CINXE.COM
Search results for: priority map
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: priority map</title> <meta name="description" content="Search results for: priority map"> <meta name="keywords" content="priority map"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="priority map" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="priority map"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 839</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: priority map</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> Repair Workshop Queue System Modification Using Priority Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Okonkwo%20Ugochukwu">C. Okonkwo Ugochukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sinebe%20Jude"> E. Sinebe Jude</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Odoh%20Blessing"> N. Odoh Blessing</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Okafor%20Christian"> E. Okafor Christian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a modification on repair workshop queuing system using multi priority scheme was carried out. Chi square goodness of fit test was used to determine the random distribution of the inter arrival time and service time of crankshafts that come for maintenance in the workshop. The chi square values obtained for all the prioritized classes show that the distribution conforms to Poisson distribution. The mean waiting time in queue results of non-preemptive priority for 1st, 2nd and 3rd classes show 0.066, 0.09, and 0.224 day respectively, while preemptive priority show 0.007, 0.036 and 0.258 day. However, when non priority is used, which obviously has no class distinction it amounts to 0.17 days. From the results, one can observe that the preemptive priority system provides a very dramatic improvement over the non preemptive priority as it concerns arrivals that are of higher priority. However, the improvement has a detrimental effect on the low priority class. The trend of the results is similar to the mean waiting time in the system as a result of addition of the actual service time. Even though the mean waiting time for the queue and that of the system for no priority takes the least time when compared with the least priority, urgent and semi-urgent jobs will terribly suffer which will most likely result in reneging or balking of many urgent jobs. Hence, the adoption of priority scheme in this type of scenario will result in huge profit to the Company and more customer satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue" title="queue">queue</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20class" title=" priority class"> priority class</a>, <a href="https://publications.waset.org/abstracts/search?q=preemptive" title=" preemptive"> preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-preemptive" title=" non-preemptive"> non-preemptive</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20waiting%20time" title=" mean waiting time"> mean waiting time</a> </p> <a href="https://publications.waset.org/abstracts/69985/repair-workshop-queue-system-modification-using-priority-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20Alhajri">Mubarak Alhajri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title="adaptive control">adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20constant" title=" hysteresis constant"> hysteresis constant</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20switching" title=" hysteresis switching"> hysteresis switching</a> </p> <a href="https://publications.waset.org/abstracts/61209/relaxing-convergence-constraints-in-local-priority-hysteresis-switching-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Contaminated Sites Prioritization Process Promoting and Redevelopment Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Che-An%20Lin">Che-An Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ying%20Tsai"> Wan-Ying Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Shin%20Chen"> Ying-Shin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Chung"> Yu-Jen Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the number and area of contaminated sites continued to increase in Taiwan, the Government have to make a priority list of screening contaminated sites under the limited funds and information. This study investigated the announcement of Taiwan EPA land 261 contaminated sites (except the agricultural lands), after preliminary screening 211 valid data to propose a screening system, removed contaminated sites were used to check the accuracy. This system including two dimensions which can create the sequence and use the XY axis to construct four quadrants. One dimension included environmental and social priority and the other related economic. All of the evaluated items included population density, land values, traffic hub, pollutant compound, pollutant concentrations, pollutant transport pathways, land usage sites, site areas, and water conductivity. The classification results of this screening are 1. Prioritization promoting sites (10%). 2. Environmental and social priority of the sites (17%), 3. Economic priority of the sites (30%), 4. Non-priority sites (43 %). Finally, this study used three of the removed contaminated sites to check screening system verification. As the surmise each of them are in line with the priority site and Economic priority of the site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20sites" title="contaminated sites">contaminated sites</a>, <a href="https://publications.waset.org/abstracts/search?q=redevelopment" title=" redevelopment"> redevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=economics" title=" economics"> economics</a> </p> <a href="https://publications.waset.org/abstracts/10954/contaminated-sites-prioritization-process-promoting-and-redevelopment-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Analytic Hierarchy Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadia%20Rafi">Hadia Rafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To make any decision in any work/task/project it involves many factors that needed to be looked. The analytic Hierarchy process (AHP) is based on the judgments of experts to derive the required results this technique measures the intangibles and then by the help of judgment and software analysis the comparisons are made which shows how much a certain element/unit leads another. AHP includes how an inconsistent judgment should be made consistent and how the judgment should be improved when possible. The Priority scales are obtained by multiplying them with the priority of their parent node and after that they are added. