CINXE.COM

Dr. Padma Prithivirajan - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Dr. Padma Prithivirajan - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="2H7d1zhkkTMujN7pTy4ErnPk9TnCJ6HMCt9ZbgqwbtHxKFQ9X3DafZg3yDqXooZf0v0sJPM7teSWwMkLbX40gg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="dr. padma prithivirajan" /> <meta name="description" content="9years UG/PG teaching experience in various universities. Published 36 international journals and 2 text books and 2 monographies. Received young faculty award…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'b092bf3a3df71cf13feee7c143e83a57eb6b94fb'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14016,"monthly_visitors":"99 million","monthly_visitor_count":99567017,"monthly_visitor_count_in_millions":99,"user_count":283027494,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739844011000); window.Aedu.timeDifference = new Date().getTime() - 1739844011000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-5708a105dd66b4c7d0ef30b7c094b1048423f0042bd2a7b123f2d99ee3cf46d9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/DrPadmaPrithivirajan" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-c0b60aedadfb9d46b698730fbbcb2e70645c886b405d825adeba3a031c02455d.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan","photo":"https://0.academia-photos.com/12462388/105099294/94295253/s65_dr._padma.prithivirajan.png","has_photo":true,"is_analytics_public":true,"interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":2616,"name":"Graph Theory","url":"https://www.academia.edu/Documents/in/Graph_Theory"},{"id":15118,"name":"Topology","url":"https://www.academia.edu/Documents/in/Topology"},{"id":297842,"name":"Operation research in industrial applications","url":"https://www.academia.edu/Documents/in/Operation_research_in_industrial_applications"},{"id":378278,"name":"Bitopological Spaces","url":"https://www.academia.edu/Documents/in/Bitopological_Spaces"},{"id":2341,"name":"General Topology","url":"https://www.academia.edu/Documents/in/General_Topology"},{"id":10662,"name":"Algebra and Topology","url":"https://www.academia.edu/Documents/in/Algebra_and_Topology"},{"id":858386,"name":"Generalized Closed Sets","url":"https://www.academia.edu/Documents/in/Generalized_Closed_Sets"},{"id":348,"name":"Geometry And Topology","url":"https://www.academia.edu/Documents/in/Geometry_And_Topology"},{"id":5446,"name":"Mathematical Programming","url":"https://www.academia.edu/Documents/in/Mathematical_Programming"},{"id":749,"name":"Mathematical Economics","url":"https://www.academia.edu/Documents/in/Mathematical_Economics"},{"id":361,"name":"Modal Logic","url":"https://www.academia.edu/Documents/in/Modal_Logic"},{"id":2963,"name":"Mathematical Biology","url":"https://www.academia.edu/Documents/in/Mathematical_Biology"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":37345,"name":"Discrete Mathematics","url":"https://www.academia.edu/Documents/in/Discrete_Mathematics"},{"id":363,"name":"Set Theory","url":"https://www.academia.edu/Documents/in/Set_Theory"},{"id":17442,"name":"Mathematical Logic","url":"https://www.academia.edu/Documents/in/Mathematical_Logic"},{"id":265402,"name":"Applied Mathematics and Statistics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics_and_Statistics"},{"id":30880,"name":"Numerical Methods","url":"https://www.academia.edu/Documents/in/Numerical_Methods"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":77317,"name":"Mathmatics","url":"https://www.academia.edu/Documents/in/Mathmatics"},{"id":367,"name":"Analysis (Mathematics)","url":"https://www.academia.edu/Documents/in/Analysis_Mathematics_"},{"id":11549,"name":"Topology Control","url":"https://www.academia.edu/Documents/in/Topology_Control"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":6356584,"link":"http://twitter.com/padmaprithivirajan@gmail.com","name":"Twitter","link_domain":"twitter.com","icon":"//www.google.com/s2/u/0/favicons?domain=twitter.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/DrPadmaPrithivirajan&quot;,&quot;location&quot;:&quot;/DrPadmaPrithivirajan&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/DrPadmaPrithivirajan&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-7afea774-dd4e-4054-b842-dfedc31bd779"></div> <div id="ProfileCheckPaperUpdate-react-component-7afea774-dd4e-4054-b842-dfedc31bd779"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Dr. Padma Prithivirajan" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/12462388/105099294/94295253/s200_dr._padma.prithivirajan.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Dr. Padma Prithivirajan</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://prist.academia.edu/">PRIST UNIVERSITY</a>, <a class="u-tcGrayDarker" href="https://prist.academia.edu/Departments/Mathematics/Documents">Mathematics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Dr. Padma" data-follow-user-id="12462388" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="12462388"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">75</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">14</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/DrPadmaPrithivirajan/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><a href="https://independent.academia.edu/DrPadmaPrithivirajan/Analytics"><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></a></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">9years UG/PG teaching experience in various universities. Published 36 international journals and 2 text books and 2 monographies. Received young faculty award by education expo tv, delhi.<br /><b>Address:&nbsp;</b>India<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://oxford.academia.edu/BenHambly"><img class="profile-avatar u-positionAbsolute" alt="Ben Hambly" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1494/656/770/s200_ben.hambly.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://oxford.academia.edu/BenHambly">Ben Hambly</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Oxford</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://williams.academia.edu/StevenJMiller"><img class="profile-avatar u-positionAbsolute" alt="Steven J. Miller" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/13733/4607/4518/s200_steven_j..miller.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://williams.academia.edu/StevenJMiller">Steven J. Miller</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Williams College</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ucd.academia.edu/AlessiaPaccagnini"><img class="profile-avatar u-positionAbsolute" alt="Alessia Paccagnini" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/15676/5282/13800312/s200_alessia.paccagnini.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ucd.academia.edu/AlessiaPaccagnini">Alessia Paccagnini</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University College Dublin</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://wur.academia.edu/JacquelineBloemhof"><img class="profile-avatar u-positionAbsolute" alt="Jacqueline Bloemhof" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/35756/11811/18671474/s200_jacqueline.bloemhof.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://wur.academia.edu/JacquelineBloemhof">Jacqueline Bloemhof</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Wageningen University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://muni.academia.edu/DavidKalhous"><img class="profile-avatar u-positionAbsolute" alt="David Kalhous" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/63823/17963/10975883/s200_david.kalhous.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://muni.academia.edu/DavidKalhous">David Kalhous</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Masaryk University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://leeds.academia.edu/SyedAliRazaZaidi"><img class="profile-avatar u-positionAbsolute" alt="Syed Ali Raza Zaidi" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/83027/84832/1210388/s200_syed_ali_raza.zaidi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://leeds.academia.edu/SyedAliRazaZaidi">Syed Ali Raza Zaidi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Leeds</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://essex.academia.edu/NicolaeRaduZabet"><img class="profile-avatar u-positionAbsolute" alt="Nicolae Radu Zabet" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/101031/27833/731202/s200_nicolae_radu.zabet.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://essex.academia.edu/NicolaeRaduZabet">Nicolae Radu Zabet</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Essex</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unitn.academia.edu/RobertoPignatelli"><img class="profile-avatar u-positionAbsolute" alt="Roberto Pignatelli" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/121898/142057058/131556047/s200_roberto.pignatelli.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unitn.academia.edu/RobertoPignatelli">Roberto Pignatelli</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Trento</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://cria.academia.edu/ArmandoMarquesGuedes"><img class="profile-avatar u-positionAbsolute" alt="Armando Marques-Guedes" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/134181/3401094/148494125/s200_armando.marques-guedes.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://cria.academia.edu/ArmandoMarquesGuedes">Armando Marques-Guedes</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">UNL - New University of Lisbon</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="12462388">View All (23)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12462388" href="https://www.academia.edu/Documents/in/Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/DrPadmaPrithivirajan&quot;,&quot;location&quot;:&quot;/DrPadmaPrithivirajan&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/DrPadmaPrithivirajan&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b6f2b09e-f23e-409f-8759-9442f12ec62b"></div> <div id="Pill-react-component-b6f2b09e-f23e-409f-8759-9442f12ec62b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12462388" href="https://www.academia.edu/Documents/in/Graph_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Graph Theory&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e7aa2fec-602d-4928-915f-91613ea3496c"></div> <div id="Pill-react-component-e7aa2fec-602d-4928-915f-91613ea3496c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12462388" href="https://www.academia.edu/Documents/in/Topology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Topology&quot;]}" data-trace="false" data-dom-id="Pill-react-component-0c7c5d5d-64c4-4ed9-a45a-6b056d602bc8"></div> <div id="Pill-react-component-0c7c5d5d-64c4-4ed9-a45a-6b056d602bc8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12462388" href="https://www.academia.edu/Documents/in/Operation_research_in_industrial_applications"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Operation research in industrial applications&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f2e1ff89-0203-48a3-944e-3d54875c6595"></div> <div id="Pill-react-component-f2e1ff89-0203-48a3-944e-3d54875c6595"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12462388" href="https://www.academia.edu/Documents/in/Bitopological_Spaces"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Bitopological Spaces&quot;]}" data-trace="false" data-dom-id="Pill-react-component-6f9c5b0c-873b-42ae-b16d-fe9c313ed8cb"></div> <div id="Pill-react-component-6f9c5b0c-873b-42ae-b16d-fe9c313ed8cb"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Dr. Padma Prithivirajan</h3></div><div class="js-work-strip profile--work_container" data-work-id="110403443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110403443/B_Nearly_Compact_Spaces"><img alt="Research paper thumbnail of B - Nearly Compact Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110403443/B_Nearly_Compact_Spaces">B - Nearly Compact Spaces</a></div><div class="wp-workCard_item"><span>Journal of Global Research in Mathematical</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main focus of this paper is to introduce the B - nearly compact spaces and study its properti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main focus of this paper is to introduce the B - nearly compact spaces and study its properties. Keywords: B - nearly compact spaces</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110403443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110403443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110403443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110403443]").text(description); $(".js-view-count[data-work-id=110403443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110403443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110403443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110403443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110403443,"title":"B - Nearly Compact Spaces","internal_url":"https://www.academia.edu/110403443/B_Nearly_Compact_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces"><img alt="Research paper thumbnail of • Pairwise Q* Separation Axioms in Bitopological Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces">• Pairwise Q* Separation Axioms in Bitopological Spaces</a></div><div class="wp-workCard_item"><span>International Journal of Mathematical Archive</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of pairwise Q* Ti ( i = 0, 1, 2, 3, 4 ) and pa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of pairwise Q* Ti ( i = 0, 1, 2, 3, 4 ) and pairwise Q* normal, pairwise Q* regular, pairwise Q* US, pairwise Q* KC space, pairwise urysohn space, pairwise Q* T_(7⁄(8 )), pairwise Q* T_((1 1)⁄2), pairwise Q* T_((1 2)⁄( 3)), pairwise Q* T_((2 1)⁄2) space, pairwise Q* T_((4 1)⁄2) space, pairwise Q* T_((5 1)⁄2) space and study its general properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986558]").text(description); $(".js-view-count[data-work-id=83986558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83986558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986558,"title":"• Pairwise Q* Separation Axioms in Bitopological Spaces","internal_url":"https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space"><img alt="Research paper thumbnail of Q* Locally Closed Sets in Topological Space" class="work-thumbnail" src="https://attachments.academia-assets.com/89158176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space">Q* Locally Closed Sets in Topological Space</a></div><div class="wp-workCard_item"><span>Journal of Global Research in Mathematical</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we introduce and study the notions of Q* locally closed sets and Q* locally continu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we introduce and study the notions of Q* locally closed sets and Q* locally continuous in bitopological spaces. Keywords: Q* locally closed set, Q* locally closed* set , Q* locally closed** set , Q*LC - continuous , Q*LC* - continuous , Q*LC** - continuous and Q*- sub maximal space . Subject classification: 54D15.