bWJpCp2lMDLWlzSdaR6mVD5kSbCvZam5MlzGDy6De7VV6e2tBmhjSY9wA1U2w2ye8Lni9nrbX~VOmf1cLAsKU0OO6B-5htqalPKVy62b7I6KxJwAUJcTfO9iD-gXo96c4u7rLe2mDlTCAqYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":237,"name":"Cognitive Science","url":"https://www.academia.edu/Documents/in/Cognitive_Science"},{"id":43774,"name":"Learning","url":"https://www.academia.edu/Documents/in/Learning"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":473565,"name":"Neuron","url":"https://www.academia.edu/Documents/in/Neuron"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":3137738,"url":"http://dx.doi.org/10.1016/j.neuron.2013.08.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563731"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4"><img alt="Research paper thumbnail of Local field potentials reflect multiple spatial scales in V4" class="work-thumbnail" src="https://attachments.academia-assets.com/34123503/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4">Local field potentials reflect multiple spatial scales in V4</a></div><div class="wp-workCard_item"><span>Frontiers in computational neuroscience</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="108f028781ceaca578ea828530a6df5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123503,&quot;asset_id&quot;:7563731,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563731"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563731"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563731; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563731]").text(description); $(".js-view-count[data-work-id=7563731]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563731; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563731']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563731, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "108f028781ceaca578ea828530a6df5a" } } $('.js-work-strip[data-work-id=7563731]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563731,"title":"Local field potentials reflect multiple spatial scales in V4","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded in a volume around a microelectrode . The extent of this integration volume has been a subject of some debate, with estimates ranging from a few hundred microns to several millimeters . We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an intermediate level of visual processing, in area V4 of two macaques. The spatial structure of LFP receptive fields varied greatly as a function of time lag following stimulus onset, with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags. A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered components: an MUA-like retinotopic component that originated in a small volume around the microelectrodes (∼350 μm), and a second component that was shared across the entire V4 region; this second component had tuning properties unrelated to those of the MUAs. Our results suggest that the LFP reflects neural activity across multiple spatial scales, which both complicates its interpretation and offers new opportunities for investigating the large-scale structure of network processing.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Frontiers in computational neuroscience","grobid_abstract_attachment_id":34123503},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563731/Local_field_potentials_reflect_multiple_spatial_scales_in_V4","translated_internal_url":"","created_at":"2014-07-05T03:09:01.696-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123503/thumbnails/1.jpg","file_name":"fncom-07-00021.pdf","download_url":"https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_field_potentials_reflect_multiple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123503/fncom-07-00021-libre.pdf?1404555152=\u0026response-content-disposition=attachment%3B+filename%3DLocal_field_potentials_reflect_multiple.pdf\u0026Expires=1733055092\u0026Signature=G96SfrHHD~-1wLFLZUkd3me~qbu88RF0bDkVfM1GOuhZFxv-uNN75DVEPU9qGXTrcyYfvQywFn33qB760IeupmXGybEl4qWWpQqjXpjPg6niXoq1mw5aFilclwOesN1dbebmbndwXxhiV5EM4pZxOzMfLBr1EFDIYNf5md9Uw7IbCLRwlYfS5YfTtyMssIXg8r5qDvjJLRLL7fgjvY-LMYlZLhwglhvscQkdTlkfSSbAeB2PCnIYFu-dznLPSj24qopVdVU8OAMzqDD0WnnXmoIbSFABoz-uOBs1rusLrxPEpf6oABPbidsmW7JSpXcsIaDdfBfzuB3jxk~lHEks5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Local_field_potentials_reflect_multiple_spatial_scales_in_V4","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123503,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123503/thumbnails/1.jpg","file_name":"fncom-07-00021.pdf","download_url":"https://www.academia.edu/attachments/34123503/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Local_field_potentials_reflect_multiple.