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AHP" title="AHP">AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20scales" title=" priority scales"> priority scales</a>, <a href="https://publications.waset.org/abstracts/search?q=parent%20node" title=" parent node"> parent node</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20analysis" title=" software analysis"> software analysis</a> </p> <a href="https://publications.waset.org/abstracts/16320/analytic-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lihua%20Zhu">Lihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfeng%20Du"> Jianfeng Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wang"> Yu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Wu"> Zhiqiang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20swarm" title="UAV swarm">UAV swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20environment" title=" complex environment"> complex environment</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20priority%20design" title=" online priority design"> online priority design</a> </p> <a href="https://publications.waset.org/abstracts/93689/an-online-priority-configuration-algorithm-for-obstacle-avoidance-of-the-unmanned-air-vehicles-swarm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Progressive Participatory Observation Applied to Priority Neighbourhoods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Rohmer">Serge Rohmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a progressive participatory observation that can be used as a sociological investigation within communities. The usefulness of participant observation in sociological projects is first asserted, particularly in an urban context. Competencies, know-how and interpersonal skills are then explained before to detail the progressive approach, consisting of four levels of observation. The progressive participatory observation is applied to an experimental project to set up a permaculture urban micro-farm with residents of a priority neighbourhood. Feedback on the experiment has identified several key recommendations for implementing the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participatory%20observation" title="participatory observation">participatory observation</a>, <a href="https://publications.waset.org/abstracts/search?q=observation%20scale" title=" observation scale"> observation scale</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20neighbourhood" title=" priority neighbourhood"> priority neighbourhood</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sociology" title=" urban sociology"> urban sociology</a> </p> <a href="https://publications.waset.org/abstracts/188369/progressive-participatory-observation-applied-to-priority-neighbourhoods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Incorporating Priority Round-Robin Scheduler to Sustain Indefinite Blocking Issue and Prioritized Processes in Operating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heng%20Chia%20Ying">Heng Chia Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Charmaine%20Tan%20Chai%20Nie"> Charmaine Tan Chai Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process scheduling is the method of process management that determines which process the CPU will proceed with for the next task and how long it takes. Some issues were found in process management, particularly for Priority Scheduling (PS) and Round Robin Scheduling (RR). The proposed recommendations made for IPRRS are to combine the strengths of both into a combining algorithm while they draw on others to compensate for each weakness. A significant improvement on the combining technique of scheduler, Incorporating Priority Round-Robin Scheduler (IPRRS) address an algorithm for both high and low priority task to sustain the indefinite blocking issue faced in the priority scheduling algorithm and minimize the average turnaround time (ATT) and average waiting time (AWT) in RR scheduling algorithm. This paper will delve into the simple rules introduced by IPRRS and enhancements that both PS and RR bring to the execution of processes in the operating system. Furthermore, it incorporates the best aspects of each algorithm to build the optimum algorithm for a certain case in terms of prioritized processes, ATT, and AWT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=round%20Robin%20scheduling" title="round Robin scheduling">round Robin scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20scheduling" title=" priority scheduling"> priority scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=indefinite%20blocking" title=" indefinite blocking"> indefinite blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20management" title=" process management"> process management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustain" title=" sustain"> sustain</a>, <a href="https://publications.waset.org/abstracts/search?q=turnaround%20time" title=" turnaround time"> turnaround time</a> </p> <a href="https://publications.waset.org/abstracts/160706/incorporating-priority-round-robin-scheduler-to-sustain-indefinite-blocking-issue-and-prioritized-processes-in-operating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> An Algorithm for the Map Labeling Problem with Two Kinds of Priorities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noboru%20Abe">Noboru Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Amai"> Yoshinori Amai</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Nakatake"> Toshinori Nakatake</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumio%20Masuda"> Sumio Masuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Yamaguchi"> Kazuaki Yamaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=map%20labeling" title="map labeling">map labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20algorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a> </p> <a href="https://publications.waset.org/abstracts/5013/an-algorithm-for-the-map-labeling-problem-with-two-kinds-of-priorities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Defining Priority Areas for Biodiversity Conservation to