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f9c1fc90d382e3375c7eaf1270ee7c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158176,&quot;asset_id&quot;:83986557,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158176/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986557]").text(description); $(".js-view-count[data-work-id=83986557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f9c1fc90d382e3375c7eaf1270ee7c8" } } $('.js-work-strip[data-work-id=83986557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986557,"title":"Q* Locally Closed Sets in Topological Space","internal_url":"https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158176/thumbnails/1.jpg","file_name":"pmc6943417.pdf","download_url":"https://www.academia.edu/attachments/89158176/download_file","bulk_download_file_name":"Q_Locally_Closed_Sets_in_Topological_Spa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158176/pmc6943417-libre.pdf?1659318783=\u0026response-content-disposition=attachment%3B+filename%3DQ_Locally_Closed_Sets_in_Topological_Spa.pdf\u0026Expires=1739847611\u0026Signature=fGiynWbAtzdxxQfFy0SFQ7YvViBaWU8lukcCnIqsHoZsPtMuoEKRB0Ztzu6p~ffSUSzkAcsRo7rVwEmoWkyuYpDi4hgGO-QZ~5AX3V~AgtI~2jVdxOPDtQaCOb6SQ5T3mIVGeSQg70l85zcVROcQR6F5FFu1JsoqQ3W5UzWp16-olWwkYn2USRUSpJZAnSbGWNvg1r5-aOYzWW93lhFwe2Op5whJR38EfA-gtQO6dBMBOusD-S6oGOdWdD2g8rxi8DsDqm84-bhN-d44wOx3TI7~8bvH9rOAsM2twGVyOwD0yOvhr~XVx6gSR~8ds3lJeDx-eiYUoZ2qkmtDO~sV8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces"><img alt="Research paper thumbnail of More on Pairwise Almost Normal Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/89158171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces">More on Pairwise Almost Normal Spaces</a></div><div class="wp-workCard_item"><span>International Research Journal of Pure Algebra</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">T he main focus of this paper is to introduce the properties of pairwise almost Hausdorffand pair...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">T he main focus of this paper is to introduce the properties of pairwise almost Hausdorffand pairwise almost normalspaces. Also we introduce the Urysohn lemma using pairwise almost normal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1fa13908ebedf2b00afec7a9bb41c223" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158171,&quot;asset_id&quot;:83986556,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158171/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986556]").text(description); $(".js-view-count[data-work-id=83986556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1fa13908ebedf2b00afec7a9bb41c223" } } $('.js-work-strip[data-work-id=83986556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986556,"title":"More on Pairwise Almost Normal Spaces","internal_url":"https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158171/thumbnails/1.jpg","file_name":"203.pdf","download_url":"https://www.academia.edu/attachments/89158171/download_file","bulk_download_file_name":"More_on_Pairwise_Almost_Normal_Spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158171/203-libre.pdf?1659318764=\u0026response-content-disposition=attachment%3B+filename%3DMore_on_Pairwise_Almost_Normal_Spaces.pdf\u0026Expires=1739847611\u0026Signature=P3-Urzh7aPJHFAIZdcCpf7fsDw4pXSk8jYADIxzHxPIfc17M3OI1qR-trFagGGFY8CzM~Idjr3Gzj5GVsz18U6MYxMqQN-nRctrlXAeh2ocM54hjhe~QMr8a8vxMau~~mJ6yJzpqF6yPhvvehVh~SCSwG4C46Ber~xsD7gAiWkasuTuVuRBNUPBAdhP6PUN9~9~wNx3KXxkcgeofZvoeC9n43b-u50U6mhSor4ny~Wq6Riv9FUA9W5bL-SV8qw00eGZ3ARO4Ptvt-di6~35PIml6BuI~NNmwbYItLd7De5iqwbaqcKYUA9oLZf9ySTgg6s50lfXtyzFH4gjS36ldLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986555"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary"><img alt="Research paper thumbnail of Strongly Minimal Generalized Boundary" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary">Strongly Minimal Generalized Boundary</a></div><div class="wp-workCard_item"><span>Indian Journal of Applied Research</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper properties of smg - boundary are investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986555"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986555"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986555; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986555]").text(description); $(".js-view-count[data-work-id=83986555]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986555; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986555']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83986555]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986555,"title":"Strongly Minimal Generalized Boundary","internal_url":"https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces"><img alt="Research paper thumbnail of On Q*s - regular spaces and Q*s - normal spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/89158164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces">On Q*s - regular spaces and Q*s - normal spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of Q* - open sets in a topological space was introduced by Murugalingam and Lalitha [ ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of Q* - open sets in a topological space was introduced by Murugalingam and Lalitha [ 7 ]. We introduce the notion of Q*s - regular, Q*s - normal, s*Q* - normal and obtain some characterizations Q*s - regularity and Q*s – normality, s*Q* - normal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="483794c8ca213b7cc67e84d8ecdf06aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158164,&quot;asset_id&quot;:83986542,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158164/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986542]").text(description); $(".js-view-count[data-work-id=83986542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "483794c8ca213b7cc67e84d8ecdf06aa" } } $('.js-work-strip[data-work-id=83986542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986542,"title":"On Q*s - regular spaces and Q*s - normal spaces","internal_url":"https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158164/thumbnails/1.jpg","file_name":"7-Article-49-6-10-20150226.pdf","download_url":"https://www.academia.edu/attachments/89158164/download_file","bulk_download_file_name":"On_Q_s_regular_spaces_and_Q_s_normal_spa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158164/7-Article-49-6-10-20150226-libre.pdf?1659318769=\u0026response-content-disposition=attachment%3B+filename%3DOn_Q_s_regular_spaces_and_Q_s_normal_spa.pdf\u0026Expires=1739847611\u0026Signature=QjEEGLwPkUKm1kEab6S-nM1LQuRhtKmOyVy~Gf9D4fm1aNueV9Vm2DIz93c~kNC6nNFMZI9y5oMAkOG~roEVPX5AKQgWioTwDqqUJLfzLyzjKXUOPWIvTbH3cw1cuFEGseSN0orH6nzGTVA51ORh1WiQhnG1p9TqrC~3Sunj8igBgAKXs68b-HqswP1NcXghb8crAi~NRKfCIAeafVxvUHibIFeyQRFLJAAuz0gkUEPVhwHqIb5iBZ5Pqf-8h0yH6bFMIps5HR3CrT9LnZFQwacfftJcJ9lP-Aaf89zA1oh6aH-q0ePVlnEtLuslOU8DrRiD6jXI-54KZZWPvDyqFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73840626"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73840626/MA_TOPOLOGY"><img alt="Research paper thumbnail of MA TOPOLOGY" class="work-thumbnail" src="https://attachments.academia-assets.com/82208693/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73840626/MA_TOPOLOGY">MA TOPOLOGY</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc1209ab9f3c0990d0ad39ba0b563203" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:82208693,&quot;asset_id&quot;:73840626,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/82208693/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73840626"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73840626"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73840626; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73840626]").text(description); $(".js-view-count[data-work-id=73840626]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73840626; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73840626']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc1209ab9f3c0990d0ad39ba0b563203" } } $('.js-work-strip[data-work-id=73840626]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73840626,"title":"MA TOPOLOGY","internal_url":"https://www.academia.edu/73840626/MA_TOPOLOGY","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":82208693,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/82208693/thumbnails/1.jpg","file_name":"MA_TOPOLOGY.docx","download_url":"https://www.academia.edu/attachments/82208693/download_file","bulk_download_file_name":"MA_TOPOLOGY.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82208693/MA_TOPOLOGY.docx?1738482895=\u0026response-content-disposition=attachment%3B+filename%3DMA_TOPOLOGY.docx\u0026Expires=1739847611\u0026Signature=QVP0g18E6xT3XkSo1K5QYWUTDXQTX2sPaq5t1zKC~H7yQNbIYhbS1sJBB3mzW1wUHlrCxLMnFe-WCox~rSyoe~RX8VET5yBeuooS67oZfNeM0fp94Cdjpj8QJVRhDc0-zuXkkEF6FXAkynXTNnKIEF8kbDU5ZQ1E29XHsdBPScq0c1xO8d7Wrv0xOaMCWOPtzOgnYaSqkGMR6UEFMW5o0lgemy1iwiE6ZjeWK7Faordta0sXGyLeclPeB162Rg7BS9YjaGKLt3NMwm1d5YXLWsgmysjrtooLK6w8O0wFGEPC79zm7YqPq9hSlYS-N-q0L0kT2nDlPSkKpbDztq6I9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45443022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise DaO -Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954385/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces">Pairwise DaO -Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>INFOKARA RESEARCH</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">O.R.Sayed, A.M.Khalil [23] introduced the notion of D-closed sets in topological spaces in 2015....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">O.R.Sayed, A.M.Khalil [23] introduced the notion of D-closed sets in topological spaces in 2015.The aim of this paper is to introduce the notion of pairwise DO-connected spaces and pairwise DO-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48190d132d714ca6b45a8022be7acdbf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954385,&quot;asset_id&quot;:45443022,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954385/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45443022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45443022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45443022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45443022]").text(description); $(".js-view-count[data-work-id=45443022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45443022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45443022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48190d132d714ca6b45a8022be7acdbf" } } $('.js-work-strip[data-work-id=45443022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45443022,"title":"Pairwise DaO -Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954385/thumbnails/1.jpg","file_name":"1_Jun_3893.pdf","download_url":"https://www.academia.edu/attachments/65954385/download_file","bulk_download_file_name":"Pairwise_DaO_Connectedness_in_bitopologi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954385/1_Jun_3893-libre.pdf?1615343794=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_DaO_Connectedness_in_bitopologi.pdf\u0026Expires=1739847611\u0026Signature=MIkIATbCkSEqhK-577d7LpcqQ-3crIGNbXrjqwH~kBdi7PM5RD2sUIAzeZgXHCDEbGAkpJrZu4XDQMowGFKTqUed4wZXcKGPzoEBZhYuFB7sMQP71SCP068YntU5MKtp96KiPcXQpRPb3epAv2qm-cm2lmL85rK1LVJweSuERm56YAZDtFNeCrpA9QxQUihgpxYY7KPXQwJJIly88t6QLjczZHFuHcitqFN~X3iPBqqpsSzpQh6lPIog03TgudhqG~b2ayz5v1haZQ6b5EjTtnNjQAqmTB2UJWpih8lUj~Kjff7lkiZKxrjWK8RQfAaA2p3vW530Q0R8xJ~m3OznAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442999"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise gs**O -Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954342/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces">Pairwise gs**O -Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental modal analysis</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connectedness is a well-known notion in topology. Pervin [18] was first to define connectedness a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connectedness is a well-known notion in topology. Pervin [18] was first to define connectedness and components in a bitopological spaces, whereas the concept of quasi components in bitopological spaces was introduced by Reilly and Young [10].The aim of this paper is to introduce the notion of pairwise gs**O-connected spaces and pairwise gs**O-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e19590455508317035adcba19b49e5f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954342,&quot;asset_id&quot;:45442999,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954342/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442999"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442999"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442999; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442999]").text(description); $(".js-view-count[data-work-id=45442999]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442999; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442999']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e19590455508317035adcba19b49e5f3" } } $('.js-work-strip[data-work-id=45442999]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442999,"title":"Pairwise gs**O -Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954342/thumbnails/1.jpg","file_name":"345_november_2956.pdf","download_url":"https://www.academia.edu/attachments/65954342/download_file","bulk_download_file_name":"Pairwise_gs_O_Connectedness_in_bitopolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954342/345_november_2956-libre.pdf?1615343798=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_gs_O_Connectedness_in_bitopolog.pdf\u0026Expires=1739847611\u0026Signature=DlNAFqxLbQgR5DsUjBUbZvVXR7oxwH5SKt1AjPmkOtckOWATz0fhg9~AGmNx-UHJIzoP-68jsL1Mb8qOms2A4QZsAKqFNZHKrnQZfgfXFxYa6eKXHbzh~wpUV5KShRzc7u-eBMq2TIirbX9mYoSZl0sneXb654nXxfwztdyaD4eHei0VV~Ebl90xBw9O3eHfvQuVK6howF2dBPr5O7LYCJ0kSP~~JTrEhrUd2nGXb~JE6F094WZoGebOI61s4WJuopC4TLskExLYMnPD9nGl4om2SOZOvOa2Ke7dxaG-cj9xqsrAIeCWtzgcBTFoiEI3rvVG0lU6pgS7CmmsAn9SDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function"><img alt="Research paper thumbnail of Pasting Lemma for Q** -Continuous Function" class="work-thumbnail" src="https://attachments.academia-assets.com/65954299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function">Pasting Lemma for Q** -Continuous Function</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The pasting lemmas for continuous functions are established over last two decades. Anitha etal.