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123503/fncom-07-00021-libre.pdf?1404555152=\u0026response-content-disposition=attachment%3B+filename%3DLocal_field_potentials_reflect_multiple.pdf\u0026Expires=1733055092\u0026Signature=G96SfrHHD~-1wLFLZUkd3me~qbu88RF0bDkVfM1GOuhZFxv-uNN75DVEPU9qGXTrcyYfvQywFn33qB760IeupmXGybEl4qWWpQqjXpjPg6niXoq1mw5aFilclwOesN1dbebmbndwXxhiV5EM4pZxOzMfLBr1EFDIYNf5md9Uw7IbCLRwlYfS5YfTtyMssIXg8r5qDvjJLRLL7fgjvY-LMYlZLhwglhvscQkdTlkfSSbAeB2PCnIYFu-dznLPSj24qopVdVU8OAMzqDD0WnnXmoIbSFABoz-uOBs1rusLrxPEpf6oABPbidsmW7JSpXcsIaDdfBfzuB3jxk~lHEks5w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":244814,"name":"Clinical Sciences","url":"https://www.academia.edu/Documents/in/Clinical_Sciences"},{"id":1239755,"name":"Neurosciences","url":"https://www.academia.edu/Documents/in/Neurosciences"}],"urls":[{"id":3137737,"url":"http://dx.doi.org/10.3389/fncom.2013.00021"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway"><img alt="Research paper thumbnail of Hierarchical processing of complex motion along the primate dorsal visual pathway" class="work-thumbnail" src="https://attachments.academia-assets.com/34123506/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway">Hierarchical processing of complex motion along the primate dorsal visual pathway</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://ucla.academia.edu/PatrickMineault">Patrick Mineault</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/DanielButts">Daniel Butts</a></span></div><div class="wp-workCard_item"><span>Proceedings of the National Academy of Sciences of the United States of America</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca8d832c6e0f77422db76e1be51ea79e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123506,&quot;asset_id&quot;:7563730,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563730]").text(description); $(".js-view-count[data-work-id=7563730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca8d832c6e0f77422db76e1be51ea79e" } } $('.js-work-strip[data-work-id=7563730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563730,"title":"Hierarchical processing of complex motion along the primate dorsal visual pathway","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Neurons in the medial superior temporal (MST) area of the primate visual cortex respond selectively to complex motion patterns defined by expansion, rotation, and deformation. Consequently they are often hypothesized to be involved in important behavioral functions, such as encoding the velocities of moving objects and surfaces relative to the observer. However, the computations underlying such selectivity are unknown. In this work we have developed a unique, naturalistic motion stimulus and used it to probe the complex selectivity of MST neurons. The resulting data were then used to estimate the properties of the feed-forward inputs to each neuron. This analysis yielded models that successfully accounted for much of the observed stimulus selectivity, provided that the inputs were combined via a nonlinear integration mechanism that approximates a multiplicative interaction among MST inputs. In simulations we found that this type of integration has the functional role of improving estimates of the 3D velocity of moving objects. As this computation is of general utility for detecting complex stimulus features, we suggest that it may represent a fundamental aspect of hierarchical sensory processing.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Proceedings of the National Academy of Sciences of the United States of America","grobid_abstract_attachment_id":34123506},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563730/Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway","translated_internal_url":"","created_at":"2014-07-05T03:09:00.167-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":34335783,"work_id":7563730,"tagging_user_id":13582603,"tagged_user_id":32262401,"co_author_invite_id":null,"email":"d***b@umd.edu","display_order":0,"name":"Daniel Butts","title":"Hierarchical processing of complex motion along the primate dorsal visual pathway"},{"id":34335784,"work_id":7563730,"tagging_user_id":13582603,"tagged_user_id":9216014,"co_author_invite_id":null,"email":"f***a@gmail.com","display_order":4194304,"name":"Farhan