Support for Zoning Protected Areas: A Case Study from Vietnam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Dinh%20Vu">Xuan Dinh Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmar%20Csaplovics"> Elmar Csaplovics</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been an increasing need for methods to define priority areas for biodiversity conservation since the effectiveness of biodiversity conservation in protected areas largely depends on the availability of material resources. The identification of priority areas requires the integration of biodiversity data together with social data on human pressures and responses. However, the deficit of comprehensive data and reliable methods becomes a key challenge in zoning where the demand for conservation is most urgent and where the outcomes of conservation strategies can be maximized. In order to fill this gap, the study applied an environmental model Condition–Pressure–Response to suggest a set of criteria to identify priority areas for biodiversity conservation. Our empirical data has been compiled from 185 respondents, categorizing into three main groups: governmental administration, research institutions, and protected areas in Vietnam by using a well - designed questionnaire. Then, the Analytic Hierarchy Process (AHP) theory was used to identify the weight of all criteria. Our results have shown that priority level for biodiversity conservation could be identified by three main indicators: condition, pressure, and response with the value of the weight of 26%, 41%, and 33%, respectively. Based on the three indicators, 7 criteria and 15 sub-criteria were developed to support for defining priority areas for biodiversity conservation and zoning protected areas. In addition, our study also revealed that the groups of governmental administration and protected areas put a focus on the 'Pressure' indicator while the group of Research Institutions emphasized the importance of 'Response' indicator in the evaluation process. Our results provided recommendations to apply the developed criteria for identifying priority areas for biodiversity conservation in Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20conservation" title="biodiversity conservation">biodiversity conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%E2%80%93pressure%E2%80%93response%20model" title=" condition–pressure–response model"> condition–pressure–response model</a>, <a href="https://publications.waset.org/abstracts/search?q=criteria" title=" criteria"> criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20areas" title=" priority areas"> priority areas</a>, <a href="https://publications.waset.org/abstracts/search?q=protected%20areas" title=" protected areas"> protected areas</a> </p> <a href="https://publications.waset.org/abstracts/105877/defining-priority-areas-for-biodiversity-conservation-to-support-for-zoning-protected-areas-a-case-study-from-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.-H.%20Doh">H.-H. Doh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-M.%20Yu"> J.-M. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.-J.%20Kwon"> Y.-J. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-H.%20Shin"> J.-H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-W.%20Kim"> H.-W. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-H.%20Nam"> S.-H. Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=D.-H.%20Lee"> D.-H. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop%20scheduling" title="flexible job shop scheduling">flexible job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20rules" title=" priority rules"> priority rules</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/6996/decision-tree-based-scheduling-for-flexible-job-shops-with-multiple-process-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Geographic Information System Applications in Prioritizing Karlahi Forest Reserve Area for Conservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Hyellamada%20Jerry">Samuel Hyellamada Jerry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on assessing conservation priorities within the Karlahi Forest Reserve of Fufore Local Government in Adamawa State. The main objective was to identify specific areas within the forest reserve that require immediate conservation attention. The research employed remote sensing and GIS techniques to achieve this goal. By overlaying the IDRIS Silva module results, a spatial distribution map was generated, highlighting the cumulative priority areas within and outside the forest. Among the total vegetated area of 26.38 km² in the Karlahi Forest Reserve, the analysis revealed that 16.16 km² were classified as high-priority conservation zones. Additionally, 4.59 km² and 5.63 km² were identified as medium and low-priority areas, respectively. In light of these findings, it is recommended that conservation efforts incorporate detailed land cover information and regular assessments of species diversity. Furthermore, strict adherence to national and state policies regarding forest reserves and parks is crucial for effective conservation management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=priority" title="priority">priority</a>, <a href="https://publications.waset.org/abstracts/search?q=Karlahi" title=" Karlahi"> Karlahi</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=reserve" title=" reserve"> reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=IDRISI%20Silva" title=" IDRISI Silva"> IDRISI Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/178549/geographic-information-system-applications-in-prioritizing-karlahi-forest-reserve-area-for-conservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izadi%20Banafsheh">Izadi Banafsheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedaghat%20Reza"> Sedaghat Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=overhaul" title=" overhaul"> overhaul</a>, <a href="https://publications.waset.org/abstracts/search?q=MRO" title=" MRO"> MRO</a>, <a href="https://publications.waset.org/abstracts/search?q=prioritization%20of%20machinery" title=" prioritization of machinery"> prioritization of machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS" title=" TOPSIS"> TOPSIS</a> </p> <a href="https://publications.waset.org/abstracts/35379/prioritization-in-a-maintenance-repair-and-overhaul-mro-system-based-on-fuzzy-logic-at-iran-khodro-ikco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Assertion-Driven