[1...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The pasting lemmas for continuous functions are established over last two decades. Anitha etal.[1] established the pasting lemma for rg –continuous, gc -irresolute and gp -continuous functions. In this sequel, the pasting lemmas for Q**-continuous functions have been introduce in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826e57eaa13448513358060623088c7b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954299,&quot;asset_id&quot;:45442976,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954299/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442976]").text(description); $(".js-view-count[data-work-id=45442976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826e57eaa13448513358060623088c7b" } } $('.js-work-strip[data-work-id=45442976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442976,"title":"Pasting Lemma for Q** -Continuous Function","internal_url":"https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954299/thumbnails/1.jpg","file_name":"68_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954299/download_file","bulk_download_file_name":"Pasting_Lemma_for_Q_Continuous_Function.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954299/68_JANUARY_2020_SP-libre.pdf?1615343801=\u0026response-content-disposition=attachment%3B+filename%3DPasting_Lemma_for_Q_Continuous_Function.pdf\u0026Expires=1739847611\u0026Signature=IrwY4MxxWZnsTDEZ9ywbZBszMBsg-pYr5~BineW~OclCz-2k67g94wlRPK0YtvfUR22hS27DCWV102U7Nmcbc8OOjRmUfpw~KOwc4D-7XDTzNoFVSGOCadHxZ7SQWZqN-nqU2gnl6O-ZsVVUKHksddSo5YWIsdeebqutvPmZGvP4gXpwSIfdxPCHQl5vUbajMpO0TBPohwR7WwGK3opAYolyb5wP7TlH8v~EwmyHr1DWZatqYtYcpGy-sRZiGP1CcjRVmylnBxEQzuXE5avccU54Mi9qte6ReIzyO3sS4aW1VR2WllMmd89vHtk~gFPEwByEjDu-D54V8fUFdWSdVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442961"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs"><img alt="Research paper thumbnail of A Study On Five Domination Number In Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/65954267/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs">A Study On Five Domination Number In Graphs</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Dominating queens is the origin of the study of dominating set in graphs.Berge [1] ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Dominating&nbsp; queens&nbsp; is&nbsp; the&nbsp; origin&nbsp; of&nbsp; the&nbsp; study&nbsp; of&nbsp; dominating&nbsp; set&nbsp; in&nbsp; graphs.Berge&nbsp; [1]&nbsp; and&nbsp; Ore&nbsp; [4]&nbsp; were&nbsp; the&nbsp; first&nbsp; to&nbsp; define dominating sets. A dominating set is said to be fivedominating set if every vertex in V –S is adjacent to at least fivevertices in S. The minimum cardinality taken over all, the minimal fivedominating set is called fivedomination number and is denoted by 5d(G).In this paper, we introduce and studythe fivedomination number and its characterizations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35fed8edb768d8ed3d73d66ab5959956" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954267,&quot;asset_id&quot;:45442961,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954267/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442961"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442961"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442961; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442961]").text(description); $(".js-view-count[data-work-id=45442961]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442961; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442961']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35fed8edb768d8ed3d73d66ab5959956" } } $('.js-work-strip[data-work-id=45442961]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442961,"title":"A Study On Five Domination Number In Graphs","internal_url":"https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954267/thumbnails/1.jpg","file_name":"53_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954267/download_file","bulk_download_file_name":"A_Study_On_Five_Domination_Number_In_Gra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954267/53_JANUARY_2020_SP-libre.pdf?1615343804=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_On_Five_Domination_Number_In_Gra.pdf\u0026Expires=1739847611\u0026Signature=EE0-88babL~kci8ow-00cj9unLwX4ntiWMdWgyJdXJEZ92ko-LKiqZtRifb0K5pbsi9V~9AMbc501RFHGnExuOHB6IWTWx5JnVHmUoUG4Lw4minUBOYOvph0GKmtzGX8DEb6IoGMOCRaJr8knuprXqGjqSONC95mNlyx9wsQY4iS5a7AwbWjftobK-JNTp2ijFf2lU3cIhjx-rSOMAf1toEMD~-XIcXZSlaILqTVr2AYDL5plxUqp72o3fZa-yBYltZQxhTGmbi9czk2evrAwVG0tQE65TWnXq1wTUbkZIVuMDtEpjcaLUmH2aEWCc6azYP61HVhquit5u7VTvpRow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442937"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph"><img alt="Research paper thumbnail of Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/65954258/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph">Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A set D⊆V is called triple dominating set of a fuzzy graph G. If every vertex in V is dominated b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A set D⊆V is called triple dominating set of a fuzzy graph G. If every vertex in V is dominated by at least three vertices in D. The minimum cardinality of fuzzy triple dominating set is called fuzzy triple domination number of G and is denoted by γ₃(G).The aim of this paper is to find on what relations the fuzzy graph has perfect triple domination number and independent triple domination number for a connected fuzzy is obtained .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="527b6680ace934eb47cff657ed8218c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954258,&quot;asset_id&quot;:45442937,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954258/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442937"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442937"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442937; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442937]").text(description); $(".js-view-count[data-work-id=45442937]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442937; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442937']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "527b6680ace934eb47cff657ed8218c7" } } $('.js-work-strip[data-work-id=45442937]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442937,"title":"Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph","internal_url":"https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954258,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954258/thumbnails/1.jpg","file_name":"31_JANUARY_2020_SP_Copy.pdf","download_url":"https://www.academia.edu/attachments/65954258/download_file","bulk_download_file_name":"Perfect_Triple_Domination_Number_and_Ind.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954258/31_JANUARY_2020_SP_Copy-libre.pdf?1615343805=\u0026response-content-disposition=attachment%3B+filename%3DPerfect_Triple_Domination_Number_and_Ind.pdf\u0026Expires=1739847611\u0026Signature=UiWjsQsVwi1T-VPH1ZYKQxFrQ-klSg7nSDzV5ZjD6LRGP-hvsUB2JjFjGwDiVfUp5ww2tjub8vr077JMaO0d0n~zLTBp2OwHQRbYsa8rbrp09paraz~mzxQXZAgzjN0TJeB9fBJdK~5uBZfzYdhWnbVJJYudiMn1X7o3-PdLl-53q6q756Qq-e6zZ1~JtKzAd-cUt5FjlJHvNmdCEXYYAJ4HrthbeWFqWAvYdGpKQi3AkzSwWjfQJe38KZJgmHQ7U8DU822eBBVqLxUl4k4V~pRFI8PWCoRISQE4~hq5tgHpo545X~69Gr-1BJxKbRUAYyH7ptE6zI9vCcYsLQ639g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442919"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles"><img alt="Research paper thumbnail of A Study on Odd and Mean Labeling of Hausdorff Cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/65954245/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles">A Study on Odd and Mean Labeling of Hausdorff Cycles</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the Hausdorff graphs are connected and simple. Here we discuss Even Me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the Hausdorff graphs are connected and simple. Here we discuss Even Mean labeling and Odd Meanlabeling for someHausdorff&nbsp; graphs. A graph G is said to be Hausdorff&nbsp; if for any two distinct vertices u and v of G, one of the following condition hold:1.Both u and v are isolated2.Either u and v is isolated3.There exist two non-adjacent edges&nbsp; 𝐞𝟏and 𝐞𝟐of G such that𝐞𝟏is incident with u and 𝐞𝟐is incident with v.All the graphs consider here are connected i.e., graphs holding the third condition of hausdorff graphs are considered.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f2e84656f7d7cac3b472a41dd9c1ab6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954245,&quot;asset_id&quot;:45442919,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954245/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442919"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442919"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442919; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442919]").text(description); $(".js-view-count[data-work-id=45442919]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442919; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442919']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f2e84656f7d7cac3b472a41dd9c1ab6" } } $('.js-work-strip[data-work-id=45442919]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442919,"title":"A Study on Odd and Mean Labeling of Hausdorff Cycles","internal_url":"https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954245/thumbnails/1.jpg","file_name":"30_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954245/download_file","bulk_download_file_name":"A_Study_on_Odd_and_Mean_Labeling_of_Haus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954245/30_JANUARY_2020_SP-libre.pdf?1615343806=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_on_Odd_and_Mean_Labeling_of_Haus.pdf\u0026Expires=1739847611\u0026Signature=VFrLiCqH5McRoIgzAouQhOcscVG4jz23hHMPz-SdzTiIc060Qh8~2G6P6DUI27HgTQtPWxe8IU55~8HR3~tTUG7Jo~RqFB2-aK82C9ZMF8AcKuMscitFG~t-t8fdKOwWkzqPNUc2q2UMbBA75XktH9V0u3AnetNOQCJp4j2jYesPfa4gRA3i3BOkLcQwj9j4CVNl-9FU0QmWbYjs5g9-XhKQgo3Pakeu1JKz4KXXug3a6uFXBLyGy973qbu~S5bCsGm-mXI2YONRxxUYx1hTOqqG7LRMrKHTEWNHFCHea52dP9U3tp0tGInEvCLyS4CEgejTmcJ65e843jDeNUgxwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442895"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442895/Four_domination_in_graphs"><img alt="Research paper thumbnail of Four domination in graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/65954233/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442895/Four_domination_in_graphs">Four domination in graphs</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Berge&nbsp; [1]&nbsp; and&nbsp; Ore&nbsp; [4]&nbsp; were&nbsp; the&nbsp; first&nbsp; to&nbsp; define&nbsp; dominating&nbsp; sets.&nbsp; A&nbsp; dominating set&nbsp; is&nbsp; said&nbsp; to&nbsp; be&nbsp; four&nbsp; dominating&nbsp; set&nbsp; if&nbsp; every vertex in&nbsp; V –S is adjacent to&nbsp; at least four&nbsp; vertices in S . The&nbsp; minimum&nbsp; cardinality taken over all , the&nbsp; minimal four dominating set is called&nbsp; four&nbsp; domination&nbsp; number&nbsp; and&nbsp; is&nbsp; denoted&nbsp; by 4d(G). In&nbsp; this&nbsp; paper, we&nbsp; introduce&nbsp; and&nbsp; study the&nbsp; four&nbsp; domination&nbsp; number&nbsp; and its characterizations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ffe6e89cbbea962315bea224e8ec171" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954233,&quot;asset_id&quot;:45442895,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954233/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442895"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442895"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442895; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442895]").text(description); $(".js-view-count[data-work-id=45442895]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442895; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442895']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ffe6e89cbbea962315bea224e8ec171" } } $('.js-work-strip[data-work-id=45442895]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442895,"title":"Four domination in graphs","internal_url":"https://www.academia.edu/45442895/Four_domination_in_graphs","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954233/thumbnails/1.jpg","file_name":"27_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954233/download_file","bulk_download_file_name":"Four_domination_in_graphs.