Khawaja","title":"Hierarchical processing of complex motion along the primate dorsal visual pathway"}],"downloadable_attachments":[{"id":34123506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123506/thumbnails/1.jpg","file_name":"mineaultetal2012.pdf","download_url":"https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hierarchical_processing_of_complex_motio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123506/mineaultetal2012-libre.pdf?1404555203=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_processing_of_complex_motio.pdf\u0026Expires=1733055092\u0026Signature=Uhjt3U979z30vvYjpWanGBU1kbuM~jM8etaA5qCxYAdEzcgJ5homh2YLkfQVRhSb4paPflADAf86KU4Pg0l1~o2Hrcq7RBhRI54aHVN3lJZZ7ISOIw-eG7JfjFFVvq3k9JOhuK3ufN68dHAsNeWZx1SDCvDTUHdhjiKnNkgsK1jQgCjKvJ5LI6Pey8pvBhwL81Ux8UOZHM~OSFJ~539BLAIBz1R4dkWMuYTt1e3FmivpzX7SFN6-Ykf~12w7VhI1cADzulViG4EIqJKhBrPS7Ls0yzhwNIoQm0MKfQCqZ65GmL5RDhUywOlWnTXFsTplnZ-OgC75brRcVmZ9B05slw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hierarchical_processing_of_complex_motion_along_the_primate_dorsal_visual_pathway","translated_slug":"","page_count":41,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123506,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123506/thumbnails/1.jpg","file_name":"mineaultetal2012.pdf","download_url":"https://www.academia.edu/attachments/34123506/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hierarchical_processing_of_complex_motio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123506/mineaultetal2012-libre.pdf?1404555203=\u0026response-content-disposition=attachment%3B+filename%3DHierarchical_processing_of_complex_motio.pdf\u0026Expires=1733055092\u0026Signature=Uhjt3U979z30vvYjpWanGBU1kbuM~jM8etaA5qCxYAdEzcgJ5homh2YLkfQVRhSb4paPflADAf86KU4Pg0l1~o2Hrcq7RBhRI54aHVN3lJZZ7ISOIw-eG7JfjFFVvq3k9JOhuK3ufN68dHAsNeWZx1SDCvDTUHdhjiKnNkgsK1jQgCjKvJ5LI6Pey8pvBhwL81Ux8UOZHM~OSFJ~539BLAIBz1R4dkWMuYTt1e3FmivpzX7SFN6-Ykf~12w7VhI1cADzulViG4EIqJKhBrPS7Ls0yzhwNIoQm0MKfQCqZ65GmL5RDhUywOlWnTXFsTplnZ-OgC75brRcVmZ9B05slw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":428,"name":"Algorithms","url":"https://www.academia.edu/Documents/in/Algorithms"},{"id":13493,"name":"Motion perception","url":"https://www.academia.edu/Documents/in/Motion_perception"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":57557,"name":"Temporal Lobe","url":"https://www.academia.edu/Documents/in/Temporal_Lobe"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"},{"id":955727,"name":"Action Potentials","url":"https://www.academia.edu/Documents/in/Action_Potentials"}],"urls":[{"id":3137736,"url":"http://dx.doi.org/10.1073/pnas.1115685109"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7563729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis"><img alt="Research paper thumbnail of Improved classification images with sparse priors in a smooth basis" class="work-thumbnail" src="https://attachments.academia-assets.com/34123511/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis">Improved classification images with sparse priors in a smooth basis</a></div><div class="wp-workCard_item"><span>Journal of vision</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d0b762e6cb07b86865ea76cf7213de59" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123511,&quot;asset_id&quot;:7563729,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7563729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7563729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7563729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7563729]").text(description); $(".js-view-count[data-work-id=7563729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7563729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7563729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7563729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d0b762e6cb07b86865ea76cf7213de59" } } $('.js-work-strip[data-work-id=7563729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7563729,"title":"Improved classification images with sparse priors in a smooth basis","translated_title":"","metadata":{"publisher":"ncbi.nlm.nih.gov","grobid_abstract":"Classification images provide compelling insight into the strategies used by observers in psychophysical tasks. However, because of the high-dimensional nature of classification images and the limited quantity of trials that can practically be performed, classification