Test Repair Based on Priority Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruilian%20Zhao">Ruilian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shukai%20Zhang"> Shukai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Wang"> Weiwei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20repair" title="test repair">test repair</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20intent" title=" test intent"> test intent</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20test" title=" software test"> software test</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20case%20evolution" title=" test case evolution"> test case evolution</a> </p> <a href="https://publications.waset.org/abstracts/166462/assertion-driven-test-repair-based-on-priority-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anju%20Bala">Anju Bala</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderveer%20Chana"> Inderveer Chana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20based%20scheduling" title=" priority based scheduling"> priority based scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20scheduling" title=" task scheduling"> task scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=VM%20allocation" title=" VM allocation"> VM allocation</a> </p> <a href="https://publications.waset.org/abstracts/23630/multi-level-priority-based-task-scheduling-algorithm-for-workflows-in-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Jain">Ekta Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Dahiya"> Kalpana Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanita%20Verma"> Vanita Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assignment" title="assignment">assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalanced" title=" imbalanced"> imbalanced</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20minimization" title=" time minimization"> time minimization</a> </p> <a href="https://publications.waset.org/abstracts/75198/a-priority-based-imbalanced-time-minimization-assignment-problem-an-iterative-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> A Situational Awareness Map for Allocating Relief Resources after Earthquake Occurrence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Ranjbar">Hamid Reza Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Azmoude%20Ardalan"> Ali Reza Azmoude Ardalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20%20Dehghani"> Hamid Dehghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Sarajian"> Mohammad Reza Sarajian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural disasters are unexpected events which predicting them is difficult. Earthquake is one of the most devastating disasters among natural hazards with high rate of mortality and wide extent of damages. After the earthquake occurrence, managing the critical condition and allocating limited relief sources requiring a complete awareness of damaged area. The information for allocating relief teams should be precise and reliable as much as possible, and be presented in the appropriate time after the earthquake occurrence. This type of information was previously presented in the form of a damage map; conducting relief teams by using damage map mostly lead to waste of time for finding alive occupants under the rubble. In this research, a proposed standard for prioritizing damaged buildings in terms of requiring rescue and relief was presented. This standard prioritizes damaged buildings into four levels of priority including very high, high, moderate and low by considering key parameters such as type of land use, activity time, and inactivity time of each land use, time of earthquake occurrence and distinct index. The priority map by using the proposed standard could be a basis for guiding relief teams towards the areas with high relief priority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damage%20map" title="Damage map">Damage map</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20map" title=" priority map"> priority map</a>, <a href="https://publications.waset.org/abstracts/search?q=USAR" title=" USAR"> USAR</a> </p> <a href="https://publications.waset.org/abstracts/61827/a-situational-awareness-map-for-allocating-relief-resources-after-earthquake-occurrence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Using Priority Order of Basic Features for Circumscribed Masses Detection in Mammograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minh%20Dong%20Le">Minh Dong Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Viet%20Dung%20Nguyen"> Viet Dung Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Huu%20Viet"> Do Huu Viet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Tu"> Nguyen Huu Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new method for circumscribed masses detection in mammograms. Our method is evaluated on 23 mammographic images of circumscribed masses and 20 normal mammograms from public Mini-MIAS database. The method is quite sanguine with sensitivity (SE) of 95% with only about 1 false positive per image (FPpI). To achieve above results we carry out a progression following: Firstly, the input images are preprocessed with the aim to enhance key information of circumscribed masses; Next, we calculate and evaluate statistically basic features of abnormal regions on training database; Then, mammograms on testing database are divided into equal blocks which calculated corresponding features. Finally, using priority order of basic features to classify blocks as an abnormal or normal regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammograms" title="mammograms">mammograms</a>, <a href="https://publications.waset.org/abstracts/search?q=circumscribed%20masses" title=" circumscribed masses"> circumscribed masses</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluated%20statistically" title=" evaluated statistically"> evaluated statistically</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20order%20of%20basic%20features" title=" priority order of basic features"> priority order of basic features</a> </p> <a href="https://publications.waset.org/abstracts/48163/using-priority-order-of-basic-features-for-circumscribed-masses-detection-in-mammograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Priority of Goal Over Source in Persian