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954233/27_JANUARY_2020_SP-libre.pdf?1615343807=\u0026response-content-disposition=attachment%3B+filename%3DFour_domination_in_graphs.pdf\u0026Expires=1739847611\u0026Signature=C4pZ8~IMlndpawKqdWAoETjmPUcTYSJPX8logHrNKQbTGXIOj4fhU9lzUdZ~ngg08sSYeJVeY2wmaMhFVY5Oeeo4IYC5khfiNxuZjSZ0s5SqOOyRP5gZoJCoX0BP1ASBuGVLNwWmAs0IEcN9oG4FUfof0ss~rtLbhQVQBlbPO2QIGHjX06n8KmqUErT4arGh-I7ITJd1m1K55omBScDsvHZrmyGXNDNzHp8zgQeZSLhDXUanmCmIRE~9omoiWnydfCfvMkLESgdUZA4xXe0bnofU435KDQyV0Xi~4KhgQmJKB7TSsgqXbWgcgdJ2CUQ1mhNKPfOkSxFgk0n8--bO1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces"><img alt="Research paper thumbnail of On 𝑠⋆g -closed set in topological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954219/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces">On 𝑠⋆g -closed set in topological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of semi star star generalised closed sets were introduced by K.Kannan[11] in 2013. A s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of semi star star generalised closed sets were introduced by K.Kannan[11] in 2013. A set A of a topological space (X,) is called semi star generalized closed (⋆ g-closed) if cl(A)  U whenever A  U and U is s**g-open in X. The aim of this paper is to introduce the concepts of semi star generalized closed sets (⋆ g-closed), semi star generalized open sets (⋆ g-open) and study their basic properties in topological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9acb4feb2b3b8f2972cdc3b6b5f4a15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954219,&quot;asset_id&quot;:45442874,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954219/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442874]").text(description); $(".js-view-count[data-work-id=45442874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9acb4feb2b3b8f2972cdc3b6b5f4a15" } } $('.js-work-strip[data-work-id=45442874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442874,"title":"On 𝑠⋆g -closed set in topological spaces","internal_url":"https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954219,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954219/thumbnails/1.jpg","file_name":"23_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954219/download_file","bulk_download_file_name":"On_s_g_closed_set_in_topological_spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954219/23_JANUARY_2020_SP-libre.pdf?1615343809=\u0026response-content-disposition=attachment%3B+filename%3DOn_s_g_closed_set_in_topological_spaces.pdf\u0026Expires=1739847611\u0026Signature=EMi~CnSxaueyZ7NjNqgUzWBoyrXIcO05KmO32Ybc6BcOaoCUK~5njkH4qgA9dE-QIZBlJW0dIU18dDT0waAEQ01x2BLF8pwFyV5pPljBhD4XPir2lXeVLNZdREoyYLi6EE5bgLTv3R6gaCqJj4sXggzI7A3xHqDCUBLBds2Tcg-Nb13arNexwaFrj-3rbte-h5gvjxzJfMxC3-Ka~fv-vm52tcmIDOyCFGBQSqc~3FgBXaSmGD5pKar5Sw37ilgA-1FxshBmSN0WXxPJUKJ8P5JoTVuuz-55DDs6y77rvry6qATJb0NFomXdcOWQr7BJYu22ujNp~hTRvGHKGobhig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph"><img alt="Research paper thumbnail of Perfect Four Domination Number And Independent Four Domination Number Of A Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/65954206/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph">Perfect Four Domination Number And Independent Four Domination Number Of A Graph</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is said to be fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is said to be four dominating set[9] if every vertex&nbsp; in&nbsp; V –S&nbsp; is&nbsp; adjacent&nbsp; to&nbsp; at&nbsp; least&nbsp; four&nbsp; vertices&nbsp; in&nbsp; S. The&nbsp; minimum&nbsp; cardinality&nbsp; taken&nbsp; over&nbsp; all,&nbsp; the&nbsp; minimal&nbsp; four&nbsp; dominating&nbsp; set&nbsp; is called&nbsp; four&nbsp; domination&nbsp; number&nbsp; and&nbsp; is&nbsp; denoted&nbsp; by 4d(G). In this paper, we introduce the perfect four domination number, independent four domination number and study its properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b00597a869d65d9be991a97344e3ed82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954206,&quot;asset_id&quot;:45442852,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954206/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442852]").text(description); $(".js-view-count[data-work-id=45442852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b00597a869d65d9be991a97344e3ed82" } } $('.js-work-strip[data-work-id=45442852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442852,"title":"Perfect Four Domination Number And Independent Four Domination Number Of A Graph","internal_url":"https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954206/thumbnails/1.jpg","file_name":"17_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954206/download_file","bulk_download_file_name":"Perfect_Four_Domination_Number_And_Indep.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954206/17_JANUARY_2020_SP-libre.pdf?1615343811=\u0026response-content-disposition=attachment%3B+filename%3DPerfect_Four_Domination_Number_And_Indep.pdf\u0026Expires=1739847611\u0026Signature=YuBxX3L1XiD3sqAgI8wzrgp66aQ2roYVkSNug87NvhLHnPjZ3DUt7vRovwfUz4IkdTAhDs6bSuxikH5SMefnLl6SyLN7Bj93S-RrV2iRz59-7SAjN0KE5h0ei9p7~HJrzIhLGMGnV2VPQUtgMZTrVu3Q6p0VZK07pTC30zbAA2C5gmyHjs2FYAHkj7ENRqgum618I97W9iLMM7ijs7X0ret26MY0t4TzFsAy8G~gs9SP5N8NWED3HaG0OjSwGpvkXKcyleXZj8Nb7ER2R2~9xE8u1Kb3UDU~OnatbzPEYKLx3NlZsrbybo8CmveoFAAKOSCCW3BU~hiIgUoTNI9WBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces"><img alt="Research paper thumbnail of Q** - Closed sets in topological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954192/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces">Q** - Closed sets in topological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the year 2010, the concepts of Q*-closed sets were introduced and studied by Murugalingam and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the year 2010, the concepts of Q*-closed sets were introduced and studied by Murugalingam and Lalitha [7, 8] in topological spaces. In this paper we introduce and study new type of closed sets called Q**-closed sets in topological spaces. Also we discuss some of their properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8564196c82a7bfd60c08a4e4364027e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954192,&quot;asset_id&quot;:45442845,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954192/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442845]").text(description); $(".js-view-count[data-work-id=45442845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8564196c82a7bfd60c08a4e4364027e" } } $('.js-work-strip[data-work-id=45442845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442845,"title":"Q** - Closed sets in topological spaces","internal_url":"https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954192/thumbnails/1.jpg","file_name":"16_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954192/download_file","bulk_download_file_name":"Q_Closed_sets_in_topological_spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954192/16_JANUARY_2020_SP-libre.pdf?1615343814=\u0026response-content-disposition=attachment%3B+filename%3DQ_Closed_sets_in_topological_spaces.pdf\u0026Expires=1739847611\u0026Signature=c6XsAa7Rs4rPos7nuD~V04FtTiyjDsd26IypFyDMj-o7gsBZ0t8SKiirbGuO4QmOiGNDv2IFNUo4ZMz5~YlbRM~6~1Iz~Nls2df2USBHyH9qPleqzI886jDLEVqkHIrOl368M056rg3Gh-r0kMHKLB-iMjq-jcsRgqQSkTIRAUgXHkcTCc69q9YHcX44Wjg5Mc-QoP~e52JQLzw4aTmKZZOv9C9dWB1~OzTH4uVlbAi97JYw0P88GKahW1RADcBaiPV-V7VQfE3trVIWgMnEVRt~uDsGkFUG9MCCVIMhioqx~-HI0S~UUYC71tcRcHQBC71ErM9dSjVQlw0UGvpysw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442836"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise Q**O - Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces">Pairwise Q**O - Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connectedness is a well-known notion in topology. Pervin [21] was first to define connectedness a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connectedness is a well-known notion in topology. Pervin [21] was first to define connectedness and components in a bitopological spaces, where as the concept of quasi components in bitopological spaces was introduced by Reilly and Young [10]. The aim of this paper is to introduce the notion of pairwise Q**O-connected spaces and pairwise Q**O-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db060c41a0770cb68a93f25ba7fb1d18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954186,&quot;asset_id&quot;:45442836,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442836"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442836"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442836; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442836]").text(description); $(".js-view-count[data-work-id=45442836]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442836; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442836']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db060c41a0770cb68a93f25ba7fb1d18" } } $('.js-work-strip[data-work-id=45442836]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442836,"title":"Pairwise Q**O - Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954186/thumbnails/1.jpg","file_name":"9_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954186/download_file","bulk_download_file_name":"Pairwise_Q_O_Connectedness_in_bitopologi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954186/9_JANUARY_2020_SP-libre.pdf?1615343814=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_Q_O_Connectedness_in_bitopologi.pdf\u0026Expires=1739847611\u0026Signature=XpyOUE1u-ZkCO7yi7WVewXWRltk6jcH~zw7x7K0MQrrhJq3S6lgC7-2H6ft8P62wISzJCluhmnyHwFzpZhcifcDO3FsQZP2fikbUAsDfgLL1cmx0dYQlEtFNKm4aOMRef3~bMAI-Vq9hmJX6gbQViAsIgMBvYtuYfWUNuHkHwH~7EQz-sJbHlbaN5WWbsETR-SbIfVd7yat6-GrmgjH-X4RIIUdDi0aeTIqM1W4tFhfOY78r~gAIm6mZe3Cz28srirGVilATi0Ts4qYnC8dqEySFREDBvCLas3WBhxy8kGrhtwGg50LUJbq8iLQwSb4Dtl2bjWv6OMLKjFJNDrgVYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442829"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets"><img alt="Research paper thumbnail of Some Topological Separation Axioms Using gp** - Open Sets" class="work-thumbnail" src="https://attachments.academia-assets.com/65954174/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets">Some Topological Separation Axioms Using gp** - Open Sets</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Replacing open sets by gp** open sets and &#39;cl&#39; by gp** in-Spaces (i = 0, 1, 2) and gp**-Spaces (i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Replacing open sets by gp** open sets and &#39;cl&#39; by gp** in-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) of csaszar [7], We introduce gp**-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. Keywords-gp**-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1). I.INTRODUCTION Topology has a vital role in pure mathematics and has many subfields. The topology structured the foundation for geometry and algebra. There is no universal agreement among mathematicians as what a first course in topology should include. There are many topics that are appropriate to such a course and not all are equally relevant to the varied purposes. Separation axioms are properties by which the topology on a space X separates points from points, points from closed sets and closed sets from each other. The various separation axioms give rise to a sequence of successively stronger requirements, which are put upon the topology of a space to separate varying types of subsets. In 1963, Levine introduced the concept of semi-open sets. Since then, a considerable number of papers discussing separation axioms, essentially by replacing open sets by semi-open sets, have appeared in the literature. For instance, Maheshwari and Prasad introduced semi-T 0 , semi-T 1 , semi-T 2 , s-normality and s-regularity as a generalization of T 0 , T 1 , T 2 , regularity and normality axioms respectively, and investigated their properties. The notion of semi-open sets was used by Maheshwari and Prasad to introduce pairwise semi-T 0 , pairwise semi-T 1 , pairwise semi-T 2 , pairwises-regular and pairwise s-normal spaces. Moreover, s-normal (resp. semi normal) spaces were introduced and studied by Maheshwari and Prasad [12] (resp. Dorsett [8]). Throughout this paper X and Y always represent nonempty topological spaces (X,) and(Y,).In this paper, we introduce gp**-spaces, (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. II. gp**-SPACES (i = 0, 1, 2) AND gp**-SPACES (i = 0, 1) In the year 2013, gp**-closed sets were introduced by D.Narasimhan and J.Jayanthi [19]. In this section, we introduce gp**-spaces, (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. Definition 2.