images are often too noisy to be useful unless denoising strategies are adopted. Here we propose a method of estimating classification images by the use of sparse priors in smooth bases and generalized linear models (GLMs). Sparse priors in a smooth basis are used to impose assumptions about the simplicity of observers' internal templates, and they naturally generalize commonly used methods such as smoothing and thresholding. The use of GLMs in this context provides a number of advantages over classic estimation techniques, including the possibility of using stimuli with non-Gaussian statistics, such as natural textures. Using simulations, we show that our method recovers classification images that are typically less noisy and more accurate for a smaller number of trials than previously published techniques. Finally, we have verified the efficiency and accuracy of our approach with psychophysical data from a human observer.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Journal of vision","grobid_abstract_attachment_id":34123511},"translated_abstract":null,"internal_url":"https://www.academia.edu/7563729/Improved_classification_images_with_sparse_priors_in_a_smooth_basis","translated_internal_url":"","created_at":"2014-07-05T03:08:58.510-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":34123511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123511/thumbnails/1.jpg","file_name":"mineaultbarthelemepack.pdf","download_url":"https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_classification_images_with_spar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123511/mineaultbarthelemepack-libre.pdf?1404555250=\u0026response-content-disposition=attachment%3B+filename%3DImproved_classification_images_with_spar.pdf\u0026Expires=1733055092\u0026Signature=P8l8t0x~hE2jP5vMEDOCFH9qg8Oh9AP3yoxDw4EVvrSAOEZiUeXdIeWgSxqgWL1nz08JvKUJRJ789SNq0zhyguKvqJ9GGJgpyiBdc55IUF8kpC2hkfOY5JDNGrOXIXFidPzA4jf0WMvNcXBHV2~~VeaS5XjxwtooGd9ktonFAeN7H3bxxPOOlg2K-WGwYzqCPNxlX1cVb-IVCVaVXFZ8m87KVuZKAbfGfpjJGJ-CTtX803S9vVTSZNbxCTwVYcUJ-ziOqa3gYloLrDUCgmeFy0qxwO6yZI~yUWIluaniDK2~FrhbSD2z2OCDFoKDOgGOutVd6H7aA0Fx9vN-XuHZMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Improved_classification_images_with_sparse_priors_in_a_smooth_basis","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123511,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123511/thumbnails/1.jpg","file_name":"mineaultbarthelemepack.pdf","download_url":"https://www.academia.edu/attachments/34123511/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Improved_classification_images_with_spar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123511/mineaultbarthelemepack-libre.pdf?1404555250=\u0026response-content-disposition=attachment%3B+filename%3DImproved_classification_images_with_spar.pdf\u0026Expires=1733055092\u0026Signature=P8l8t0x~hE2jP5vMEDOCFH9qg8Oh9AP3yoxDw4EVvrSAOEZiUeXdIeWgSxqgWL1nz08JvKUJRJ789SNq0zhyguKvqJ9GGJgpyiBdc55IUF8kpC2hkfOY5JDNGrOXIXFidPzA4jf0WMvNcXBHV2~~VeaS5XjxwtooGd9ktonFAeN7H3bxxPOOlg2K-WGwYzqCPNxlX1cVb-IVCVaVXFZ8m87KVuZKAbfGfpjJGJ-CTtX803S9vVTSZNbxCTwVYcUJ-ziOqa3gYloLrDUCgmeFy0qxwO6yZI~yUWIluaniDK2~FrhbSD2z2OCDFoKDOgGOutVd6H7aA0Fx9vN-XuHZMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":246,"name":"Psychophysics","url":"https://www.academia.edu/Documents/in/Psychophysics"},{"id":5359,"name":"Visual perception","url":"https://www.academia.edu/Documents/in/Visual_perception"},{"id":28850,"name":"Linear models","url":"https://www.academia.edu/Documents/in/Linear_models"},{"id":56368,"name":"Image Classification","url":"https://www.academia.edu/Documents/in/Image_Classification"},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":69542,"name":"Computer Simulation","url":"https://www.academia.edu/Documents/in/Computer_Simulation"},{"id":106145,"name":"Classification","url":"https://www.academia.edu/Documents/in/Classification"},{"id":816819,"name":"Psychological Models","url":"https://www.academia.edu/Documents/in/Psychological_Models"},{"id":1142720,"name":"Normal Distribution","url":"https://www.academia.edu/Documents/in/Normal_Distribution"},{"id":1191613,"name":"Likelihood Functions","url":"https://www.academia.edu/Documents/in/Likelihood_Functions"}],"urls":[{"id":3137735,"url":"http://dx.doi.org/10.1167/9.10.17"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7558703"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4"><img alt="Research paper thumbnail of Functional connectivity