Directional Motion Verbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Samenian">Tahereh Samenian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is ample evidence that source and goal are disproportionately expressed in languages, and goal usually plays a more prominent role than source. The results show that the mismatch between the goal and the source is not entirely rooted in non-linguistic behaviors, i.e. that linguistic descriptions also show the focus of the goal on the source in events; Non-verbal memory for events, on the other hand, indicates that the focus of the goal is only on events that are purposefully moving and the actor is alive. In the present study, an attempt is made to examine the principle of priority of the goal over the source by focusing on Persian directional motion verbs. For this purpose, 117 Persian directional motion verbs have been selected from the dictionary and data for them have been collected from the body of Bijan Khan and the components of goal and source have been identified in sentences and the prominence of the components of goal and source has been shown in the form of diagrams. As it was obtained from the data, Persian motion-directional verbs also showed the bias of the goal over source in motion events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion-directional%20verbs" title="motion-directional verbs">motion-directional verbs</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20of%20goal%20over%20source%20principle" title=" priority of goal over source principle"> priority of goal over source principle</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20factors" title=" cognitive factors"> cognitive factors</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20factors" title=" linguistic factors"> linguistic factors</a> </p> <a href="https://publications.waset.org/abstracts/156958/priority-of-goal-over-source-in-persian-directional-motion-verbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Xiaohan">Su Xiaohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Chicheng"> Jin Chicheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Yijing"> Liu Yijing</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-aware%20scheduling" title="energy-aware scheduling">energy-aware scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=fair-share%20scheduling" title=" fair-share scheduling"> fair-share scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=priority-driven%20preemptive%20scheduling" title=" priority-driven preemptive scheduling"> priority-driven preemptive scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20systems" title=" real-time systems"> real-time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20reservation" title=" resource reservation"> resource reservation</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20constraints" title=" timing constraints"> timing constraints</a> </p> <a href="https://publications.waset.org/abstracts/169550/energy-aware-scheduling-in-real-time-systems-an-analysis-of-fair-share-scheduling-and-priority-driven-preemptive-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> An Algorithm Based on Control Indexes to Increase the Quality of Service on Cellular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahman%20Mofidi">Rahman Mofidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Rahimi"> Sina Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnoosh%20Darban"> Farnoosh Darban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication plays a key role in today’s world, and to support it, the quality of service has the highest priority. It is very important to differentiate between traffic based on priority level. Some traffic classes should be a higher priority than other classes. It is also necessary to give high priority to customers who have more payment for better service, however, without influence on other customers. So to realize that, we will require effective quality of service methods. To ensure the optimal performance of the network in accordance with the quality of service is an important goal for all operators in the mobile network. In this work, we propose an algorithm based on control parameters which it’s based on user feedback that aims at minimizing the access to system transmit power and thus improving the network key performance indicators and increasing the quality of service. This feedback that is known as channel quality indicator (CQI) indicates the received signal level of the user. We aim at proposing an algorithm in control parameter criterion to study improving the quality of service and throughput in a cellular network at the simulated environment. In this work we tried to parameter values have close to their actual level. Simulation results show that the proposed algorithm improves the system throughput and thus satisfies users' throughput and improves service to set up a successful call. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20service" title="quality of service">quality of service</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicators" title=" key performance indicators"> key performance indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20parameter" title=" control parameter"> control parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20quality%20indicator" title=" channel quality indicator"> channel quality indicator</a> </p> <a href="https://publications.waset.org/abstracts/146376/an-algorithm-based-on-control-indexes-to-increase-the-quality-of-service-on-cellular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshiaki%20Shikata">Yoshiaki Shikata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prioritized%20processor%20sharing" title="prioritized processor sharing">prioritized processor sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20ratio" title=" priority ratio"> priority ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=permissible%20sojourn%20time" title=" permissible sojourn time"> permissible sojourn time</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20probability" title=" loss probability"> loss probability</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20sojourn%20time" title=" mean sojourn time"> mean sojourn time</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/82460/prioritized-processor-sharing-with-a-maximum-permissible-sojourn-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Priority