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5bb72584f570c5bf9b7c7c47825ea698" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954174,&quot;asset_id&quot;:45442829,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954174/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442829"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442829"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442829; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442829]").text(description); $(".js-view-count[data-work-id=45442829]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442829; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442829']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5bb72584f570c5bf9b7c7c47825ea698" } } $('.js-work-strip[data-work-id=45442829]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442829,"title":"Some Topological Separation Axioms Using gp** - Open Sets","internal_url":"https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954174/thumbnails/1.jpg","file_name":"8_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954174/download_file","bulk_download_file_name":"Some_Topological_Separation_Axioms_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954174/8_JANUARY_2020_SP-libre.pdf?1615343815=\u0026response-content-disposition=attachment%3B+filename%3DSome_Topological_Separation_Axioms_Using.pdf\u0026Expires=1739786439\u0026Signature=GXwu3pxi4oblfckac2HyE1TjZyzuQtieDj-1YhxP141~y2BMATQDvhN3VySUEJIfE6h2yiPkFoqqyE4CSJoHNorSvqTKed5TiO4R4qBTIgf5H~n91whwWXj7~P6CqzoOQVajHn83lx4q6AruXLpvix~pvdDMibE~gAfjl8HlVZOfymH4bWeXGjtzpucuDuWayhGdNXGETvzRX8xZZq0BhF5J9zEUVu13Q8VzsPYThsvsP-AD9pATLNsJ8ILS0LP20d3wYJvMCDHDSbqOp8xbl0cZE47~WoyAZny0W5NGnp7LP8ZPzzO8PEMmNJCnrdohTVKjn8R67AoT1N7WByfgpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces"><img alt="Research paper thumbnail of Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954160/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces">Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In compactness g-open sets were firstly used by Balachandran [1] et al. A topological space (X,)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In compactness g-open sets were firstly used by Balachandran [1] et al. A topological space (X,) is called go-compact if every cover of X by g-open sets has a finite sub cover. In this paper, we introduce the Q **O-compact spaes in topological spaces and study it&#39;s properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa8a874058cf549308f8272fb9e2f8b4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954160,&quot;asset_id&quot;:45442788,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954160/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442788]").text(description); $(".js-view-count[data-work-id=45442788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa8a874058cf549308f8272fb9e2f8b4" } } $('.js-work-strip[data-work-id=45442788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442788,"title":"Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces","internal_url":"https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954160,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954160/thumbnails/1.jpg","file_name":"7_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954160/download_file","bulk_download_file_name":"Q_closed_Q_open_Q_Lindelof_and_Q_O_compa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954160/7_JANUARY_2020_SP-libre.pdf?1615343816=\u0026response-content-disposition=attachment%3B+filename%3DQ_closed_Q_open_Q_Lindelof_and_Q_O_compa.pdf\u0026Expires=1739847611\u0026Signature=X7V0Z56spwPLHa1a7RpiY6YjyZz1eunsi21wa9c0AcZFqwDuK3sw7Ao1Scx3~9cDoa8zDrFOD2sp-IXTDfZQbRE2vHQY7SnyEVxTJecAAm3VKWV6-FGPP2QMuewe2A3~Y3c3ifbCa2HAtXI9hsrNP23C9FTFw~-neO6S0Jri4wFTytYQAPDCZwMeUO9UYAnCy10IzBdzEcaDRsITV3OA20-y82TMeWsT6BMouL4PnO1Dgg77miI4ErRmNgOtuX-U4qg8wv-OmUSaNwd7cJYwkTEBkPOfHnnPIL7dGTfC5MuC0JHwRIpCohQdOVmcUnHg-hj2lk8wbGodQqtkAIqcDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1476838" id="papers"><div class="js-work-strip profile--work_container" data-work-id="110403443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/110403443/B_Nearly_Compact_Spaces"><img alt="Research paper thumbnail of B - Nearly Compact Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/110403443/B_Nearly_Compact_Spaces">B - Nearly Compact Spaces</a></div><div class="wp-workCard_item"><span>Journal of Global Research in Mathematical</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The main focus of this paper is to introduce the B - nearly compact spaces and study its properti...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The main focus of this paper is to introduce the B - nearly compact spaces and study its properties. Keywords: B - nearly compact spaces</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="110403443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="110403443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 110403443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=110403443]").text(description); $(".js-view-count[data-work-id=110403443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 110403443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='110403443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=110403443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":110403443,"title":"B - Nearly Compact Spaces","internal_url":"https://www.academia.edu/110403443/B_Nearly_Compact_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986558"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces"><img alt="Research paper thumbnail of • Pairwise Q* Separation Axioms in Bitopological Spaces" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces">• Pairwise Q* Separation Axioms in Bitopological Spaces</a></div><div class="wp-workCard_item"><span>International Journal of Mathematical Archive</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to introduce the concepts of pairwise Q* Ti ( i = 0, 1, 2, 3, 4 ) and pa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to introduce the concepts of pairwise Q* Ti ( i = 0, 1, 2, 3, 4 ) and pairwise Q* normal, pairwise Q* regular, pairwise Q* US, pairwise Q* KC space, pairwise urysohn space, pairwise Q* T_(7⁄(8 )), pairwise Q* T_((1 1)⁄2), pairwise Q* T_((1 2)⁄( 3)), pairwise Q* T_((2 1)⁄2) space, pairwise Q* T_((4 1)⁄2) space, pairwise Q* T_((5 1)⁄2) space and study its general properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986558"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986558"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986558; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986558]").text(description); $(".js-view-count[data-work-id=83986558]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986558; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986558']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83986558]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986558,"title":"• Pairwise Q* Separation Axioms in Bitopological Spaces","internal_url":"https://www.academia.edu/83986558/_Pairwise_Q_Separation_Axioms_in_Bitopological_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986557"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space"><img alt="Research paper thumbnail of Q* Locally Closed Sets in Topological Space" class="work-thumbnail" src="https://attachments.academia-assets.com/89158176/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space">Q* Locally Closed Sets in Topological Space</a></div><div class="wp-workCard_item"><span>Journal of Global Research in Mathematical</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we introduce and study the notions of Q* locally closed sets and Q* locally continu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we introduce and study the notions of Q* locally closed sets and Q* locally continuous in bitopological spaces. Keywords: Q* locally closed set, Q* locally closed* set , Q* locally closed** set , Q*LC - continuous , Q*LC* - continuous , Q*LC** - continuous and Q*- sub maximal space . Subject classification: 54D15.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f9c1fc90d382e3375c7eaf1270ee7c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158176,&quot;asset_id&quot;:83986557,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158176/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986557"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986557"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986557; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986557]").text(description); $(".js-view-count[data-work-id=83986557]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986557; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986557']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f9c1fc90d382e3375c7eaf1270ee7c8" } } $('.js-work-strip[data-work-id=83986557]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986557,"title":"Q* Locally Closed Sets in Topological Space","internal_url":"https://www.academia.edu/83986557/Q_Locally_Closed_Sets_in_Topological_Space","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158176,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158176/thumbnails/1.jpg","file_name":"pmc6943417.pdf","download_url":"https://www.academia.edu/attachments/89158176/download_file","bulk_download_file_name":"Q_Locally_Closed_Sets_in_Topological_Spa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158176/pmc6943417-libre.pdf?1659318783=\u0026response-content-disposition=attachment%3B+filename%3DQ_Locally_Closed_Sets_in_Topological_Spa.pdf\u0026Expires=1739847611\u0026Signature=fGiynWbAtzdxxQfFy0SFQ7YvViBaWU8lukcCnIqsHoZsPtMuoEKRB0Ztzu6p~ffSUSzkAcsRo7rVwEmoWkyuYpDi4hgGO-QZ~5AX3V~AgtI~2jVdxOPDtQaCOb6SQ5T3mIVGeSQg70l85zcVROcQR6F5FFu1JsoqQ3W5UzWp16-olWwkYn2USRUSpJZAnSbGWNvg1r5-aOYzWW93lhFwe2Op5whJR38EfA-gtQO6dBMBOusD-S6oGOdWdD2g8rxi8DsDqm84-bhN-d44wOx3TI7~8bvH9rOAsM2twGVyOwD0yOvhr~XVx6gSR~8ds3lJeDx-eiYUoZ2qkmtDO~sV8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986556"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces"><img alt="Research paper thumbnail of More on Pairwise Almost Normal Spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/89158171/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces">More on Pairwise Almost Normal Spaces</a></div><div class="wp-workCard_item"><span>International Research Journal of Pure Algebra</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">T he main focus of this paper is to introduce the properties of pairwise almost Hausdorffand pair...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">T he main focus of this paper is to introduce the properties of pairwise almost Hausdorffand pairwise almost normalspaces. Also we introduce the Urysohn lemma using pairwise almost normal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1fa13908ebedf2b00afec7a9bb41c223" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158171,&quot;asset_id&quot;:83986556,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158171/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986556"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986556"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986556; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986556]").text(description); $(".js-view-count[data-work-id=83986556]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986556; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986556']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1fa13908ebedf2b00afec7a9bb41c223" } } $('.js-work-strip[data-work-id=83986556]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986556,"title":"More on Pairwise Almost Normal Spaces","internal_url":"https://www.academia.edu/83986556/More_on_Pairwise_Almost_Normal_Spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158171,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158171/thumbnails/1.jpg","file_name":"203.pdf","download_url":"https://www.academia.edu/attachments/89158171/download_file","bulk_download_file_name":"More_on_Pairwise_Almost_Normal_Spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158171/203-libre.pdf?1659318764=\u0026response-content-disposition=attachment%3B+filename%3DMore_on_Pairwise_Almost_Normal_Spaces.pdf\u0026Expires=1739847611\u0026Signature=P3-Urzh7aPJHFAIZdcCpf7fsDw4pXSk8jYADIxzHxPIfc17M3OI1qR-trFagGGFY8CzM~Idjr3Gzj5GVsz18U6MYxMqQN-nRctrlXAeh2ocM54hjhe~QMr8a8vxMau~~mJ6yJzpqF6yPhvvehVh~SCSwG4C46Ber~xsD7gAiWkasuTuVuRBNUPBAdhP6PUN9~9~wNx3KXxkcgeofZvoeC9n43b-u50U6mhSor4ny~Wq6Riv9FUA9W5bL-SV8qw00eGZ3ARO4Ptvt-di6~35PIml6BuI~NNmwbYItLd7De5iqwbaqcKYUA9oLZf9ySTgg6s50lfXtyzFH4gjS36ldLA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986555"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary"><img alt="Research paper thumbnail of Strongly Minimal Generalized Boundary" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary">Strongly Minimal Generalized Boundary</a></div><div class="wp-workCard_item"><span>Indian Journal of Applied Research</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper properties of smg - boundary are investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986555"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986555"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986555; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986555]").text(description); $(".js-view-count[data-work-id=83986555]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986555; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986555']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83986555]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986555,"title":"Strongly Minimal Generalized Boundary","internal_url":"https://www.academia.edu/83986555/Strongly_Minimal_Generalized_Boundary","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83986542"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces"><img alt="Research paper thumbnail of On Q*s - regular spaces and Q*s - normal spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/89158164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces">On Q*s - regular spaces and Q*s - normal spaces</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of Q* - open sets in a topological space was introduced by Murugalingam and Lalitha [ ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of Q* - open sets in a topological space was introduced by Murugalingam and Lalitha [ 7 ]. We introduce the notion of Q*s - regular, Q*s - normal, s*Q* - normal and obtain some characterizations Q*s - regularity and Q*s – normality, s*Q* - normal.