during surround suppression in macaque area V4" class="work-thumbnail" src="https://attachments.academia-assets.com/34123512/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4">Functional connectivity during surround suppression in macaque area V4</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fb3114accc0b093420270d199dd783cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:34123512,&quot;asset_id&quot;:7558703,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7558703"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7558703"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7558703; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7558703]").text(description); $(".js-view-count[data-work-id=7558703]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7558703; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7558703']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7558703, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fb3114accc0b093420270d199dd783cd" } } $('.js-work-strip[data-work-id=7558703]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7558703,"title":"Functional connectivity during surround suppression in macaque area V4","translated_title":"","metadata":{"grobid_abstract":"Surround suppression is a common feature of sensory neurons. For neurons of the visual cortex, it occurs when a visual stimulus extends beyond a neuron's classical receptive field, reducing the neuron's firing rate. While several studies have been attributing the suppression effect on horizontal, long-range lateral or feedback connections, the underlying circuitry for surround modulation remain unidentified. Since most of these models have been relying on single neuron recordings, the contribution of lateral connections can only be suggested from the surround field properties. A more straightforward approach would be to detect these connections and their dynamics using simultaneous recordings from multiple neurons in one or more visual areas. We have developed a method for estimating these connections and we analyzed data obtained from 100electrode Utah arrays chronically implanted into area V4 of the macaque monkey. Using a method based on the nonlinear Volterra modeling approach, we computed estimates of the strength and statistical reliability of connections among neurons, including nonlinear interactions and excitatory and inhibitory connections. Our results thus far reveal a pattern of connectivity within V4 that conforms to the results of previous anatomical work: Excitatory connections are far more common than inhibitory connections (~65%), stronger connections are found among neurons that are physically near one another, and connections are stronger among neurons with similar receptive field properties. However, this connectivity is capable of reorganizing on short time scales according to the stimulus: Stimuli that evoke strong suppression at the single-unit level introduce stronger inhibition among V4 neurons, identifying recurrent connectivity as the source of the suppression. Overall, these results provide insight into the dynamic nature of neuronal organization within V4 and its contribution to surround suppression.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"grobid_abstract_attachment_id":34123512},"translated_abstract":null,"internal_url":"https://www.academia.edu/7558703/Functional_connectivity_during_surround_suppression_in_macaque_area_V4","translated_internal_url":"","created_at":"2014-07-04T13:21:01.671-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":34335782,"work_id":7558703,"tagging_user_id":13582603,"tagged_user_id":38489113,"co_author_invite_id":null,"email":"j***n@neuralbiology.com","display_order":0,"name":"J. Monteon","title":"Functional connectivity during surround suppression in macaque area V4"}],"downloadable_attachments":[{"id":34123512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123512/thumbnails/1.jpg","file_name":"zanos_embc11_letter.pdf","download_url":"https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_connectivity_during_surround.