Sites for Deforested and Degraded Mountain Restoration Projects in North Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koo%20Ja-Choon">Koo Ja-Choon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hyun-Deok"> Seok Hyun-Deok</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20So-Hee"> Park So-Hee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though developed countries have supported aid projects for restoring degraded and deforested mountain, recent North Korean authorities announced that North Korean forest is still very serious. Last 12 years, more than 16 thousand ha of forest were destroyed. Most of previous researches concluded that food and fuel problems should be solved for preventing people from deforesting and degrading forest in North Korea. It means that mountain restoration projects such as A/R(afforestation/reforestation) and REDD(Reducing Emissions from Deforestation and Forest Degradation) project should be implemented with the agroforestry and the forest tending project. Because agroforestry and the forest tending can provide people in the project area with foods and fuels, respectively. Especially, Agroforestry has been operated well with the support of Swiss agency of Development and cooperation since 2003. This paper aims to find the priority sites for mountain restoration project where all types of projects including agroforesty can be implemented simultaneously. We tried to find the primary counties where the areas of these activities were distributed widely and evenly. Recent spatial data of 186 counties representing altitude, gradient and crown density were collected from World Forest Watch. These 3 attributes were used to determine the type of activities; A/R, REDD, Agroforestry and forest tending project. Finally, we calculated the size of 4 activities in 186 counties by using GIS technique. Result shows that Chongjin in Hamgyeongbuk-do, Hoeryong in Hamgyeongbuk-do and Tongchang in Pyeonganbuk-do are on the highest priority of counties. Most of feasible counties whose value of richness and uniformity were greater than the average were located near the eastern coast of North Korea. South Korean government has not supported any aid projects in North Korea since 2010. Recently, South Korea is trying to continue the aid projects for North Korea. Forest project which is not affected by the political situation between North- and South- Korea can be considered as a priority activities. This result can be used when South Korean government determine the priority sites for North Korean mountain restoration project in near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title="agroforestry">agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20restoration%20project" title=" forest restoration project"> forest restoration project</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Korea" title=" North Korea"> North Korea</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a> </p> <a href="https://publications.waset.org/abstracts/29406/priority-sites-for-deforested-and-degraded-mountain-restoration-projects-in-north-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Revised Risk Priority Number in Failure Mode and Effects Analysis Model from the Perspective of Healthcare System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Rezaei">Fatemeh Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Yarmohammadian"> Mohammad H. Yarmohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Ferdosi"> Masoud Ferdosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Haghshnas"> Abbas Haghshnas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Failure Modes and Effect Analysis is now having known as the main methods of risk assessment and the accreditation requirements for many organizations. The Risk Priority Number (RPN) approach is generally preferred, especially for its easiness of use. Indeed it does not require statistical data, but it is based on subjective evaluations given by the experts about the Occurrence (O i), the Severity (Si) and the Detectability (D i) of each cause of failure. Methods: This study is a quantitative – qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment was conducted to calculate RPN score. Results; We have studied patient’s journey process in surgery ward and the most important phase of the process determined Transport of the patient from the holding area to the operating room. Failures of the phase with the highest priority determined by defining inclusion criteria included severity (clinical effect, claim consequence, waste of time and financial loss), occurrence (time- unit occurrence and degree of exposure to risk) and preventability (degree of preventability and defensive barriers) and quantifying risks priority criteria in the context of RPN index. Ability of improved RPN reassess by root cause (RCA) analysis showed some variations. Conclusions: Finally, It could be concluded that understandable criteria should have been developed according to personnel specialized language and communication field. Therefore, participation of both technical and clinical groups is necessary to modify and apply these models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20mode" title="failure mode">failure mode</a>, <a href="https://publications.waset.org/abstracts/search?q=effects%20analysis" title=" effects analysis"> effects analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20priority%20number%28RPN%29" title=" risk priority number(RPN)"> risk priority number(RPN)</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20system" title=" health system"> health system</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/38719/revised-risk-priority-number-in-failure-mode-and-effects-analysis-model-from-the-perspective-of-healthcare-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Comparative Study of Non-Identical Firearms with Priority to Repair Subject to Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Grewal">A. S. Grewal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Sangwan"> R. S. Sangwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharambir"> Dharambir</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Dhanda"> Vikas Dhanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to develop and analyze two reliability models for a system of non-identical firearms – one is standard firearm (called as original unit) and the other is a country-made firearm (called as duplicate /substandard unit). There is a single server who comes immediately to do inspection and repair whenever needed. On the failure of standard firearm, the server inspects the operative country-made firearm to see whether the unit is capable of performing the desired function well or not. If country-made firearm is not capable to do so, the operation of the system is stopped and server starts repair of the standard firearms immediately. However, no inspection is done at the failure of the country-made firearm as the country-made firearm alone is capable of performing the given task well. In model I, priority to repair the standard firearm is given in case system fails completely and country-made firearm is already under repair, whereas in model II there is no such priority. The failure and repair times of each unit are assumed to be independent and uncorrelated random variables. The distributions of failure time of the units are taken as negative exponential while that of repair and inspection times are general. By using semi-Markov process and regenerative point technique some econo-reliability measures are obtained. Graphs are plotted to compare the MTSF (mean time to system failure), availability and profit of the models for a particular case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-identical%20firearms" title="non-identical firearms">non-identical firearms</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection" title=" inspection"> inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20to%20repair" title=" priority to repair"> priority to repair</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20process" title=" semi-Markov process"> semi-Markov process</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20point" title=" regenerative point"> regenerative point</a> </p> <a href="https://publications.waset.org/abstracts/6163/comparative-study-of-non-identical-firearms-with-priority-to-repair-subject-to-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Prioritization of Sub-Watersheds in Semi Arid Region: A Case Study of Shevgaon and Pathardi Tahsils in Maharashtra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dadasaheb%20R.%20Jawre">Dadasaheb R. Jawre</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20G.%20Unde"> Maya G. Unde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prioritization of sub-watershed plays important role in watershed management. It shows the requirement of watershed to give a treatment for the green growth of the region and conservation of the sub-watersheds. There is a number of factors like topography of the region, climatic characteristics like rainfall and runoff, land-use land-cover, social factors which are related to the development of watershed for agricultural uses and domestic purposes in the region. The present research is throwing a focus on how morphometric parameters in association with GIS analysis will help in identifying the ranking of the sub-watersheds for further development which help of suggested watershed structures. Shevgaon and Pathardi tahsils are drought prone tahsils of Ahmednagar district in Maharashtra. These tahsils come under the semi-arid region. Sub-watershed prioritization is necessary for proper planning and management of natural resources for sustainable development of the study area. Less rainfall and increasing population pressure on the land as well as water resources lead to scarcity of the water in the region. Hence, researcher has selected Shevgaon and Pathardi tahsils for sub-watershed prioritization. There are seven sub-watersheds which selected for the present research paper. In the morphological analysis linear aspects, aerial aspects and relief aspects are considered for the prioritization. The largest sub-watershed is Erdha which is located at Karanji in Pathardi tahsil having an area of 145.06 km2 and smallest sub-watershed is Erandgaon which is located in Shevgaon tahsil having an area of 40.143 km2. For all seven sub-watersheds, seven morphometric parameters were considered for calculating the compound parameter values. Finally, compound parameter values are grouped into three groups such as, high priority (below 4.0), moderate priority (4.0 to 5.0) and low priority (above 5.0) according to the compound value Erandgaon, Chapadgaon and Tarak sub-watersheds comes under high priority group, Erdha and Domeshwar sub-watersheds come under moderate priority group and Chandani and Kasichi sub-watershed come under low priority group. Both the tahsils falls in drought prone area, after getting the watershed structure overall development of the region will take place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-watersheds" title="sub-watersheds">sub-watersheds</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20and%20remote%20sensing" title=" GIS and remote sensing"> GIS and remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometric%20analysis" title=" morphometric analysis"> morphometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20parameter%20value" title=" compound parameter value"> compound parameter value</a>, <a href="https://publications.waset.org/abstracts/search?q=prioritization" title=" prioritization"> prioritization</a> </p> <a href="https://publications.waset.org/abstracts/150223/prioritization-of-sub-watersheds-in-semi-arid-region-a-case-study-of-shevgaon-and-pathardi-tahsils-in-maharashtra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Verma">Amit Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Simranjeet%20Kaur"> Simranjeet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kaur"> Sandeep Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=test%20case%20prioritization" title="test case prioritization">test case prioritization</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=TF-IDF" title=" TF-IDF "> TF-IDF </a> </p> <a href="https://publications.waset.org/abstracts/31937/design-an-development-of-an-agorithm-for-prioritizing-the-test-cases-using-neural-network-as-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> About the Case Portfolio Management Algorithms and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chumburidze">M. Chumburidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salia"> N. Salia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Namchevadze"> T. Namchevadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20network" title="credit