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="483794c8ca213b7cc67e84d8ecdf06aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:89158164,&quot;asset_id&quot;:83986542,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/89158164/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83986542"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83986542"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83986542; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83986542]").text(description); $(".js-view-count[data-work-id=83986542]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83986542; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83986542']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "483794c8ca213b7cc67e84d8ecdf06aa" } } $('.js-work-strip[data-work-id=83986542]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83986542,"title":"On Q*s - regular spaces and Q*s - normal spaces","internal_url":"https://www.academia.edu/83986542/On_Q_s_regular_spaces_and_Q_s_normal_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":89158164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/89158164/thumbnails/1.jpg","file_name":"7-Article-49-6-10-20150226.pdf","download_url":"https://www.academia.edu/attachments/89158164/download_file","bulk_download_file_name":"On_Q_s_regular_spaces_and_Q_s_normal_spa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/89158164/7-Article-49-6-10-20150226-libre.pdf?1659318769=\u0026response-content-disposition=attachment%3B+filename%3DOn_Q_s_regular_spaces_and_Q_s_normal_spa.pdf\u0026Expires=1739847611\u0026Signature=QjEEGLwPkUKm1kEab6S-nM1LQuRhtKmOyVy~Gf9D4fm1aNueV9Vm2DIz93c~kNC6nNFMZI9y5oMAkOG~roEVPX5AKQgWioTwDqqUJLfzLyzjKXUOPWIvTbH3cw1cuFEGseSN0orH6nzGTVA51ORh1WiQhnG1p9TqrC~3Sunj8igBgAKXs68b-HqswP1NcXghb8crAi~NRKfCIAeafVxvUHibIFeyQRFLJAAuz0gkUEPVhwHqIb5iBZ5Pqf-8h0yH6bFMIps5HR3CrT9LnZFQwacfftJcJ9lP-Aaf89zA1oh6aH-q0ePVlnEtLuslOU8DrRiD6jXI-54KZZWPvDyqFg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="73840626"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/73840626/MA_TOPOLOGY"><img alt="Research paper thumbnail of MA TOPOLOGY" class="work-thumbnail" src="https://attachments.academia-assets.com/82208693/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/73840626/MA_TOPOLOGY">MA TOPOLOGY</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc1209ab9f3c0990d0ad39ba0b563203" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:82208693,&quot;asset_id&quot;:73840626,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/82208693/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="73840626"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="73840626"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 73840626; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=73840626]").text(description); $(".js-view-count[data-work-id=73840626]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 73840626; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='73840626']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc1209ab9f3c0990d0ad39ba0b563203" } } $('.js-work-strip[data-work-id=73840626]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":73840626,"title":"MA TOPOLOGY","internal_url":"https://www.academia.edu/73840626/MA_TOPOLOGY","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":82208693,"title":"","file_type":"docx","scribd_thumbnail_url":"https://attachments.academia-assets.com/82208693/thumbnails/1.jpg","file_name":"MA_TOPOLOGY.docx","download_url":"https://www.academia.edu/attachments/82208693/download_file","bulk_download_file_name":"MA_TOPOLOGY.docx","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/82208693/MA_TOPOLOGY.docx?1738482895=\u0026response-content-disposition=attachment%3B+filename%3DMA_TOPOLOGY.docx\u0026Expires=1739847611\u0026Signature=QVP0g18E6xT3XkSo1K5QYWUTDXQTX2sPaq5t1zKC~H7yQNbIYhbS1sJBB3mzW1wUHlrCxLMnFe-WCox~rSyoe~RX8VET5yBeuooS67oZfNeM0fp94Cdjpj8QJVRhDc0-zuXkkEF6FXAkynXTNnKIEF8kbDU5ZQ1E29XHsdBPScq0c1xO8d7Wrv0xOaMCWOPtzOgnYaSqkGMR6UEFMW5o0lgemy1iwiE6ZjeWK7Faordta0sXGyLeclPeB162Rg7BS9YjaGKLt3NMwm1d5YXLWsgmysjrtooLK6w8O0wFGEPC79zm7YqPq9hSlYS-N-q0L0kT2nDlPSkKpbDztq6I9Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45443022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise DaO -Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954385/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces">Pairwise DaO -Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>INFOKARA RESEARCH</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">O.R.Sayed, A.M.Khalil [23] introduced the notion of D-closed sets in topological spaces in 2015....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">O.R.Sayed, A.M.Khalil [23] introduced the notion of D-closed sets in topological spaces in 2015.The aim of this paper is to introduce the notion of pairwise DO-connected spaces and pairwise DO-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="48190d132d714ca6b45a8022be7acdbf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954385,&quot;asset_id&quot;:45443022,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954385/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45443022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45443022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45443022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45443022]").text(description); $(".js-view-count[data-work-id=45443022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45443022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45443022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "48190d132d714ca6b45a8022be7acdbf" } } $('.js-work-strip[data-work-id=45443022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45443022,"title":"Pairwise DaO -Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45443022/Pairwise_DaO_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954385,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954385/thumbnails/1.jpg","file_name":"1_Jun_3893.pdf","download_url":"https://www.academia.edu/attachments/65954385/download_file","bulk_download_file_name":"Pairwise_DaO_Connectedness_in_bitopologi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954385/1_Jun_3893-libre.pdf?1615343794=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_DaO_Connectedness_in_bitopologi.pdf\u0026Expires=1739847611\u0026Signature=MIkIATbCkSEqhK-577d7LpcqQ-3crIGNbXrjqwH~kBdi7PM5RD2sUIAzeZgXHCDEbGAkpJrZu4XDQMowGFKTqUed4wZXcKGPzoEBZhYuFB7sMQP71SCP068YntU5MKtp96KiPcXQpRPb3epAv2qm-cm2lmL85rK1LVJweSuERm56YAZDtFNeCrpA9QxQUihgpxYY7KPXQwJJIly88t6QLjczZHFuHcitqFN~X3iPBqqpsSzpQh6lPIog03TgudhqG~b2ayz5v1haZQ6b5EjTtnNjQAqmTB2UJWpih8lUj~Kjff7lkiZKxrjWK8RQfAaA2p3vW530Q0R8xJ~m3OznAA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442999"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise gs**O -Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954342/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces">Pairwise gs**O -Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental modal analysis</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connectedness is a well-known notion in topology. Pervin [18] was first to define connectedness a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connectedness is a well-known notion in topology. Pervin [18] was first to define connectedness and components in a bitopological spaces, whereas the concept of quasi components in bitopological spaces was introduced by Reilly and Young [10].The aim of this paper is to introduce the notion of pairwise gs**O-connected spaces and pairwise gs**O-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e19590455508317035adcba19b49e5f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954342,&quot;asset_id&quot;:45442999,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954342/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442999"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442999"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442999; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442999]").text(description); $(".js-view-count[data-work-id=45442999]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442999; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442999']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e19590455508317035adcba19b49e5f3" } } $('.js-work-strip[data-work-id=45442999]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442999,"title":"Pairwise gs**O -Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45442999/Pairwise_gs_O_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954342,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954342/thumbnails/1.jpg","file_name":"345_november_2956.pdf","download_url":"https://www.academia.edu/attachments/65954342/download_file","bulk_download_file_name":"Pairwise_gs_O_Connectedness_in_bitopolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954342/345_november_2956-libre.pdf?1615343798=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_gs_O_Connectedness_in_bitopolog.pdf\u0026Expires=1739847611\u0026Signature=DlNAFqxLbQgR5DsUjBUbZvVXR7oxwH5SKt1AjPmkOtckOWATz0fhg9~AGmNx-UHJIzoP-68jsL1Mb8qOms2A4QZsAKqFNZHKrnQZfgfXFxYa6eKXHbzh~wpUV5KShRzc7u-eBMq2TIirbX9mYoSZl0sneXb654nXxfwztdyaD4eHei0VV~Ebl90xBw9O3eHfvQuVK6howF2dBPr5O7LYCJ0kSP~~JTrEhrUd2nGXb~JE6F094WZoGebOI61s4WJuopC4TLskExLYMnPD9nGl4om2SOZOvOa2Ke7dxaG-cj9xqsrAIeCWtzgcBTFoiEI3rvVG0lU6pgS7CmmsAn9SDg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442976"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function"><img alt="Research paper thumbnail of Pasting Lemma for Q** -Continuous Function" class="work-thumbnail" src="https://attachments.academia-assets.com/65954299/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function">Pasting Lemma for Q** -Continuous Function</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The pasting lemmas for continuous functions are established over last two decades. Anitha etal.[1...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The pasting lemmas for continuous functions are established over last two decades. Anitha etal.[1] established the pasting lemma for rg –continuous, gc -irresolute and gp -continuous functions. In this sequel, the pasting lemmas for Q**-continuous functions have been introduce in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="826e57eaa13448513358060623088c7b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954299,&quot;asset_id&quot;:45442976,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954299/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442976"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442976"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442976; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442976]").text(description); $(".js-view-count[data-work-id=45442976]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442976; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442976']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "826e57eaa13448513358060623088c7b" } } $('.js-work-strip[data-work-id=45442976]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442976,"title":"Pasting Lemma for Q** -Continuous Function","internal_url":"https://www.academia.edu/45442976/Pasting_Lemma_for_Q_Continuous_Function","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954299,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954299/thumbnails/1.jpg","file_name":"68_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954299/download_file","bulk_download_file_name":"Pasting_Lemma_for_Q_Continuous_Function.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954299/68_JANUARY_2020_SP-libre.pdf?1615343801=\u0026response-content-disposition=attachment%3B+filename%3DPasting_Lemma_for_Q_Continuous_Function.pdf\u0026Expires=1739847611\u0026Signature=IrwY4MxxWZnsTDEZ9ywbZBszMBsg-pYr5~BineW~OclCz-2k67g94wlRPK0YtvfUR22hS27DCWV102U7Nmcbc8OOjRmUfpw~KOwc4D-7XDTzNoFVSGOCadHxZ7SQWZqN-nqU2gnl6O-ZsVVUKHksddSo5YWIsdeebqutvPmZGvP4gXpwSIfdxPCHQl5vUbajMpO0TBPohwR7WwGK3opAYolyb5wP7TlH8v~EwmyHr1DWZatqYtYcpGy-sRZiGP1CcjRVmylnBxEQzuXE5avccU54Mi9qte6ReIzyO3sS4aW1VR2WllMmd89vHtk~gFPEwByEjDu-D54V8fUFdWSdVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442961"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs"><img alt="Research paper thumbnail of A Study On Five Domination Number In Graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/65954267/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs">A Study On Five Domination Number In Graphs</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Dominating queens is the origin of the study of dominating set in graphs.Berge [1] ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Dominating&nbsp; queens&nbsp; is&nbsp; the&nbsp; origin&nbsp; of&nbsp; the&nbsp; study&nbsp; of&nbsp; dominating&nbsp; set&nbsp; in&nbsp; graphs.Berge&nbsp; [1]&nbsp; and&nbsp; Ore&nbsp; [4]&nbsp; were&nbsp; the&nbsp; first&nbsp; to&nbsp; define dominating sets. A dominating set is said to be fivedominating set if every vertex in V –S is adjacent to at least fivevertices in S. The minimum cardinality taken over all, the minimal fivedominating set is called fivedomination number and is denoted by 5d(G).In this paper, we introduce and studythe fivedomination number and its characterizations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="35fed8edb768d8ed3d73d66ab5959956" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954267,&quot;asset_id&quot;:45442961,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954267/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442961"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442961"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442961; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442961]").text(description); $(".js-view-count[data-work-id=45442961]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442961; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442961']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "35fed8edb768d8ed3d73d66ab5959956" } } $('.js-work-strip[data-work-id=45442961]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442961,"title":"A Study On Five Domination Number In Graphs","internal_url":"https://www.academia.edu/45442961/A_Study_On_Five_Domination_Number_In_Graphs","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954267,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954267/thumbnails/1.jpg","file_name":"53_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954267/download_file","bulk_download_file_name":"A_Study_On_Five_Domination_Number_In_Gra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954267/53_JANUARY_2020_SP-libre.pdf?1615343804=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_On_Five_Domination_Number_In_Gra.pdf\u0026Expires=1739847611\u0026Signature=EE0-88babL~kci8ow-00cj9unLwX4ntiWMdWgyJdXJEZ92ko-LKiqZtRifb0K5pbsi9V~9AMbc501RFHGnExuOHB6IWTWx5JnVHmUoUG4Lw4minUBOYOvph0GKmtzGX8DEb6IoGMOCRaJr8knuprXqGjqSONC95mNlyx9wsQY4iS5a7AwbWjftobK-JNTp2ijFf2lU3cIhjx-rSOMAf1toEMD~-XIcXZSlaILqTVr2AYDL5plxUqp72o3fZa-yBYltZQxhTGmbi9czk2evrAwVG0tQE65TWnXq1wTUbkZIVuMDtEpjcaLUmH2aEWCc6azYP61HVhquit5u7VTvpRow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442937"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph"><img alt="Research paper thumbnail of Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/65954258/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph">Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A set D⊆V is called triple dominating set of a fuzzy graph G. If every vertex in V is dominated b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A set D⊆V is called triple dominating set of a fuzzy graph G. If every vertex in V is dominated by at least three vertices in D. The minimum cardinality of fuzzy triple dominating set is called fuzzy triple domination number of G and is denoted by γ₃(G).The aim of this paper is to find on what relations the fuzzy graph has perfect triple domination number and independent triple domination number for a connected fuzzy is obtained .