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123512/zanos_embc11_letter-libre.pdf?1404555225=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_connectivity_during_surround.pdf\u0026Expires=1733055092\u0026Signature=ciZ4SIwHgvEAFe-6Ouz1u3zOLfswM2UM93fEdwkq~NSOH8DhF6m7OBNxR3fGr~pDxM2da0-Ot21lNML6T9nxL4IRWrhKI93bVDgP1oUsWmMcvZz1g8F9lrCmsdnGMfmhBvmyCM3kI87phqtP6JvC0GSq-rNex3ysGykHeuNYnoTQH7SY-~Igsl1ewTpCM8~L2uBhj8S16Lz~PWw6IydMI77ls8ZVmExwzDbskWGNg1j5RmLMcdSf8YJDkyUklYACsXWz3BN6fldL58ihhhikRN71SOA1vxhUkd90Tgdy27ev7lKtqaNKwRg6KDIMf5Gb0ZXE0yhXemF4np2EbzaFtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Functional_connectivity_during_surround_suppression_in_macaque_area_V4","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[{"id":34123512,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/34123512/thumbnails/1.jpg","file_name":"zanos_embc11_letter.pdf","download_url":"https://www.academia.edu/attachments/34123512/download_file?st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&st=MTczMzA1MTQ5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Functional_connectivity_during_surround.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/34123512/zanos_embc11_letter-libre.pdf?1404555225=\u0026response-content-disposition=attachment%3B+filename%3DFunctional_connectivity_during_surround.pdf\u0026Expires=1733055092\u0026Signature=ciZ4SIwHgvEAFe-6Ouz1u3zOLfswM2UM93fEdwkq~NSOH8DhF6m7OBNxR3fGr~pDxM2da0-Ot21lNML6T9nxL4IRWrhKI93bVDgP1oUsWmMcvZz1g8F9lrCmsdnGMfmhBvmyCM3kI87phqtP6JvC0GSq-rNex3ysGykHeuNYnoTQH7SY-~Igsl1ewTpCM8~L2uBhj8S16Lz~PWw6IydMI77ls8ZVmExwzDbskWGNg1j5RmLMcdSf8YJDkyUklYACsXWz3BN6fldL58ihhhikRN71SOA1vxhUkd90Tgdy27ev7lKtqaNKwRg6KDIMf5Gb0ZXE0yhXemF4np2EbzaFtw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":22272,"name":"Neurophysiology","url":"https://www.academia.edu/Documents/in/Neurophysiology"},{"id":49962,"name":"Visual Cortex","url":"https://www.academia.edu/Documents/in/Visual_Cortex"},{"id":59692,"name":"Vision","url":"https://www.academia.edu/Documents/in/Vision"},{"id":158333,"name":"Receptive Field","url":"https://www.academia.edu/Documents/in/Receptive_Field"},{"id":193974,"name":"Neurons","url":"https://www.academia.edu/Documents/in/Neurons"},{"id":573267,"name":"Macaca Mulatta","url":"https://www.academia.edu/Documents/in/Macaca_Mulatta"}],"urls":[{"id":3134733,"url":"http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06090906"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7558702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity"><img alt="Research paper thumbnail of Hamiltonian formulation of General Relativity" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity">Hamiltonian formulation of General Relativity</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7558702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7558702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7558702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7558702]").text(description); $(".js-view-count[data-work-id=7558702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7558702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7558702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7558702, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=7558702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7558702,"title":"Hamiltonian formulation of General Relativity","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2007,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/7558702/Hamiltonian_formulation_of_General_Relativity","translated_internal_url":"","created_at":"2014-07-04T13:20:56.865-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":13582603,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Hamiltonian_formulation_of_General_Relativity","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":13582603,"first_name":"Patrick","middle_initials":null,"last_name":"Mineault","page_name":"PatrickMineault","domain_name":"ucla","created_at":"2014-07-04T13:20:35.174-07:00","display_name":"Patrick Mineault","url":"https://ucla.academia.edu/PatrickMineault"},"attachments":[],"research_interests":[{"id":3504,"name":"General Relativity","url":"https://www.academia.edu/Documents/in/General_Relativity"}],"urls":[{"id":3134732,"url":"http://www.5etdemi.com/uploads/grpaper.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "4b66628646b951cb9a97a14fb7fc2ef673e9933a5596e4ac24181b61e0ed0113", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="uMIRHAs3lt+MRWFgFyki8jucb9ZVmJg8NC8FxxmARKuj3fxIEsqtYP22g56ZVxsypjXvd5WnA4TIhop1tJ+suQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ucla.academia.edu/PatrickMineault" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="BOrJCgFQXeyxUqwED/7pfYYAWHAD3sS4EzOXH8fyf7Ef9SReGK1mU8ChTvqBgNC9G6nY0cPhXwDvmhitau2Xow==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10