network">credit network</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20portfolio" title=" case portfolio"> case portfolio</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20queue" title=" priority queue"> priority queue</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a> </p> <a href="https://publications.waset.org/abstracts/168639/about-the-case-portfolio-management-algorithms-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Quantifying the Impact of Intermittent Signal Priority given to BRT on Ridership and Climate-A Case Study of Ahmadabad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Chaudhary">Smita Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traffic in India are observed uncontrolled, and are characterized by chaotic (not follows the lane discipline) traffic situation. Bus Rapid Transit (BRT) has emerged as a viable option to enhance transportation capacity and provide increased levels of mobility and accessibility. At present in Ahmadabad there are as many intersections which face the congestion and delay at signalized intersection due to transit (BRT) lanes. Most of the intersection in spite of being signalized is operated manually due to the conflict between BRT buses and heterogeneous traffic. Though BRTS in Ahmadabad has an exclusive lane of its own but with this comes certain limitations which Ahmadabad is facing right now. At many intersections in Ahmadabad due to these conflicts, interference, and congestion both heterogeneous traffic as well as transit buses suffer traffic delays of remarkable 3-4 minutes at each intersection which has a become an issue of great concern. There is no provision of BRT bus priority due to which existing signals have their least role to play in managing the traffic that ultimately call for manual operation. There is an immense decrement in the daily ridership of BRTS because people are finding this transit mode no more time saving in their routine, there is an immense fall in ridership ultimately leading to increased number of private vehicles, idling of vehicles at intersection cause air and noise pollution. In order to bring back these commuters’ transit facilities need to be improvised. Classified volume count survey, travel time delay survey was conducted and revised signal design was done for whole study stretch having three intersections and one roundabout, later one intersection was simulated in order to see the effect of giving priority to BRT on side street queue length and travel time for heterogeneous traffic. This paper aims at suggesting the recommendations in signal cycle, introduction of intermittent priority for transit buses, simulation of intersection in study stretch with proposed signal cycle using VISSIM in order to make this transit amenity feasible and attracting for commuters in Ahmadabad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRT" title="BRT">BRT</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a>, <a href="https://publications.waset.org/abstracts/search?q=Ridership" title=" Ridership"> Ridership</a>, <a href="https://publications.waset.org/abstracts/search?q=Signal" title=" Signal"> Signal</a>, <a href="https://publications.waset.org/abstracts/search?q=VISSIM" title=" VISSIM"> VISSIM</a> </p> <a href="https://publications.waset.org/abstracts/35378/quantifying-the-impact-of-intermittent-signal-priority-given-to-brt-on-ridership-and-climate-a-case-study-of-ahmadabad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Assessment of Healthy Lifestyle Behavior Needs for Older Adults Living with Hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Sutipan">P. Sutipan</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Intarakamhang"> U. Intarakamhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to assess and prioritize the order of needs with regard to the healthy lifestyle behaviors for older adults living with hypertension. The participants involved 400 hypertensive elderly individuals in Chiang Mai, Thailand. The research instrument was a 26-item needs-assessment questionnaire in a dual response format on a four-level rating scale. The data was analyzed with the use of descriptive statistics and the needs were ranked using the Modified Priority Needs Index (PNIModified). The results indicated that the three priorities of healthy lifestyle behavior were healthy eating (PNImodified = 0.36), exercise (PNImodified = 0.35), and social contribution (PNImodified = 0.34), respectively. The implications of the findings for planning the intervention phase of the project are of particular interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=needs%20assessment" title="needs assessment">needs assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20modified%20priority%20needs%20index%20%28PNIModified%29" title=" the modified priority needs index (PNIModified)"> the modified priority needs index (PNIModified)</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20lifestyle%20behavior" title=" healthy lifestyle behavior"> healthy lifestyle behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20adults" title=" older adults"> older adults</a> </p> <a href="https://publications.waset.org/abstracts/49607/assessment-of-healthy-lifestyle-behavior-needs-for-older-adults-living-with-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manpreet%20Kaur">Manpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Amita%20Rani"> Amita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar"> Sanjay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-physical%20systems" title=" cyber-physical systems"> cyber-physical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion%20control" title=" congestion control"> congestion control</a>, <a href="https://publications.waset.org/abstracts/search?q=priority" title=" priority"> priority</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20rate" title=" transmission rate"> transmission rate</a> </p> <a href="https://publications.waset.org/abstracts/108306/multi-level-clustering-based-congestion-control-protocol-for-cyber-physical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=28">28</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=priority%20map&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>