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="527b6680ace934eb47cff657ed8218c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954258,&quot;asset_id&quot;:45442937,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954258/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442937"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442937"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442937; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442937]").text(description); $(".js-view-count[data-work-id=45442937]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442937; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442937']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "527b6680ace934eb47cff657ed8218c7" } } $('.js-work-strip[data-work-id=45442937]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442937,"title":"Perfect Triple Domination Number and Independent Triple Domination Number of a Fuzzy Graph","internal_url":"https://www.academia.edu/45442937/Perfect_Triple_Domination_Number_and_Independent_Triple_Domination_Number_of_a_Fuzzy_Graph","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954258,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954258/thumbnails/1.jpg","file_name":"31_JANUARY_2020_SP_Copy.pdf","download_url":"https://www.academia.edu/attachments/65954258/download_file","bulk_download_file_name":"Perfect_Triple_Domination_Number_and_Ind.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954258/31_JANUARY_2020_SP_Copy-libre.pdf?1615343805=\u0026response-content-disposition=attachment%3B+filename%3DPerfect_Triple_Domination_Number_and_Ind.pdf\u0026Expires=1739847611\u0026Signature=UiWjsQsVwi1T-VPH1ZYKQxFrQ-klSg7nSDzV5ZjD6LRGP-hvsUB2JjFjGwDiVfUp5ww2tjub8vr077JMaO0d0n~zLTBp2OwHQRbYsa8rbrp09paraz~mzxQXZAgzjN0TJeB9fBJdK~5uBZfzYdhWnbVJJYudiMn1X7o3-PdLl-53q6q756Qq-e6zZ1~JtKzAd-cUt5FjlJHvNmdCEXYYAJ4HrthbeWFqWAvYdGpKQi3AkzSwWjfQJe38KZJgmHQ7U8DU822eBBVqLxUl4k4V~pRFI8PWCoRISQE4~hq5tgHpo545X~69Gr-1BJxKbRUAYyH7ptE6zI9vCcYsLQ639g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442919"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles"><img alt="Research paper thumbnail of A Study on Odd and Mean Labeling of Hausdorff Cycles" class="work-thumbnail" src="https://attachments.academia-assets.com/65954245/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles">A Study on Odd and Mean Labeling of Hausdorff Cycles</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper, we consider the Hausdorff graphs are connected and simple. Here we discuss Even Me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper, we consider the Hausdorff graphs are connected and simple. Here we discuss Even Mean labeling and Odd Meanlabeling for someHausdorff&nbsp; graphs. A graph G is said to be Hausdorff&nbsp; if for any two distinct vertices u and v of G, one of the following condition hold:1.Both u and v are isolated2.Either u and v is isolated3.There exist two non-adjacent edges&nbsp; 𝐞𝟏and 𝐞𝟐of G such that𝐞𝟏is incident with u and 𝐞𝟐is incident with v.All the graphs consider here are connected i.e., graphs holding the third condition of hausdorff graphs are considered.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f2e84656f7d7cac3b472a41dd9c1ab6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954245,&quot;asset_id&quot;:45442919,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954245/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442919"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442919"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442919; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442919]").text(description); $(".js-view-count[data-work-id=45442919]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442919; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442919']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f2e84656f7d7cac3b472a41dd9c1ab6" } } $('.js-work-strip[data-work-id=45442919]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442919,"title":"A Study on Odd and Mean Labeling of Hausdorff Cycles","internal_url":"https://www.academia.edu/45442919/A_Study_on_Odd_and_Mean_Labeling_of_Hausdorff_Cycles","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954245,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954245/thumbnails/1.jpg","file_name":"30_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954245/download_file","bulk_download_file_name":"A_Study_on_Odd_and_Mean_Labeling_of_Haus.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954245/30_JANUARY_2020_SP-libre.pdf?1615343806=\u0026response-content-disposition=attachment%3B+filename%3DA_Study_on_Odd_and_Mean_Labeling_of_Haus.pdf\u0026Expires=1739847611\u0026Signature=VFrLiCqH5McRoIgzAouQhOcscVG4jz23hHMPz-SdzTiIc060Qh8~2G6P6DUI27HgTQtPWxe8IU55~8HR3~tTUG7Jo~RqFB2-aK82C9ZMF8AcKuMscitFG~t-t8fdKOwWkzqPNUc2q2UMbBA75XktH9V0u3AnetNOQCJp4j2jYesPfa4gRA3i3BOkLcQwj9j4CVNl-9FU0QmWbYjs5g9-XhKQgo3Pakeu1JKz4KXXug3a6uFXBLyGy973qbu~S5bCsGm-mXI2YONRxxUYx1hTOqqG7LRMrKHTEWNHFCHea52dP9U3tp0tGInEvCLyS4CEgejTmcJ65e843jDeNUgxwQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442895"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442895/Four_domination_in_graphs"><img alt="Research paper thumbnail of Four domination in graphs" class="work-thumbnail" src="https://attachments.academia-assets.com/65954233/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442895/Four_domination_in_graphs">Four domination in graphs</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Berge&nbsp; [1]&nbsp; and&nbsp; Ore&nbsp; [4]&nbsp; were&nbsp; the&nbsp; first&nbsp; to&nbsp; define&nbsp; dominating&nbsp; sets.&nbsp; A&nbsp; dominating set&nbsp; is&nbsp; said&nbsp; to&nbsp; be&nbsp; four&nbsp; dominating&nbsp; set&nbsp; if&nbsp; every vertex in&nbsp; V –S is adjacent to&nbsp; at least four&nbsp; vertices in S . The&nbsp; minimum&nbsp; cardinality taken over all , the&nbsp; minimal four dominating set is called&nbsp; four&nbsp; domination&nbsp; number&nbsp; and&nbsp; is&nbsp; denoted&nbsp; by 4d(G). In&nbsp; this&nbsp; paper, we&nbsp; introduce&nbsp; and&nbsp; study the&nbsp; four&nbsp; domination&nbsp; number&nbsp; and its characterizations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4ffe6e89cbbea962315bea224e8ec171" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954233,&quot;asset_id&quot;:45442895,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954233/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442895"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442895"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442895; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442895]").text(description); $(".js-view-count[data-work-id=45442895]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442895; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442895']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4ffe6e89cbbea962315bea224e8ec171" } } $('.js-work-strip[data-work-id=45442895]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442895,"title":"Four domination in graphs","internal_url":"https://www.academia.edu/45442895/Four_domination_in_graphs","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954233,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954233/thumbnails/1.jpg","file_name":"27_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954233/download_file","bulk_download_file_name":"Four_domination_in_graphs.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954233/27_JANUARY_2020_SP-libre.pdf?1615343807=\u0026response-content-disposition=attachment%3B+filename%3DFour_domination_in_graphs.pdf\u0026Expires=1739847611\u0026Signature=C4pZ8~IMlndpawKqdWAoETjmPUcTYSJPX8logHrNKQbTGXIOj4fhU9lzUdZ~ngg08sSYeJVeY2wmaMhFVY5Oeeo4IYC5khfiNxuZjSZ0s5SqOOyRP5gZoJCoX0BP1ASBuGVLNwWmAs0IEcN9oG4FUfof0ss~rtLbhQVQBlbPO2QIGHjX06n8KmqUErT4arGh-I7ITJd1m1K55omBScDsvHZrmyGXNDNzHp8zgQeZSLhDXUanmCmIRE~9omoiWnydfCfvMkLESgdUZA4xXe0bnofU435KDQyV0Xi~4KhgQmJKB7TSsgqXbWgcgdJ2CUQ1mhNKPfOkSxFgk0n8--bO1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442874"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces"><img alt="Research paper thumbnail of On 𝑠⋆g -closed set in topological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954219/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces">On 𝑠⋆g -closed set in topological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The notion of semi star star generalised closed sets were introduced by K.Kannan[11] in 2013. A s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The notion of semi star star generalised closed sets were introduced by K.Kannan[11] in 2013. A set A of a topological space (X,) is called semi star generalized closed (⋆ g-closed) if cl(A)  U whenever A  U and U is s**g-open in X. The aim of this paper is to introduce the concepts of semi star generalized closed sets (⋆ g-closed), semi star generalized open sets (⋆ g-open) and study their basic properties in topological spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e9acb4feb2b3b8f2972cdc3b6b5f4a15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954219,&quot;asset_id&quot;:45442874,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954219/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442874"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442874"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442874; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442874]").text(description); $(".js-view-count[data-work-id=45442874]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442874; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442874']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e9acb4feb2b3b8f2972cdc3b6b5f4a15" } } $('.js-work-strip[data-work-id=45442874]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442874,"title":"On 𝑠⋆g -closed set in topological spaces","internal_url":"https://www.academia.edu/45442874/On_s_g_closed_set_in_topological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954219,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954219/thumbnails/1.jpg","file_name":"23_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954219/download_file","bulk_download_file_name":"On_s_g_closed_set_in_topological_spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954219/23_JANUARY_2020_SP-libre.pdf?1615343809=\u0026response-content-disposition=attachment%3B+filename%3DOn_s_g_closed_set_in_topological_spaces.pdf\u0026Expires=1739847611\u0026Signature=EMi~CnSxaueyZ7NjNqgUzWBoyrXIcO05KmO32Ybc6BcOaoCUK~5njkH4qgA9dE-QIZBlJW0dIU18dDT0waAEQ01x2BLF8pwFyV5pPljBhD4XPir2lXeVLNZdREoyYLi6EE5bgLTv3R6gaCqJj4sXggzI7A3xHqDCUBLBds2Tcg-Nb13arNexwaFrj-3rbte-h5gvjxzJfMxC3-Ka~fv-vm52tcmIDOyCFGBQSqc~3FgBXaSmGD5pKar5Sw37ilgA-1FxshBmSN0WXxPJUKJ8P5JoTVuuz-55DDs6y77rvry6qATJb0NFomXdcOWQr7BJYu22ujNp~hTRvGHKGobhig__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph"><img alt="Research paper thumbnail of Perfect Four Domination Number And Independent Four Domination Number Of A Graph" class="work-thumbnail" src="https://attachments.academia-assets.com/65954206/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph">Perfect Four Domination Number And Independent Four Domination Number Of A Graph</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is said to be fo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Berge [1] and Ore [4] were the first to define dominating sets. A dominating set is said to be four dominating set[9] if every vertex&nbsp; in&nbsp; V –S&nbsp; is&nbsp; adjacent&nbsp; to&nbsp; at&nbsp; least&nbsp; four&nbsp; vertices&nbsp; in&nbsp; S. The&nbsp; minimum&nbsp; cardinality&nbsp; taken&nbsp; over&nbsp; all,&nbsp; the&nbsp; minimal&nbsp; four&nbsp; dominating&nbsp; set&nbsp; is called&nbsp; four&nbsp; domination&nbsp; number&nbsp; and&nbsp; is&nbsp; denoted&nbsp; by 4d(G). In this paper, we introduce the perfect four domination number, independent four domination number and study its properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b00597a869d65d9be991a97344e3ed82" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954206,&quot;asset_id&quot;:45442852,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954206/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442852]").text(description); $(".js-view-count[data-work-id=45442852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b00597a869d65d9be991a97344e3ed82" } } $('.js-work-strip[data-work-id=45442852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442852,"title":"Perfect Four Domination Number And Independent Four Domination Number Of A Graph","internal_url":"https://www.academia.edu/45442852/Perfect_Four_Domination_Number_And_Independent_Four_Domination_Number_Of_A_Graph","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954206,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954206/thumbnails/1.jpg","file_name":"17_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954206/download_file","bulk_download_file_name":"Perfect_Four_Domination_Number_And_Indep.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954206/17_JANUARY_2020_SP-libre.pdf?1615343811=\u0026response-content-disposition=attachment%3B+filename%3DPerfect_Four_Domination_Number_And_Indep.pdf\u0026Expires=1739847611\u0026Signature=YuBxX3L1XiD3sqAgI8wzrgp66aQ2roYVkSNug87NvhLHnPjZ3DUt7vRovwfUz4IkdTAhDs6bSuxikH5SMefnLl6SyLN7Bj93S-RrV2iRz59-7SAjN0KE5h0ei9p7~HJrzIhLGMGnV2VPQUtgMZTrVu3Q6p0VZK07pTC30zbAA2C5gmyHjs2FYAHkj7ENRqgum618I97W9iLMM7ijs7X0ret26MY0t4TzFsAy8G~gs9SP5N8NWED3HaG0OjSwGpvkXKcyleXZj8Nb7ER2R2~9xE8u1Kb3UDU~OnatbzPEYKLx3NlZsrbybo8CmveoFAAKOSCCW3BU~hiIgUoTNI9WBA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442845"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces"><img alt="Research paper thumbnail of Q** - Closed sets in topological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954192/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces">Q** - Closed sets in topological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the year 2010, the concepts of Q*-closed sets were introduced and studied by Murugalingam and ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the year 2010, the concepts of Q*-closed sets were introduced and studied by Murugalingam and Lalitha [7, 8] in topological spaces. In this paper we introduce and study new type of closed sets called Q**-closed sets in topological spaces. Also we discuss some of their properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a8564196c82a7bfd60c08a4e4364027e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954192,&quot;asset_id&quot;:45442845,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954192/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442845"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442845"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442845; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442845]").text(description); $(".js-view-count[data-work-id=45442845]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442845; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442845']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a8564196c82a7bfd60c08a4e4364027e" } } $('.js-work-strip[data-work-id=45442845]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442845,"title":"Q** - Closed sets in topological spaces","internal_url":"https://www.academia.edu/45442845/Q_Closed_sets_in_topological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954192/thumbnails/1.jpg","file_name":"16_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954192/download_file","bulk_download_file_name":"Q_Closed_sets_in_topological_spaces.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954192/16_JANUARY_2020_SP-libre.pdf?1615343814=\u0026response-content-disposition=attachment%3B+filename%3DQ_Closed_sets_in_topological_spaces.pdf\u0026Expires=1739847611\u0026Signature=c6XsAa7Rs4rPos7nuD~V04FtTiyjDsd26IypFyDMj-o7gsBZ0t8SKiirbGuO4QmOiGNDv2IFNUo4ZMz5~YlbRM~6~1Iz~Nls2df2USBHyH9qPleqzI886jDLEVqkHIrOl368M056rg3Gh-r0kMHKLB-iMjq-jcsRgqQSkTIRAUgXHkcTCc69q9YHcX44Wjg5Mc-QoP~e52JQLzw4aTmKZZOv9C9dWB1~OzTH4uVlbAi97JYw0P88GKahW1RADcBaiPV-V7VQfE3trVIWgMnEVRt~uDsGkFUG9MCCVIMhioqx~-HI0S~UUYC71tcRcHQBC71ErM9dSjVQlw0UGvpysw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442836"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces"><img alt="Research paper thumbnail of Pairwise Q**O - Connectedness in bitopological spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954186/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces">Pairwise Q**O - Connectedness in bitopological spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Connectedness is a well-known notion in topology. Pervin [21] was first to define connectedness a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Connectedness is a well-known notion in topology. Pervin [21] was first to define connectedness and components in a bitopological spaces, where as the concept of quasi components in bitopological spaces was introduced by Reilly and Young [10]. The aim of this paper is to introduce the notion of pairwise Q**O-connected spaces and pairwise Q**O-disconnected spaces.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db060c41a0770cb68a93f25ba7fb1d18" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954186,&quot;asset_id&quot;:45442836,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954186/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442836"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442836"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442836; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442836]").text(description); $(".js-view-count[data-work-id=45442836]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442836; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442836']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db060c41a0770cb68a93f25ba7fb1d18" } } $('.js-work-strip[data-work-id=45442836]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442836,"title":"Pairwise Q**O - Connectedness in bitopological spaces","internal_url":"https://www.academia.edu/45442836/Pairwise_Q_O_Connectedness_in_bitopological_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954186,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954186/thumbnails/1.jpg","file_name":"9_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954186/download_file","bulk_download_file_name":"Pairwise_Q_O_Connectedness_in_bitopologi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954186/9_JANUARY_2020_SP-libre.pdf?1615343814=\u0026response-content-disposition=attachment%3B+filename%3DPairwise_Q_O_Connectedness_in_bitopologi.pdf\u0026Expires=1739847611\u0026Signature=XpyOUE1u-ZkCO7yi7WVewXWRltk6jcH~zw7x7K0MQrrhJq3S6lgC7-2H6ft8P62wISzJCluhmnyHwFzpZhcifcDO3FsQZP2fikbUAsDfgLL1cmx0dYQlEtFNKm4aOMRef3~bMAI-Vq9hmJX6gbQViAsIgMBvYtuYfWUNuHkHwH~7EQz-sJbHlbaN5WWbsETR-SbIfVd7yat6-GrmgjH-X4RIIUdDi0aeTIqM1W4tFhfOY78r~gAIm6mZe3Cz28srirGVilATi0Ts4qYnC8dqEySFREDBvCLas3WBhxy8kGrhtwGg50LUJbq8iLQwSb4Dtl2bjWv6OMLKjFJNDrgVYA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442829"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets"><img alt="Research paper thumbnail of Some Topological Separation Axioms Using gp** - Open Sets" class="work-thumbnail" src="https://attachments.academia-assets.com/65954174/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets">Some Topological Separation Axioms Using gp** - Open Sets</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Replacing open sets by gp** open sets and &#39;cl&#39; by gp** in-Spaces (i = 0, 1, 2) and gp**-Spaces (i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Replacing open sets by gp** open sets and &#39;cl&#39; by gp** in-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) of csaszar [7], We introduce gp**-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. Keywords-gp**-Spaces (i = 0, 1, 2) and gp**-Spaces (i = 0, 1). I.INTRODUCTION Topology has a vital role in pure mathematics and has many subfields. The topology structured the foundation for geometry and algebra. There is no universal agreement among mathematicians as what a first course in topology should include. There are many topics that are appropriate to such a course and not all are equally relevant to the varied purposes. Separation axioms are properties by which the topology on a space X separates points from points, points from closed sets and closed sets from each other. The various separation axioms give rise to a sequence of successively stronger requirements, which are put upon the topology of a space to separate varying types of subsets. In 1963, Levine introduced the concept of semi-open sets. Since then, a considerable number of papers discussing separation axioms, essentially by replacing open sets by semi-open sets, have appeared in the literature. For instance, Maheshwari and Prasad introduced semi-T 0 , semi-T 1 , semi-T 2 , s-normality and s-regularity as a generalization of T 0 , T 1 , T 2 , regularity and normality axioms respectively, and investigated their properties. The notion of semi-open sets was used by Maheshwari and Prasad to introduce pairwise semi-T 0 , pairwise semi-T 1 , pairwise semi-T 2 , pairwises-regular and pairwise s-normal spaces. Moreover, s-normal (resp. semi normal) spaces were introduced and studied by Maheshwari and Prasad [12] (resp. Dorsett [8]). Throughout this paper X and Y always represent nonempty topological spaces (X,) and(Y,).In this paper, we introduce gp**-spaces, (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. II. gp**-SPACES (i = 0, 1, 2) AND gp**-SPACES (i = 0, 1) In the year 2013, gp**-closed sets were introduced by D.Narasimhan and J.Jayanthi [19]. In this section, we introduce gp**-spaces, (i = 0, 1, 2) and gp**-Spaces (i = 0, 1) in topological spaces and study its properties. Definition 2.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5bb72584f570c5bf9b7c7c47825ea698" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954174,&quot;asset_id&quot;:45442829,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954174/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442829"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442829"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442829; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442829]").text(description); $(".js-view-count[data-work-id=45442829]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442829; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442829']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5bb72584f570c5bf9b7c7c47825ea698" } } $('.js-work-strip[data-work-id=45442829]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442829,"title":"Some Topological Separation Axioms Using gp** - Open Sets","internal_url":"https://www.academia.edu/45442829/Some_Topological_Separation_Axioms_Using_gp_Open_Sets","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954174,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954174/thumbnails/1.jpg","file_name":"8_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954174/download_file","bulk_download_file_name":"Some_Topological_Separation_Axioms_Using.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954174/8_JANUARY_2020_SP-libre.pdf?1615343815=\u0026response-content-disposition=attachment%3B+filename%3DSome_Topological_Separation_Axioms_Using.pdf\u0026Expires=1739786439\u0026Signature=GXwu3pxi4oblfckac2HyE1TjZyzuQtieDj-1YhxP141~y2BMATQDvhN3VySUEJIfE6h2yiPkFoqqyE4CSJoHNorSvqTKed5TiO4R4qBTIgf5H~n91whwWXj7~P6CqzoOQVajHn83lx4q6AruXLpvix~pvdDMibE~gAfjl8HlVZOfymH4bWeXGjtzpucuDuWayhGdNXGETvzRX8xZZq0BhF5J9zEUVu13Q8VzsPYThsvsP-AD9pATLNsJ8ILS0LP20d3wYJvMCDHDSbqOp8xbl0cZE47~WoyAZny0W5NGnp7LP8ZPzzO8PEMmNJCnrdohTVKjn8R67AoT1N7WByfgpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="45442788"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces"><img alt="Research paper thumbnail of Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces" class="work-thumbnail" src="https://attachments.academia-assets.com/65954160/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces">Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces</a></div><div class="wp-workCard_item"><span>The International journal of analytical and experimental analysis</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In compactness g-open sets were firstly used by Balachandran [1] et al. A topological space (X,)...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In compactness g-open sets were firstly used by Balachandran [1] et al. A topological space (X,) is called go-compact if every cover of X by g-open sets has a finite sub cover. In this paper, we introduce the Q **O-compact spaes in topological spaces and study it&#39;s properties.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="aa8a874058cf549308f8272fb9e2f8b4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:65954160,&quot;asset_id&quot;:45442788,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/65954160/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45442788"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45442788"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45442788; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45442788]").text(description); $(".js-view-count[data-work-id=45442788]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45442788; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45442788']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "aa8a874058cf549308f8272fb9e2f8b4" } } $('.js-work-strip[data-work-id=45442788]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45442788,"title":"Q** -closed,Q** -open, Q**-Lindelof and Q**O -compact spaces","internal_url":"https://www.academia.edu/45442788/Q_closed_Q_open_Q_Lindelof_and_Q_O_compact_spaces","owner_id":12462388,"coauthors_can_edit":true,"owner":{"id":12462388,"first_name":"Dr. Padma","middle_initials":null,"last_name":"Prithivirajan","page_name":"DrPadmaPrithivirajan","domain_name":"independent","created_at":"2014-05-28T20:46:25.600-07:00","display_name":"Dr. Padma Prithivirajan","url":"https://independent.academia.edu/DrPadmaPrithivirajan"},"attachments":[{"id":65954160,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/65954160/thumbnails/1.jpg","file_name":"7_JANUARY_2020_SP.pdf","download_url":"https://www.academia.edu/attachments/65954160/download_file","bulk_download_file_name":"Q_closed_Q_open_Q_Lindelof_and_Q_O_compa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/65954160/7_JANUARY_2020_SP-libre.pdf?1615343816=\u0026response-content-disposition=attachment%3B+filename%3DQ_closed_Q_open_Q_Lindelof_and_Q_O_compa.pdf\u0026Expires=1739847611\u0026Signature=X7V0Z56spwPLHa1a7RpiY6YjyZz1eunsi21wa9c0AcZFqwDuK3sw7Ao1Scx3~9cDoa8zDrFOD2sp-IXTDfZQbRE2vHQY7SnyEVxTJecAAm3VKWV6-FGPP2QMuewe2A3~Y3c3ifbCa2HAtXI9hsrNP23C9FTFw~-neO6S0Jri4wFTytYQAPDCZwMeUO9UYAnCy10IzBdzEcaDRsITV3OA20-y82TMeWsT6BMouL4PnO1Dgg77miI4ErRmNgOtuX-U4qg8wv-OmUSaNwd7cJYwkTEBkPOfHnnPIL7dGTfC5MuC0JHwRIpCohQdOVmcUnHg-hj2lk8wbGodQqtkAIqcDw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "46c75c31310c8abad948cc1ca526ad082ebec810deb86e2cab60755326010715", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="8b7D4hQyK01mPH7lajuJMQz1DbTCF68D1A-rRQyKIq7Y6EoIcyZgA9CHaDaytwvArezUqfMLuytIEDsga0R4_Q" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/DrPadmaPrithivirajan" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="SeJjV9xxtIasGKPryIuf8Lwb3oIY03ZMGt-P2zSNFZhgtOq9u2X_yBqjtTgQBx0BHQIHnynPYmSGwB--U0NPyw" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10